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1 Introduction

By the work of M. Peternell ([5], Satz 2.3) it is known that if ); are ¢;-
complete open subsets of a reduced complex space X, 1 = 1,2, then their
union £, U, is (¢; + g;)-complete. The proof relies heavily on a technical
criterion (viz. [5], Satz 2.2, p. 558-563). :

The aim of this note is to give elementary direct short proofs of these
theorems by effectively constructing special exhaustion functions. That will
follow by composing the given exhaustion function with suitable real-valued
convex functions of one real variable. As an application of the above men-
tioned criterion it is shown that any complex space which is an Increasing
union of Stein open subsets is always 2-complete.

On the other hand, our method gives similar results when Q; are qi-
concave, 1 = 1,2. An example of two 1-concave open subsets of a complex
manifold whose intersection is not 1-concave is shown. This is in contrast
with the l-complete analogous situation (The set-up is chosen so that 1-
complete spaces corresponds to Stein spaces).

2 Preliminaries

All complex spaces are assumed to be reduced and with countable topology.

Let X be a complex space, v a class C? real-valued function defined on
X and ¢ > 1 an integer. Then ¢ is said to be g-convex at a point z¢g € X if
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there are:

e an open neighborhood U of zq, a biholomorphic map ¢ of U onto an
analytic subset of an open set D of some GV, z, := t(zo) and

o a C%-extension : D — R of o, i.e. © 0t = (), such that the Levi
form L(®,z20) of ¢ at zy has at least (N — ¢ + 1)-positive eigenvalues
or, equivalently that there is a complex vector subspace £ C CV with
dim £ > N —g+1 such that the Levi form L(@, zo) is positive definite
when restricted to F.

It can be easily seen that g-convexity at z, does not depend on the chosen
local embedding ¢ : U — D .

@ 1s sald to be ¢g-convex on a set W C X if it is g-convex at any point of
W.

A complex space X is said to be ¢-complete (resp. g-convex) if there
exists a C*-exhaustion function ¢ : X — R which is g-convex on the whole
space X (resp. outside a compact subset of X )

X is sald to be g-concave if there is a C? function po X ==l eo)
g-convex outsxde a compact set and which exhausts X from below, i.e. the
(z) > €} is relatively compact in X for any ¢ > 0.

Remark 2.1 Sometimes it is Worthwhlle to have easier criteria of g-complete
g-convex and g-concave spaces. In order to do this we say that a class C?
function ¢ : X — R is tangentially q-convez at z, if there exists:

b

o alocal chart . : U — D C CV, U 3 zq, 25 := (zo) and

o a C%-extension ¢ : D —s R of @, le. por = @, such that the
restriction of the Levi form L(@, zo) of ¢ at zo to the holomorphically
tangent space

. e N
Hep(P) 1= {€ € OV| < 9(20), € 5= Y. 22 ()6 = 0)

t=1

has at most (¢ — 1)-nonpositive eigenvalues.



It is straightforward that ¢ is tangentially g-convex at z¢ if and only if
there exists a sufficiently large constant ¢; > 0 such that exp(cp) is g-convex
at zq for any ¢ > ¢o. Consequently tangential g-convexity does not depend
on the chosen local embedding.

¢ 1s said to be tangentially g-convex on a set W C X if it is so at any
point of W. Note that if ¢ : X — R is tangentially ¢-convex on W and
X : R — R is an arbitrary strictly increasing smooth function, then x(¢)
is also tangentially g-convex on W.

Now we have

Proposition 2.1 In the above definitions of g-complete (resp. g-convez, g-
concave) spaces we may replace the q-convezity of the above ezhaustion func-
tron on the corresponding set by its tangential q-convexity.

Proof: We carry out the proof only in the g-concave case (The other cases
are treated in a similar way). By standard arguments, this will follow from
Remark 2.1 and from the following

- Lemma 2.1 For any continuous function u : (0, o0) — (0,00) there exists
a smooth strictly increasing convex function X : (0,00) —s (0,00) such that
NN S peand XE 0 gt 0.
Proof: First choose a smooth bijection ¢ : (0,00) — (0,00) with
exp(é) — &' > i where fi : (0,00) — (0,00) is given by

2, p(1/t) + 2t

iy = SR
Then set o : (0,00) — R by a(t) == [fexp(6(s)) ds, ¢ > 0. [inally put

A(t) := exp(—a(1/t)),¢ > 0. Straightforward computations gives us the
lemma, whence the proposition.

3 Elementary lemmas

Here we collect some special convex functions of one real variable.

Lemma 3.1 Let ¢ : [0,00) — (0,00) be a continuous function. Then there

exists a smooth strictly increasing convez function \ : [0,00) — (0,00) such
that

Nexp(—A) < eand A > 1/e.



Proof: Define succesively A : [0, c0) — (0,00) by
(1) Ai=—log F

~where F': [0,c0) — (0,1) is a smooth function with

(2) F(t) := /t“’f(s) ds, t> 0
and finally f:[0,00) — (0,0c0) is constructed by
Q) £(s) = exp(u(s)), s 2 0.

Here u : [0,00) — (0,00) is a smooth rapidly increasing strictly convex
function to be chosen later in proof.

That F" and ) are well defined may be easily achieved by a suitable choice
of u (sufficiently large). Now in order to verify the lemma we note that

(4) Nexp(=A) = (—exp(=A)) = —=F' = f = exp(—u).

Therefore by choosing u large enough we get )’ exp(—A) < €. Also from (4) it
follows that A" > 0. Now condition A > 1/e is equivalent to F < exp(—1/e)
which is fulfilled as soon as u > 8 — log 8 where 3 : [0,00) — (0,00) is a
smooth strictly increasing function so that 8 > 1/¢ and, then by integration.

Condition A" > 0 is equivalent to f'- F + f2 > 0. which in turn means
A > 0 where

A= f@ + F) [ (s) ds, 120,
But this is true as
A(t) = exp(—u(?)) /too(u'(.s) — u'(t)) exp(—u(s)) ds > 0
and since u’ is strictly increasing.
Lemma 3.2 Let ¢, €, : [0,00) — (O,oo) be arbitrary continuous functions.
Then there exists a smooth rapidly increasing convez function X : [0,00) —

(0,00) such that

Nexp(—A) < ¢ and AN'exp(=)) < €.



Proof: Consider a smooth rapidly increasing convex function v : [0,00) —
(0,00) to be chosen later in proof. As in Lemma 3.1 set

(5) g :[0,00) — (0,00), g := exp(—u) and

(6) v : [0,00) — (0, 00), v(t) := —log /toog(s) ds; t >0,

We impose [7° g(s) ds = [°exp(—u(s)) ds < 1. It evidently holds if u is
large enough. Now we observe that v = g- exp(v). Asin the proof of Lemma
3.1 we get

(7) 9° + ¢’ exp(—v) > 0.
Now set A := 2v. To check the hypothesis we proceed as follows:

a) First we have X exp(—\) = 2v’ exp(—2v) = 2¢ exp(—v). Hence v’ > 0
and A exp(—\) < 2¢g since v > 0.

b) Second \exp(—A) = 2v” exp(—v) = 2(¢' exp(—v) + g%) >0 by (7).

In particular \” > 0 and X exp(—=)) < 2(|¢'| + g%). Now choose u
according to Lemma 3.1 so that |¢'| = ' exp(—u) is small enough. The
lemma follows.

These lemmas readily imply the subsequent two lemmas.

Lemma 3.3 Consider Q0 be an open set of some complex space X and an
arbitrary C* exhaustion function o : Q —s [0,00). Then there is a smooth
rapidly increasing convez function A : [0,00) — (0,00) such that the con-
tinuous function @ : X — [0,00) defined by

e { exp(—M(p(2))), = €

0, otherwise

is.of class' G on. X,



Lemma 3.4 Let §) be an open set of some complex space X and ¢ : ) —
(0,00) a C? function which is ezhaustive from below. Then there is a smooth
rapidly increasing conver function X : (0,00) — (0,00) with A(1) — 0 as
t . 0 and such that the continuous function ¢ : X — [0,00) defined by

el seq:
‘P(x)"{o,(p geXin

is of class C% on X.

4 The results

Here we prove the following (see also [5], Satz 2.3).

Theorem 4.1 Let 0y and Q, be open subsets of a complez space X which
are q;-complete, resp. qa-complete. Then Qy U Qy is (q; + go)-complete.

Proof: Let Q := Q; UQ,. By Lemma 3.3 there are ¢;-convex exhaustion
functions ¢; : ©; — (0,00), ¢ = 1,2, such that the continuous functions
defined by :

oy . ) oexp(—pi(z)), =€y
991(73> == { O, L e \ Qz

are of class C? on X. Now define ® : § — (0, 00) as follows

b = — ! —
P1 + P2
Then @ is exhaustive and of class C*. It remains to check its (g; + g2)-
convexity. Indeed, on (Ql \ﬁg) U (Qg\ﬁ1> this is obvious, since there
® = exp(p1) or & = exp(yp2), respectively, and q1, ¢z < 1 + 2.
At points zo from (Q; N ON,) U (2, NIN,), say 2o € O NIN, we can
write in a small neighborhood of zo, ® = exp(y;) + 0, with

_ _Prexp(201)
1+ @rexp(en)




is of class C'* and plurisubharmonic at . Consequently ® is ¢,-convex at
zo. Similarly at points from Q, N 90 .

Now fix an arbitrary point zo € Q, N Q,. Since the question is local
around zo, by working in local extensions, we may assume, without any loss
of generality, that X is an open subset of some CV . For the sake of simplicity
denote

a; := exp(—pi(o)), b; :=< Opy(zo),€ > _
where £= T, X =Clis.— 1 9. Hence ay > 0 and e €, 1 =02, O
the other hand, the Levi form of ® at z,, computed in direction ¢ has the
expression

1 1
g e e
where

A = (a1 + a3) (a1 L1, 20)€ + a2 L(p, 20)€) and

Bi= 2la1b1 + a262]2 = (a1 + az)(allblf + aglbglz).
Straightforward computations give B = |a;b, + by |* — ayas|by — by)?. Now
let E; C CM complex vector subspaces, dim E; > N — ¢; + 1 such that
L(pi,20)|5; is positive definite, 7 = 1, 2. Define

F= {f = CN l < a@l(xO)aé e 8992("1:0)’6 = }
Finall

any £

yput B :=EyNE,NF. Hence dimE > N — (g + ¢3) + 1. Now for
€ Iv\ {0} we simply get that

A>0 and B = |a;b, + ayb,]* > 0.
Thus L(®,z0)¢ > 0. Hence @ is (g + q2)-convex at xq, whence the theorem.

Remark 4.1 Suppose Q; are gi-convez. Then O, Uy is (g1 + q2)-convez
and 4 N Qy is (g1 + go — 1)-convez.

The first part follows as in Theorem 4.1. For the second statement set
D :=0;NQ, and define p : D — R by ¢ := max{¢1|p,pa|p } where
¢; : §; — R defines the g;-convexity of ;. ¢ = 1,2. Then approximate ¢
in the C%topology by smooth (g; 4 g, — 1)-convex functions (as done in [8]).

Note also that the ¢-complete analogon is trivial since then 2N QY can
be viewed as an analytic subset of £; x 0, which is obviously (¢ + ¢ — 1)-
complete.



Theorem 4.2 Let ) and Q, be qy-concave, resp. g,-concave open subsets
of a complezx space X. Then QU §y is (g + ¢ — 1)-concave and 2, N, is
(¢1 + ¢2)-concave. '

Proof: Consider p; : Q; — (0, 1), C? functions which exhaust ; from
below and are ¢;-convex on ;\ K; for some compact subset K; of §;, 1 = 1,2.

a) Set  := OQ; UQ,. By Lemma 3.4 we may assume that the trivial
extensions @; of ¢; to X, @; =0 on X\ Q; are of class C? on X for: = 1,2.
Then define ¢ : @ — (0,00) as follows

(8) @ := (1 + P2l

Hence ¢ is of class C? and exhausts Q from below. Now we will show that ¢
is (q1 +¢2—1)-convex on 2\ (K7 UK>). Indeed, by (8) it remains to check the
(g1 + g2 —1)-convexity of o at points zo € 2\ (K1 U K3) with zo € 9Q,U00,,
say To € 0§)y. Then locally ¢ = ¢, + @, with @y(z¢) = 0 < @y. Thus we
have that @, is plurisubharmonic at zo; hence ¢ is g;-convex at z,. The
(g1 + g2 — 1)-concavity of ; U Q, follows. :

b) Set D :=Q, N, and define ¢ : D — (0,00) by

(&) © 1= @1 - @2 exp(—p1 — p2).

Since ¢ < min{¢1, s }, ¢ exhausts D from below. Now in order to check
the tangential (¢; + ¢2)-convexity of ¢ outside a suitable compact subset of
D, we may assume, without any loss of generality, that §; and Q, are open
sets of some CV . Consequently let a € D and & € H,(p1)N Hy(ip2) € Ho(ep)
We get,

1
©2(a)

(%) L(%d)éZ%@(a)[( - 1) sonate+ —1>L(‘P2,G)4-

¢1(a)

By (&) it follows easily that ¢ is tangentially (g; 4+ ¢2)-convex at points
from ©; N, \ (K; U Ky). Indeed, let E; € CN be complex vector subspaces
with dim E; > N — g+ 1 such that L(¢;,a)|g, are positive definite, 7 = 1,2.
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Set B i= By By, H = H,(p) and F = BN H,(p1) N Hy(py). Then
codim ;" < (g1 + ¢, — 1) and, from (), taking into account that w;(a) <1
the positivity of L(¢,a)|r follows. Hence ¢ is tangentially (g; + g)-convex
at a.

On the other hand, set L, := K; N 99, and L, := Ky N 8. Then Iy
and Ly are compact subsets of )y, (), respectively. Moreover @a|r, = 0 and
@1lz, = 0. By a standard argument, from (&), there are:

e a smooth strictly increasing convex function y : (0,1) — (0,1) such
that x(¢) — 0 as t \, 0, x/(t)/x(¢) is sufficiently large when ¢ ap-
proaches zero by positive values, and

e open neighborhoods Uy and U, of Ly, Ly, respectively,

such that, if we define ® : ;N0 — (0,00) by & := &, - &, - exp(—P; — &)
where ®; := x(¢1), and ®; := x(¢p2) then, according to (&) (with ¢y, ¢, and
¢ replaced by ®,, &, and @, respectively) ® is tangentially (g, +1)-convex on
UiN§; and tangentially (g2 41)-convex on UsNQy. As i +1,qa+1 < g1+ g5,
the tangential (g1 + ¢2)-convexity of ® outside of a suitable compact subset
of D follows. By Proposition 2.1, ; N N, will be (¢, + q2)-concave.

Example 4.1 There exists two I-concave open sets Q; and Qy of P*, n >
2, such that Q; N Qy is not I-concave.

In order to do this we say that a compact set K of a complex space X is
a special Stein compactum if there is a Stein open neighborhood U of K so
that K is holomorphically convex with respect to O(U).

Also we recall that compact set K of a complex space X is a Stein com-
pactum if it has a fundamental system of Stein open neighborhoods.

It is straightforward that any compact subset K of C is a special Stein
compactum. Indeed, take from each relatively compact connected compo-
nent of C\ K an arbitrary point. One gets a discrete subset A of C. Set
U:= C\ A. Then U is an open neighborhood of K such that U\ K does not

have relatively compact (in U) connected components. Hence K is O(U)-
convex.

With this we have



Proposition 4.1 Let K be a proper compact subsel of some complex pro-
jective space P*. Then P"\ K is I-concave if and only if K is a special
compactum in P™. In particular if K is not a Stein compactum, then P™\ K
is not I-concave.

Proof: First assume that P™ \ K is l-concave. Then there exists a C2-
function ¢ : P*\ K — (0, 00) which is exhaustive from below, 1-convex on
{¢ < e} for some g > 0 small enough. Set U := K U {¢<e}. Hence U
is a proper subset of P™ which is locally Stein.

By a classical result of Takeuchi, [7], U is Stein. Now {Uc}ocece, Where
Uo:= KU {p < ¢} gives a fundamental system of Runge neighborhoods of
K in U; hence K is O(U)-convex.

Conversly, suppose that K is O(U)-convex for some Stein neighborhood
LreeBluoteld

We claim there is a smooth function 6 : U — |0, 00) which is plurisub-
harmonic on the whole U, 1-convex on U \ K and =20).= K

Indeed, let % : U — (0,00) be a smooth 1-convex exhaustion function .
and r > 0 a suitable constant such that K C {z € U |1(z) <r}. Since K is
O(U)-convex, there is a sequence of holomorphic functions fi € O(U) with
Ifill £1 on K and for any point zo € U \ K there exists an index k EN
such that | filzo)l =1 n?.

Let u : [0,00) — [0, 00) be a smooth convex function such that G () =
[0,1 +7?] and is strictly increasing on [1+ 7% 00). Define §: U —s 0, c0)
by :

0(z) = Vet u(lfi(=)P + (2), z € U

where ¢; i1s a sequence of positive numbers. If the sequence ¢; decreases fast
enough to zero then ¢ has the required properties.

Now construct a smooth function @ :P"\ K — (0;00) such that
olunk = Oluni. This ¢ gives the desired l-concavity of P™ \ K, whence
the proposition.

Similarly one has

Proposition 4.2 Let K be a special Stein compactum of a q-concave complex
space X. Then X \ K 1is again q-concave.
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Proof: This is quite easy. Indeed, by the proof of Proposition 4.1 there
exists an open neighborhood U of K and o1 : U — [0,00), a smooth
plurisubhatmonic function with X = {¢; = 0} and 1-convex on U/ VK. Let
also @y : X — (0,c0) define the g-concavity of X and L the exceptional
compact set so that ¢ is g-convex on X'\ L. Consider p € Gl < pi=]
with Supp p C U and p =1 on an open neighborhood V of K. Hence V is
a compact subset of U.

Define ¢ : X \ K — (0, 00) by

@ = pp1 4 (1 = p)ep,.

We check that ¢ defines the q—concavvity of X \ K. In order to do this, fix
¢ > 0 small enough such that

LUSupp p C {ps > c}.
Then ¢ is g-convex on (V\ K)U {z € X | w2(2) < ¢} whose complement
with respect to X \ K is the compact set {p, > ¢} \ V.
Now let € > 0 be arbitrary. To see that the set {z e X\ Klolz) > ¢}
is compact it sufficces to check the compacity of its trace on the following

covering of X \ K made up from the following three closed sets (the closure
is taken in X \ K):

{z€ X|pa(z) > ¢}, {p2 2 c}\V, and V\ K.

But this is straightforward. Thus X \ K is g-concave and this conclude the
proof of the proposition.

Now we produce the above mentioned example. Let B denote the closed
unit disc in C. Consider K; and K, compact subsets of C* | n > 2 which
are special Stein compacta such that K, U K, is not a Stein compactum.

Ior instance, take n > 2 and set

Ky i={(z,w)|]z] 2,1 < |w| €2} x B*? and
Kai=Alnw)llzl < 1, jw|. €2) x B*2,

Then K, and K, are special Stein compacta, but K; U K, is not a Stein
compactum.

Consider C™ canonically embedded in P" and set Qi =PRRG O =
P™ \ K;. Then, by Proposition 4.1, ; and Q, are 1-concave; nevertheless
QN =P"\ (K, U K,) is not 1-concave.

1



5 Applications

First we give a simple proof of the following criterion of q-completeness due
to M. Peternell (sec [5], Satz 2.2, p. 558-563).

Theorem 5.1 Let X be a complex space, f and g ezhaustion functions and
1 an open neighborhood of the set {f = g} such that flaugs<gy is p-convex
and glau(g<sy 5 g-convex. Then X is (p + q)-complete.

Proof: By taking exponentials we may arrange that f and g are positive.
Set h :=min{f,¢}. Then A is continuous and exhaustive.
Set
b Die 0B RE | 50, 00 0}

and for any A € A define

1

exp(—A(f)) + exp(—A(g))’

Then, for any A € A, F) is exhaustive and (p + ¢)-convex on (see the
proof of Theorem 4.1). Consider a continuous function € : X — (0, 00) such
that {z € X ||f(z) —g(z)| < 2¢(z)} C Q and then define two closed subsets
of X, A:={z € X|f(z)~g(z) £ —2¢(z) } and B := {z € X |g(z) — f(z) <
—2¢(z) }. Then AUBUQ = X.

The theorem will follow from the next

b=

Claim. There exists A € A such that F) is p-convex on A and g-convex

on B.

In order to verify this, as in the proof of Lemma 3.1 we choose A € A
such there exists u € A with X exp(—A) = exp(—u). This u will be chosen
leter in proof such that w and v’ are sufficiently large.

Now-fix an arbitrary point zo € A (the case o € B is similar). Since the
question is local around zo, we may asume, without any loss of generality,
that X is an open subset of some euclidean space CN. Computing the Levi
form of F) (see (&) in the prof of Theorem 4.1) one gets the inequality

(At Aol L(Fy2)e 2 (Ar+ A L(f, 2)6 + arL(g, 2)€) —
—AIAZ(G? ; |8f(”5)§)|2 “h a% : fag(x)f)lz)

12



where A, 1= exp(=A(f(z))), Ay = exp(—=A(g(2))), a; := exp(—u(f(z))),
and ay ;= exp(—u(f(z))) for z € X, £ € CN.

Let also /£ C C" be a complex vector subspace, dim E> N —p+ 1, D
‘a small ball 5 2y such that f =9 < eon D and, moreover there exists a
constant Cy > 0 such that

L(f,2)¢ > 3Cy - ||¢||?
for any z € D and ¢ € E. Also there exists a constant C, > 0 such that:
|L(g,2)¢] < Colé]|” and
0f ()¢l < Colléll, 10g(2)é| < Call€]

for any z € D and ¢ € CV. Now we impose conditions on u such that

(@) (Al + Ag)(3a101 =7 GQCQ) = AlAQ(G,? + a%)C’; > (.

But (©) will follow at once from () and (f) below, by using the obvious
inequalities a; < a; and A; + Ay > A; > A A,.

We can choose u such that:

(T) . (1101 > CL2C2 and

(i) Cl 2> alcg
holds. Indeed, to get (1), by the mean value inequality one has
ar/ay = exp(—u(f(z)) + u(g(z))) > exp(e(z) - v (h(z))), = € D.

Hence, if u’ is large enough on ~(D), (1) follows. Similarly, (1) holds, as soon
as u is large enough on f(D). We do the same in case zo € B.

Therefore, since f, g and h are exhaustive, by a standard argument, the
claim follows. Thus the theorem.

The subsequent application was suggested to me by M. Coltoiu.

Theorem 5.2 Let X be a complex space which is an increasing union of
g-complete open subsets X;, 1€ N. Then X is 2q-complete.

13



Proof: Without any loss of generality we may assume that X; isrelatively
compact in X;yy for any i € N. Let ¢; =X, — [0,00) be g-convex functions
such that:

a) inf{piya(z) |2 € X} > sup{ei1(z) |z € X, } and
bl ol i tosn s 26 X
Comsider & X = i [0, 00} defimed s, followe:
P(z) :=inf{pi(z)|z € X;}, z € X.

By a), @ is continuous (locally it is the minimum of two consecutive functions
wi, iy1 ). By b), we get that ® is exhaustive.
Choose an exhaustion of X by relatively compact open subsets {D;}ien
such that
@Di@X,'@Di.H @XH—I (ERy

and
c) @iy1 < p; on X;\ D;, i € N.

This can be easily achieved as ¢; are exhaustive on X;. Using conditions
a) and c) we can define smooth functions fy9: X — R, such that:

=1 on Dy;
e > ond s S Dy, deven i
= on D NXo g,  dedd >3,

=y on Dy;
gy >epion Xoa \ Dy 10dd 5> 3
=@; on D;\ X;_,, veven .t >4
One can easily verify that ® = min{f, g }; hence f and ¢ are exhaustive
on X. Now set

9 = Dl U U (Di+1 \7,)
ieN
It is straightforward that f, g and Q fulfil the conditions of Theorem 5t
Consequently X is 2¢-complete and the proof is completed.

14



Corollary 5.1 Let X be a complez space which is an increasing union of
Stein sets. Then X is 2-complete.

Remark 5.1 It was shown by Forness ([2], [3]) that, in general, X is not a
Stein space. In fact X is Stein if and only if H'(X, Q) is separated ([4], [6]).

On the other hand, by Theorem B of Cartan one can easily obtain that
X is cohomologically 2-complete, i.e. H'(X,F) vanishes for any 7 > 2 and
any coherent sheaf 7 on X.

Corollary 5.2 Let D be a g-Runge domain in a g-complele complez space
X. Then D 1is 2g-complete.

Here we recall ([8], [9]) that an open subset D of a complex space X
is sald to be ¢-Runge in X if for any compact subset K C D there is a
g-convex exhaustion function ¢ : X — R (which may depend on K and,
in particular, it gives the ¢g-completeness of X) such that

HefoeX|piz)<i}eD.

Also note that D is always cohomologicaly (¢+1)-complete, i.e. H (X, F)
vanishes for any ¢ > ¢+ 1 and F € Coh(X).

Example 5.1 Let D be a p-complete open subset of a g-complete complex
space X. Then D is (p + q)-Runge in X.

In order to prove this, let v, : D — R be p-convex and exhaustive and
¥y : X — R, ¢-convex and exhaustive. Then (by Lemma 3.3) there is
AR — R a smooth function, convex and rapidly increasing so that the
function ¢, : X — R,

s { —exp(—A(¢1)), on D;
0, gnx \aD, g

is of class C? on X, and (obviously) (p + 1)-convex on D, plurisubharmonic
on X \ D. Now set ¢, := et + 12, ¢ > 0. Then ¢, is (p + ¢)-convex on
X and it exhausts X. If X C D is an arbitrary compact subset, then, with
a sufficiently small e > 0, K C {z € X |¢(z) <0} &D. Thus the example.

Within the same circle of ideas one has
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Proposition 5.1 Let X be a purely n-dimensional complez space. Assume
that X is g-concave and p-convezr. Then p+q>n.

Indeed, let p, % : X — R be smooth functions which define the ¢-
concavity, resp. the p-convexity of X and K a compact set so that ¢ and ¢
are ¢-convex, resp. p-convex on X \ K.

Choose €y > 0 small enough such that ¥ and ¢ are p-convex, respectively
g-convex on the set {p < ¢ } and, moreover

max 1 > max
I K

where L := {p > ¢} D K is a compact set. Now consider 2o € L at which
1 attains its maximum on L.

As in [1] there is an open neighborhood U of zo and an analytic subset
A C U whose irreducible components have all dimensions > n — p with
ANn{p < e} = {zo}. Hence A C L. Also by shrinking U, if necessary,
we may assume that 1 is g-convex on U. Hence 9|4 is g-convex and has a
maximum at zo. By the maximum principle for g-convex functions we get

g > 1+ mindim 4 A;

where (A;) is the decomposition of the germ (A, zo) into irreducible germs.
Therefore ¢ > n —p+ 1 or p+ ¢ > n, and this conclude the proof of the
proposition.

Remark 5.2 We can replace the g-convexity of X by g-convexity with cor-
ners, i.e. there exists a continuous function % : X — R which is exhaustive
and for a compact subset K C X the following condition holds: for any point
z € X \ K there are finitely many g-convex functions 1, ...,%, defined on
an open neighborhood U 3 z, U C X \ K such that

Wi = masd i, v s P )
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