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On the rate of relative Veronese submodules

< i’/yt—‘é v
Annetta Ararnova) Serban BarcanescuY Jirgen Herzog

/

; Introduction) CMM

) In this paper we study Veronese submodules of graded modules defined over a ho-
mogeneous k-algebra. Let k be a field. A graded ring R = Do B with By = b is
called homogeneous if R is finitely generated over k by its elements of degree 1, and

- for any integer d > 1, the subring R = @), Ria of R is called the dlth Veronese

.- subring of R. Observe that R is again a homogeneous k-algebra with gi‘aduation W
';,VA(R(d))i = Ry for alli > 0. S

In their article [3] Barcanescu and Manolache proved that all Veronese subrings

of a polynomial ring are Koszul algebras, where for a homogeneous k-algebra R
this means that the residue field k of R has a linear resolution, that is, has a free
resolution as R-module whose maps are given by matrices of linear forms. This
result was later generalized by Backelin [1]: For any homogeneous k-algebra R he
introduced a numerical invariant, called the rate of R which measures how much R
deviates from being Koszul (rate R > 1, with equality if and only if R is Koszul),
and showed that

rate RY < [rate R/d].

Here [a] denote the upper integer part of a real number a, that is, the smallest
integer > a.

This result implies in particular that the d-th Veronese subring is Koszul when
d > rate R. In a recent paper [5] Eisenbud, Reeves and Totaro gave a bound ¢ in
terms of the regularity of the defining ideal of R such that R® is Koszul for all
d > ¢; see Section 2 where we will use their result in a particular case.

The purpose of this paper is to extend these results partly to relative Veronese
submodules. Let M be a graded R-module, and d > 0 an integer. Forj =0,...,d-1
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we let MJ“) be the gmdcd R module with homogeneous components (M]( ))i =
v r S . d-1 d

M;yy;. Note that A as an R -module decomposes into the direct sum @J:U MJ( )

The modules Mjm are called the IM( Veronese submodules of M. One may ask
whether for a graded R-module M there is an integer ¢ such that for all-d > ¢ the
d-th Veronese submodules of M all have a linear resolution, or equivalently, M as an
RY-module has a linear resolution. This is indeed the case, and as for the residuc
class ficld it can be quantatively controlled.

Let M be a finitely generated graded R-module. Then Tor;(k, M) is a finitely
generated graded k-vector space, and we set <~

t./’t:-(]V[) = sup{j: Tori(k, M); £0}.

Note that ¢;(M) is the highest shift in the i-th position of the minimal free homo-
geneous resolution of M. We define

rateg M = gup{t; (M)/ 2
121

Recall that Backelin’s rate which we henceforth denote by ‘Rate’ is defined as follows:

Rate R = sup{(t(k) — 1)/(i — 1)}.

1>2

A comparison with our rate shows that Rate R = rategm(l) where m(1l) is the

graded maximal ideal of R, shifted by one.
The main result of this paper is the following

Tlleorem}Zet R be a homogéneous k-algebra. Then there exists a constant c, only

depending on R, such that for all finitely generated R- modules M with genemtors of

degree 0, one has
ratep M < [rateg M/d] for all d Z c.‘

Moreover, if R is the polynomial ring then ¢ = 1.

\

Unfortunately we do not know whether ¢ = 1 for all homogeneous k-algebras, as
we expect.

The theorem implies that the d-th Veronese submodules of any finitely gener-
ated graded R-module M (whose generators may have any degrees) all have linear
resolutions for a large number d. Indeed, after a suitable shift of degrees, one may
assume that all generators of M have positive degrees. Then for dy large enough M
as an R¥)-module is generated in degree 0. As the rate of any finitely generated
module is finite (see 1.2), we have that ratepuy M is a finite number. Thus if we
apply our main theorem to the R(“)-module M, we find another integer d; such that
the (RU))(“)-module M has a linear resolution. As (R\%))(@) = Rlbd) we may
choose dyd, for d.
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see 2.1. Their Hilbert series are easy to determine. Since for a graded module M
with linear resolution, the Hilbert series Hp(t) and the Poincare series Pp(t) of M
are related by the equation

PM(t) — ]{M(—-t)ffg(—t)_l,

1.2 allows us to compute the Poincare series of the modules R;d); see 2.2.

In the last section we relate Backelin’s rate of R@ to the Castelnuovo-Mumford
regularity of the defining ideal of R

1 The finiteness of the rate

Throughout this paper R is a homogeneous k-algebra, where k is an arbitrary field,
and, unless othetwise stated all R-modules will be graded and finitely generated
with all generators in degree 0. -

In this section we will prove that the rate of any R-module is finite, following
the simple arguments given by Avramov as quoted in Backelin’s paper [1] where it
is shown that Backelin’s rate is finite. -

Let M be a graded R-module. We set

P> dimTor,-(k, M);s't,

iy

and call it the (bigraded) Poincaré series of M. Note that Pf is a formal power .
series in ¢ with coeffients c¢;(s) € Z[s], and it is clear that ‘ '

rate M = sup{deg ci(s)/i}.v
i>1

It is convinient to define the rate of an arbitrary power series P = 3}, ci(’s)t" €
Z[s][[t]] in the same way, namely as rate P = sup;»1 {deg ci(s)/1}.
We shall use the following :

Lemma 1.1. Let P = Y;a(s)t', Q =% bi(s)t' be elements in Z[s][[t] with
ao(8),bo(s) € Z. Then one has v
(a) rate(P + Q) < max{rate P, rate Q};

(b) rate(PQ) < max{rate P, rate Q};

(c) if P is invertible, then rate P = rate ey,

PROOF. (a) is trivial.

(b) Let P-= 3 a;(s)t', and @ = ¥; bi(s)t!, and assume that rate P = ¢ and
rate Q = d. The dega;(s) < ic and deg bi(s) <idfor all s > 1.

Now PQ = 5; ci(s)t* with ¢i(s) = Yjqpp=i a;(s)bk(s). Therefore

deg ci(s) < max {deg a;(s) + deg bi(s)} < max{je+ kd}
JTR=1 1+k=1
< (j + k) max{c,d} = i max{c, d}.
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Now P@i= 57 ci(s)t with ¢i(s) = 3., _; @;(s)bx(s). Therefore
G degei(s) < max{dega;(s) + deg bu(s)} < -

= jbei S mplie bl
< (5 + k) max{c,d} = imax{c,d}.
Kx___.__.

So rate PQ) < max{c, d}. 4

(¢) If P is invertible, then ao(s) = +1. We may assume that ao(s) = 1, and write
P=1~R withdes, R > 1,500 R =) sy a(s)t. Then P2 = L4 B4 B +--.
Hence if P71 = Zi>0 di(s)ti, then d;(s) is the sum of all products

auldliials) k2l Y L= 43

j »

Suppose rate P = ¢, then degc; (s ) cogg (s) £ dieF s+ e = g Phis im-
plies degd (s) < ic, so that rate P~! < rate P. Similarly rate P = rate(P~')™! <
ratePs s L o ’

Now we are ready to prove

Proposition 1.2. Let S — R be a surjectwe homomorphzsm of graded rmgs Then
for any graded R- module M,

ratep ]\[ < max{rates M rates R}

, \S\PROOF The standard change of rmgs spectral sequence ”-_‘: T

Ext (M Ext (R, k)) => Emt”"(M k)

respects the mternal gradmgs of the Ext groups and thus prov1des the coefﬁc1ent-j i
wise inequality of formal power series :

B < P,a(1 BN
Hence 1.1 implies that rateg M < max{‘rates M,rate(l +t — tPg)}. But

rate(l + ¢ — tP;g) = sup{t{ ,(R)/i} < sup{t] ,(R)/(s - 1)} = rates R,
i>2 i>2

as desired. < : w____,_,,.,____‘;._.'_-___,_“_ .0

The homogeneous k- algebxa R has a presentation e: S — R, where S is a poly-
nomial ring over R, and where ¢ is a surjective homomorphism of graded rings. Any
S-module has finite projective dimension, and therefore the rate of any S-module is
finite. Hence 1.2 implies

X/(‘Zorollary 1.3. rater M < rates M < oo for all R-modules M.
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2  The relative Veronese submodules of a polynomial ring

s ; LR :
T'he purpose of this section is to show that all relative Veronese submodules of the
polynomial ring S = k[zy,...,,] have lincar resolutions. In other words

Theorem 2.1. For all integers d > 1, ratega S = 1.

Proor. We will show that each 5'§d) has a linear S™-resolution by suitably filtering

these modules. The module S](»d) is generated by all monomials u, ..., u,, of S which
are of degreej Let us assume they are ordered in the degrevlex term order, that

> b . . o s
18, Wi e Bee o= :cf{‘ if and only if the first non-vanishing component
of the vector

(degu — degv,b, — ay,..., b —a1)

is negative. : L
Then fori =1, . ..,mwe sei=l; = S@yy + -+ + S@y;, and thus we obtain a
sequence of submodules ' i

S(d) .. DUmlD DUlDUo__:'O.

of 5; @), : :
We claim that each of the successive quotients U;/Ui_; has a lmear S(d)
which in turn 1rnphes that S( ) 1tself has a hnear S )-resolutxon

" Secondly note that L; ﬂS( ) =
. d which are divisible by one of the vanables m1+1, D : ,

Now we present S(% as the factor ring Td/Vd( ), where Td = L[zl,
a polynomlal ring in 7 = embdim S many variables. We may assume that the
last variables z, ...,z are mapped to the generators of Ji, and choose the degrevlex
order on the monormals in the z;. By [5, Theorem 2] we know that the ideal of initial
forms of V(1) is generated by monomials of degree 9. Therefore all hypotheses of [4,
Corollary 2.5 are satisfied, and it follows that 5 )/ J; has a linear S(d) resolution,
as we wanted to show. O

Corollary 2.2. For the Poincaré series of the relative Veronese submodules of the
polynomial ring S = k[zy,...,x,] we have

Y isol—1Y et
Sisol~1)ialdt

Gl i(—l)’ (rlz) (n + :z__l{l < 1)_

1=0

Psgd)(t) =

with
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Here, ! = 0 fors Sl = 1), so that Pya(t) is the quotient of lwo polynomauals
J
of degree at most n.
PROOF. Since the resolution of Sj(d) is lincar, its Poincaré series can be computed
by means of Hilbert series, that is, Pya(t) = Hs(d)(—t)HS(a)(—t)"l. Since all
J J
the modules SJ(-d) are Cohen-Macaulay of maximal dimension, we get Hya(t) =
' 3

HT](d)(t)/(l — ¢)" with Tj(d) = .5'§d)/(x‘f,...,zi)5§d) whete T- = S(ed o 50)8.
Therefore

Psg«u(t) = Hyo(=t)/Hya (=),
and it remains to compute H ().

5 3 , %
The explicit formula for H( () is already given in [2]. The general case is just
o]

as simple: We set 6{*) = dimy T, for all r > 0. Then H (d)( )= 2is0 bfjljt’ and the

asserted formula for the Poincaré series follows once we have shown that b = ag)

for all . But the Hilbert function of T (whlch glves us the b ) is easﬂy computed
from the Koszul complex :

D Sl s v ey S 24)()—>5( d) s S Ee .

associated with the regular sequence z?,.. .,xn, Wthh ylelds a homogeneous free

S-resolution of T'. So the desired conclusion follows. Moreover, since T, = 0 for Gt
r > n(d — 1), we see that the polynomials (d)( t) have degree at rnost n. s

"3 Proof of the main theorem Sk -

Recall that we assert that for 2 any ﬁmtely generated graded R—module .M w1th gen-'v_ : ik

erators in deglee 0, one has

ratepa M < [rateR M/d] forall d>c,

where c is a constant only depending on R.

To see this we let F' be a minimal graded free resolution of M as an R—module g

~ Then the ‘sequence
' - — Fl — Fo — M —0

is also an exact sequence of R(4-modules, yielding a convergent spectral sequence
Tor® (k, F) = Torf%? (k, M).

This implies that TorR(( (k, M) is filtered by subquotients of the Tor R( )(k F)), i+

J = 1. All is compatible with the internal gradings, so that we obtam a coefficient-
wise inequality of power series rings

(1) . PR < Z By,

O S AT R G

EET

e
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acli 75 1s a direct sum of mOdUl(S R(—a) for some « € N. Now BR(—a) as an R9).-
,,|‘l|‘ equals @d ; R(- ) » and R(- ) () = @»0 R(_“)idﬂ' 3 @oo Ridpja.
[l 2; be the smallest integer such that z]d s S, Py 3o & [—l] Then
Bl = @izo R(i—i))atk,, where ki = 4;d+j — a. Since O & k <d-1, we

N .'
oM Y

&
I
—

& R(-a) = P R (~[(a —J)/‘”)

J

I
=}

i first assume that R is the polynomial ring. Then, by %1--B hiss & linear
-»\i ) yesolution. Therefore (2) yields

o) BE°=%"c(e)' with - degei(s) < [t;(M)/d] +1.

i>0
So we: get

; [ti(M)/d] +i [G(M)/d][5 if [t;(M)/d] >
rute(PE] t)<fgo{T} {1 " {t EM%?}<§

< max{1, [t (M)/d]}
'ow mequahty (1) lmphes

.‘ rateR(d) M < max{l sup{w}}

s 1>1

: SUP.{tx(M)/z} = then t,'(M) < ib, and so [t; (M)/a’] = [zb/d] Now since for :
ny ¢ €R,¢>0,and i € N one has —[zc] < [c], we get -

[t ) L fivjd) _

e R

ratega M < max{1, ig{){uﬂ}} < max{1, ,'Supizl{ili(”f)/i}]}

< max{l, [rater M/d]} < [rateg ]\/[/d]

Finally if R is an arbitrary homogeneous k- -algebra, we do not necessarily have
that /2 hasa Lear R-resolution which is needed for (3). But if R = S/I where S

is a polyzomial ring, then accoxdmg to 1.2 and the first part of this proof we get

ratep) R < ratega) R < [rateg R/d].

So that #x d>c=rates R, R has a linear R(9). resolution. Thus, for these d’s, (8);
and frenc? the zest ol the proof is valid.




s 2 Combmlng this w1th 1.2 and the main theorem we get
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4 Rate and Castelnuovo-Mumford regularity

Let R be a homogeneous k-algebra, and present it as R = S/I where S is a poly-
nomial ring. In this section we want to relate the Backelin rate to the Castelnuovo-
Mumford regularity reg([) of I which is defined to be

reg(l) = m?x{ti(l) —1}.

We have the following result

Theorem 4.1. For all integers d > 0 one has
Rate R < [reg(I)/d].

Note that 4.1 is a sort of ‘mixture’ of the Backelin [1] and the Eisenbud-Reeves-
Totaro [5] inequality.

PROOF OF 4.1. We first observe that ¢;(I) = t;41(R), so th_at teralB) £ reg(I) $d
for all ¢ > 0. Therefore : b e :
(reg([) — 1) +1

?

- rates R = sup{ti(R)/i} < sup{
i>1 il

T eegl)en,
- erepll) ifreg(I)>0.

}

' Hence
; ; rates R < max{l reg(I)}

(1) rateR(d) M < max{ratega M,ratega R} < max{ [rates M/d] [reg( )/c[]}

Let n denote the graded maximal ideal of R(. Then n(l) is the (d — 1)-th
~ relative Veronese submodule m(l)(d) of m(1). Hence together with (1) we get

. (2) : Rate R = rateg n(1) < ratepa m(1)

< max{[(rates m(1))/d], [reg(I)/d] }.

From the exact sequence
0—m—R—k—0
we get an exact sequence of vector spaces

Tors,, (k, k); — Tor? (k, m); — Tor} (k, R);.

We have ;
Torf(k,R)j =0 for ‘gt R
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and
Mo el for j>ak L

This implics £;(m) < max{i + 1,4(R)} and hence t;(m(1)) < max{s, t;(R) — 1}.
Therefore :

rates m(1) < max{1,sup{t;(R) —1)/i} < max{l,rates 1} < max{1,reg(I)}.
i>1

Y

This together with (2) implies our assertion. &

LI |
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