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g-completeness and g-concavity of union of
open subspaces

VAjAitu Viorel

fntroduction

Bv the work of M. Pererneii  ([5], satz 2.3) i t  is known that i f  e; arc Q;compiete open subsets of  a  reduced complex space x,  i :1 ,2,  th"n th" i .
union 0t u 0t it (gt + 9z)-complete. The proof relies heavily on a technical
cr i ter ion (v iz .  [5 ] ,  Satz  2.2, ,  p .b5g-563) .

The aim of ihis note is to give elementary direct short proofs of these
theorems by effectively constructing special exhaustion functions. That will
follow by composing the given exhaustion function wilh suitable real-valued
convex functions of one real variable. As an application of the above men_
tioned criterion i t  is shown that any complex,pu." which is an increasin'
union of Stcin open subsets is always 2_complete.

on the ' : t l ier harrcl,  our method gives . i- i lu, results when o; are Qi_concave)  i  :  r ,2 .  An example of  two l -concave open subsets of  a  .ompi .*
manifold whc'se intersection is nol 1-concave is shown. This is in contrast
with the 1-cor'plete analogous situation (The set-up is chose' so that l_
complete spac('s corresponds to Stein spaces).

2 Prelirninaries

All complex spaces are assumed to be reduced and with countabre topology.

LeL X be a complex space, tp
X and I ) 1 an integer. Then p

class C2 real-valued function defined on
said to be q-convex at a point ro € X if
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there are:

an open neighborhood u of 26, a biholomorphic map t of U onto an
analytic subset of an open set D of some CN , ,o:: ,(r0) and

a C 2 - e x t e n s i o n p :  D  - - +  R  o f  g , i . e . Q o t -  g ; ,  s u c h  t h a t  t h e L e v i
form L(Q,zs) of. Q at zs has at least (N - q+ l)-posit ive eigenvaiues
or, equivalently that there is a complex vector subspace E C CN with
d im B > 1/ -Q*1 such tha i  the Levi  form L(Q,"0)  is  pos i t ive def in i te
when restr icted to E.

It can be easily seen that q-convexity at 16 does not depend on the chosen
local  embedding t :U - - - - -  D.

tp is said to be q-convex on a sel W
W.

C X if  i t  is q-convex at any point of

A complex space X is said to be g-complete (resp. q-convex) if there
exists ac2-exhaustionfunction rp : x -----+ R which is f-conu"*on the whole
space X (resp. outside a compact subset of X ).

X is said to be g-concave if there is a c2 function p : x -- (0, oo) ,
q-convex outside a compact set and which exhausts X from below, i.e. the
set  { r  e  X l9@)> e}  is  re la t ive ly  compact  in  X for  any e )  0 .

Remark 2.1 Sometimes it  is worthwhile to have easier cri teria of g-complete,
g-conv<:x a,nci g-concerve spaces. In order to do this we say ihat a class C2
function g : ,X - '--+ R ts tangential ly q-conuer af ro i f  there exists:

r a local char' l  r  :  LI - D C CN, IJ ) 19,z6 :: r(cs) and

.  a  C2-extension Q ,  D - - - -+ R of  cp,  i .e .  Q o,  :  V l ,  such that  the
reslr ict ion of ihe Levi form L(e,"0) of p at zg to the holomorphical ly
tangent space

H",(Q),:  {  (  € cN |  < L1eo).€ > : :  S9(r^), ( ) : :  
* r r l r . ) { i : o }

has at most (q - 1)-nonposit ive eigenvalues.



I t ,  is straigirtforward tha| g is tangential ly
there exist,s a suff iciently large constant ca ) 0
at 16 for any c ) cs. Consequentiy tangential
on lhe chosen local embeddins.

g-convex at z6 i f  and only i f
such that exp(ccp) is q-convex
g-convexity does not deperrd

g is said t,o be tangeniial ly g-convex on a set W C X if  i t  is so at any
point of W. Not,e that il g : X --- R is tangentially g-convex on I,l/ and
x : R ----+ R is an arbitrary str ict ly increasing smooth function, rhen x(<p)
is also tangential ly g-convex on W .

Now we have

Proposit ion 2.L In the aboue def,nit ions of q-complete (resp. q-conuer, q-
concaue) spaces we may replace the q:conuerity of the aboue erhaustion func-
t ion on the corcesltonding set by i ts tangential q_con,uerity.

Proof : !\ie carry out the proof only in the q-concave case (The other cases
are treated in a similar way). By standard arguments, this will follow from
Remark 2.1 and from the following

Lemma 2.L For any continuous function 1t: (0,oo) ,---+ (0, a) there erists
a smooth strictly increasing conaer function ) : (0, oo) -* (0, -) such that
^ " 1 ^ ' ) p  a n d ) ( t )  \ 0  a s f  \ 0 .
" Proof: First choose a smooth bijection 6 : (0, oo) ---, (0, -) with

exp(d) - 6' > ! where lt  ,  (0,oo) - (0, -) is given by

; ( t \  . -  4 / t )  +  z t
c \ r / . -  - - - f , ,  >  0 .

The'  set  r ,v  :  (0 ,  oo) .  - - - '  R by a(r )  , :  f  exp(6(s) )  ds,  r  )  0 .  I r ina i ly  put
) ( l )  : :  exp(-cr ( r l t ) ) ,1  > 0.  St ra ight forwarcr  computat ions g ives .o  th .
lemma, whence the proposi t ion.

3 Elernentary lemrnas

Here we collect some special convex functions of one real variable.

Lemma 3.L Let e : [0,oo) - (0,*) be a continuous function. Then there
exists a smooth str ict ly increasing conaer function ) :  [0,oo) -* (0,oo) szch
that

) ' e x p ( - ) )  1 e  a n d ) > I l e .



Proof : Defirre succesively ) : [0, "o) 
* (0, oo) by

( 1 )  ) : =  - l o g F

where ,n : [0, oo) - (0, t) is a smooth function with

(2) .P(r) := [,* f t4 ds, r ) Q

and finally 
"f , [0, oo) - (0, *) is constructed by

(3 )  / ( s )  : :  exp ( -u (s ) ) i  s  >  0 .

Here u : [0, oo) ---* (0, m) is a smooth rapidly increasing strictly convex
function to be chosen later in proof.

That F and ) are well defined may be easily achieved by a suitable choice
of u (sufficiently large). Now in 6rder to verify the lemma we note that

(4\ ) ' e x p ( - ) )  -  ( - e x p ( - ) ) ) ' :  - F '  :  / :  e x p ( - u ) .

Therefore by choosing u large enough we get ),exp(-)) < e . Also from (4) it
fo l lows that, \ / )  0.  Now condi t ion l ,> I le is equi , ru lent to F < exp(- l ie)
which is fu l f i l led as soon as u )  p- logp, where g, l } ,m) *  (0,-m) is a
smo_oth strictly increasing function so thai 0 > j-1, and, then by integration.

Condit ion, \"  > 0 is equivalent to / , .F+ f ,  > 0 which in turn means
A >  0  w h e t e  

A ( f )  : :  f ( t ) ' +  f ' ( v )  [ * / ( s )  d s ,  f  >  0 .
J t

But  th is  i s  t rue  as

A( t ) :  exp( -u ( r ) )  / * { r ' { r )  
-  u ' ( t ) )exp( -u(s ) )  ds  >  0

and since u' is strictt, in.r"u.rng.

Lemma 3.2 Let
Then there eilsts
(0, *) such that

€1, €2 | [0, *) - (0, oo) De arbitrary continuous functions.
a smooth rapidly increasing conuer function ) : [0, m) -

r ,  /, \ ' exp ( - , \ )  1e1  and  ) "exp ( - ) )  < . r .

Aa



Proof : Consider a srnooth rapidly increasing convex function u : [0, co)
(0,*) to be chosen later in proof. As in Lemma 3.1 set

(5 )

(6 )

g :  [0 ,  ac)  - r  (0 ,  - ) ,  g  : :  exp(-u)  and

u : [ 0 , m )  -  ( 0 , @ ) ,  u ( t ) : -  - b e  I  s ( s )  d s ,  r  >  0 .
J L

we impose 
"l"o- g(r) ds : .6- exp(-u(s)) ds < 1 . It evidently holds if u is

large enough. Now we observe that u' - g.exp(u). As in the proof of Lemma
3.1 we get

(7) 92 + g' exp(-'r.,) > o.

Now set )::2u. To check the hypothesis we proceed as follows:

a )  F i r s t w e h a v e ) ' e 4 p ( - ) )  : 2 r ' e x p ( - 2 u )  : 2 9 e x p ( - u )  .  H e n c e  u , > 0
and ) 'exp(-))  (  29 s ince u )  0.

b )  Second ) "exp( - ) ) :2u"  exp( -u)  :Z (g ,  exp( -u)  +  92)  >  0  by  (Z) .

In particular )" > 0 and ),,exp(-)) S zQS,l + g2). Now choose u
according to Lernma 3.1 so that lg,l : u,exp(-u) is smail enough. The
lemrna, fol lou's.

These lemmas readily imply the subsequent two lemmas.

Lernma 3.3 consider Q be an open set of some cornpler space X and. an
arbitrary C2 erhaustion function g : Q ----+ [0, *) . T'ien the,e is a smooth
rapidly increasing conuer function ) :  [0,oo) - (0,*) such that the con-
tinuous function Q t X ---+ [0, co) defined by

6 (z )  : :  {  
exP( - ) (P ( ' ) ) ) '  z  €  r l ;

' t * r  ' -  
|  0 ,  o therwise

is of class C2 on X.



Lemma 3.4 Let Q be an open set of bome compler space X and p : e ----+
(0, *) a C2 function which is ethaustiue from below. Then there is a smooth
rapidly increasing conaer function ) : (0, oo) * (0, *) with ),(t) -+ 0 0.s
I \  0 and such that the continuous function Q t X --r [0, 'm) defined by

, f t n ,

xs  oJ  cLass  u '  on  A.

, z ( . \ . _ ! s ( v @ ) ,  r € f ) ;
r r * r ' - [ 0 ,  z e  X \ f t

( r

' ; ' ( - \ ' -  J  exP( -9 ; ( r ) ) ) '  r  €  Q ; ;
' - x \ * ) . _ l O ,  r e X \ e ;

are of class C2 on X. Now define O : fl --+ (0, oo) as foliows

_ 1( D . - _

9t -t 9z

4 The results

Here we prove the following (see also [5], Sat"z 2.3).

Theorem 4.1 Let Q1 and, Q2 be open subsets of a compler space X which
are Q1-complete,.resp. Q2-complete. Then fl, U fl, ir (q, + Qz)-complete.

Proof: Let Q :: f)r U f)z . By Lemma 3.3 there are qi-convex exhaustion
functions g; :  Q; ----- (0, oo), i  = I,2, such that the continuous functions
defined bv

Then Q is exhaustive and of class C2. h remains to check its (g1 + q2)-
convexity. Indeed, on (O, \ Rr) U (O, \ nr) this is obvious, since there
O : exp(gr) or O : exp(p2) , respectively, and Q.t, Qz I qt + qz.

At points c6 from (0, n 00r) U (Oz n d0,), sa! rs € Qr n 0f,)2 we can
write in a small neighborhood of uo, O : exp(gl) f  d, with

0 : : Q2exp(2e1)
I  + Qtexp(pr)



is of class C2 a,nd piurisubharrnonic at 16. Consequently o is Q1-convex at
16. Sirni larly at points from f)2 n AOr .

Now fix an arbitrary point zo € f,)r I  f),  .  Since the question is local
around ro, by working in local extensions, we may assume, without any loss
of generai i ty, thai X is an open subset of some CN . For the sake of simplicitv
denote

o;  : :  exp( -V ;@o)) ,  6 ;  : : (  \V ;@r) , (  >
T r o X  :  C N , ,  i  :  I , 2 .  H e n c e  o ;  )  0  a n d  b ;  €  C ,  i  :  1 2 .  O n

hand, the Levi form of O at 16, computed in direction t has the

where { €
the other
expression

G) -L(0,  rs)(  =
1. A+ ________. B

l A r  *  0 " c 1 "(ot + or)'

wnere
A : :  (ar  a  or)  (orL(pr ,  roX *  azL(vz,  zsx)  and

B : :2 la f t t  +  azbzl ,  -  ( r ,  *  a2)(a116r l ,  +  
" r lbr l r ) .

Straightforward computations give B : la$t * a2b2l2 * atazlfu - b212. Now
let E; g CN complex vector subspaces, dim 4 > A/ - Q; * | such that
L (p ; , zo ) l r ,  i s  pos i t i ve  de f i n i i e ,  i :  I , 2 .  De f i ne

.P  : :  { (  €  CN |  <  0p r ( "0 ) , {  )  :  (  \ p r ( ro ) , {  >  }
F ina l ly  put  E ' . -  Eta Ezn F.  Hence d imE > l /  -  (n  + qr)  *  1 .  Now for
any {  €  1,  \  {0}  wc s i rnp ly  geL that

A >  0  a n d  p  :  l a 1 \  *  a 2 b 2 l ,  >  0 .
'1'hus 

f(0,r0){ > 0. l lence 0 is (g1 * q2)-convex at zs, rvhence the theorern.

Remark 4.1 Suppose 9;  are q, -conaer .  Then erUez i r  (g ,  + gz)_conuer
and Q1 )  {12 i r  (q ,  + q2 -  I ) -conuer .

The first part follows as in Theorem 4.1. For the second statement set
D :: f lr  n 0, and define V : D ----+ R by g ::  max{cplln,prln} where
g; :Q;  -+ R def ines the q; -convexi ty  of  Q; ,  i  =  1,2.  Then upp.ox imute,p
in the Co-topology by smooth (q, lqz- l)-convex functions (us done in [g]).

Note also that the q-complete analogon is tr ivial since then 01 t102 can
be viewed as an analyt ic subset of o1 x o2 which is obviously (q, * ez - L)-
complete.
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Theorem 4.2 Let Q1 and Q2 be q1-concaue, resp. Q2-conca'ue oTten subsets
of a compler space X. T'hen f l t  Ufl,  fr (q, + Qz-I)-concaue andQ1O02 fs
(q, + qr)-roncuue.

Proof : Consider g; : Q; -r (0,' I) , C' functions which exhaust 0; from
below and are gr-convex on ft;\/(; for some compact subset I(; of 9;, i : I,2.

a) Set f) :- f lr U 02. By Lemma 3.4
extensions Q; of g; Lo X, Q; = 0 on X \ 0;
Then define g : {l - (0, -) as follows

we may assume that the trivial
are of class C2 on X f.or i  = I,2.

(8) 9 : :  (Qt  *  Qz)n .

Hence g is of class C2 and exhausts fl from below. Now we will show that g
ir (qt + q2 - 1)-convex on Cl\ (1(1 U Kz). Indeed, bV (B) it remains to check the
(qt+qr-1)-convexi ty  of  g  at  po ints  ro € n\ (Kl  UKz)  wi th  re € af t lUA02,
s a ! o s  e A Q 2 .  T h e n l o c a l l y  ? = p t * F z  w i t h  Q r @ o )  

- 0  < t f 2 .  T h u s w e
have that Qz is plurisubharmonic at z6; hence g is g1-convex at zs. The
(qt + q, - l)-concavity of 0t U 0, fol lows.

b) Set D :: f)r i  02 and define V : D - (0, -) by

(r) g  : :  g r  . g z . e x p ( - %  -  g z ) .

Since cp (  min\Vt ,Vz) ,  p  exhausts D f rom below.  Now in  order  to  check
the tangentia, l  (g1 * gz)-convexity of g outside a suitable compact subset of
D, we may a.ssume, rvithout any ioss of general i ty, that 01 and f l2 are open
s e t s o f  s o m e C N .  C o n s e q u e n t l y l e t  a e  D  a n d {  €  H " ( p ) a H " ( v ) g H " ( p ) .
We get

( * )  L (v ,o )€ :  v@)

BV (t) it follows easily that p is tangentially (q1 * g2)-convex at points
from f)1 n Oz \ (1{1 U 1(2). Indeed, let E; e CN be complex vector subspaces
w i t h d i m  E ; )  N  * g + 1 s u c h  t h a L  L ( p ; , a ) l E ,  a r e p o s i t i v e d e f i n i t e ,  i = I , 2 .

(# -')',,,,a)€ + (# -')',,,,'x]



Set I := Et ) l !2, I I  := II"(p) and I := E O II,(91) ) I I ,(9). Then
cod im u I , .  1 (q r *q r -  1 )  and ,  f rom ( * ) ,  t ak ing  i nbo  accoun t  t ha t  p i (a )  < I
the posi t iv i ty  o f  L(p,o) lp  fo l lows.  Hence g is  tangent ia l ly  (qr+ qr) - ronvex
at  a .

On  the  o the r  hand ,  se t  , L1  : :  I { t )AQ2 and  L2 , -  I { zn  a01 .  Then  t r1
and L2 are compact subsets of f)1,f)2, respectively. Moreover Qrlr,r:0 and
Qr l r r :0 .  By a s tandard argument ,  f rom (* ) ,  there are:

r a smooth str ict ly increasing convex function X : (0,1) - (0, i)  such
that x(l) -- 0 as I \  0, x'(t) lx(t) is suff iciently large when I ap-
proaches zero by posit ive values, and

. open neighborhoods U1 and U2 of. L1, -L2, respectively,

such that ,  i f  we def ine O :  Q1 r - )  Q2 - -+ (0,  * )  by Q : :  O,  .O1exp(-O1 -  Oz)
where 01 :: X(Vr), and 02 :: X(V2) then, according to (*) (with pt, pz and
p replaced by Or, O2 and 0 , respectively) 0 is tangential ly (g1 *1)-convex on
UtnQ2 and tangent ia l ly  (q2* l ) -convex on U2Of, l1 .  As { l - l I ,Qz*I  S qt*qz,
the tangential (q1 * g2)-convexity of o outside of a suitable compact subset
of ,D follows. By Proposition 2.I, f), n 0, will be (q, + qr)-roncave.

Example 4.1 There erists two 1-concaae open sefs f,)1 and Q2 of p", n )
2,  such that  Q1f1 02 is  not  l -concaue.

In order to clo this we say that a cornpacr set 1( of a cornplex spa,ce X is
a special Stein compactum if there is a Stein open neighborhoocl U of / i  so
that  1(  is  ho lornorphica l ly  convex rv i th  respecL Lo O(U).

Also we recall  t lrat compact set I i  ol a complex space X is a Stein com-
pacturn i f  i l  has a fundamental system of Stein open neighborhoods.

It,  is straightforward lhat any compact subset /{ of C is a special Stein
compacLum. Indeed, take from dach relatively compact connected compo-
nent of c \ 1{ an arbitrary point. one gets a discrete subset A of c. Set
U :: c \ A. Then [/ is an open neighborhood of 1( such that u \ /( does not
have relatively compact (in U) connected components. Hence K is O(U)-
convex.

With this we have



Proposit ion 4.1 Let I{ be a proper comytact subset of sorne compler Ttro-jectiuc space P". 'I'hen 
P" \ 1{ is l-concaue if and, only if I( is a special

compactum inP". In part icular i f  I{ is not a stein compactum, then e;1rr
is  not  L-concaue.

Proof: First assume that p" \ 1( is l-concave. Then there exists a C2_
function g : P" \ /{ ---+ (0, *) which is exhaustive from below, l-convex on
{p <e6}  for  sof f r€  €6 > 0 smal l  enough.  Set ,  t /  : :  K L)  {V <ee} .  Hence U
is a proper subset of P' which is locally Stein.

By a classical result of Takeuchi, [Z], U is Stein. Now {U.}o..s.o where
u, ::  I{ u {g < e} gives a fundamentar system of Runge neighboihoods of
I {  i n  u ;  hence  I {  i s  O(u ) -convex .

Conversly, suppose that /( is o(U)-convex for some Stein neighborhood
U  C P "  o f  K .

we claim there is a smooth function 0 : U -----+ [0, -) which is plurisub-
harmonic  on the whole U,  l -convex on U\K and 

-O-t101 
:11.

Indeed, Iet $ : u ----+ (0, -) be a smooth l-convex exhaustion function
and  r  )  0  asu i i ab lecons tan tsuch  tha t  K  g  { z  € {J l rh@ <  r } .  S ince / (  i s
o(u)-convex, there is a sequence of holomorphic functions f; e o(u) with
llnll S 1 on /( and for any point zo € U \ /{ there exists an index ,b e N
such that l f  r,(zs)l > I + r2 .

LeL r1-: [0, oo) ----* i0, oo) be a smooth convex function such that u-1(0) :
[ 0 ,  1  +  r2 ]  and  i s  s t r i c r l y  i nc reas ing  on  [1  *  r . 2 ,m) .  De f i ' e  0  :  U  _ - - - [ 0 , * )
by

0(z)  : :  I rn  .  u | f ; ( r ) | ,  + ,beD,  z  €  L l
where e; is a sequence of posit ive numbers. I f  the sequence e; decreases fast
enough to zero then 0 has the required propert ies.

Norv construct a smooth function p : p" \ 1( ------' (0, -) such that
Plutr = dlu\n. This p gives the desired l-concavity of p" \ 1(, whence
the proposit ion.

Similarly one has

Proposit i  on 4.2 Let I{ be a special Stein compactum of a q-concaue complex
space X. Then X \ /( is again q-concaae.

1 0



Proof: f 'his is quite easy. Indeed, by the proof of proposition 4.1 there
exists an open neighborhood u of. K and 91 : {J -+ i0,*), a smooth
plur isubhatmonic funct ion wi th / (  = {p,  = 0} and l -convex on U\ I { .  Let
also g2": X -'-+ (0,*) define the q-concavity of X and L the exceptional,
compact set so that g2is q-convex on X\r. Consider p e Ctr6), O S p < I
w i t h  s u p p  p  c u  a n d  p : 1  o n  a n  o p e n  n e i g h b o r h o o d v  o t r r . ' u . * " 7 i ,
a compact subset of U.

Define V : X \ /{ -' (0, co) by

p  : :  pq t  *  ( I  -  p )pr .
we check that g defines the q-concavity of x \ /(. In orcier to do this, fix
c ) 0 small enough such that

L U S u p p  p g { v r > c } .

Then s is q-conu"I gl (y \ i() U ir € Xlvr@) < c) whose complemenr
with_respect to X \ /{ is the compact set {pr> c} \ V.

Now let e ) 0 be arbitrary. To see that the sei {r e X \ /{ltp(r) > e }is compact it sufficces to check the compacity of its trace on the following
covering of X \ -I( made up from the following three closed sets (the closure
is taken in X \ /():

{ x e X l p i ( r ) ) . } ,  { v r > . } \ %  a n d  V l f r
But this is straightforward. Thus X \ 1{ is g-concave and this conclude t}re
proof  o f  the proposi t ion

Now we prodttce the above mentioned example. Let B denote the closecl
unit disc in C. Consider 1{1 and ,I(2 compact subsets of C" , fr } 2, which
are special stein compacta such that 1{1 U 1(2 is not a stein compactum.

For instance, take n ) 2 and set

.  K ,  : :  { (2 ,  * )  l l r l  <  2 ,  I  S  l r l  1  2 }  x  B" -z  and
I { 2 : : { ( r , r ) l l r l  S 1 ,  l r l  S 2 } x  B " - 2 .

Then 1{1 and K2 arc special stein compacta, but /f1 U ,I{2 is not a stein.
compactum.

consider  c 'canonica l ly  embedded in  p 'and set  e1 : :  p ' \  Kr ,  f )2 : :
P" \ 1(2. Then, by Proposition 4.1, f,)1 and fl2 are l-concavel nevertheless
0t n f), : P' \ (1{, U I{) is not l-concave.

1 1



5 Applications

First we give a simple proof of the fol lowing criterion of q-cornpleleness due
to  M.  Pe le rne l l  ( see  [5 ] ,  Sa tz  2 .2 ,  p .bs8 -563 ) .

Theorem 5.L Let X be a compler space, f and g erhaustion function,s and
{l an open neighborhootl of the set {f :  s} such that f ls,Jlyary is p-conver
and g lergr l l  is  q-conuer .  Then X is  (p  *  q) -complete.

Proof: By taking exponenliais we may arrange that / and g are positive.
Set  A: :  min{ , f ,g} .  Then A is  cont inuous and exhaust ive.

Set
n , :  {)  € C-(Ri,Rl)  |  ) ,  > o, ) , ,  t  o }

a n d f o r a n y ) € A d e f i n e

F , . :  I

exp( - ) ( / ) )  +  exp( - ) (e ) ) '
Then, for any ) € A, Fl is exhaustive and (p * q)-convex on f) (see the

proof of  Theorem4. l ) .  Consideracont inuousfunct ion e:  X -----+ (0,oo) such
that {r e x I l/(r) - g(n)l < ze(r)} c ft and then define two closed subsets
o f  X ,  A  ' :  { "  €  X l f  ( r ) - g ( r )  <  - 2 e ( r )  }  a n d  B : :  { r  e  X l s ( r ) - / ( r )  S
- Z e ( x ) ) .  T h e n  A U B  U 0 : X .

The theorem will follow from the next

Claim. ' j 'hclr :  
r :x is ls )  g A sr-rch th:r t ,  l ; r  is 1,r-convex on A and g-convex

o n  B .

In  order  to  ver i l \ , th is .  as in  t l ' re  proof  o f  Lernma.3.1 n,e choose )  e  n
such there ex is ts 'u  € A wi lh  ) 'exp(- ) )  :  exp(-u) .  This  u r ,v i l l  be chosen
leter in proof such lhat u and u' are suff iciently large.

Now.fix an arbit,rary point ro € A(the case xo € B is similar). Since the
question is local around 26, w€ may asume, without any ioss of general i ty,
that X is an open subset of some euclidean space CN. Computing the Levi
form of .F,l  (see (*) in the prof of Theorem 4.1) one gets the inequali ty

(A, * Ar)" '  L(Fy x)( > (A '  *  A2) (arL( f  , " )€  *  a2L(s , rX)  -
-A1A2(a2,  lA l ( 'X ) l '  +  o7  lAg( " )€ ) l ' )
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where A1 : :  exp(- ) ( / (d j ) ,  ,q ,  ' -  exp(*) (g( r ) ) ) ,  a1 t= exp(-u( / ( r ) ) ) ,
and  a2 : -  exp ( -u ( / ( r ) ) )  f o r  z  e  X ,  e  €  CN.

_  L e t  a l s o  B g  C N  b e a c o m p l e x v e c t o r s u b s p a c e ,  d i m  E >  l V - p + I , D'a 
small bal l  I  16 such that / * g 1 e on D and, moreover there exists a

constant C, > 0 such that

L( f  , r ) t  2  3C ' ' l l € l l '

for any r e D and { € B. Also there exists a constant Cz> |such that:

lL(s, , )€ l  S c, l l { l l '?  and

Pf @)el < c,l l4l l  ,  lag@)€l s c,l l( l l
for any r € D and { € CN. Now we impose conditions on

(v) (1, * Ar)(3or1r - orCr) - A1A2(al + a})C;

But (9) will follow at once from (t) and ({) below, by
inequalit ies a2 1d1 and Ar I Az ) A1 ) AtAz.

We can choose u such that:

(t) 0,1C1)  a2C2 and

(1)  Q > a1c]

holds. Indeed, to get (t),  bV the mean value inequali ty one has

a t l a z :  e x p ( - u ( / ( r ) )  +  u ( e ( r ) ) )  >  e x p ( e ( r )  . u ' ( h ( r ) ) ) ,  r  e  D .

Hence, i f  u' is large enough on h(D),(t) fol lows. similarly, ({) holds, as soon
as u is large enough on f (D).We do the same in case ro e B,

Therefore, since /, g and h are exhaustive, by u standard argument, the
claim follows. Thus the theorem.

The subsequent application was suggested to me by M. colqoiu.

Theorem 5.2 Let X be a complex space which is an increasing union of
q-complete open subsets X;, i  e N . Then X is 2q-cornplete.

u such that

> 0 .

using the obvious
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Proof :without uny lom of general i ty we may assume that X; is relatively
compact in x;a1 for any i g N. Let g; r-x; --+ [0, -) be g-convex functions
such that :

a)  in f {9 ;1 t@)1,  eX;}  )  sup{g;a, ( r )  1 , ,  e  X;  }  and

b )  p ; ( " )  ) i  f o r  a n y r e X ; .

Consider @ : X - [0, oo) defined as follows:

Q(r )  : :  i n f {p ; ( r )  l r  e  X ; } ,  x  e  X .

By u), @ is continuous (locally i t  is the minimum of two consecutive functions
9; ,9 ;+r  ) .  By b) ,  we get  that  O is  exhaust ive.

choose an exhaustion of x by relatively compact open subsets {D;};.p
such that

" '  G  D ;  A  X ;  G  D ;+ rGX; . , . 1  G . ,  .

and

c)  g;+r(  cp;  on X;  \  D; ,  i  e  N.

This can be easily achieved as (pi are exhaustive on X;. using conditions
a) and c) we can define smooth functions f ,g.t x , R+ suchihat,

(  :  g ,  on  D1 ;

/  {  }  ? ;  on X;-1 \  D;- , ,  i  even , i  )  2 ;
t  : p o  o n  D ; \ X n - r ,  i o d d , -  >  3 ,

( :  , ,  on D-2;
g  

\  ,  p ,  on  X ; -1  \  D ; - t ,  i  odd  , i  )  3 ;
|  =  g;  on D;  \  X;_r ,  i  even , i  )  4 .

one can easily verify that o - min{/, g } ; hence / and g are exhaustive
on X.  Now set

f) :* f, u U (r,*, \ x,).
i eN

It is straightforward that /, g and fl fulfil the conditions of rheorem 5.1.
Consequently X is 2q-complete and the proof is completed.
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Corollary 5.1 Let X be u compler space whiclt.  is an increasing union of
Stein sets. ' I 'hen X is ?-complete.

Remark 5.1 It  was shorvn by Fornasr ([2], [3]) that, in general, X is not a
Ste in space.  In  fact  X is  Ste i r . i f  and only  i f  I ' I r (X,O) is  separated ( [4 ] ,  [6 ] ) .

On t,he other hand, by Theorem B of Cartan one can easily obbain that
X is  cohomologica l ly  2-complete. , i .e .  H ' (X, f )  vanishes for  any i  )  2  and
any coherent shea,f f on X.

Corollary 5.2 LeL D be a c1-Runge dornairt in a q-cornpLete cornpler space
X . Then D is 2q-cornplete.

I lere we recall  ([8], [9]) that an open subset D of a complex space X
is said to be q-Runge in X if for any compact subset I{ C D there is a
g-convex exhaustion function g : X ----+ R (which may depend on K and,
in part icular, i t  gives the g-completeness of. X) such that

I {  c  { x  e  X l e @ )  <  0 }  c D .

Also note that D is always cohomologicaly (q* l)-complet e, i .e. Hi (X, f)
v a n i s h e s f o r a n y i } _ q *  1  a n d f  e  C o h ( X )  .

Bxanrple 5.I Let D be a p-complete open subset o.f a q-complete comTtler
space X.  Then D is  (p  *  q) -Runge in  X.

]n order to prove this, let tp1 : D -- R be p-convex and exhaustive and
$2 : X --+ R ) q-convex and exhaustive. Then (by Lemma 3.3) there is
) : R ----r R a stnooth funct,ion, convex and rapidly increasing so that tlie
f u n c t i o n  l t t :  X  '  R ,

^/ ,  ._  t  -  exp(- ) (p ' ) ) ,  on D;
v t ' - \  o .  o n x \ r ,  /

is of class C2 on X, and (obviously) (p+ 1)-convex on D, plurisubharmonic
on X \  D,  Now set  g ,  i :  e?h *  $2,  e  )  0 .  Then V,  is  (p  *  q) -convex on
X and it  exhausts X. If  I{ C D is an arbitrary compact subset, then, with
a s u f l r c i e n b l y s m a l l e  )  0 ,  I {  C  { r  €  X l V , @ )  <  0 } C D .  T h u s t h e e x a m p l e .

Within the same circle of ideas one has
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Proposit ion 5.1 Le.t X be a Tturely n-dimensional cornplel space. Assu,me

thal X is q-concaue arLd p-cont)er. Then p * q ) n.

Indeed, lel g, 'b , X -----+ R be smoot,h functions which define lhe q-

concavity, resp. the p-convexity of X and 1{ a compacl set so that I and tlt

are g-convex,, resp. p-convex on X \ 1(.

Choose e6 ) 0 small enough such that r/ and g are p-convex, respectively

g-convex on the set { g ( eo } and, moreover

^t*rh , ^ft*rh

where L := {? Z eo} ) K is a compact set. Now consider 16 e L at" which

ry' attains its maximurn on tr.
As in [1] there is an open neighborhood U of rs and an analyt ic subset

A C U whose irreducible components have all dimensions ) n - p with

A n i g l  e o ) :  { t o } .  H e n c e  A c  L .  A l s o b y s h r i n k i n g  U , i f  n e c e s s a r y ,

we may assume that l; is q-convex on U. Hence dla i. g-convex and has a

maximum at rg. By the maximum principle for q-convex funclions we get

q 2 I * m i n d i m " o A ;

where (A;) is the decomposit ion of the germ (A, 16) into irreducible germs.

There fo re  q>  n -p  +  I  o r  p  *  q  >  n ,  and  th i s  conc lude  the  p roo f  o f  t he

p lopos i I i on .

Remark 5.2 We can replace the q-convexity of X by q-convexity with cor-

ners, i .e. there exists a coirt inuous function ,b , X ----+ R which is exhaustive

and for a compact subset I i  C X the fol lowing condil ion holds; for any p<.i inl

r € X \ 1( there are f initely many q-collvex functions ,hr,.-. , ' ry' ,  defirred on

an open neighborhood U )  r ,U C X \  / i  such that

' h r : m a x { ' h r , " ' , t , } '
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