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ABSTRACT. We study the quasi-boundedness and subtractivity in a general frame of
cones of potentials (more precisely in H-cones). Particularly we show that the subtractive
elements are strongly related to the existence of recurrent balayages. In the special case
of excessive measures we improve results of P.J. Fitzsimmons and R.K. Getoor from [13],
obtained with probabilistic methods.
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Introduction

In a recent paper ([13]) P.J. Fitzsimmons and R.K. Getoor characterized the quasi-
boundedness and subtractivity for excessive measures. Although these notions and
the obtained results have a pure analytic aspect, they use essentially in the proofs
probabilistic tools (Kuznetsov measures, random measures). We underline that a
similar goal was already acheaved (see [7] and [8]) with analytic methods in the
presence of a reference measure.

The starting point for us was to give an analytic treatement for the general
situation (without reference measure). In this paper we present a new approach
for the study of quasi-boundedness and subtractivity which allows us to avoid the
probabilistic arguments, to clarify and improve resuts from [13]. Our method is
available for general H-cones and consequently for the excessive measures as well as
for Dirichlet spaces.

Let Ezc be the convex cone of all excessive measures associated to a
proper submarkovian resolvent & = (Uy)a>0 on a Lusin measurable space (X, X).
If m € Exzc we denote by Fxc,, the convex cone of all exessive measures ¢ such that
¢ < m (i.e. ¢ is absolutely continuous with respect to m). Recall that an element
¢ € Ezc,, is called m-quasi-bounded (¢ € Qpa(m)) if {= kZNék with & < m for

€

all £ € N. We show (Theorem 3.1) that if £ € Fzcp, £ = poU then £ € Qua(m)
iff 4 does not charge any m-polar set which is p-negligible, where m = h + p o U:
In fact this is a first important result from [13]. We give the following refinement:
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¢ € Qoa(m) iff p does not charge any m-polar set which is semi-polar and p-negligible.
Particularly if 4 does not charge the semi-polar sets then ¢ and any minorant of ¢
belongs to Qua(mm) for any m such that € € Ezc,,.

We distinguish now a special class of quasi-bounded elements. An excessive
measure § is called universally quasi-bounded in Ezc, (¢ € Qud(Ezen)) if € €
Qea(m) for any m’ € Kzc such that m’ < m and m < m'. We show that if
{ =pol € Excy, then € € Qua(Fzcy) iff 1 does not charge the m-polar sets (or
only the m-polar sets which are semi-polar). Recall that an element € € Ezc, is
called subtractive in Ezc,, (£ € Sub(Excy,)) if any majorant of ¢ from Eze,, is
a specific majorant. If ¢ € Fac, has no specific minorants from @va(Ezcy,) then
1t is subtractive in Fzc,,. Moreover if ¢ = yo U then p is carried by a m-polar
set (or even by a m-polar set which is semi-polar). It remains to characterize the
elements { = poU€ Fzc, which are simultaneously universally quasi-bounded and
subtractive in Ezc,. We prove that { € Qp(Ezc,)N Sub(ELzcy,) iff pis carried by
a basic set A C X with the following property:

(*)  For any measurable (or only Ray compact) subset M of A

we have BM1 = 0 m-a.s. on X\ M.
If Ais such a set then its subset A, := {z € A/{z} is fine open} is universally
measurable and A\ A, is m-polar (Theorem 4.4 and 4.5). Therefore p is always
- carried by A,. Also for any Ray compact subset K of A we have:

B\ (2) =0 m - s (im g on k.

Using the above results we obtain immediately the following Riesz decomposition
from [13] for any ¢ € Sub(Exzcy,):

E=h+polU+vol

where A is harmonic, u is carried by a m-polar set and v is carried by a set A
satisfying the above property (*).

If A is a basic set we denote by (B4)* the operator on Ezc given by the dua-
lity relation L((B*)*¢,s) = L(&, BAs), for any U-excessive function s. Obviously
 (B*)" is a balayage on Ezc (i.e. it is additive, increasing, continuous in order from
below, contractive in order and idempotent). If moreover A verifies (*) then LB
is, recurrent on Eae. (16 £, n€ Fre, & < n= (B¢ < 1). Conversely any
recurrent balayage on Exc,y, is of the above form (Theorem 4.4). In fact if ¢ € Ezc,,
then { € Qui(Ezcn) N Sub(Excy,) iff there exists a recurrent balayage B on Ezc,,
such that B¢ = £. We obtain in Section 1 this last result in the general frame of
H-cones. Therefore the above description of the m-recurrent balayages becomes the
crucial point which allowed us to deduce the characterization of subtractivity and
quasi-boundedness for the special case of excessive measures. In the first section
we develop the above topics in an H-cone (which may be considered as an abstract
setting for Lzc,) and we prove results similar to those which hold for excessive
measures. We also show that the covex cone of all universally quasi-bounded ele-
ments in an H-cone is increasingly dense (Theorem 1.5) and that a quasi-bounded
subtractive element is necessarily quasi-continuous (Theorem 1.8).
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The general case when the resolvent ¢ is not proper can be reduced easily to the
case when U is proper; see Final remark.

[n the second section we give some complements on excessive measures and
excessive functions.

1 Quasi-Bounded and Subtractive Elements in
H-Cones |

In this section S will be an H-cone. We refer to [10] for basic results concerning
the H-cones. Recall that a balayage on S is a map B:S — S which is additive,
increasing, contractive (i.e. Bs < s for all s € S) idempotent and continuous in

order from below (i.e. for any increasing family (s;)ie; C S such that \/ s;=s € S
i€l
we have \ Bs;=Bs; V, A are the lattice operations in S). We denote by B’ the
el .
complement of the balayage B i.e. the smallest balayage T on S such that BVT=].
If 5 — 5 denotes the vector lattice generated by S then for any f € (S — S); the

balayage By on S is defined by
By=\ Rlsnnf),. (¥ses

neN

and we note that By(Rf)=Rf, where Rf:= A{t € S/f < t}. A balayage B on S is
called absorbent if Bs< s for all s € § (< is the specific order on ). The balayage
B is called recurrent (cf. [9]) if Bs=< t for all s,t € § with s < t. For any z € S we

denote by S; the set of all s € S such that \/ (s Anz)=s. Obviously S, is a natural
nEN

solid convex subcone of S and for any family (s:)ier from S, which is dominated in
S its supremum in S belongs to S,. Therefore S, is also an H-cone. An element

2 €5 is called weokwnit in S 1f -\ (s Ang)=sfor-all 5-€ S,
neN
Irom now on in this section we suppose that S possesses a weak unit and we

denote by z a fized weak unit in S.

Definition. An element s € S is called z-quasi-bounded if there exists a sequence

(8n )nen:1n S such that 5= 3 s, and s, < z for all n €N,
neN

We denote by Qua(z) the set of all z-quasi-bounded elements of S. It is easy to
see that Qa(z) is a natural solid convex subcone of S and a specific band in S.

Proposition 1.1. For any s € S the following assertions are equivalent:
]) S & de(CIJ).
20 Sis)= N Hisg—nz) =0

neN %
3) N Bps = 0, for any decreasing sequence (Bp)nen of balayages on S with
neN
ABagi—=10x

n€N
Proof.1)=2) is immediate.

2)=3). Let (Ba)nen be a decreasing sequence of balayages on S such that
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A Bnz =0. If we put s, := 5 — R(s — nz) then s, € S and Sp < nz. We deduce
neN

that for any m, n € N we have B, s = Brsn + B R(s = ne)< nByz + R(s — nz)

and therefore A B,,s < R(s —nz) for all n € Ne A Bes=0
meN meN
3)=1). If for any n € N we define Biowi= B(s_m)+ wegel Bigy € By, By < Tl—ls and

therefore A B,z = 0. On the other hand:we have B(5 —na)=B Bls— o H.s,
neN

Since A Byps =0, it follows that A R(s — g sl
neN i neN

Remark. For the equivalence 1)&2) see also [1].
If M is a subset of S we denote by ML the orthogonal of M with respect to the
specific order i.e.

M* ={s€ S/sht=0forall te M}.

Proposition 1.2. The following assertions are equivalent for any element s € S:
L) s€ Qulz)t

Dess=15 (s

9) i Biams s =8 for dineN,

4) There exists a decreasing sequence of balayages (Bp)nen on S such that

A B.rz=0 and B,s=s for all n € N.
neN

Proof. 1)=2). If we put t, := R(s — nz) then we have t, < g, s — t.< nz and
therefore s —t, = 0 for all n € N, s= A 1,=5% (s). '
neN

2)=3). We have B(,_.), R(s — nz)=R(s — nz). Since R(R(s — nz) — mz))
= R(s — (n+m)z) it follows that SZ (s)=S% (R(s — nz))=< R(s—nz)) and therefore
Bls—nz), (55,(5))=SZ,(s). By hypothesis 2) we get By sy, s=a for alln e N

Sy=>4).  Sinece AL e %3 for all n € N i1t follows that (B i B

decreasing sequence of balayages on S such that i = e iF
. neN

4)=1). Let t € Qu(z) be such that t < s and ¢ S kz. (B ).y isa
sequence of balayages as in 4) then we deduce that Bnt=t for all n € N and

A Bat < k( A Bn,z) = 0. We conclude that ¢ = 0.
neN neN ¢

Definition. An element s € S is called unwersally quasi-bounded in S if, for any
weak unit y in S, s is y-quasi-bounded. We denote by Qea(S) the set of all universally
quasi-bounded elements of S. Since we have Q4(S) = M Qealy)/y € 5,5, = S} it
follows that Quq(S) is a natural solid convex subcone of S and a specific band in S.
Definition. An element s € S is called subtractive in S if

AR S S ST

~

The set of all subtractive elements of S is denoted by Sub(S). It is easy to see that
Sub(S) is a convex subcone of S which is a specific band in S.
We recall the following results from [7]:

Proposition 1.3. For any weak unit y € S we have Qpaly )= Sub(S):
Proof. Follows from Theorem 2.2 in [7] and Proposition 1.2.



Corollary 1.4. The following inclusions hold:
Subl(8) e Gyl S) s - QelB)- € Sub(S),

Theorem 1.5. Let S be an H-cone possessing a weak unit. Then the convex cone
of all unwersally quasi-bounded elements of S is increasingly dense in S
(t.e. for any s € S we have s=\/{t € Qpa(S)/t < 5}).

Proof. Let us put for any' s € S Bs := V{t € Qu(S)/t < s}. Note that
for any ¢ € Qp(S) we have B;s< Bs and in addition Bs= \/{Bs/t € Qra( S}
The assertion stated by the theorem is equivalent with B=I. If B’ is the com-
plement of B then from Proposition 1.1. in [2] we have B'=A{B,/t € Qu(S)}
and therefore B’ is an absorbent balayage on S. We want to show that B’ = 0.
First we remark that B’ is a recurrent balayage on S. To prove this assertion, by
Corollary 1.4, it is sufficient to show that for any s € S with s = B’s we have
s € Qua(S)t.e. sAt =0 for all t € Que(S). Indeed, from sAt € Qva(S) we get
B(sAt)= sAt and since sAt< s it follows that B'(sAt)= sAt for all t € Que(S).
Since B’ is absorbent, by Theorem 2.1 in [2] we get B'B = 0 and therefore B'(sAt)=
B'B(sAt)=0, sAt=0. Therefore B’ is recurrent. Particularly we have B's € Sub(S)
for any s € S. On the other hand B’s Any /' B’s for any weak unit y in S and
therefore the sequence (B'(B’s A ny)nen increases in the specific order to B's. It
follows that R(B's —ny)< R(B's—B'(B'sAny))=B's— B'(B'sAny) \, 0. Therefore
B's € Qu4(S). From the preceding considerations we have also B's € Q@ba(S)*t and
we conclude that B's = 0, completing the proof.

We recall that an element s € S is called quasi-continuous if for any increasing
family (s;)ies in S such that V si = s we have A R(s —s;) = 0.

The origine of quasi-boullledled elements turlrfs[ back to the probabilistic notion
of regular potential (see e.g. [6]). In the frame of cone of potentials such type of
clements were considered by G. Mokobodzki (see [15]).

We denote by Q.(5) the set of all quasi-continuous elements of S and we note
that Qc(S) C Qpa(S). It is known (cf [4]) that if the dual S* of S separates S then
an element s € S is quasi-continuous iff for any decreasing family {u;)ies in S* such
that 11r€1§ pi(s) < co we have (i/e\l Lil(s)= ltrg pi(s). The next results give an analogous

characterization for quasi-boundedness.

Proposition 1.6. Suppose that Q.(S*) separates S. Then s € Quu(z) iff for any
decreasing sequence (pn)nen in S™ such that iIelr{; inlz )= D-and igg pn(s) < 0o we

have 711212 isles) =0

Proof. If s € Qpa(z) then we have s = 3~ s, with s,< z. Further if (,)nen
neN
is a decreasing sequence with ingi Llt) === “Qramd igg“"(s) < oo then we get
ne n

ingpn(‘z sg) = 0, for all m € N and there exists n, € N with p,,(s) < oo.

neN' o

Th e inf wals)< int int [, 5 =inf u, =
erefore inf ua(s)< inf inf [ (kSstk)w o_(k‘;mSk)} Jnf p o(kgnéw)



Conversely, let (B, )nen be a décreasing sequence of balayages on S with A B,z =0
neN
and let p € Qc(S5™) be such that (s + z) < co. Then we have 0 = pl A Baz)=
neN
1r’€1£J EliBaz)= 1nf(y o B3,)(z). By hypothesis we deduce that mf(u 0B, (s} =0-and

therefore p( /e\NB 5= irelg #(Brs)=0. Since Q.(S*) separates 9 we get /E\N Brs =1,
From Proposition 1.1 it follows that s € Qyqe(z).

Remark. If S is solide in S** then the above hypothesis "Q.(S*) separates S7”
coincides with the fact that ”S* separates S and Qc(S*) s increasingly dense in
S* ". Indeed, let us denote by B. the balayage on S* (see [4]) defined by B.u
= V{v € Qc(S*)/v < p}. We show that B, = I. If we denote by B’ the dual of B,
and B. # I then there exists s € S such that s B}s. Since Q.(S*) separates S it
follows that there exists u € Q.(S*) with u(Bs) < ,u( ). Therefore B,y # p which
1s a contradiction.

Proposition 1.7. Suppose that Q.(S*) separates S, Qc(S) is increasingly dense
in S ‘and such that for any dominated family (s:)icr in S there exists a sequence

(tn)nenC I with \/ s;=\ si,. Then the following assertions are equivalent:
el neN

1) s € QuS)
2) For any decreasing sequence (pn)nen n S* such that A el amd
neN
irelg pin(8)< 0o we have irellfw Ui 8) 2 10,
Proof. 2)=1). Follows from Proposition 1.6.

1)=2). Let (pn)nen be a decreasing sequence in S* such that Ao pn=0 and
neN

in}g pin(s)< co. By hypothesis we may construct a weak unit v € Q, (S) such that

nel

in}f\v pn(u) = 0. We get ( A pn)(u)~1r€1g pn(u). Using the fact that s € Que(u) and
ne neN %

from Proposition 1.6 it follows that IIElIg k)= 0.

Remark. The hypothesis from Proposition 1.7 are satisfied if S = Ezeé,,.

Theorem 1.8. Suppose that for any dominated family (8i)ier in S there exists a

sequence (in)neny C I with \ s;=V s;.. Then Sub(S) N Qua(S)= Sub(S) N Qa(5).
€] neN

Proof. The inclusion Sub(S) N Q.(S) C Sub(S) N Q4a(S) is immediate. Let

5 € Sub(S) N Qpa(S) and (si)ics be an increasing family in S such that \/ s;= s and =

€]
(¢n)nen an increasing sequence with \/ s;= V si,. It will be sufficient to show that
1€l n€eN
V Rls—si.)=:0. Since R(s—s;,)< s—s;, ks, it suffices to prove that V Si kg5,
neN neN

If we set t,:= s;, — s;. As then sAt, +si, As< s;, and therefore, since s € Sub(S)

we get sAty +8i,As=< Si,, SAty +8i, AS<'S, SAt, +8;, As< s; As. Hence sAt,= 0

for all n € N. Let us put now s":= V (s, A8)= Y{s; As/n € N}, s":= s — 5" and
neN

boms 5 é};(tn A s'). We remark that \ (¢, A s')= s’ and therefore B,= By. On the
neN 3 neN

other hand we have (¢, A s")As'< tn, (tn A $')AS8'< 8" Since s’ € Sub(S) it follows
that (tn A ") As'< t,As, (tn A 8')As'= 0. If 2 is a weak unit in S then the element



vi=t+ Bz is also a weak unit in S and therefore from s’ ¢ Sub(S) N Qpa(S) we

get s'= ¥ s, with s/, < v. From the above considerations we deduce that s'At= 0
neN

and consequently, for any n € N we have G B, si="Bl(s'), ¢'= Bl Since
(B1)'= (By) we conclude that s'= (Bs)'(s")= (By)'(Byrs')= 0.

Remark. [f S has a quasi-continuous weak unit u (particularly if S= Excy.) then
the conclusion of Theorem 1.8 follows immediately.

Indeed, if s € Qu4(S) N Sub(S) then s = ¥ Sny $n< u. for all n € N and since

neN
sn € Sub(S) we get s,< u € Q.(S) for all n € N, 88 @(5)
Proposition 1.9. Let B be a balyage on S. Then B is recurrent ff B(S)C Sub(S)n
Proof. Suppose that B is recurrent and let s € S. If ¢ € S is such that
Bs <t we get Bs = B(Bs)<t and therefore Bs € Sub(S).Let now (s;);c; be an
increasing family in S such that V si= Bs. It follows that (Bs;)ies increases in the

€]
specific order to B(Bs)= Bs and therefore R(Bs — s;)< R(Bs — Bs;)= Bs — Bs;,
A R(Bs—s;)< V (Bs—Bs;)= 0. Hence Bs € Qc(S5). Conversely, suppose that B(S)
i€l icl

i€
C Sub(S) N Qc(S) and let s, ¢ € S be such that s < t. We have Bs < Bt< t and
since Bs is subtractive we get Bs < ¢ which leads to the fact that B 1s recurrent.

Corollary 1.10. Let L be a specific solid subcone of Sub(S) N Qc(S). Then the
balayage By, on.S defined by

Brs:=V{teL/t<s}, s€8§

is a recurrent balayage on S. More precisely, By, is the smallest recurrent balayage
B on S such that Bs = s for any s € L. The map L w— By between the set of all
spectfic: bands of Sub(S) N Q.(S) and the set of all recurrent balayages on S is an
order preserving bijection.

Proof. Follows from Proposition 1.9 and from [10],Proposition 2.2.10.

Corollary 1.11. The map B,: S — S defined by
Bos := \/{t € Sub(S) N QS 8} sEf

is the greatest recurrent balayage on S. Particularly, there are no non zero recurrent

balayages on S iff Sub(S) N Q(S) = 0.

2  Complements on Excessive Functions and
Excessive Measures

Let U = (Us)aso be a submarkovian resolvent of kernels on a Lusin measurable
space (X, X) such that the initial kernel U = U, is proper. We denote by &, the
convex cone of all A -measurable U- excessive functions on X which are finite -a.s.
and we suppose that & is min-stable, 1 € &, and o(&u) = X. From now on in this
paper, without other special mentions, U = (Us)as>o will be such a resolvent.
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We denote by Ezc = Excy the convex cone of all U-excessive measures on X,
1.e. the set of all o-finite measures m on X for which m(al,) < m for all a > 0.
Recall (cf. [11]; see also [14]) that Excis an H-cone (with respect to the usual order
relation in the set of all positive measures on X) which does not possesses a weak
unit in general; the existence of a weak unit in Ezc is equivalent with the existence
of a reference measure. For any m € Ezc we denote by Ezc,, (as in Section 1) the

natural solid subcone of Ezc defined by Ezcy, := {¢ € Ezc/ V (EAkm) =€) . It
keN

is easy to see that Ezc, = {£ € Ezc/¢ is absolutely continuous with respect to m}
and that Ezc, is an H-cone for which m is a weak unit. Recall that a potential is
an excessive measure of the form po U, where p is a positive measure on X and Pot
denotes the set of all potentials. The set Har is by definition the othogonal of Pot
and the elements of Har are called harmonic. The convex cones Pot and Har are
specific bands in Exzc. Generally Pot is not solid in Ezc with respect to the natural
order but it is increasingly dense in Ezc. The energy functional associated to I/ is
the map L : Ezcx & — Ry defined by L(¢,s):= sup{u(s)/uoU € Pot,polU < £}
Definition. The set X is called semi-saturated if Pot is solid in Ezc with respect to
the natural order. We say that X is saturatedif any m € Ezcsuch that L(m,1) < co
is a potential. Note that (cf. [5]) if X is saturated then X is semi-saturated.

Definition. Let (X;,X)) be a measurable space such that X C X;, X € X;
and Xi[x = X. A submarkovian resolvent ' = (Ul),s0 on (X;, X)) is called an
extension of U = (Uy)aso if

a) " Uiy ) =0, for allo >0;

b) Ul(f)ix = Ua(fix), for all @ > 0 and f positive Xj-measurable on Xi;

c) &aq is min-stable, 1 € & and o(&n) = Ay,

Remark. 1. In the above definition a) and b) may be replaced with the following
conditions a’) and b’):

&) U e el

b’) Uy (f)ix = Us(fix), for any f positive X;-measurable function on Xj.

2. fU' = (U})aso is an extension of U = (Uy)aso on (X1, A1) then any U'-excessive
measure is carried by X and a measure on X will be U-excessive iff it is U -excessive.
Therefore Fzcy = Lzcp. The following result is proved in [5]:

Theorem 2.1. There exists a Lusin measurable space (X, X)) such that X C X,
X € Xy and Xy|x = X and a submarkovian resolvent U' = (U})aso on (X1, X1)
which is an extension of U on (X1, X)) such that X, is saturated with respect to U!.

We recall now some considerations concerning the Ray topology. We suppose
that the initial kernel U of U is bounded. A Ray cone associated with & will be a
subcone R of (&), (:=the set of all bounded U-excessive functions) which is min-
stable and separable in the uniform norm, separates the point of X and moreover
1€ BiUlR R} L€ R, UAR) € R, 0> 0 and o(R)= X. Thetopology on X
generated by a Ray cone is called Ray topology.

Let us denote by &; the convex cone of all universally measurable U-excessive
functions which are finite ¢/-a.s. We note that the fine topologies on X induced by




&u and & coincide. If A € X and s € & then (cf. [4]) R%s, the reduit of s on A
(R4s=inf{l € &/t > s on A}=inf{t € &/t > s on A}) is universally measurable
and p(R*s)= inf{p(R%)/C fine open, G € X,G D A} for any bounded s € &y
and any measure g with p(s) < oo. This result may also be deduced from [12] in
the special case when X is locally compact and U is a Hunt kernel on X. We put
B%s:=RAs (i.e, the U-excessive regularization of the U-supermedian function RAs)
and we have B4s= R%s on X\ A and u(B%s)= sup{u(Brs)/K Ray compact, K C
A} for any s € &, and any measure p with u(s) < co. As usual the set A € X is
called: thin at the point z € X if there exists s € & such that BAs(z) < s(z);
totally thin if it is thin at any point of X; semi-polar if it is a countable union
of totally thin sets; polar (resp. m-polar, where m € Ezc) if BAlL = 0 (resp.
m(B*1) = 0). A fine closed subbasic set is termed basic.

. If A € X then the map B4 : &, — & is additive, increasing, o-continuous in
order from below (i.e. s, /' s = B%s, /* B*s) and dominated by the identity.
Therefore for any { € Ezc the functional s — L(¢, BAs), s € & defines the unique
excessive measure (B*)*¢ such that L((B*)*¢, s)= L(€, BAs) for all s € &. Moreo-
ver if A is subbasic then the map (B#)* : Ezc — Ezc is a balayage on Ezc and its
restriction to Ezcy, is a balayage on Ezcp, for any m € Exc. If for any A € X we
put A= {z € A/limni_r’lgo nUn(xa) = 1} then A* is a subbasic set, BA's € & for
any s € & and in addition for any £ € Exc we have L(£, BA's)= L(*BA¢, s), where
"BAE= Ny € Bac/ela < n).

3 Quasi-Bounded Excessive Measures

Theorem 3.1. Let m € Exzc, m=h+ polU with h € Har and E=poll edlire..
Then the following assertions are equivalent:

1) The measure £ is m-quasi-bounded.

2) uw(M) =0 for any m-polar subset M of X with p(M) = 0.

5) w(M) = 0 for any m-polar subset M of X such that M is semi-polar and
p(M) =0. '

Proof. Let g be a positive X'- measurable function on X, 0 < ¢ < 1, such that Uq
is bounded and m(q) < co. Let W be the kernel on (X, &) given by W f := U%U(qf)
and let W = (W, )as0 be the submarkovian resolvent for which W is its initial ker-
nel. We have &y = —Ul—q-Eu, Baeyw= g+ Ezey andPE{q - £, U7)= YELE, 5] for-any
s € & and € € Excy, where “L(-,-) (resp. YL(-,-) ) denotes the energy functional
associated with U (resp. W). Particularly "L(g-m, 1)= YL(m,Uq) < co. By Theo-
rem 2.1 there exists a Lusin.measurable space (X', X’) such that X Cc X', X € A"
and X'|x = A and a submarkovian resolvent W'= (W!),50 on (X', X’) which is an
extension of W on (X', X’) and X' is saturated with respect to W. Therefore there
exist two measures p’ and p” on X' such that q-(poU)= p’o W' and ¢-h= p" o W'
It is easy to see that p’ is the measure on X given by p’ := ULq - pand o X) = 0.

1)=>2). Suppose that £ € Qpa(m) and let M be a m-polar subset of X with respect



to U such that p(M) = 0. From the above considerations we get W E{g-m, BM1)

= ”L(m,BMUq), where 'BM denotes the balayage on M with respect to Epn.
It follows that M is also q-m-polar (with respect to W'). Moreover we have
p'(M)= p"(M). From [4] we deduce that there exists a decreasing sequence (G, )nen
of fine open subsets of X such that M C G,, G, € X and igg(p’ + (B 1)=

(o' + ;")('RMl): (0 +p")(BM1)= .WL(q -m,BM1)= YL(m, BMUq). Since i is m-
polar we get irelli;J “L(m, BGUq)= Helrfs WL(g - m,’B%»1)= irellg(/)’ $-p('BE 1) = 0.

It follows irellgI L(*B%*m,Uq) = 0, A'B%m = 0, where we recall that *B%m
T neN

= N € Bac/m|g, < €} and from Theorem 1.3 in [3] we have L{(B%, s)=
L(m, B%s) for all s € &. On the other hand if we put 1= plar and ¢u=pw' o U/
then for any s € & we have: L(*BC~¢/,s)= L(¢', BCS~s)= y/(B%ns)= sz Lt s).
From Proposition 1.2 we deduce that ¢’ € Quu(m)* and therefore =1,

3)=>1). Suppose now that u(M) = 0 for any m-polar subset M of X such that M
is semi-polar and p(M) = 0. It is sufficient to show that: ¢ € Qualm)t=¢ =0, I
£ € Qoa(m)* then from Proposition 1.2 it follows that Biepmy€ = £ forallk e N.
We need the following lemma:

Lemma. Let m € Ezc and &, & € Excy, &= firm, i = 1,2, Then

Bie,-&),n = *B[f‘>f2]77, (Y)n € Ezxc,,.

Proof of Lemma. . Let us pit F 1= [f; > f2]. Then for all 5 € N we have
"Bnlr= nlr> n A [j(& — &)4]. 1t follows that "BFg> R(n A [j(& — &1)4]) and
therefore "BFp> \/ R(n A[j(& — €2)4])= Bi¢,—¢,),m- On the other hand if = g-m

JEN

we get .!}1(77 A& — &)4])2 -\E/N(g m A [j(fi = f2)+ - m])= (gxr) - m= n|p and
Jen J
we conclude that B, _¢,), n= é/N R(n A[5(& — &) )> 1|, B¢ —¢;,), 1> "B n which
J

completes the proof of Lemma.

If we write ¢ = f-m then from the above Lemma we have B¢ km),n= *BU>Hp
for all n. € Ezc¢,. From Theorem 1.4 in [3], for any s € & and n € Ezxc
we have L(*BU>Hp s)= L(s, BU>H's), where for a set A € X we pul-A* 1=
{z € A/limni_r}go nUn(xa) = 1}. (Recall that the set A* is subbasic and B4"s €
&u.) Tor any k € N we denote by M the fine closure of the set If > EI* and

let M := (| M;. Obviously *BMrm< %*BM"Q‘ < %ﬁ for all £ € N and there-
keN

fore: A *BMem = 0. Since for any f with m(f) < oo we have L BMU f)<
keN

iaf L, BHU )= jol LCBYm, U f)= jof "BMsm(f)= (A "BMem)(f)= 0 we de-

duce that L(m, BMUq) = 0 which means that M is m-polar. From (BT = 01t
follows that the measure m is carried by the absorbent set A := {z € X/t(z) =0}
where t € & is such that ¢ < BMl and ¢t = BM1 m-as. -Since ¢ € Fxc,, we
deduce that ¢ is also carried by A and u(BM1)= L(¢,BM1) = 0. Hence u is car-
ried by A. If we put M| := My N A then we have “BMit= "BMr¢ = ¢ for all
k € N. It follows that p(BMcUq)= L(¢, BMiUq)= L("BMi¢, Uq)= L(¢,Uq)= 1(Uq)
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and therefore p(Uqg — BMkUq) = 0 for all k € N. Since M| is a basic set we de-
duce that p is carried by M for any k € N and therefore p1s carried by M N A.
From BM"4Uq¢ = 0 on A and BAUg < Ugon X\ A we get that M N A is totally
thin. To deduce that { = 0 it remains to show that p(M) = 0. Indeed we have
pxmUq)< p(BMrlg)< L(m, BM«Uq)= L(*BMkm,Uq)= "BMem(q) and therefore,
since A "BMrm =0, we get p(M) = 0.
kEN

Corolleary 3.2. Letm € Ezcand { = polU € Excy. Then the following assertions
are equivalent:
1) ¢ is universally quasi-bounded in Ezc,,.
2) The measure p does not charge any m-polar subset ol 2,
8) The measure yu does not charge any m-polar subset of X which is semi-polar.

Proof. Let m, be a weak unit in EFzc,, which is quasi-continuous in Fzec. We
deduce that Qua(Ezcm)= Qui(m,). On the other hand if m,= po o U + h, where
h € Har, from [4], Theorem 3.3 we deduce that p,(M) = 0 for any semi-polar subset
M of X. The assertion follows now directly from Theorem 3.1.
Corollary 3.3. Suppose that m € Har and let ¢ = poU € Ezc,,. Then € is
unwersally quasi-bounded in Ezc, iff € is m-quasi-bounded.
Remark. The above characterizations for universally quasi-boundedness and m-
quasi-boundedness are sharpened versions of those given in the abstract setting by
Proposition 1.6 and Proposition 1.7, '
Corollary 3.4. Let m € Exc, m = h+polU with h € Har and ¢ = poU € Ezc,,.
Then the following assertions are equivalent:
1) ¢ € Qu(Ezenm)t (resp. € € Qpa(m)*t ).
2) The measure p 1is carried by a m-polar set (resp. a m-polar set
which is p-negligible).
3) The measure p is carried by a m-polar set which is semi-polar (resp. a m-polar
set which is semi-polar and p-negligible).
Remark. Letm € Ezc and { = polU € Ezcy,. If p is carried by a m-polar set
then £ is subtractive in Exc,,. Particularly, if i is carried by a polar set then € is
subtractive in Ezc.

4 Recurrent Balayages on Exc

In this section we characterize the recurrent balayages on Exzcy,. The Ray topology
which is considered on X is the topology generated by a Ray cone associated with
a bounded kernel of the form ¢ - U, 0 < g <1, as in Section 2.

Let A C X be X-measurable. Recall that if ¢ € Ezc then (B4)*¢ is by definition
the unique excessive measure such that L((B*)*¢,s)= L{¢, BAs) for all s € &,
Moreover if A is subbasic and m € Ezc then the map (B4)* : Ezc,, — Ezc,, is a
balayage on Ezc,,.
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Proposition 4.1. Let m € Eze, £ = polU € Ezc,, and A € X be a subbasic sel.
Suppose-that the balayage (B*)* on Ezc,, is absorbent. Then (B = /.L|Z/ o L),

(Z/ denotes the fine closure of A.)

Proof. Since (B4)*¢ < € it follows that (BLirt= w ol wwhere v < . - For
any s € & we have v(s)= L((B#)*¢,s)= L(¢, BAs)= u(B"s ) LU BAE Bhs)=
v(B*As). Therefore v is carried by A’ We deduce that (B4} (u[X\»-A-} gill)= 0,

(]3A)*(u]A/ o U)= pl2s o U and therefore (B4)*¢= plzs o U. :
Proposition 4.2. Let m € Fzc and A € X be a subbaszc set. Then the following
assertions are equivalent:
1) (B%)" is an absorbent balayage on Ezc,,.
2) BAl=0m-as on X\ A,

Proof. 1)=2). Let ¢ > 0 be such that 0 < Ug <1 and putsm’ = Uiq - m.
Since m IX\AjOUEECECm,by Proposition 4.1 we deduce that (B4)*(m i v ol ) =0

Particularly we get:m’| —/(BA J=Lim ,]X\ZjOU Bl = LBy /|Y\ZJOU) L)e=0:
2)=1). It will be sufﬁment to show that for any f € Exc, with L(¢,1) < oo and
8,1 € &y, s < t wehave L(€—(B*)*¢,5)< L(€ — (BA)*¢,t). Since L(£ — (BA)*¢,t) =
L(,é,t) —LE B L= (Bt s)—bie,5) = L(L, BAS) and from
t—{—BAs:s—{—BAt:s—FtonZ
t+BA%=t>s=5+ B4 m—as. onX\Af
we get s + B4t <t + B%s m-as. on X. Therefore L(¢,s + BAt)< L(¢,t + BAs),
L =Bt Tle (e o).
Proposition 4.3. Let m € Ezc and B be an absorbent balayage on Exc,,. Then
there exists a basic set A € X such that B= (BA)*. Moreover if A € X is a basic
set such that B= (B*)" then there exists a fine clopen X -measurable subset A, of A
with B= (B4}

Proof. Recall that (cf. [2], Proposition 1.5) we have B = B,,_pgim, where B’
denotes the complement of the balayage B on Fzc,,. Since the measure m — B'm
18 absolutely continuous with respect to m we have m — B'm= f -m and there-
fore, from Lemma in the proof of Theorem 3.1 we get B= B, gim= *BY>9. From
Theorem 1.4 in (3] deduce that *BU>%= (B4)*¢ for all ¢ € Ezc, where A is the -
basic set given by the fine closure of the subbasic set [f > 0]*. Let now 4 € X
be a basic set such that B= (B#)*. Since B is absorbent, by Proposition 4.2 it
follows BA1= 0 m-a.s. on X \ A. Replacing the universally measurable excessive
function B41 with s, € &5y 2B, Bhl= s, m-a.s., we define D = [s, = 0] and
C:= (X \ A)\ D. Then C is X-measurable, fine open and since m is excessive it
follows that m(aUa(xc))< m(C)= 0, m(U(xc))= 0. Hence U(xc)= 0 m-a.s. on
X. Since U(xc)> 0 on C we deduce that AN [U(xc) = 0]= (X \ D) N [U(xe) = 0]
and therefore the set A,:= [U(xc) = 0] N A is fine clopen. On the other hand from
U(xc)= 0 m-as. we get m(A\ A,)=m(A\ [U(xc) = 0])= 0. As a consequence for
any s € & we have BAs= B#s m-a.s. and we conclude that (B4)*= (Beei,
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Theorem 4.4. Suppose that X is semi-saturated. If m € Exc and A € X is a basic
sel then the following assertions are equivalent:
1) The balayage (B*)* on Ezcy, is recurrent.
2) For any Ray compact subset K of A we have B¥1= 0 m-a.s. on X \ K.
8) For any subset M of A, M € X, we have BM1= 0 m-a.s. on X \ M.
+Proof. 1t is known that (B#)* will be recurrent iff any balayage B on £zc,, such
that B < (B#)* is absorbent (cf. [9]).
1=2). Let K be a Ray compact subset of A. Then there exists a decreasing

sequence (Gp)nen of Ray open sets such that G, C Gnyy and | Go= K. If we
neN i
put An:= AN G, then A, is a subbasic set, A, C A and BXs< A B#rs for any
neN
s € &.Since (BA")*< (B4)* and by hypothesis (B4)* is recurrent it follows that

(B/")* is an absorbent balayage on Exc,,. Therefore, by Proposition 4.2, for any
n € N we get
BX1 < BA"1 =0 m —as. on X\/_‘l_nf

and we conclude that B%1 =0 m-a.s. on X \ K.

2)=3). Let M be a subset of A, M € X and let u be a finite measure on X \ M
which is absolutely continuous with respect to m. Since u(BM1)= sup{u(BX1)/K
Ray compact, K C M}, by hypothesis 2) we deduce that BM1= 0 m-a.s. on X\ M.
3)=1). Let B be a balayage on Ezc,, such that B< (B4)*. We want to show that B
is absorbent. If B= (B™)* where M is a basic subset of A then by assertion 3) and
Proposition 4.2 we deduce that (B™)" is an absorbent balayage on Ezc,,. Let now
B be arbitrary. Then there exists a decreasing family (¢;)ies in (Eze, — Ezcp )y
such that Bé= _/\[ By for all £ € Excy,. Obviously we may suppose that (¢;)ie; is

gs

decresing in (Bxcy, — Excy)4. If for any @ € I we put o; = f;-m then we have =
“BU>0= (BA)* where A; is the fine closure of the set [fi > 0]". Since the balayage
(B4)" is absorbent we may suppose, by Proposition 4.3, that the set A is fine
clopen. Let 7 € I be fixed and let G € X be a fine open set such that G O A;. The
set ANG’=ANG’ is a basic subset of A and moreover B= (B/mal)*. Indeed let
(= pol € Ezcy,. Since X is semi-saturated we have B{= voU and from *B¢(B¢)=
Bé= (B#)*B¢ we conclude that the measure v is carried by A N G’. Therefore
© B¢= (BATC yBe< (BT Yr¢= (BS)¢. Obviously we have BE< _/\I(/\{(Bmf)*f/
G D A;,G fine open, G € X})< ./\I(BA")*f: B¢. From the first p;t of the proof we
1€

get that all the balayages (Bm/)* are absorbent and as a consequence (BWI)T%
. We deduce that B < € for all { € Exc,, and therefore assertion 1) follows.
Theorem 4.5.Suppose that X is semi-saturated.If m € Exc and A is a basic set such
that the balayage (B*)* on Exc,, is recurrent then the following assertions hold:
1) For any Ray compact subset K of A we have

Bf¥\M=(2) =0 me-a.s. (in z) on K.
2) The fine open set A, := {a € A/{x} is fine open } is universally measurable,
A\ A, is m-polar and (B*)*= (B4°)*.
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Proof.Let q be a measurable function on X ,0 < ¢ <1 be such that 0 < Uqg<1. Then
for any X'-measurable subset A; of A there exists an increasing sequence (K, )nen of

Ray compact subscts of A\ Ay such that sup B¥»Uq= B\ (/g m-ass. By Theorem
neN

4.4 we have B"*/g= 0 m-as. on X \ K,. Therefore B\ g= 0 m-a.s. on A,
and since BMUg¢< BAUgS BMUq + BA\Aqu we get BYMUg= BAUq= Uq m-a.s.
wwon Ay. Let now fix a distance on X associated to the Ray topology ‘and let K be a
Ray compact subset of A. We consider a sequence (G, )nen of finite open coverings
of K, G, = (Gl her suchthats a) any G? has the diameter smaller than 1/n; b) for
every GT there are j € I, and j' € I,_; with G”Jrl EGTC G" . For any n € N

we put s,:= A Bf\G'1. From Theorem 4.4 we have sn= 0 m-a.s. on X. On the
1€1n
other hand by construction we get s,< 5,41 and

BI\"\B(:C,]/n)l(x) £ Sn(ﬂl) = BA\{I}l(CC)

for any z € K such that BXUq(z)= Uq(z) (i.e. for any z € K such that K is not
thm at z), where B(z, l/n) 1s the open ball of radius 1/n centered in z. If we put
= {z € K/BXUq(z) = Uq(z)} then for all z € T we have sups =B\ (1),

Since from the preceding considerations we have m(K \ T) = 0 and sup sp= 0 we
neN
deduce that BFM=}1(2)= 0 m-a.s. on K. Let now (My)nen be an increasing sequence

of Ray compact subsets of A such that m(A \ U My)= 0 and let ¢, € & be such
that BMU¢< t, and t,= BMUq m-as. If we put Dai=dwe X/t =) if

follows that D, is a fine clopen X-measurable subset of X and moreover for any
n € N we have m((X\M,)\ D) = 0. The measure m being excessive we deduce that
m(aUa (X (x\Ma\D. )< (X \ Mn)\ D)= 0 and consequently Ulx(x\Ma)\Dn)= 0 m-
a.s. On the other hand since the set (X \ M,)\ D, is fine open and X-measurable
we get U(x(e\ma\D,)> 0 on (X \ M)\ D,. We deduce that the fine open set
Le=10 B (\/(/\ \Ma)\D,) = 0] is X-measurable, T, C M, and m(M,\ T, )=

It z € T, and {z} is not fine open then T, \ {z} is not thin at z and therefore
BM\#} (2)> BT\M=}(2)= 1 > 0. Hence we have the inclusion

T\ {z € T/{z} is fine open } C {z € M,/BM\=}1(z) > 0}.
It follows that m(M, \ {z € M,/{z} is fineopen }) = 0. We conclude that
m(A\ A,) = 0. Obviously B4\e1= 0 m-a.s. on X and therefore (B4)*= (B,

5 Quasi-Bounded Subtractive
Excessive Measures

In this section we suppose that X is semi-saturated and we consider on X a Ray
topology as in Section 4.
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Theorem 5.1. Let m € Ezc and é = polU € Exc,,. Then the following assertions
are equivalent:

1) The measure € is sublractive and universally quasi-bounded in Ezc,,.

2)  There exists a basic set sel A € X such that p is carried by A and for any Ray
compact subset K of A we have BX1=0 m-a.s. on X \ K.

3) There exists a basic set set A € X such that p is carried by A and for any
X -measurable subset M of A we have BM1=0 m-a.s. on X \ M.

4) There exists A € X such that p is carried by A, {z} is fine open for any z € A
and BX1= 0 m-a.s. on X \ K for any Ray compact subset K of A.

5) There exists a basic set A € X' such that p is carried by A and the balayage
(BA)* on Ezcy, is recurrent.

Proof. 1)=2). By Corollary 1.10 there exists a recurrent balayage B on Ezc,y,
such that B{= ¢. From Theorem 4.2 and Theorem 4.4 there exists a basic set
A € X such that B= (B“)* and BX1= 0 m-as. on X \ K for any Ray com-
pact subset K of A. Let 0 < f, < 1 be a function which is X'-measurable and
such that Uf, is bounded and u(Uf,) < oo. Since L(p o U,Uf,)= p(Uf,) and
L((BAY (4 0 U),Uf)= L(z o U, BAUS,)= u(BAUL) we get p(Ufo)= w(BAUY,)
and therefore, A being a basic set, u is carried by A.
2)=>3). Follows from the fact that for any M € X, M C A, there exists an incresing
sequence (K, )nen of compact subsets of M such that BX»1  BM1 m-a.s. Since

BEr1= 0 m-as. on X \ K, we deduce that BM1= 0 m-a.s. on XA el K and
neN
consequently BM1= 0 m-a.s. on X \ M.

3)=5) Follows from Theorem 4.4.

5)=4). From Theorem 4.5 it follows that the set A,= {2 € A/{z} is fine open}
is universally measurable , A\ A, is m-polar and (B#)*= (B4°)* on Ezc,. Since
(B*)"(uoU)= polU and since (B4)" is recurrent on Ezc,, we deduce, using Propo-
sition 1.9, that poU € Qpa(£zcy) and therefore, by Corollary 3.2, i does not charge
the set A\ A,. Hence p is carried by A,. From Theorem 4.4 it follows that BX1= 0
m-a.s. on X \ K for any Ray compact subset K of A,. To obtain 4) we replace A,
with a subset of A, which is X-measurable and differs from A, by a u-negligible set.
4)=1). Let A be as in assertion 4). We remark that for any s € & we have
B#As € & and B/s= s on A. Also any Ray compact subset K of A is a basic set
and by Theorem 4.4 the balayage (BX)* on Exc,, is recurrent. Further there exists
an increasing sequence ([, ).en of Ray compacts subsets of A such that

BAlLf = sup,ey BX*Uf, v —as.

where v is a finite measure on X and v o U is a generator of FEzcy.

Hence V ( BX»)= (B4)*. Therefore (cf. [9]) it follows that the balayage (B e

neN
also recurrent on Ezc,,. Since p is carried by A we deduce that (B (pol)= polU
and by Proposition 1.9 we conclude that po U € Qu(Ezcy) N Sub(Ezcy).
Remark. Let A be a subset of X which is X-measurable and such that {z} is
fine open for any x € A and BX1= 0 m-a.s. on X \ K for any Ray compact
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subsel K of A. Then
B¥M=}(z) =0 me-a:s. (inz)on K
for any Ray compact subset K of A.
This assertion follows immediately from Theorem 4.4 and Theorem 4.5 applied to
any Ray compact subset of A.
Corollary 5:2. Let m € Ezc and € = poU € Ezcy,. Then each of the assertions..
from Theorem 5.1 is equivalent with the following one:
4’)  There exists A € X such that p is carried by A, {z} is fine open for any z € A
and such that for any Ray compact subset K of A we have:
—BE =0 m-g.s o0 X\ K,
BRI eon K
As a consequence of the above theorem we deduce the following Riesz decompo-
sition obtained in [13] :
Corollary 5.3. Let m € Exzc and é € FEzc,,. Then ¢ € Sub(Ezc,) iff € is of the
form : :

E=htuol+pvoll

where h € Har, p is carried by a m-polar set (or even by a m-polar set which is
semi-polar) and v is carried by a set A € X such that {z} is fine open for any z € A
and for any Ray compact subset K of A we have: -

—BEL =0 ‘m-g.s. on X\ K,

— BBl o= - meals inelon K.
Moreover the above decomposition is unique: po U € Qpa(Ezcn)t and vo U €
Qri( Bzen) D Subl Bz ).
Corollary 5.4. Suppose that there are no non zero recurrent balayages on Excy,
(this is the case when Exzcy, is elliptic or if X has no fine isolated points which
are no m-polar). Then € € Sub(Excy) iff &= h+ polU where h € Har and p is
carried by a m-polar set.
Remark. The above result is an improvement of (2.28) in [18].
Final remark. All the assertions proved in this paper for U-excessive measures
hold even if the initial kernel U 1is not proper.
Indeed if m € Ezc then there exists (see [14]) a decomposition of X of the form
X= DUC where D, C € X, DN C= 0 and C is absorbent and such that D is
a dissipative subset of X and therefore the restriction of U to C is proper and for
any ¢ € Ezc, the measure ¢|p (resp. é|c) is the dissipative (resp. conservative)
component of . It is easy to show that for any ¢ € Ezc,, the measure ¢|c belongs
to Qpi(Ezcmi,) N Sub(Ezcpy),) and the measure ¢ belongs to Qpu(Excy) (resp.
Qsa(Ezcy) N Sub(Ezey)) iff élp belongs to Qui(Excn),)) (resp. Qra(Ezcn|,) N
Sub(Ezcy,). On the other hand if é= p o U then we have {= ¢|p.
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