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FREE INDEPENDENCE WITH RESPECT TO A FAMILY OF
STATE SETS

by
Valenbin IONESCU

ABSTRACT. A notlon of quantum independence is studied. Some of

1ts properties are used to obtain analogues of some clasgical results.

N . o _ RPN ot ke .
- hek B\fg'unital (x~) algebra over the complex field. Let&consi—

der the category of (x-) algebras over B 1il.e. A2B31 with

morphisms being (x—)algebraic,homomorphisms,.which are bhg_identity

on B . The free product with amalgamation of (Ai)iel over B ,

denoted x Ai , 18 the coproducb (direct sum) in this category.
ic I
- BB add}blonally a C¥~algebpa, Ai’ O arevcx—glgebras_
over B, and @i y ie I, are sets of norm one projections (or coodi-
tional expectations) of A onto B , then the exlsbence of a

"reduced free product wlth amalgamation ¢> of the family (@ 1€.I’

via a family S of maps'" is establlshed”inVES] on the "biggest"
c¥-algebraic free product with smalgamation over B.
This fact can be detailed, by similar arguments, in the following .

forn.
Let I be an index set, ([z)ieI a family of index sets, and
rﬂ = T—E [ﬁi o olorwll o Ae N, fy L, 4f b;:(il,...,iA)e.In s, denote
€

o T . Let also be given a family of maps vy
r‘-b =l r\ 4 \fl ( )«L)A

h that . d ik
suc a ‘6" | JE‘:LI" JQ’UI”'\'1 , &an js (t ’dt) € E ’
for all (b,%,) e {t} x Ft, i£ 0yl



Denobe again
and

Dm(I)1=-&(%)\‘.‘

m - »
)VM)GI ) Y ¥ Viesr )&eksmwl}

for all w3z 2 .
( TMT‘and _Ljdare regpectively denoting the product and the
caoproduct in the category of setsg.)
- Let B be a unital C -algebra (over c ), {Ai’@) B be a
couple for all 1eI , where Ai is a Cx-algebra over B , and

‘ @ { ) ke r,} ig an arbitrary set of norm one projections
of Ay onto B .

- Theoren. Thare exlsts a couple { A, @;}, where A His W oo
C¥falgebra over B and @’}={Wu) y A GYT} J is a get of condli-
tional expectations of A onto B such that :

(1) There exists a morphism jL3AL~——#A for each 1iel,

°
?

such that A 1s generated by k%QL(AL)
ce

) i) ) , _ .
(2) k? ° 4. %L for each iel and s | $
(3) For all n»l and = (11,...,1 y € IP
) ) y ( trmﬂ ("(“mp))
! (v e Y
] -LM (Jc l"‘)c) ‘
bk uww)E&Q” f;;zi 7 (Leke P), for all P21y (Yeuy s irp) e
c D (-(m 5 ‘w}\) ,where (k) c—;{l, oy ,n} 3 Qenobing «{::@w. S% ) :

for each (74 G{ﬂ

According to [3] , @ can be called a reduced free product with

~amalgamation of K@c)

el over B via Yy , and (%) of Theo#em

the free independence property with amalgamation on A , via N

One can denote o)

)
(1) = ?%[5 @g ) @"(b) ::}S%U\t\q}{.)

&



5
L Leﬁggglimib the frame of this paper in the preceding context.,
Take ﬂ:[\ for all i< I and 7(“)_: o el
rake ~N“V:["x [\' — e by 2 =00 i be I7 , and
R e [\'ﬂ Joitom each nz L. ‘

Leﬁ¢%511 gtates of A all linear maps \p o A —+ B which are
projections <‘?iB = idp) and B-B-bimodule maps (\{(B4Q&2)1=L“ﬂ”%;“m

if L1,bzG£B and acA), in the case of a unital

algebra over _B ; At the x—algebraic level require additionally kf

be positive R

Considgr @L:,%$§M 3he[\} i.e. a state set of Ay, and fix
N €\ :

Denote Do)

R s TS e T el

(ie D) o e
In view of previous Theorem one can derive the following

aggsertion.

Theorem l.1. If A 1is the x-algebraic free product with

analgamation of (Ai>i€:1 over B, then there existgs a gtate Lf‘
of A such that relative to the canonical morphisms j.iA.—wwép\ ’
) R
Lokl s
(L) Y»Ogt :\& for each“‘iejl;
(2) For all ny 1l and Giz(iyyes-yi,)el”

°
®

ole s A L o
W(}LWH) rr(n) L%L\MP)(Q.H(P,)) = \degqﬂ“) \SJLW(%)&'U'(F))

) ;
(e s : ;
if .0’1\'04) € KQ)‘L L?L'rr‘([\:) ) J E{K)'e'{i )“’")m} )(”é‘ Kéczf) ) ’fOT
all P % 1 and Lt"wu) b S LTﬂ?) ) < DPQ§L1 N S \'m)}> *

)

Thus, ? can be called a reduced free product with amalgamation

of (Mi)iay over B , mith respect fo L%%)iel T e o

and (2) of Theorem 1.1 the free KV -indepeadence propefty with

analganation on A via A .




T

One can denote @2 W QQ

(,GI

e ik

Let be in the following B = C:.

o;ﬁﬂ o

Consider the (non-commutative) probability space (A,Lf ) glven
by Theorem l.l. The elements of A can be called (non-commutative)
random variablesg.

According to L81,U{31, for a random variable WE gl o, ()

[ Rl o TP 6 AS R S I Y aind cee Ay (l¢ k¢ n), the expectations
L n k i
of the form

' L)
\ﬂléﬁ,_nﬂ 5 Q_W(n)) Q {s (

a_ e O
or L'e ) um)) Ja

where TT(l),...,'T(I.‘) < { ,.--,n} and i (l)zo-‘ol" i (I‘):‘i (1030

n(l)""’ afr(r)é Ai ), can be called elementary momeabs of w .

Remark 1.2, Lebt w = Ji (al) - Ji (a ) be a random variable with

.-(11,...,1 = i . ak<; Ai (g ke n) Leﬁ*%écompose

(GN) (m

+ v &)

ay = \{K~ k ( V (ak) l+ak 7wheze akcg Ker W ) depends of X
Ly
and| & . Denote #n° = Ji (al)... i (ag). Then it is easy to observe
J;

that each elemenbtary moment of the random variable w® can be
expressed as a sum of products of elementary moments of w , aand
conversely. One can also decompose

& 7(‘('v\) &)) (m) “

Bila g ; (QNQ) = wA) - Tow )) .
Lf 3% 3 & -,%— kf» ) Q‘T(H) ks ey (arm)) \’?( Ay <r(m~n‘))

where the sum runs over all partitions of {l,.;.,n} into two ordered
sets W= (W, ;7)) and o = (TA4),...,c(n-n)) y '3 1, considering
T =@ & r= 0.

Thus it is easy to observe, similarly to {81,{3]1, that the
free \y —inéependence property on A allows the calculation of all
moments of w relative to \F y 1f all elementary moments of w
are given. The calculation follows the same recursive procedure ag

in [yJo (5]
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The followlng properties can now be established like in [8] and
(3] by similar arguments.

Propeogitlon 1.3. Lebt w1, (il,...,in)e I? such that ik # i@
for-all k £0 ‘and "a.c A Cleks n)s ’
ke
Then
W S8 s o)) = ‘ﬂ-}“«)_‘ -+ A

Example : Identify ji(Ai): Ay Congider w = ab with ac Ay
| sl . 1

be.AiZ, il 7 12 v Pabs e (11,12).
Decomposing
(€, ®) : o (2 )
oo PR 7., ab)i+l, with LGK‘{ )
one can write :
v &
e B
\WMGYQ (by yla) + ple )
o et o,
: \f@xl Dy o+ yak)
, ket 7 “
Then, decomposing
) e

« =@t @it , with @€ K

Y4 Y

A

one can coantinue

()

$lak)= ¥, () (k) +\f(q )

@) ‘)
Gt . . ,_
But guab°)—YLQ)\? () y Dy the free WJ —independence properby .
And

Q(, (’c)) A 24

e T e - g8 Py

Thus, one obbtains

\y(ab) =\p(a) Y(b) .0

By induction one can also obtain the following two properties.
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Proposition 1.4; Letﬁ%ﬂzrl, and (il,...,in)e Dn(I) ydenoting
PrEdkily s oon,l ) ‘
Consider akeAik (L¢ k¢n) and w= jil(al)...jin(an) :

Then the expectation \P(w) can be expressed as a sum of pro-

ducts of elementary moments of w , each term containing at least

p factors.l

Propésition 1.5, Lebiyg;?l;b::(il,;.;,in)<an(I) guch that there
exists Je {1,.;;,n} with i £ 1) for ke{l,...,n} ~{j} , and
there exist  &bel,...,n} with C<j <l but i,= 1, . Let also ke
p:=4#{il,.,.,in} = o |

Consider wlz'jil(al)... jin(aﬁ), a8, e Aik(lélzern.

‘Then the expectation \?(w} can be expressed in the following

form: ‘
e '
e, et B o 2

where’Zi is a sum of products of elementary moments of w , each

term containing at least p+l factors.l

Example : Ideatify ji(Ai): A:. Consider w=abw® with ac A, be A,

L ! 12
il'}.é 129 522(11’129-11) 3y P=2 .
Then 1 %)
Plabe) = P e +p(a b
3 ®) | KD e)

by the decomposition L):\ﬂz thed+ 8 with - BeKe %,

By using similar decompositi?ns for a, one can finally obtain
5 (X3
(a B = W wlbyptar = (k) Wloy Pla) -
e b - v
Therefore

(sl

£
s 2
pltles s - (hlip ety + 7.

7 TPl (b = Q((Z)(k){,
L e o g e

where



e

, -, SN ,

.- §bserve that only the term w‘ (L)tf‘Lm}) has
- "z. v 4 ‘

exactly p=2 factors.

Let nowVintroduce some facts from Lad, L3 dangd L&l ,

Let*ﬁaz'l. Denote by P({1l,...,n})the set of all partitions
Jracnip..zﬂ%) of {l,;..,n} ,consisting of ordered and mutually
disjoint setg.

Oce can denote T = (M(l),..., % (np)), &= 1,p.

Thebé‘exists a natural correspondence between 1% ang

p( {l,...,n}):
t

G r——3r

= {il,...,in}_is an enumeration, then thz(ﬁf

s e e adDy, - Top

)

.(~)ﬁ§ ) where

This correspondence is onto, but it is\not‘one—to—dne.
Therefore it induces an one~to-one correspondence on the set of
the equivalence clagses relative to the following relation "~ n
o given by

(il,’o-,in)’\i <ii.’.'.’i;])<;:>(ik: ie(‘.;."> il'{ = i?,' )o

Definition 1.6. A partition IT=(T,.--ur) of P({l,..,0}) is
called crossing if there existg two sets Ty and %y in T such that
b e A %
i 14 : 1 oh ' 1 j i
there exigt kl,klgw&l and kZ’kEE“EWlth klc k2< kl<,k2 .'OtherWLSe

JT 1s called non-crossing.

Denote the set of all non-crossing partitions of {1,...,n} by

Pnc({l,...,n}).

Definition 1.7. A set Ty of a partition Wre P, ({l,...,n}) is

called inner if there exists a set mlfzbgﬁd),ua,x%xnkﬂ)

of Ir sgsuch that

JTe,(/l) < TE(K) (& %,(me,)

Otherwise, ﬂ% is called outer.

for all () e I,

+
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Definition 1.8, Lebi?52>1. An element tz(il"f”in)e P is

called non-crogsing if the partition :Wte P({l,...,n}) corresponding

to ..k ig non-crossing.

In the opposite cage, t 1is called crogsing.

Similarly to [ 8] and [3 ] one can deduce the followlng conse-
quences of the preceding propositions.
S %}_ : . : )
Corollary 1.9. Let Ynzl, t= (il,...,ln)eil such that t 1is

crogsing and Dp:= jj:{il,...,in} .
Consider ake,Aik (1< k¢ n) and = jil(al)...jin(an) A

Then the expectation \?(w) can be expressed as & sum of
products of elementary moments of w , each term containlog at least
p+1l factbrs.

Example: Identify J;(A;)= A;. Consider w= abab with aeAi e
i : LGy gl J ' 1
By sy 2 oniis laenie kol a B2 (Y% —

Decomposing b = ?Qﬁ Cﬂ%b)a*_g’ , with ¥V e kn W ) ,one

3 ¥,
can write

i . K ] (t)) \ o
ilabab) s 2i\p (byPlabo) + wlabal)
\%k ) kﬂz . “f ¥

But &
W2 @)

%(aMQ: Y%, “”W@G%*Z_ like in the precedent

Example, where

Ty QC“”(H)L
o = .
Bt siglagtg s g g
(70“’(%)) R s
So, the summand W. Al L by contalns products with at
e : Tt
least p+l=3 factors.
Decowposing e 4} LLJ'i + o with «’e¢ Km.y 2 s
Y4
one can conbtinue :
o - )
: - &f(m\o_&&)) = \€C4 o) \?(ub\n) 4 \.FCOLlOGL L,") ‘
And so on, decomposing successively b < $ 2’ %H e e with
() 7(“‘)(%)) 7(.0‘)({:
« RO) ,and &= kﬁ o)1+ with «'e KmL? )

o %’

one can write :
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(e ®

wlebahy 2 (wsytmmfw>4-w(mU“u?V)

and
QCM

‘f(“wl"‘ogh i La) (ke L)+ pla®Ble’le) .

no U RME i UG U ais plem Rl s e )%><h“)?<qxﬂm

by the free “) -independence propert:y.

]
W (abb®) = \p, . (bb®) and Waab®) =
One hasg also \f(a ) \{ll(a)\flz( ) a t{(a )
:\?il(aao) k?i?—(bo) 1ike in the first Example. Because \]Oi (bb°®) =

- Y VH
¥ \f\:%(g}-) s \ﬂgﬁw‘(&))(w \ecl(m and \?CAL&O, k? (a2 kFQ( ))(a,) k? (e)

it becomes clear that the summand Lf(ab@cbo) also conbtains pro-

ducts with at least p+l=3 factors.

Corollary 1.lo. Lot ¥a7 1, b= (1,.009L) ¢ I° such that & is
don—crossﬁng and p-:#{ii‘,...,id_ .
Consider ake Ai (l k< n) and. w; éii(_él)"fain(%), s
Then the expectation L‘F(w) can be expregsed 1o the folloviing

form: p iy

where ) _ Gl VR
7, T (I ) = (k=T 6= )
wwz‘: msrew'“ Iy ) Q Av(Q)
S 8F 3T, Leckomen
I, [,
() e
X &)=
= W, o, gblspukse g SN
L= ,__thz(..'ITi,...,yrp) being the non—crossing.‘p&rbition corres-

ponding to &t , and > is a sum of products of elementary moments
of w , in which each term containg at least p+l Tfactors.

Note 1.1l In the definition of %(;) one can choose any element of
L

‘jr‘e »
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2. Let noﬁﬁ%becialize the frame of the precedent gection.

Take /\ = N .
Let {A Cb} be a couple, where A 1is a C*-—algebra over B and
@ = %'%(n); neaN} is a gpecified stabe get of A .

Consider | Ayy p5aWyl ey mhere Ay:=As ypy:= s aad
\'ifi:'—-\{f::{ke(n);n?/l}v, for each ieI .

If R = X Ay (the x-algebraic free product with amalgamation
B
fel

over B), then there exists a state Q of A, so that relative to

the canonical morphisms ji:Ai = b et phe hasg

& o)
(L) e gy =0p for each iel
(2) Ber ald:. nzl and b _(il,...,i )c;I :
.59
‘*F(’Ab-rw T " et Sripy)) = k? )iy (&Jr(pﬂ

b A, )
if a eKme a0 () Mie) €44 ey m} ('V:.KQ?) )

fOI_‘ all : p 7/ l : and ({',“lT(/\) ) C’-gr(P)> ev DP('{.\-‘/i ) "’)(’rn}) Y

(A,\{ ) can be called a reduced free power with amalgamation of

(A, LF(O)) over B with respect to U via 7( .

Lieb be also in .bthe followlng B = €,

Remark 2.1. Let\LVn; 1 and ¢&,t'e I% such that t:(il,.'..,in)m b=

2 (ii‘°"’iﬁ ) . Suppose 7<<n)(t)= TC(O)(G'). Thea it is easy bo see
that
kf(}%(ﬁ‘) : 3(, (a )) L?(j Ca,’) }an(;a%))

for all a,c A (l¢ kZn), ‘

Moreover, if for example 7((n)(t) ='7<,(n)(t;') for all t,t'e I”
such that &t~ &', then for all 1x;an(the gymmetric group of order n)
and (11,..;,in)rv (144---s11) of I, one bas

Pl 20+ o )= By o0+ g, )

t ) T)
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= b

for all aye A (Lgkgn).

Therefore, 1if ByyecosBpc A are fixed, the value of the expec-
tation (Ekgcﬁqn“-ghgmﬁu is the same for all (il,...,in)
belonging to the éame equivalence clags relative to ~~ , under the
hypothesis )C(n)(t)z 7Q<n)(b') Tor blbe [(il,...,in)] . Under
this hypothesis, the value of thé expectabion i$($ucld"’4mf“%9
depends only on that equivalence class i.e. only on the correspond-
ing partition. So that, if X (by= %P (61)  for all
b, b'e [(11,...,1 )] ; onme can denoce‘

Plasfoa g o) =1 GerFreany
yrt i P({l,...,n} ) belng the partition correspondlng to the equiva-—
lence classxﬁbj__wh;ch.bas_the‘reppeseqtat;ve (11""!1n)'

CLblids deﬁoting the equivelence class of te I,

Let noﬁ%%éke in the following I=N and congider

QK;@) = g@xy(ﬁg)%z) given by the above assertion;

Remark 2.2. Let r»l and Ne N, N>»>1 be fixed. Take al,..,,ang A.

£ % (e) = x$F(6') for all tet' of § ...,N} , bhea

o ﬁ

Pl () - (ZZSLL%))) Z_ ’tf(;;\tom 4. (o))

544

= Ei N’Z{ (R, R
# N L? D sa e ) }.,)
P=4

(T Pa-) /

by collecting these terms corresponding to the same equiValence_

‘clags. The equivalence class correspoading to (ﬁfl,...,jr ) conbains

exactly Aﬁ i (Ng%TT representatives.

In view of 1. , the proof of the followlng theorem becomes clear in

the present context.
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Theorem 2.%. (Limit theorem)

For each N» 1 let m elemeats ay €A 1<kgm, be given
: . :
LiEa : :
and consider SN,k ::E%i Ji<aN,k) .

Bor-adl: ool cend - GilL), o0y SR € {l,...,m} let suppose that

o ? (G
Dw Now™a v = QT (et 0, Tt) ()
N— 00

N ) N LT 0V
exists for each ne¢ N , and 7{(r)(t) :'Xfr)(b') for each bt~ §!
of Nr °

Bhen fopoalls ol and OCL)yes ey G L) G{l,...,‘m}:

P
“. /\ ® QW - ‘ i
B Y (S ™" Snyom) “Z Z— Q@)
N—> 0 p=a =03 . P)EP Um ﬂ\]r)
where 0y
-, 1)
@TCYQ) = é Ha »(cr(wew) ETTNIENCTS)) B
. i
£ it T 1)) d L 7%%() gl
or o Ty =« +jXp OLg an +) =
g = U4, " 4 Xy 0 otherwise

C-Ealpl e i being a representative of the equivalence class

corresponding to M = ('JTl,...,STp).

Note 2.4, The condition (x) can be replaoed by a weaker oune

Bop-all. pol mnd G{L) e & (2) € {l,...mk

i 0 e =4 (0) ey (

%Ifwt\l P i T Sy ) st BT TR

and

Num N- L{? N QNWM) Q (o) )0 se, T (RD)
2w

exist for each tGg 5 igng j = LyPe

Like in (8]and (3 ] ,one can easily derive analogies of a central
limit theorem and a Poisson limit theorem, by specializing

Theorem 2.%.
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Corollary 2.5. (Central limib bheor:em)Q Let m elements 8 € A,

N
1‘_41{& m, be given and consider SN,k::'J\ﬁ 4. () ,for each Ny 1

and lskg m;
For all 1¢k,G(l),T(2)¢m lebt supposge that
\fm (&)= 0O
and
“{’LNLOLG(A') Ogeay) = QU\)(U(M , T (2))

Por each ne N .

Ghan-fon bl nz) sapd 0L jeeey SRy € {l,...,m} :

e y |
A T QyGe)  if r is even
(T Ty )€ B M73) :

N-écokr qu Nmm) = 0 otherwise
& UL) :
where Q OTU' (0-(3-\:@(4)))@(—5‘-9(1))) s LOr ‘T\"{é(‘xreca),xr((z)) )
S if 7, is inner
%Z(n)&) p Fl2) _ . . (Q:,\,%—> ) o ™
Yo 0 otherwise

being & representative of the eqguivalence clasgs corresponding bto

7= (3719°"a5rr/2)~

Corollar;{ 2. 6. (Poisson limit theorem) Let
be given and consider B8y = 2 gi(aN)

agc A for.  Ne N,y N1

For all r» 1 suppose
(m)
LR R(CRISEET
independent of r , for each ne N .

‘Then e all rs L

X Q(‘:r)(’t))
b Bat) e 2 2 i

N->® Pra (J\],...)I’,)QP ki\/l; 9)'1})



=l e
where

. yq:;éf) AR 32 is ianer
) 4
%

b 2 0 otherwise

for _")’TQ = (JTQ({L,),..., 3‘}{(%»’ Dozleb gers being a representa-
tive of the equivalence class corresponding to th,..grp).
Note 2.8. &) The conditions of these two corrollaries can be repla-
ced by a similar manner to the precedent note.
b) In particular, if for all r»l suppose
Xm N\f ((w = o

X e)
P N\é ) )(@N)R) :@
N-e0 ] e :

independent of r , X, t&I® and Jj= T,FT , then

and 3

Corollary 2.6. asserts for all r» 1l:

A - oAX) (T
i \FQ@N)”‘) = Z a2 24 ) > &)
N . P=1 T’GP (I\’l) —ny) :
where O(J) 1is the number of outer sets ian ¥ and i(y) is the

number of ianner setg in ¥ .

Note 2.9. &) LetVry 1l and w(1),...,5(x) € {1,...,m} be fixed.

Consider I =(,,.»-) Jy) € B {l,...,rk“) _and [t ] the equiva-

lence class correspondlng T S Q': I CQTOQ)depends

. :
only on T, if and only LE 7frg%f ) does not depend on [b] i.e.
7( *)(CTQUW) on tpe_reuniop of all;equivalence‘glasses corresgs-

Ty lyg)
ponding to non-crossing elements in er‘(in particular, if:

7Lgr)z KRG fopail J=1F on the above reunion).
b) Leb%}ﬁz/l.”Let n maps ;KJ:I5~_7J§> s ITB , and
T e Gﬁn (the symmetric group of order n) be given;
For each Jj = T,n., take (32 (Srl(j>,Jng>)g P({ 1,...,q})

such that T() e {:ﬁ:mu) , HO} :



e
Comgltier. (0 N\ by

& I : '
K" (,(44)~v\ ’\: ')::X : (‘_ ) Y] l,(‘

it T =Hom? (Leil,2)), for each j= T,n.

Te K y(65) = % 5(6}) for all by~ by tn 1 , for. each

3=T;8", then 7c(">(t~,) K(”)U:) fors all bt An I .

This is a method o produce 7&§n) for Limit theorem.

2" ﬁeﬁx%éscribeba 1ittle the set of the central limit distributions

in view of Corollary 2.5.

4 connexfion between this limit distribubion set, the universal
continued fractions of the Stieltjes type and the classical moment
problem can be established. . . o o oo
: .The way 1s the equ;valeqce betwegp the chargqberigt;c sepies
of certain labelled paths in the plane and the univepsal Stieltjes-
Jacobli continued fractions. This equivalenqe holds in the algebra

(XY of formal series over a non-comuubative alphabet X with
complex coefficients (see [5]).

Let“Vrecall some facts from [5] .

Ta - W , the free monoid with basis I\ )consider the set of
words-of the form «=Yo¥.. .9y where «, = 0 and | <« -Y_, Cjiiik

. L for each k;I,r (so that vy, ;l), ; e _

Each word of this form in N* can be characterized as a word
U=y Uy e.. U, over the alphabet {d,@} wibh o = (1,+1), P (1,—1),
and can be geometrlcglly represented’as a sequence of pointsin the
plgne. MoMl oo M, such §bat Mkz(k,yk) with Y,=0 and
Tp=Vy-1 € &"191} (k=L,E ).

According to [5], the words V=¥ 4.4, of the above form
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can be called positive paths_wibhoub level steps (they consist of
only two type of ﬂsteps": rises and falls); The number 1r 1is called
the length of « , denobed |4l .

Leﬁvintroduce the labelling operation.
Consider an arbitrary alphabet of non-commutative indeterminates
= {2y 020} U{F’mi;nzof'

If <=9 -9 is of the above form, then the labelling of «

denoted N(4) , is defined as a word of Xx, the free monoid with

the bagis X , by

L = o oo
where
ol 5
Y., I 9 -9 ,=1 : s
4 s v (k=I,T )

(-S"{ if 9 f(( =-4

=4
Examine now the following set of positive paths without

level steps :

g*‘ :{V'SQOQ,‘H.‘IN 3 qo'.: o= Yy ) %w-«v»«—d Es\'df{;‘.} &k:/l?b)%

For 4= it is easy to observe that .., =1 , r=|ul ig
even, y %2, and alsofik=T,T ; % -y, , = 1} 4i{k~f“r,%kw£1 :~i}£§

Therefore one can algo consider the following get of labelled
paths
Przn(3Y) (c x*)
(card( P N x°® is the n-th Cabalan number)

The characteristic series of G de charC}) > Uy which is
veQr
considered as an element of the monoid algebra of X¥ i.e. as a

formal series over the non-commutative alphabet X with coeffi-

cients in the complex field, usually denoted CLx» .
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In view of the basic egquivalence theorem in [5], the series
char(ﬁ‘) appears as the non-commutative analogue of the Stieltjes

type continued fraction

S, 2)u=

aoblz

&.b.z
e =2

i.e. :
char(9 )= 8(X,2) |
where s z s' means S and 8' are equivalent modulo the commuta-

tivity of the indeterminatesinX .

_ The:e exist also an oneto-one correspondence between the set of
partitions 3 =(w,-+ ) eiP(.{l,...,Zp}.) where 3, = 2 for
each { =I,7 ~ and the set of paths in @+ ghich have bthe length 2p,
3 ey Ok N X -

IP ST o= (o v, 0T ) e B( 5\1,...,2p})¢;r2_2 and T = (WU, T (2))
for L =T,p , then the path corresponding to W 1s g 9, Y, ‘P
where

y. =0 &nd . s 5ol i ke{'xre(a); Q=Tipt
LIK =

(It is easy to see, in this context ore. Pnc(’§l""’29) if and.

only Lf:- .9 ~+ Moreover, if o, 1is outer inm ,

T u, Jr,z(z,) =1

then 'qu'QL’J.) = O’ ({“ i 1.) :
- The above Qo:respondence is also onto : if 4:ng4n‘qzre@*ﬂxfp
then the partition corregponding to V¥ ig 3Tq==(mqy~q“})e ?uar,vzﬁg

w .
where = (4 n-uJ) L=T,p ?Qéiven by the equality

{4)“")-')% :{K: HP )VK-yK_,‘: 4} U ikA‘HP 3’\19&‘?\4—4:'4} )



=0
taking

{K;r,?‘, S, =ty =(mw, .., W) and frefitpy v, -9, =1} =
= Lir .~~,Jr1,(9.)) .

In consequence, the labelling' _ - correcponding to «=¥eY .Yy,
(the path corrhesponding kg e Pl {l,...,2p }),WCH» 'Y{:(ng(«), Wu)%
for. L=iTap) he o

3
EQe )= TAYL“"‘QP
where Tﬁiw T Ay and v - (;q @:4';),
Mel) = 4 . Tp(2) -

In particular, for each Q’-.I to the partition of{ @), (z)}

(ST) ) consmsblng of only one set I, wilth T, = (I M), W, (2))

lt corresponds the followmg path of length 2 : 9T = %%’TM)%‘T'(Q)
PORL

and its labellmg is '\(q‘r)z) (A\Tr(z 2

Remark,.l 1£ [v ,v] 0 for L £ . L ‘v'i,'va,...,vzp

commute,bhem AT = AT ey AT 1o XF LD
Coming back to Central limit theorem, take now achA with

\]OL'“)(&): s kaM}(Q@l) = QL"\‘(/,)/D for each nel .

Por-all r51  deagle

Z t{\ Q (3’2 if = 2p
g = ) P () |
I =2 0 obherwise

where
& ‘
Q) =@ w0 ®)( 4, ) For Tp=(TW),Tel)

(=05 ) , teI”

by e :
e 76,%&)&) if Jl’e ?.s inoer £t
0 otherwise

[t] corresponding to JT:(J;‘,‘).\;,T\‘P) ¥
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- Remark 3.2. Suppose the alphabet X consists of the commutative

variables o, =V ™) = fuy, , 0% 0 belonging to the multipli-
cative semigroup RY g

Consider I =(W,, M) e P ({i..j2pt) » Mp=URuw, ) &=hp)

and also 6] and Y72 y,9,0.9 , respectively, the equiva-

Ar
: lence class and the path corresponding v B

7 ") o }
va 7£whﬁﬂ = r&zu) ) for each { = I,p , then the 1abellwn3}

ceciof gl i
s
BN ‘

Therefore

by £ chon (M@ AXPF) -

For the power series > M.z", the basic equivglence theorem
) R e il ieones
in [5] implies then an expansion in the following Stieltjes type

continued fraction.

( here ¥, =1 )l

Some definitions are now necessary. » :
Denote, as usually, by C€{X1 the algebra of complex polynomials
in one variable.

Call probability distributions all linear functionalst&;®[X3g40

with W[13= 1. Such a \ is positive-definite if K[P(x)] > O for

every polynomial P(x) that is not ildentically zero and is non-nega-
tive for all real x ; say is gymmetric if all of its moments‘of
0odd order are zero ( p[X”*ﬁ] =0 for all peN ). ( A classical fact

implies that such a positive~definite probability distribution. ig
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given by a solution of- ‘Hamburger' s clagsical moment- problem )

For_aﬂran@om”vapiablg,‘vain ( W )y call the disbribution of

LE the‘probabil%by digstribubtion ﬁw : C[X]—>C given by #%lpl-*f(R%»
for all Pe €LX]. o kat ; : e

In bhe space‘of linear fqncpionals on  ®[X] sendingw}_into &y
say that probabllity distributions rm_converge to V'( denote &;:>ﬁ)
sl O | VE[P] V[P] for all Pe ClX].

M =500
For a sequence ( W, Lwo of random variables 1n ( A SR)’ say
that ( w, )m7° converges in disbtribution: to & probability distri-
i ) 2 :

bution w : €{X]—C L A ol

Remark %.%. Using classical facts ( see [ 1], {47, [101), Lt is nob
difficulb to see then thabvcentral’1imit_distribub;on“sepvgiven by
Corollary 2.5. is bhe et of all probability distributions, in the.
above sensé, which ére-positive—definite aqd}symmatric; Iqﬁparticu~
lar, any ‘symmetric probability dlstrlbution on the real line. with
moments of all order is contained in the cenbral limit distribution

get.l

Thus applying the method of [21, one can find operators
possegsing the combinaborios of the cenbral limit theoremn.

More p:eoisely, for each symmetriq p;obability distribution rv
on the real axis wibh .‘momeqts of all 9?69?’1306 sugb.tpa§.§he setb
of all polynomials is dense in _L?(V) ,‘chsidgr}thg»qpbhqnqrmal
basls (em)ayo 8 L2() consisting of the monic orthonormal
polynomial sequence ([1) corresponding to M . Then the self-ad-
joint operator Z of multiplication{ by % wlth maximai”doma;q in
L?(?b) nas in this basis the matrix of the Stieltjes bi-diagonal

form
g gle) 0 (o IEE )
glep= Oy -0 O
e g o iy @
Gl o P B )

008 0
]
)

e - -~

- -



0
/ 2
where g(J) :=<ej, ZP?:,‘+1> >0, 0&£3<dim L (TL)‘
So that Z 1is equal to g(N)L + ﬁ%g(N) on the space of all
polynomials, where N and L are the number and the standard

annihilation operators

N:%jtep@“ poali 23 o> 2y
)

in Dirac's notabion.

0 18

. The distribution of Z in the pure state < is ol
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