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KURAN’S REGULARITY CRITERION AND LOCALIZATION
IN EXCESSIVE STRUCTURES

LUCIAN BEZNEA anp NICU BOBOC

ABSTRACT

We give a relation between the thinness of a measurable fine closed subset of a
Lusin measurable space endowed with a submarkovian resolvent of kernels and the quasi-
boundedness for the excessive measures associated . with the same resolvent.
We extend a classical result of U. Kuran and two recent generalizations of N. Suzuki and
P.J. Fitzsimmons-R.K. Getoor. We use essentially the localization procedure for both
excessive functions and excessive measures.”

1. Introduction and main result

The frame in which we develop the subject of this paper is the excessive structure
given by a proper submarkovian resolvent U = (Uy)a>0 on a Lusin measurable space
(X, X&) such that the set of all ¢{-excessive functions is min-stable, contains the
positive constant functions and generates X'.

We explore the connection between the thinness of a measurable fine closed
subset of X and the quasi-boundedness for U/-excessive measures. (We refer to [11]
for basic facts and notations concerning the excessive measures; see also [3].)

U. Kuran has proved in [12] that if D is a bounded open subset of R™ then a
boundary point z for D is regular (with respect to the Dirichlet problem) if and only
if the restriction to D of the Green potential with pole at z is quasi-bounded (i.e.
a sum of a sequence of bounded positive harmonic functions on D). N. Suzuki has
extended in [14] this regularity criterion to the case of a harmonic space for which
there exists an adjoint structure of harmonic space. Recently P.J. Fitzsimmons and
R.K. Getoor have obtained in [10] a general form of Kuran’s criterion in the case of
a (Borel) right process.

Our main result is the following:

Theorem 1.1. Let D be a measurable fine open subset of X with respect to U,
m = h+polU be an U-excessive measure on X (where h € Har and po U € Pot)
and let v be a finite positive measure on X. Then the following assertions hold:

(i) If v is carried by a subset of X which is m-polar and p-negligible and if voU|p
is m|p-quasi-bounded then v is carried by the set of all non-thinness points of X\ D.

(ii) If vo U is absolutely continuous of m and v is carried by the set of all non-
thinness points of X \ D then v o U|p is m|p-quasi-bounded.
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(In the above theorem v o U] is m|p-quasi-bounded” means that it is a countable
sum of measures which are dominated by m|p and are excessive with respect to the
resolvent on D having U/ — BX\PU as initial kernel.)

Particularly, if v=¢e, then we get the result of P.J. Fitzsimmons and R.K. Getoor
from [10].

We underline that our treatment is purely analytic. The proof of this theorem
(presented in Section 4) is obtained applying the results from [3] concerning the
quasi-boundedness for excessive measures and realizing a localization procedure on
D of both U- excessive functions (Section 2) and U-excessive measures (Section 3).

The localization uses the fact that the balayage operator BX\P and its dual
appear as subordination operators (see [8] and [13]).

The localization for excessive functions extends a similar one obtained in [6] for
the case when there exists a reference measure and in [13] for the frame given by a
bounded Ray resolvent. For a probabilist reader the first section is omissible if he
consider that the given resolvent U is associated with a Markov process on X. Also
in this case one can refer to [9] instead of [3].

2. Localization in excessive functions

In all this paper U = (Uy)aso will be a submarkovian resolvent of kernels on
(X, &) as in the previous section. We denote by &, (resp. &) the set of all X-
measurable (resp. universally measurable) U-excessive functions on X which are
finite U-a.s. If A € X and s € & then (cf. [2]) the function

RAs :=inf{t € &/t > son A}=inf{t € £/t > s on A}
is universally measurable. We put B4s := RAs (i.e. the excessive regularization of
the U-supermedian function R%s) and we have B4s = R%4s on X \ A. The map
s+ B4s is called the balayage operation on A with respect to U.

If « > 0 we denote by U, the resolvent on X given by Uy:= (Uss5)p>0 and by
*B4 the balayage operation on A with respect to U,,.

Proposition 2.1.([1}, Theorem 1.10) If A € X and s € & then

BAs = 2BAs + oW (*B4s)
where W is the kernel on X given by W f:= Uf — BAUY.

Proof. We may suppose that X is semi-saturated (i.e. any U-excessive measure
dominated by a potential is also a potential; see [4]). If A € X is fine open then for
any ¢ € X there exists a finite measure u, on X carried by A such that B4s(z) =
pz(s) for any s € &.

We begin with the particular case when A € X is fine open. In this case for any
s € &y there exists a sequence (fn)nen of bounded X-measurable functions on X,
fo=0:0m X \ A such that U, f, /~ “B%s. It follows that ,

¢B%s + aW (2B s)= sup en(Usfn + oW Uy fu)= sup,en(U fo = BAUY: = Usfa))-
Since BAU fu= Uf, we deduce that *B4s + aW(°B4s)= BA(°B4s). Because
_*B#s= s on the fine closure of A we get BA(°B“4s)= BAs and consequently *B*s +
oW (3B s = B4s.



Let. now A € X be arbitrary and let s € & be bounded. For any z € X \ A

there exists (cf. [2]) a decreasing sequence ((,)nen of measurable fine open subsets
of X such that A € G,, and

B%s(z) = inf B®s(z) , °B“s(z)= inf *B% s(z)

neN neN

W(*B"s)(z) = W(*R*s)(z) = inf W(*B®"s)(z).
I'rom the preceding considerations we get now the desired equality on X \ A. Since
W1 =0 on the base of A it results that B4s = *B%s + oW (B"s) on X excepting
an U-negligible set and finally the above equality holds everywhere, completing the
“proof.

Remark. Foranyz € X and any finite U -excessive function s on X the function
a+— “BAs(z) is completely monotone on [0,00).

The assertion follows from the equality *B%s = (I — aW,)B"s.

Let now fix a fine open X-measurable subset D of X. For any a > 0 we denote
by W, the kernel on (X, X*) given by W, f := U, f —* BX\PU,f, for any positive
measurable function f on X such that Uf is bounded, where as usual we have
written U, (resp. W,) instead of U (resp. W) and X' is the universal completion of
X.

Proposition 2.2. The family W 1= (Wy)aso is a submdrkovian resolvent on
(X, X*) having W as initial kernel such that W, < U, for all a > 0.

Proof. If f is a positive measurable function on X such that Uf is bounded
then from Proposition 2.1 we have (I + aW)(®BX\PU, f)= BX\PU,f and therefore
(We + aWWL)f = (I + aW)(Uaf — *BX\PU,f)= (I + aW)Usf — BX\PU, f=
U fballillsf — BEPULE f) — BEPH f= 11 f — BEPU f= WF,

Remark. For any finite functions s,t,u,v € & such that u < v we have

g A(BA 05 41 — BENDY 4 BXADy, . BXNDyY € £,
Puorticularly 4f 8.t € £ ave such that s — B s < t — BX\Pt fhen
=B 1 BV e £
The assertion follows from Proposition 2.2 and from [13].

Definition. We denote by D the set of all points z € X such that X \ D is thin
at x that is

= {2 € X/ there exists s € & with B*\Ps(z) < s(z)}.

Remark. (a) Since D is fine open we have D C D.
(b) Because there exists a measurable function h on X, 0 < h <1, such that Uh s
bounded it follows, using Hunt s approzimation theorem, that
= {z € X/ BX\PUh(z) < Uh( )}

and therefore the set D is unzversally measurable and fine open.



From the definition of the kernel W, it follows that if Y is an universally mea-
surable subset of X such that D C Y then the map g — W, (g)|y defined for any
universally measurable function g on Y (where g is a measurable extension of ¢ on
X) is a kernel on (Y, V") denoted by WY. Moreover the family WY:= (WY),50
is a submarkovian resolvent on (Y, V") (cf. Propositon 2.2) such that a positive
universally measurable function on Y will be WY -excessive if and only if it can be
extended (uniquely) to a W-excessive function on X. We say simply ” W-excessive
on Y7 instead of WY -excessive”. We apply the above considerations especially to
the set D or D. The set D is distinguished with the following property: D is the
greatest universally measurable subset ¥ of X such that there exists a W-excessive
function on Y which is strictly positive.

The next lemma was considered essentially in [13]; see also [7].

Lemma 2.3.(Mokobodzki) Let C' be a cone of potentials such that for any se-
quence (3p)nen in C' which is increasing and dominated with respect to the specific
order there exists its specific least upper bound and let P : C — C be a map which
is additive, increasing and contractive (that is Ps < s for all s € C). Then for any
s € C there exists s' € C, s’ < s, with ' — Ps'= s — Ps and such that s' <t for any
t € C for which s — Ps< t — Pt. (We have denoted by < the specific order on C'.)

Proof. For any s € C we define inductively the sequences (s, )nen and (7, )nen in
€ such-that s = =8,

Bepne sl = Pr, ). end . Baaq i B
where R is the reduit operator with respect to C. We put s’ := Y ,.5; 8, and
T := AneNTn- Since (7, )nen Is specifically decreasing and since rpq; < Pr, we get
r = A{r./n € N} and
Prsipsfl an B PUN on T )= P
Hence s’ < s and s’ — Ps’ = s — Ps. :

We show now that if t,u € C,t < R(u — Pu) and ¢t = Pt then ¢t = 0. Indeed,
from ¢ < R((u — nt) — P(u — nt)) we get inductively that nt < u. Hence ¢ = 0.
Further we remark that if t € C, ¢t < s’ and Pt =t then t = 0. Indeed, there exists
a sequerice (o )een 10-0 snchthat t = ¥, oty and £, < s, Since Pt.= 1§, and
$n = R(rn—1 — Prn_1) we deduce from the preceding considerations that ¢, = 0 for
all n € N and therefore ¢t = 0.

Let t € C be such that:s’ — Ps' <t — Pt. From

s — 1< Ps' — Pt< P(R(s' —t))< R(s' — t)
it follows that R(s" —t)= P(R(s' —t)) and since R(s' —t) < s’ we get R(s' —¢) =0
and we conclude that s’ < ¢.

Theorem 2.4. Let W = (Wy)aso be the submarkovian resolvent on (X, X™)
having W = U — BX\PU as initial kernel. Then the following assertions hold:

(a) For any measurable subset M of D such that Wixm) =0 we have U(xm) = 0.
If f is a positive universally measurable function on D such that Eifio< oo
and s € & , s < o0, 15 such that Uf — BXNPUf < s — BX\Ps then U f < 5.

(b) Let f be a positive universally measurable function on D which is fine
continuous with respect to E;. Then f will be W-excessive on D if and only if



f is W-supermedian. :

(c) The set of all functions on D of the form (s — BX\DS)|5 where s is U-
ezcessive and finite, is a solid and increasingly dense conver subcone of the set of
all W-excessive functions on .

Proof. (a) Let M be a measurable subset of D with W (xa) = 0. To show that
U(xam) = 0 we may suppose that M is a Ray compact subset of X. We consider the
convex cone T:= {p — ol (xm)/ p € R,a € Ry} where T is the bounded kernel on
X of the form T'g := U(hg) (h is a measurable function on X, 0 < h <1 and Uh is
bounded), R is a Ray cone associated with the resolvent generated by 7', T is the
extension of T' to the Ray compactification X of X associated with R and for any
p € R, p is the continuous extension of p to X. Since M is a compact subset of X
with respect to the Ray topology generated by R, it follows that T'(x ) is an upper
semi-continuous function on X. Hence 7 is a convex cone of lower semi-continuous
functions on X which separates the points of X. From

pER, p—aT(xm)>0o0on M :>p-—aT(XM)>OonX
it follows that M is a closed boundary set with respect to 7 and therefore for any
z € X there exists a positive measure g, on X carried by M and such that p, <7 €.
Suppose now that there exists ¢ € X for which U(xam)(z) # 0. We deduce that
T(xm) # 0. In this case the Choquet boundary of X with respect to 7 is not
empty (see [5]). Let z € X be a point which belongs to this Choquet boundary.
From the above considerations we have u, = €,. Hence x € M. On the other hand
there exists a positive measure v, on X such that v,(p) = BX\Pp(z). We have by
hypothesis W(xum) = 0 and therefore
T(xum)(z)= BXPT (xwmr)(2)= va(T(xm))-

Since v.(p) < p(z) for any p € R we get v, <7 €, and therefore v, = é¢,.
This last equality contradicts the fact that z € M C D.
‘ Let now f be a positive universally measurable function on D such that Uf < oo

From Lemma 2.3 applied to &; and to the operator BX\P instead of P we deduce
that there exists s, € £, 8o < Uf such that s, — BX\Ps,= U f — BX\PU f and such
that s, < s for any finite function s € & for which U f — BN £ o i READ g
From s, < U f we deduce that there exists an universally measurable function g on
D such that g < fiand s;=Ug. Since

Eife B — o~ B W so= g~ BX\Plg

we get W(f —g) = 0 and therefore Uf = Ug = s,.

(b), (c) Suppose that f is W-supermedian and there exists a finite function
u € & for which f < u — B*\Py. From Hunt’s approximation theorem there exists
a sequence ( f,)nen of positive bounded universally measurable functions on D such
that Uf, < 0o, (W fu)nen is increasing and 0

~ SUP N Y e S e AW =
Since
U= BERY f.= W< f<u~ BXPy
it follows from assertion (a) that (U fn)nen is increasing and U f, <uforalln € N.
If wespub.si=sup .U f; thenis e &8 < w-and f— s — BX\Ds on D, If f



is W-excessive on D then we gelif= f: s — BX\Ps on D. Generally we have
f=s5~ B*\Ps W-as. on D and therefore, from assertion (a) we deduce that

e 5 B - Heas onelD.
If f is W-supermedian and fine continous (with respect to "&u) then we get
f=s—B*\Ps on D and therefore f= f on D that is f is W-excessive on D

Assertion (c) follows from the above considerations since for any finite function
s € &, the function s — BX\Ps is obviously fine continuous and W-supermedian on
D (we have s — BX\Ps= lim, oo (U fn — BX\PU£,), where U f, /" s).

To complete the proof of (b) we remark that f= sup,yinf(f,nWh).

Remark. The above theorem was proved in [13] for the case when U is a bounded
Ray resolvent and W is the subordinated resolvent associated to a subordination
operator P.

Corollary 2.5. Let D and W be as in Theorem 2.4. Then the following
assertions hold: ‘

(a) The function s|z is W-excessive on D for any U-ezcessive function s.

(b) Any W-ezcessive function on D is fine continuous (with respect to Ey).

(c) The set of all W-ezcessive functions on D is min-stable. Particularly for any
ﬁmte functions s,t € & there exist u,v € &, u,v < 00, such that

inf(s — BX\Ps ¢t — BX\Dt) =y — BX\Dy
inf(s — BX\Ds,t) =y — BX\Dy,

(d) For any s,t € &;, t < o0 and t < s, the function (BX\Pg BX\DL‘)|5 is
W-ezcessive on D. :

Remark. For any finite function s € & and any z € D we have
inf o S s (ple=ch
The assertion follows from the fact that BX\DSI~ is W-excessive on D and from the
equality *BX\Ps = (I — aW, )(BX\D ); see Proposition 2.1.

The following result gives a ”polarity property” of the set D \ D with respect to
the potential theory associated with &,.

Theorem 2.6. For any finite positive measure p on D and any positive univer-
sally measurable function h on D, 0 < h < 1, such that Uh is bounded we have

inf{u(t)/te &, , Wh<ton D\ D} =0.

Proof. Since p is carried by D there exists a decreasing sequence (G, )nen of fine
open subsets of X such that X \ D C G, and such that

f(BINR L) = inf . en u( BE2UR).
We have BCG"Uh — BX\PUh = BSUh — BX\PB%[h and therefore, by
Theorem 2.4, :
B lh— BEPUL .65
From B Uh — BX\PUhL > Wh on D \ D we conclude that
inf{u(t)/t € &y , Wh <ton D\ D} <infnen p(B*Uh — BX\PUR) = 0.

3. Localization in excessive measures

For the resolvent & on X we denote by Ezcy the convex cone of all U-excessive
measures on X that is the set of all o-finite measures m on X for which m(alU,) < m

6



for all @ > 0. If A € X we denote by (B4)* the operator on Izey defined by
LEBe o) = Lt Bls)
where s € &, € € Fzcy and L : Excy x & — Ry is the energy functional (see e.g.
[11]). Itis easy to see that if § € Excy then (B4)*¢ < € and €|p, (€—(BX\P)*¢)|p are
W-excessive measures on D (that is WP-excessive measures; see Section 2 and note
that Freywn = Ezc) 5 = Ezcy) where recall that D is a fine open X-measurable
subset of X.
Theorem 3.1. For any {,n € Lxcy and any | € (Ezcey — Excy)y we have
EN((BEYOYE 4 = (BE\P)ry 4 (BX\PY*) € Ezcy.
Particularly the set {n = (B*\P)n/n € Ezcy} is a solide subcone of Excyy and for
any | € (Bzcy — Excy)y we have (BX\PY*l|p € Exzcy. Moreover for any £ € Exzey
there ezists £ € Excy such that £ — (BX\P)*¢= ¢ — (BX\PY*¢' and if fory € Ezcy
we have £ — (BX\PY*¢'< g — (BX\P)*y then ¢ < 1.

Proof. First we suppose that there exists a X'-measurable fine open set G C X
such that X'\ D coincides with the fine closure of G. In this case we have BX\P = B¢
and (B*\P)* is a balayage on the H-cone Ezcy. Then the assertion follows from [8].

Suppose now that D is general and that ¢,7,! are of the form ¢ = p; o U,
n=npoU,l=pzolU — pgoU, where y; are finite measures on X which does not
charge the U-negligible subsets of X. In this case if s € &, is bounded then we have
(ct. [2]

pi( BX\Ps) = inf{p;(B®s)/ G € X,G fine open, X\ D C G}, i=1,4
and therefore (B\P)*(u;0U) = A{(B®)*(u;0U)/ G € X, G fine open, X\ D C G}.
On the other hand if for any measurable fine open set G with X \ D C G we put
0 := & A ((B)'E +n — (BO)n+ (BO)D),
U= GBS R e+ (B Ry o (BAVP)])
then we have 0 € Ezcy,
b6 + (BY)™n + (BC)" (a0 V)
= (£ + (BE)n + (BY)*(pa 0 UY) A ((B)E + 1 + (BE) (na 0 U)),
6+ (B e (B (o 1)
= (£ (BX Py (BX AN (g o U)) A ((BXVPYE 4 iy 4 (BEWP (g0 1))
Using the above formula we deduce that the families of positive measures
(€ + (BO)n+(B) (paoU)a , (BY) ¢ +n+ (B (psol))s ,
(B , (BS)(paoU))e
are decreasing respectively to \
&+ (B e (BEE) (o U), (B \P)e Lmith (BF Pin(ao 1),
(B2 (B (o U). ~
Hence we get limg 0g(f) = 0(f) for any positive bounded measurable function on
X and therefore
0(als f) = limg Og(aUa f) < limg 06(f) = 0(f).
We conclude that 8 € Excy.

Let now D,&,n,l = A — A2 (&,n,A!,)A? € Ezcy) be general. We take sequences
(pi)nen, ¢ = 1,4 of bounded measures on X which does not charge the U-negligible
subsets.of X suehithat € =g ll 7 & = ol / n, A w=pdoll 2 N,



A2 s=igto U2 0 andl suehi<thal A, > AL, From the preceding considerations we
get

G SBAENRE oy < (BEDYrg, o [BENCIAL - R0 e
Leting n — oo we conclude that SRR D Lp (BX\D)*U+(BX\D)*(/\] —\)) e
Ezcy. We deduce now that the map (BX\P)* is a localizable dilation operator on
the H-cone Ezcy. Hence from [8] it follows that the set .

F = {n—(B*\?)'n/n € Bxcy)
is an H-cone (with respect to the natural order relation between measures on D)
such that for any €;,¢; € Excy, & < € and ¢ € F we have
: LAp€EF , (B (& —&)ApeF.

Since F' is increasingly dense in Ezcy we get also that F is solid in Ezcy. From
Elp=V{ENp/p € F} forall £ € Ezcy , we deduce that

(BX\P) (&1 = &)lp = V{(BX\P)* (&4 — &) Ao/ v € F} € Exzcy.
The last assertion from theorem follows by Lemma 2.3. -

Corollary 3.2. If X is semi-saturated with respect to U then D is semi-saturated
with respect to WP. (X is semi-saturated means that any U-excessive measure
dominated by a potential is a potential.)

Proof. Let u be a finite measure on D and 6 € Ezcy be such that 4 SpoW.
From Theorem 3.1 it follows that the set {n — (B*\PYn/n € Excy} is solid in
Ezcy and therefore there exists ¢ € Ezcy with § = ¢ — (BX\Py*¢. Again from
Theorem 3.1 we may suppose that £ has the following property:

(n € Ezcy and & — (BX\P)*¢ < p — (BX\) )= ¢ < .
Because X is semi-saturated with respect to I there exists a measure v on X such
that ¢ = vo U. From :
0=¢—(BXNP)t=voW=v|zo0W
we deduce that ¢ < v|5 o U and further ¢ = 1/|5 oU. To finish the proof it will be
sufficient to show that I/]ﬁ\D = 0. Indeed, for any t € &}, we have

vip\p(t) = "L(vlgp 0 W,t) < WL(po W,t)= u(t)
where "L denotes the energy functional associated with W. From Theorem 2.6 we
get now

Vp\p(1) < inf{u(t)/t € &, , 1 <ton D\ D} =0
and we conclude that I/IE\D =)

4. Proof of main result

Proof of Theorem 1.1. (i) We may suppose that v is carried by D. From v o U=
voW + (B¥\P)*(voU), voW < voll|p it follows that v o W is m|p-quasi- -
bounded. Hence, using also Corollary 2.5 (c), there exists a sequence (Vp)nen of
positive measures on D such that '

V=) neN Un
and such that v, o W < m|p for.all n € N. Since R(vn o W) < v, o U, where
R is the reduit operator in Ezcy, it follows that R(v, o W) = v’ o U, v being a
positive measure on D with vy, < V. Also we have R(v, o W) < m and therefore

v



R(v, 0 W) is m-quasi-bounded. On the other hand since vy is carried by a subset
of X' which is m-polar and p-negligible we deduce by Corollary 3.4 in [3] (see also
[9]) that v, o U is orthogonal on the m-quasi-bounded W-excessive measures and
consequently v o U = 0 for all n € N. Hence R(v, o W)=0,v,0W =0 and
therefore v o W =0, v = 03

(1) Suppose now that v o U is absolutely continuous with respect to m and
v is carried by X \ D or equivalently v o W = 0. It is easy to see that there
exists an increasing sequence (v, 0 U)nen of m-quasi-bounded U-excessive measures
such that sup,cyv, 0 U= v o U. From Theorem 3.1 it follows that the sequence
(BN (1,0U)|p)nen is specifically increasing in Ezcyy to (BX¥\P)*(volU)|p. Since
voW =0 we get (BX\P)*(voU) =vol and therefore
voUlp = (BX\PY*(v o U)|p

= (B¥) (4, 0 U)ID + Taenl(B¥2) (a1 0 U — (BXVP) (1 0 U)o},

From the above considerations we conclude that v o Ulp is m|p-quasi-bounded,
completing the proof.
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