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A BOUNDARY CONTROL PROBLEM IN FLUID
MECHANICS |

Anca Capatina® and Ruxandra Stavre!

Abstract. This paper deals with a boundary optimal control problem associated to
the steady-state Navier-Stokes equations coupled with the heat equation. The most
general type of boundary condition for the temperature is considered. The existence
of a solution of this problem is proved. Moreover, for some values of the viscosity coef-
ficient we also obtain the uniqueness. The control problem consists in minimizing the
turbulence of the fluid, the control being the temperature of the surrounding medium.
The existence of an optimal control is proved and necessary conditions of optimality
are derived.

Key words. optimal control problem, Navier-Stokes equations, heat equation, turbu-
lence

1. Introduction

The purpose of this paper is to study a boundary control problem associated with the
stationary Navier-Stokes equations coupled with the heat equation. The boundary
condition for the temperature is of oblique type (e.g.[3], p- 8):

or
(el /{57—&-’;-01(7'—9)—0 on T

where «, a are constants, 6 is the temperature of the surrounding medium and I' is
the boundary of the flow region Q. Equality (1.1) means that the heat flux across the
boundary I is proportional to the difference between the temperature 7 of the fluid
and that of the surrounding medium, 6.

A similar problem has been studied in [1], with a less realistic boundary condition
than (1.1).

Our aim is to characterize the controls § = 6, which minimize the turbulence of
the fluid, as measured by the functional:

(1.2) T %/QW « v(0)|?da
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where v(0) is the velocity of the fluid corresponding to the control 0 .

The control of Navier-Stokes equations has been investigated in [2], [7], [8].

In §2 we give a variational formulation (V ) of the physical boundary-value prob-
lem (P P) and we prove that they are equivalent. The existence of a solution of (V P)
can be obtained without any restriction on the size of the viscosity v. It is known
that, in general , we do not have uniqueness for problems of this type (see [9]). The
main result of §2 is the uniqueness of the solution of (V P) for large.enough values of
the viscosity coefficient.

The existence of an optimal control is obtained in §3. The uniqueness result,
proved in §2, allows us to derive the optimality conditions without approximating the
control problem (CP) by a family of penalized problems as in [1] (Section 4).

2. The physical problem. Existence and uniqueness results

Let us consider a viscous, incompressible fluid, occupying a bounded domain £ C R3
with Lipschitz boundary I'. Though the results and the methods are the same for the
two-dimensional flow, we only consider, for simplicity, the three-dimensional case.

We seek for a vector function v representing the velocity of the fluid, a scalar
function 7 -the pressure of the fluid and a scalar function 7 - the temperature of the
fluid, which are defined in Q2 and satisfy the following system of Navier-Stokes and
heat equations and the boundary conditions:

—vAv+(v-V)v+Vr=f+Br in Q,
-k AT+v-Vr=g st 8
(PP) leV:0 n Q,
V=0 on: .,
/@a—:;—}—a(r—&)zo on

where v > 0 is the coeflicient of the kinematic viscosity, f the body forces, & > 0 the
thermal conductivity, & > 0 the heat-transfer coefficient corresponding to convection,
0 the temperature of the surrounding medium, B a function given by the Boussinesq
approximation, g an external heat source and n the outward unit normal to I.

The most general type of boundary condition for the temperature is (P P)s where:

(2.1 a=a.+a.(r+0)(r?+ 6%,

a. and o, denoting heat-transfer coeflicients corresponding to convection and radia-
tion, respectively; in our problem we neglected the radiation effects.
In order to give a variational formulation of problem (PP) we assume that:

fe(HUQ)Y, Be(®Q)f, gel®Q), 0cH ).
We denote by Yg the following separable Hilbert space (see [10]):

) Yor= {vie (MR /divv =10 in Q},



Suppose (v, 7,7) € Yo x L*(§) x H'(Q) satisfies (PP). Then, by Green’s formula
we casily obtain that (v,7) is a solution of the following variational problem:

(v,7) € Yo x HY(),
(VP){ v((v,2))o+ bo(v,v,2z) = (f,2) + fo(B-zjrdz Yz € Yo,

k((1,1)) + a fpTnds + b(v,7,n) = [q gndz + al0,n)r Vn e H'(Q)
where:

((v,2))o = Jo Vv - Vzdz ‘¥v,z € Yy,
((ﬂﬁ)) = fQ N Vndx VT»U € Hl(Q)v

bo(v,w,2) = Jo(v-V)w-zdz  Vv,w,z €Yy,

b(v,7,n) = fQ(V -V1)ndz Vv € Yo, V7,n € H(Q)
and the symbols (-,-), {+,-)r denote the pairing between ((H1(Q))3, (H)(€))?) and
(H~V*(T), HY/%(T')), respectively.

Conversely, if (v, 7) is a solution of (V P) then , by using the same arguments as in
[10], we obtain the existence of 7 € L*(9) such that (v, ,7) satisfies (PP); = (PP)a.
Moreover, by a Green’s formula [4], it follows that 57— is an element of H~/?(T") and

n
hence we get PR
The previous considerations show that (PP) and (V P) are equivalent.

The following result can be easily proved by using the properties of by and b (see
[1]) and the inequality (e.g. [6], p-67):

(23) () + [2ds 2 Cillr ey V7€ H'(Q).
Lemma 2.1 If (v,7) is a solution of (V P) then we have:

1
vl oy < ;(HfH(H—l(n))s

Cslligllzers (@) + aCe |0l gr-12(r)
Cimin(k, ¢)

(2.4) +Co||Bl| (L)) ),

7122 () (Csllgllzers oy + aCel|8]l g-112(r))

<
= Cymin(k,a)
where Cy,Cy,Cs and Cg are constants depending only on ().

We now establish the main result of this Section.

Theorem 2.2 The problem (V P) has at least a solution (v,7). Moreover, for any
0, > 0 there exists v; > 0 such that for every v > v and 0 € H™YYT) with
00| s-1r2r) < 01, the problem (V P) has a unique solution.
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Proof. Let {wi}ren be a Hilbertian basis of Yo. Let Y, be the space generated
by the functions {w,...,w,}. For each m € N, m > 1 we define F : Y;, — Y, by
['(w) = v, where (Vin, T ) 1s the unique solution of:

(VmuTm) € Ym X III(Q)a
(2.5) v((Vim, Wk))o + bo(W, Vin, Wi) = (f, wi) + Jo(B - wi)rdzVk € {1,..,m},

&((Tmy 1)) + @ Jp Tmnds + b(W, T, ) = Jq gndz + {0, 7)r V0 € H' ().
The existence and uniqueness of the solution of (2.5) is a consequence of the
Lax-Milgram’s theorem and of the inequality (2.3).

It can be easily proved that the mapping F' is continuous and, from (2.4), for all

w € Y,,, it follows F(w) € B,(0) where B,(0) C Y, is the ball of radius

Csllgllzersa) + aCs |0l r-12(ny
Cymin(k, c)

s

By applying the Brower’s theorem, it follows that F* has a fixed point v,,. Since the se-
quences { Vi meN, {7m Jmen are bounded in (Hg(€2))° and H(f2), respectively, we can
pass to the limit, as in [10], in (2.5), with W = Vi, for a subsequence {Vm,, Tm,, }peN-
The weak limit in (HL(Q))® x H'(Q) of this subsequence is a solution of (VR e
the first statement of the theorem holds.

For proving the uniqueness of the solution of problem (V P) we consider 8; > 0,
§ € H™Y/*(T) with ||6]|g-1/2qry < 61 and we define 5 : Yo — Yo, St )= Ny, where

(Vw, Tw) 1s the unique solution of:

1
e ;(HfII(H—lm))s + Ca||Bll(zo(a))

(v, mu) & Yo HEQ),
(2:6)5 (Vi Z)o bo(W, Ve, 2z) = (f,2) + B z)rde. - Yz € X,

£((Twrm)) + @ Jp Tunds + b(W, T, 1) = Jogndz + a{fym)e Y € HY(Q).

We shall prove that there exists ; > 0 such that for every v > 1, the mapping
S is contraction. :

For w; € Y, we denote by (v;,7;) the corresponding solution of (2.6), 7 =1,2. By
taking z = v; and n = 7; in (2.6) for w = w; it follows the estimate (2.4) for v = v;
and 7 = 7, for 1 = 1,2. Hence, by subtracting the equations (2.6) corresponding to
w = w; and w = Wy, respectively, for z = vy — vy and n = 71 — 7, We get:

(2.7) : [V V2||(H3(Q))3 < C(v,0)||wr — W2H(Hg,(n))s,

- where:

Ca||B| (Lo (a2

Cymin(k, @)

G
C(v,0) = ;g(l\fll(ﬁ-*(ﬂ))s -+
(2.8)

(Csllgllpors ) + aCe|| 0]l g-112(ry))

+CzcdlBll(Lw(ﬂ))ﬁ(Cngllms(n) + aCs |0l g-112(r))

vCEimint(k, a)
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[t follows immediatly that there exists vy > 0 such that for every v > v; we have
C(v,0) < 1. Consequently S is contraction and, by applying the Banach’s fixed point
theorem, the uniqueness of the solution of (V P) is proved. 0.

In the sequel we shall consider §; > 0 an arbitrary constant and v > vy, where 1,
is given by Theorem 2.1.

3. A boundary control problem

In this Section we look for a temperature ¢ of the surrounding medium, which min-
imize the turbulence of the fluid. For this purpose we consider the following control
problem:

(©p) { Find 6, € K such that
J(0p) = min{J(9) /0 € K}

where:

K ={6€ H*T)/16llg-172¢r) < 01},
FREER = .;- /Q IV x v(0)[2dz,

v(0) being the first component of the unique solution of (V P) corresponding to the
control 6.

Theorem 3.1 The problem (CP) has at least one solution.

Proof. We shall prove that J is lower semicontinuous with respect to the weak
topology of H=Y*T). Let {f,}nen C K be a weakly convergent sequence to some
6y. Denoting by (v,,7,) the unique solution of (V P) corresponding to §,,, we obtain
from (2.4) (for v = v,, 7 = 1,and 6 = 0,,) and the boundedness of {0,},cn that
the sequence {Vn, T }nen is bounded in (H(R))® x H'(R). By extracting a subse-
quence with the weak limit denoted by (v*,7*) and by passing to the limit into the
corresponding (V P) we get, from the uniqueness of the solution of (V P) for 6, that
v* = v(6y), 7 = 7(8y) and, hence:

v, — v(§) weakly in (H}(Q))°, when n— oo,

T, — 7(0y) weakly in H'(Q), when n — oo.

It follows that:
AT ( B

hmme || L@y 2 > ||——=

St || L2 )3 fOI‘ Z = 1,2,3.

Thus, we get the weakly lower semicontinuity of J on H~/?(T). Moreover, K is a
bounded and weakly closed set in H=/%(T"). Therefore the assertion of the Theorem
follows by applying a Weierstrass theorem (e.g. [5],p. 495). O



4. Optimality conditions

In the sequel we shall derive the necessary conditions of optimality. In order to obtain
them, we shall prove that J is Gateaux differentiable on the set of optimal controls.
The necessary conditions of optimality will be deduced from:

(4.1) Ty (0—05) 20 forall: 8€ K,

where 0y is a solution of (C'P).
Let £ € (0,1), 0 € K and 0y be an optimal control. We shall compute
J (0o + ¢(0 — 6o)) — J(bo)

lim )
t\O t

For this purpose, we denote by (vig,7) and (vo, 7o) the solutions of (V' P) corre-
sponding to 0y + t(6 — 0y) and g, respectively.
We first deduce some properties for (vig, 7).

Lemma 4.1 There holds:

Vig = Vo + t(vy — Vo),
4.2
! { Tag: =-To £ 4(T: ~ To)

where (v, 7;) is the unique solution of the following problem:
v((ve,2))o + (1 — t)bo(Vo, Vi, 2) + (1 — 1)bo(Vs, Vo, 2) + tbo(Ve, Vi, 2)
= (1 — t)bo(vo, vo,2) + (f,2) + [o(B - z)ndz Vz € Yo,

k((1,7)) + & fpmnds + (1 — t)b(vo, 72,1) + (1 = 1)b(Ve, 70,7)

+tb(vy, 71,m) = (1 — t)b(Vo, To,n) + Jo gndz + (8,n)r Yn € H'(Q).

Proof. We begin by establishing that (4.3) has a unique solution. We define the
mapping S; : Yo + Y; which associates to every w € ¥ the first component of the
unique solution (Viy, Tey) of the problem:

l/((Vtw,Z))O + (1 b= t)bD(VO7vtu)7 Z) + tbO(Wuvtwaz)
= (1 — t)bo(Vo, Vo, 2) — (1 — )bo(W, Vo, 2)
+(f,2) + [o(B - z2)Tdx V2 € Yy,

(4.4)

K‘((Ttwa 77)) i fF Ttuﬂ?dS ¥+ (1 FE t)b(v07 Ttunn) + tb(W, Ttw)n)

= (1 — t)b(vo, 70,7) — (1 = t)b(W, 70,7)

+ fogndz + a(0,n)r Vn € HY(Q).

6



FFor proving that S, is contraction, we take w,, wq € Yp, we denote (ve,, 7y, ), (Vigs Ti)
the corresponding solutions of (4.4) and, by subtracting these equalities for z =

iy Vg AT = T WOIEEE:

Cy

ymin(k, o)

1

I, = Tl < & (1 = )70 + tm, @l Wa = Wl @2

(4.5)¢ v, = Villi@y < ;(CSHU — )vo + tve |l ey
CCy
Cymin(k, a)

Multiplying by (1 —t) the problem (V P)o ((VP) for 0 = 6) and by ¢ the problem
(4.4) for w = wy and adding them, it follows:

11 = )70 + b7, ) 1w = Wall gy

I
(1 = t)70 + tre || < m(csllgllmw(a)
+CSO(H(1 = t)go + te”H‘l/"’(F))v
11 = t)vo + tva, e < = (Il @y
Cf?llBH([P"(Q))3

Cymin(k, «)

From (4.5) and (4.6) we obtain:

(4.6)

(Csllgllzers ey + Coall(1 = )0 + t0ll r-112(r))).

(4.7) Ve, = Vil ey < Clw, (1= 1)00 + t0)[|wy — Wall(a -
From the proof of the Theorem 2.2 it follows that:
(4.8) Cwh)<1 WekK

where C(v, 0) is defined by (2.8). e

By using the convexity of K and the inequality (4.8) for 6 = (1 — )8 + t0, we
conclude that S, is contraction and, with the same arguments as in Theorem 2.2, the
uniqueness of the solution of problem (4.3) is proved.

Computing (1 —1t)- (VP)o+1-(4.3), we obtain that (vo+t(ve— Vo), To+t(7: —70))
is a solution of (VP) for § replaced by 8o + t(0 — 6) and, from Theorem 2.2, the

assertion of the Lemma follows. O
Lemma 4.2 Let (v, 7,) be defined by (4.8). Then, ast — 0 ,we get:
v, — v} weakly in (H(€))°,
(4.9)
7, — 74 weakly in H'()

where (v}, ;) is the unique solution of:
v((v3,2))o + bo(Vo, v§,2) + bo(V§, Vo, z)

= bo(Vo, Vo, 2) + {f,2) + Jo(B -z)rgdr Vz € Yy,
(4.10)

k((15,)) + @ fr75nds + b(Vo, 75,1) + b(VG, T0, 1)

— b(vo, T0,7) + Jagndz + a(f,n)r ¥ € H'(Q).



Proof. Existence and uniqueness of the solution of (4.10) can be obtained by
using the same arguments as in Theorem 2.2. Next we shall prove that the sequence
{vi, 7 }i50 is bounded in (H§(€))° x H'(Q). Taking z = vi and g = 7, in (4.3) we get
the following estimations:

1

min(k,

Il < = (Callroll i @IVl (2 2
e )

+Callmoll @ voll ey + Csllgllzsrs ) + O‘C6H{)|‘lH—1/2(F))»

vVl @y < Callvolla@ys IVl e + Callvoll{aays

(4.11) C2C4||Bll (o= ()2

Cymain(k, o)

HlE -y + 7o/l ) | Vell (g )2

L GCalBllz @

Cymin(k,a) “TOHHI(Q)HVOH(Hé(Q))s

Cal[Bllz=(@)):
Cymin(k, o)

(Csllgllzers(ay + CocllOll zr-1r2(ry)-

From (2.4) for § = 0 and from (4.11) it follows:
(4.12) (1 = C(w, 0o Ivell @z < €

with C’ independent on t.

Combining (4.12) with (4.11), we also obtain the boundedness of {7:}:>0; hence,
we can extract a subsequence {Vi,, T, }xen Weakly convergent in (Hg())® x H'(2)
to some (v, 7). By passing to the limit with & — oo in (4.3) for this subsequence,
we get that (v/,7') is a solution of (4.10). By the uniqueness stated before, the proof
of the Lemma is complete. O

Lemma 4.3 The cost functional defined by (1.2) is Gdteauz differentiable on the set
of optimal controls, and:

(13 PR =) = /Q(v x v(00)) - (V x (v = v(0o)))dz V8 € K,

where v is defined by (4.10).
Proof. We have:

s J(0o+ (0 — bo)) — J(0o) i —1-1im Jo(IV x viel? = |V x vol?)dz
t\0 t 2 1\0 .t
1

lim(2 /Q(v % Vo) - (V X (Vi — Vo))dz + ¢ /Q IV x (vi — vo)|2dz)
=~ /Q(V % vo) - (V x (v} — Vvo))da.

8



[n the above computation we used (4.2) and (4.9). O
The rest of this Section is devoted to the proof of the optimality conditions for

(CP).

Theorem 4.4 Lel 0y be a solution for (CP). Then there exists the unique elements
(Vo, 7o), (Po> Go) € Yo x H' () which satisfy:

o(vo, 7))o + bo(Vo, Vo, 2) = {£,2) + fa(B - 2)7ods  Vz € Y,
(4.14) &((70,1)) + a Jp Tonds + b(vo, 70,7) 7

= [, gndz + a0, n)r Vn € HY(Q),
v((Po,2))o — bo(Vo, Po, 2) + bo(Z, Vo, Po)

= b(Z,qO, 7'0) + fQ(V X Vo) 2 (V X Z)d.’L' Vz € Yo,

(4.15)
’K‘:((qO') 77)) + «Q f[‘ qudS 5 b(v07 qo, 77)
= Jo(B-po)ndz  Vn € H'(Q),
(4.16) a(f — b, go)r > 0 V0 € K.

Proof. Let w be an element of Y5 and (P, qw) € Yo x H'(Q2) the unique solution
of:
V((pun Z))O NS bO(VO: Puw, Z) == b(Z7 Qw> TO) s bO(Z7 Vo, W)

+ Jo(V X vg) - (V x z)dx Vz € Yy,
(4.17)

"((%ﬂ?)) + o fl" ands e b(vOa qunn)

= [o(B-w)ndz Vn € H'(Q).
We define S : Yp — Yy, S(W) = py,. It can be easily proved that
(418) ”S(Wl) == S(WQ)H(HA(Q)):‘ S C(I/, 90)HW1 = WQ“(H(l)(Q))S VWl,Wg € Yb

As in Theorem 2.2, we obtain the existence and uniqueness of a fixed point of S,
denoted by po. Let go be the unique solution of (4.17), corresponding to w = Ppo.
Hence, (po, go) is the unique solution of problem (4.15).

Tn the sequel, we shall prove (4.16). From (4.1), (4.10), (4.13), (4.14) and (4.15)

we obtain: :
0< [(V % v0)+ (¥ x (v = vo)dz = v((po, Vs = Vo)

—bO(V07 Po, V; T VO) + bO(V; ~ Vs Vs pO) & b(v; — Vo, qo, TO)

= /Q(B - po)(75 — T0)dz — b(Vs — Vo, 9o, To)

9



= ({40, 74 — T0)) + & /r qo(T5 — T0)ds — b(vo, g0, T4 — To)

—b(v; — Vo, qo, 7o) = {0 — by, qo)r V0 € K.

Hence, the Theorem 1s proved. O

The last result of this paper is a consequence of the above Theorem.

Corollary 4.5 Let 0q be a solution of (CP). Then there exists the unique elements
(Va, 70), (Po, @o) € Yo x H'(Q) and there ezists mg, Ao € L*(R) such that:

—vAvo+ (vo-V)vog+ Vrg=f 4+ Brg in 0

(4.19) ~k AT+ Vo Vo =g < am. Al
; J
K—EJra(TO—GO):O ot 1%
on
== A Po — (VQ ¢ V)pg + (VVO)pO + V/\O
g = TOVQO + V x (V X Vo) mn Q,
(4.20) ~x A go— Vo Vo =B pg i
0
Kﬂ +agqg =0 om -
on
and:

a(@—@o,qc,)r 20 VQE K.
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