

### INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

#### PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS

OF THE ROMANIAN ACADEMY

ISSN 0250 3638

FROM DIFFUSIONS TO PROCESSES WITH JUMPS

by

Lucian BEZNEA and Lucretiu STOICA

PREPRINT No.7/1994

BUCURESTI

## FROM DIFFUSIONS TO PROCESSES WITH JUMPS

bу

Lucian BEZNEA<sup>\*)</sup> and Lucretiu STOICA<sup>\*)</sup>

May, 1994

 \*) Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, R0-70700 Bucharest, Romania.

# From diffusions to processes with jumps

by

Lucian BEZNEA and Lucrețiu STOICA

Institute of Mathematics of the Romanian Academy P.O.Box 1-764, RO-70700 Bucharest, Romania

ABSTRACT. We study the consequences in the probabilistic structure of the process which follow after the perturbation of the integral part of the infinitesimal generator of a Markov process. Introducing or eliminating jumps of a process leads to addition or subtraction of an integral part to the infinitesimal generator. Moreover, we construct pure jump processes with trajectories of bounded variation generated by a class of Lévy kernels on a complete metric space.

INTRODUCTION. A Markov process may be modified by eliminating the jumps greater as a strictly positive number  $\varepsilon$ . Immediately after the moment of a jump eradication, the process is continued with the same law as before. This corresponds to a killing at the moment of the first jump greater as  $\varepsilon$ , completed with a resurrection. The appropriate transformation of the infinitesimal generator is the following: if the initial process has the Lévy kernel N(x, dy) then the infinitesimal generator of the modified process is obtained by subtracting the operator  $\widetilde{N^{\varepsilon}}$  defined by

$$\widetilde{N^{\epsilon}}u(x) := \int \left( u(y) - u(x) \right) \chi_{\{|x-y| > \epsilon\}} N(x, dy)$$

from the original generator (Theorem 1.6). The question is whether we obtain a continuous paths process when  $\varepsilon$  tends to zero?

We prove (Corollary 2.3) that when the initial process has the infinitesimal generator  $L + \widetilde{N}$ , where L is a second order elliptic differential operator and  $\widetilde{N}$  is given by

$$\widetilde{N}u(x) = \int (u(y) - u(x)) N(x, dy)$$

(i.e. N is a first order Lévy kernel in the sense of [2]) then it is possible to pass to the limit and the limit process is the diffusion induced by L.

Similarly, it is possible to introduce jumps in the evolution of a process. The corresponding modification for the infinitesimal operator is the addition of an operator like the above  $\widetilde{N^{\varepsilon}}$  (Theorem 1.8). Starting with a diffusion generated by an elliptic operator L and a first order Lévy kernel N, we prove that the process with generator  $L + \widetilde{N}$  may be obtained as a limit of the processes generated by  $L + \widetilde{N^{\varepsilon}}$ .

In the general case of a second order Lévy kernel the approximation procedure should be modified. This time, at each approximation step the killing and the resurrection should be accompanied by a drift modification.

The above ideas suggest that a pure jump process can be constructed starting from a given kernel. In Section 3 we show that, under certain smoothness conditions, a first order Lévy kernel on a complete metric space generates a Markov process of pure jumps. This result is well known for bounded kernels (see e.g. [3]), when the process is regular step. In our case the obtained process has pure jump trajectories of bounded variation. The method was inspired by the treatment in  $\mathbb{R}^n$  for stochastic differential equations with jumps (cf.[5]) and is available for Lévy kernels which are represented on a measurable space by a map satisfying Lipschitz regularity conditions. The main tool is a Poisson point process which generates the jumps.

## 1 Modification of jumps

Let Ebe locally compact a space with countable base and  $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$  be a standard (Markov) process with state space E. Denote by  $\Delta$  the point at infinity,  $\zeta$  the lifetime of the process X,  $\mathcal{E}$  the  $\sigma$ -algebra of Borel sets of E and  $\mathcal{E}^*$  its universally completion. We refere to [1] for basic facts and notions concerning Markov processes and to [4] for the stochastic integral calculus. Let N be the Lévy kernel associated with X in the following sense: N(x, dy) is a positive measure on  $E \setminus \{x\}$  and  $N(x, E \setminus V) < \infty$  for any  $x \in E$  and any neighborhood V of x; the function  $x \mapsto N(x, A \setminus \{x\})$  is  $\mathcal{E}^*$ -measurable for any  $A \in \mathcal{E}^*$ ; for any bounded positive function  $f \in (\mathcal{E}^* \otimes \mathcal{E}^*)_{b+}$  with f = 0 on  $\Delta_E := \{(y, y) | y \in E\},\$ the following formula holds:

(1.1) 
$$E^{x}\left[\sum_{s\leq t}f\left(X_{s-},X_{s}\right)\right] = E^{x}\left[\int_{0}^{t}\int f\left(X_{s},y\right)N\left(X_{s},dy\right)ds\right],$$

for any  $x \in X, t \ge 0$ . Such a kernel N(x, dy) is exactly the Lévy measure of the process X with respect to the additive functional  $A_t := t \wedge \zeta$  from [8].

We remark that the set of values of s considered in the left side sum is at most countable, namely the jump moments of the sample paths. We can regard the jumps of the standard process X as a point process. More precisely, this point process takes values in the space  $(E \times E) \cup \{\delta\}$ , where  $\delta$  is a fictitious point attached to  $E \times E$ . For every  $\omega \in \Omega$  we put  $J(\omega) := \{s > 0/X_{s-}(\omega) \neq X_s(\omega)\},$  $n(\omega)(s) := (X_{s-}(\omega), X_s(\omega))$  if  $s \in J(\omega)$  and  $n(\omega)(s) := \delta$  if  $s \in \mathbb{R}_+ \setminus J(\omega)$ . In this way we have defined a point process of class (QL) in the sense of [4]. To see this, for any  $\Lambda \in \mathcal{E} \otimes \mathcal{E}$  and  $t \geq 0$  we put

$$\widehat{n}((0,t] \times \Lambda) := \int_0^t \int \chi_{\Lambda}(X_s,y) N(X_s,dy).$$

Let V be a neighborhood of the diagonal  $\Delta_E$  of  $E \times E$ ,  $\Lambda := E \times E \setminus V$  and let us define the real valued function h on E by:

$$h(x) := \int \chi_{\Lambda}(x, y) N(x, dy) \quad , x \in E.$$

If  $A_k := \{h < k\}, k \in \mathbb{N}$  and  $B_k := \Lambda \cap (A_k \times E)$  then  $\bigcup_{k \in \mathbb{N}} B_k = \Lambda$  and  $\int \chi_{B_k}(x, y) N(x, dy) \leq k, (\forall) k \in \mathbb{N}$ . Therefore for all  $t \geq 0$  and  $k \in \mathbb{N}$  we have

$$\widehat{n}((0,t] \times B_k) = \int_0^t \int \chi_{B_k}(X_s, y) N(X_s, dy) \, ds \le kt.$$

If we put  $\tilde{n} := n - \hat{n}$  it follows that the stochastic integrals with respect to  $\tilde{n}$  are martingales. Indeed, let us put

$$A_{f}(t) := \sum_{s \in J_{t}} f(X_{s-}, X_{s}) \quad , \quad \hat{A}_{f}(t) := \int_{0}^{t} \int f(X_{s}, y) N(X_{s}, dy) \, ds,$$

where  $f \in (\mathcal{E} \otimes \mathcal{E})_{b+}$ , supp  $f \subset B_k$  for some k and  $J_t = J_t(\omega) := (0, t] \cap J(\omega), \omega \in \Omega$ . If r < t then using the Markov property and (1.1) we have:

$$E^{x} \left[ A_{f}(t) - \hat{A}_{f}(t) | \mathcal{F}_{r} \right] - \left( A_{f}(r) - \hat{A}_{f}(r) \right) =$$

$$E^{x} \left[ \sum_{s \in J_{t} \setminus J_{r}} f\left( X_{s \cdot j} X_{s} \right) | \mathcal{F}_{r} \right] - E^{x} \left[ \int_{r}^{t} \int f\left( X_{s}, y \right) N\left( X_{s}, dy \right) ds | \mathcal{F}_{r} \right] =$$

$$E^{x} \left[ A_{f}(t-r) \circ \theta_{r} | \mathcal{F}_{r} \right] - E^{x} \left[ \hat{A}_{f}(t-r) \circ \theta_{r} | \mathcal{F}_{r} \right] =$$

$$E^{X_{r}} \left[ A_{f}(t-r) - \hat{A}_{f}(t-r) \right] = 0.$$

As a consequence (cf.[4], Theorem 3.1 ) we have the following:

Lemma 1.1. If  $\varphi = \varphi(s, (x, y), \omega)$  is an  $\mathcal{F}_t$ -predictable function such that

$$E^{x}\left[\int_{0}^{t} |\varphi\left(s,\left(X_{s-},y\right),\cdot\right)| N\left(X_{s},dy\right)ds\right] < \infty,$$
$$E^{x}\left[\int_{0}^{t} |\varphi\left(s,\left(X_{s-},y\right),\cdot\right)|^{2} N\left(X_{s},dy\right)ds\right] < \infty,$$

for all t > 0, then

$$\widetilde{n}(\varphi)(t) := \sum_{s \in J_t} \varphi\left(s, (X_s, X_s), \cdot\right) - \int_0^t \varphi\left(s, (X_{s-}, y), \cdot\right) N\left(X_s, dy\right) ds$$

is a square integrable martingale.

Theorem 1.2. Let  $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$  be a standard process with state space E, Lévy kernel N and infinitesimal generator W (in the sense that the resolvent of X considered on  $\mathcal{E}_b^*$  has the infinitesimal generator W with domain  $\mathcal{D}(W) \subseteq \mathcal{E}_b^*$ ). Let  $\Lambda \subseteq E \times E \setminus \Delta_E$ , and define the kelnel N' by

$$N'h(x) := \int \chi_{\Lambda}(x, y)h(y)N(x, dy), \quad (\forall)h \in \mathcal{E}_{b+}^*.$$

If we suppose that  $\sup_{x \in E} N'1(x) < \infty$  and put

$$T := \inf\{t > 0 / (X_{t-}, X_t) \in \Lambda\},\$$

then the following assertions hold:

(i) T is a stopping time which is almost surely strictly positive and  $\lim_{k\to\infty} T_k \ge \zeta$ , where  $T_k, k \in \mathbb{N}$  are the iterates of T (i.e.  $T_0 = T$ ,  $T_{k+1} = T_k + T \circ \theta_{T_k}$ ).

(ii) The process X' obtained by killing X at the moment T has the infinitesimal generator W - N'. If moreover X is a Feller process and  $N'(C_o) \subseteq C_o$  then X' is a Feller process too.

*Proof.* By (1.1) applied for  $f := \chi_{\Lambda}$  we deduce:

$$E^{x}\left[\#\{s \le t/(X_{s-}, X_{s}) \in \Lambda\}\right] = E^{x}\left[\int_{0}^{t} N' 1(X_{s}) \, ds\right] \le t \sup_{x \in E} N' 1(x)$$

As a consequence the process X has almost surely on the interval (0,t] at most a finite number of jumps in  $\Lambda$ . Consequently, almost surely T > 0 and  $\lim_{k \to \infty} T_k \ge \zeta$ .

Therefore the proof of the first assertion is complete.

Since T is a strictly positive terminal time, by killing X at the moment T we get a standard process X' with state space E. If we denote by  $(U^{\alpha})_{\alpha>0}$  (resp.  $(U'^{\alpha})_{\alpha>0}$ ) the resolvent of X (resp. X') then the following equality holds for all  $\alpha > 0$ :

$$U^{\alpha} = U^{\prime \alpha} + P^{\alpha}_{T} U^{\alpha}.$$

On the other hand by Lemma 1.1 with

$$\varphi(s,(x,y),\omega) = e^{-lpha s} f(x,y) \chi_{\Lambda}(x,y), \quad f \in \left(\mathcal{E}^* \otimes \mathcal{E}^*\right)_{b+1}$$

we deduce that  $\tilde{n}(\varphi)$  is a martingale. Therefore, taking f independent of x, i.e. f(x,y) = f(y), we have  $E^x[\tilde{n}(\varphi)(T)] = 0$  or equivalently

$$E^{x}\left[e^{-\alpha T}f\left(X_{T}\right)\right] = E^{x}\left[\int_{0}^{T}e^{-\alpha s}N'f\left(X_{s}\right)ds\right].$$

Consequently,

$$P_T^{\alpha}f = U^{\prime \alpha}N^{\prime}f.$$

It now follows that

(1.2)

and by Lemma 1.4 below we conclude that W - N' is the infinitesimal generator of  $(U'^{\alpha})_{\alpha>0}$ .

If X is Feller and  $N'(C_{\circ}) \subseteq C_{\circ}$  then, as in the proof of Lemma 1.4, for sufficiently large  $\alpha$  we have  $U^{\alpha}(C_{\circ}) = U'^{\alpha}(C_{\circ})$  and therefore X' results Feller.

Remark 1.3. With the notation from the above proof, taking f independent of y, we deduce the following equality which will be used later:

$$E^{x}\left[e^{-\alpha T}f(X_{T-})\right] = U^{\prime \alpha}(fN^{\prime}1)(x), \quad (\forall)x \in E.$$

Lemma 1.4. Let  $(U^{\alpha})_{\alpha>0}$  and  $(U'^{\alpha})_{\alpha>0}$  be two resolvents of bounded linear operators on the Banach space **B** such that  $||U^{\alpha}||, ||U'^{\alpha}|| \leq \frac{1}{\alpha}$ , for all  $\alpha$ , and having the infinitesimal generators W and W' (with domains  $\mathcal{D}(W)$  and  $\mathcal{D}(W')$ ). If K is a bounded linear operator on **B**, then the following assertions are equivalent: (i)  $U^{\alpha} - U'^{\alpha} = U'^{\alpha}KU^{\alpha}$ , for every  $\alpha > 0$ .

(ii)  $\mathcal{D}(W) = \mathcal{D}(W')$  and W = W' + K.

Proof." (i)  $\Rightarrow$  (ii)" Since  $U^{\alpha} = U'^{\alpha}(I + KU^{\alpha})$  and  $I + KU^{\alpha}$  is invertible on **B** for large  $\alpha$  it follows that  $\mathcal{D}(W) = Im(U^{\alpha}) = Im(U'^{\alpha}) = \mathcal{D}(W')$ . If  $\alpha > 0$  then  $(\alpha - W' - K)U^{\alpha} = (\alpha - W')U'^{\alpha}(I + KU^{\alpha}) - KU'^{\alpha} - KU'^{\alpha}KU^{\alpha} = I + K(U^{\alpha} - U'^{\alpha}) - K(U'^{\alpha}KU^{\alpha}) = I$ . Hence W = W' + K.

"(*ii*) $\Rightarrow$ (*i*)" We have:  $U^{\prime \alpha}KU^{\alpha} = U^{\prime \alpha}((\alpha - W^{\prime}) - (\alpha - W))U^{\alpha} = U^{\prime \alpha}((\alpha - W^{\prime})U^{\alpha} - I) = U^{\alpha} - U^{\prime \alpha}$ , which completes the proof of the lemma.

Corollary 1.5. Let X be a standard process with state space E, Lévy kernel N and infinitesimal generator W. If  $\sup_{x \in E} N1(x) < \infty$  then the first jump of the process X defines a strictly positive stopping time and killing the process at the moment of the first jump we get a continuous paths standard process with infinitesimal generator W - N.

The next theorem gives a probabilistic way to rebuild the process X starting from X'. We use the construction of resurrected processes. We recall the notation from [6]:

Let  $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$  be a standard process and N a resurrection kernel. We set

$$\mathcal{W} := \{ w = (\omega_0, \omega_1, \ldots) \in \Omega^{\mathbb{N}} / \quad \zeta(\omega_i) = 0 \Rightarrow \omega_{i+1} = \omega_{i+2} = \ldots = \delta \}$$

and for  $w = (\omega_0, \omega_1, ...) \in \mathcal{W}$ ,

$$s_{i}(w) := \sum_{j=0}^{i} \zeta(\omega_{j}) , \quad s_{\infty}(w) := \lim_{n \to \infty} s_{n}(w)$$
$$Y_{t}(w) := \begin{cases} X_{t}(\omega_{0}) , & \text{if } t < s_{0}(w) \\ X_{t-s_{i}(w)}(\omega_{i+1}) , & \text{if } s_{i}(w) \le t < s_{i+1}(w) \end{cases}$$
$$\Theta_{t}(w) := \begin{cases} (\theta_{t}\omega_{0}, \omega_{1}, ...), & \text{if } t < s_{0}(w) \\ (\theta_{t-s_{i}(w)}\omega_{i+1}, \omega_{i+2}, ...), & \text{if } s_{i}(w) \le t < s_{i+1}(w). \end{cases}$$

Then there exist on W a probability  $\Pi^x$  and an adequate filtration  $(\mathcal{G}_t)$  such that  $Y := (W, \mathcal{G}, \mathcal{G}_t, Y_t, \Theta_t, \Pi^x)$  is a Markov process and killing Y at the moment  $s_0$  it becomes equivalent with X under  $P^x$ . The kernel N gives the distribution of  $Y_{s_0}$  conditioned by the evolution up to  $s_0$ .

Theorem 1.6. With the hypothesis and notation from Theorem 1.2 we have: (i) If for all  $\omega \in \Omega$  we put

$$R(\omega, dy) := \frac{\chi_{\{T < \zeta\}}(\omega)}{N' 1 (X_{T-}(\omega))} N' (X_{T-}(\omega), dy) + \chi_{\{T \ge \zeta\}}(\omega) \varepsilon_{\Delta}(dy)$$

then R is a resurrection kernel for the process X' and the resurrected process is equivalent with X.

(ii) If for all  $\omega \in \Omega$  we define

$$Q(\omega, dy) := \chi_{\{T < \zeta\}}(\omega) \varepsilon_{X_{T-}(\omega)}(dy) + \chi_{\{T \ge \zeta\}}(\omega) \varepsilon_{\Delta}(dy)$$

then Q is a resurrection kernel for the process X' and the resurrected process has the infinitesimal generator W - N' + N'1 and  $\mathcal{D}(W) = \mathcal{D}(W - N' + N'1)$ . If in addition X is a Feller process,  $N'(C_{\circ}) \subseteq C_{\circ}$  and N'1 is a continuous function then the resurrected process is also Feller.

*Proof.* Note that the expression defining R makes sense even if  $X_{T-}(\omega) \in [N'1 = 0]$  because in this case the first term vanishes. Recall that  $(U^{\alpha})_{\alpha>0}$  (resp.  $(U'^{\alpha})_{\alpha>0}$ ) denotes the resolvent of X (resp. X'). Also, we denote by  $Y = (\mathcal{W}, \mathcal{G}, \mathcal{G}_t, Y_t, \Theta_t, \Pi^x)$  the resurrected process with the kernel R and by  $(V^{\alpha})_{\alpha>0}$  its resolvent. To prove the first assertion it suffices to show that  $U^{\alpha} = V^{\alpha}$ , for all  $\alpha > 0$ . By Lemma 1.7 below we have for any  $g \in \mathcal{E}_{b+}^*$ :

$$E_{\Pi}^{x} \left[ e^{-\alpha s_{0}} g\left(Y_{s_{0}}\right) \right] = E'^{x} \left[ e^{-\alpha \zeta'} R(\cdot, g) \right] = E^{x} \left[ e^{-\alpha T} R(\cdot, g) \right] = E^{x} \left[ e^{-\alpha T} \frac{N' g\left(X_{T-}\right)}{N' 1\left(X_{T-}\right)} \right].$$

From Remark 1.3 we get now that

$$E_{\Pi}^{x}\left[e^{-\alpha s_{0}}g\left(Y_{s_{0}}\right)\right] = U^{\prime\alpha}N^{\prime}g(x), \quad (\forall)x \in E$$

and therefore, for any  $f \in \mathcal{E}_{b+}^*$  and  $x \in E$ ,

$$V^{\alpha}f(x) = E_{\Pi}^{x} \left[ \int_{0}^{s_{\infty}} e^{-\alpha t} f(Y_{t}) dt \right] = E_{\Pi}^{x} \left[ \int_{0}^{s_{0}} e^{-\alpha t} f(Y_{t}) dt \right] + E_{\Pi}^{x} \left[ e^{-\alpha s_{0}} V^{\alpha} f(Y_{s_{0}}) \right]$$
$$= U^{\prime \alpha} f(x) + U^{\prime \alpha} N^{\prime} V^{\alpha} f(x).$$

Hence for  $\alpha$  sufficiently large we have  $V^{\alpha} = (I - U'^{\alpha}N')^{-1}U'^{\alpha}$ . Using also (1.2) we deduce  $V^{\alpha} = U^{\alpha}$ .

We prove now assertion (ii). This time we denote by  $Y = (\mathcal{W}, \mathcal{G}, \mathcal{G}_t, Y_t, \Theta_t, \Pi^x)$  the process obtained resurrecting X' with the kernel Q and by  $(V^{\alpha})_{\alpha>0}$  its resolvent.

If  $g \in \mathcal{E}_{b+}^*$ , by Lemma 1.7 we get

$$E_{\Pi}^{x} \left[ e^{-\alpha s_{0}} g\left(Y_{s_{0}}\right) \right] = E_{\Pi}^{\prime x} \left[ e^{-\zeta^{\prime}} Q(\cdot, g) \right] =$$
$$E^{x} \left[ e^{-\alpha T} Q(\cdot, g) \right] = E^{x} \left[ e^{-\alpha T} g\left(X_{T-}\right) \right].$$

By Remark 1.3 we deduce

$$E_{\Pi}^{x}\left[e^{-\alpha s_{0}}g\left(Y_{s_{0}}\right)\right] = U^{\prime \alpha}(gN^{\prime}1)(x)$$

and further, for any  $f \in \mathcal{E}_{b+}^*$ , setting  $g := V^{\alpha} f$  we get

$$V^{\alpha}f(x) = U^{\prime \alpha}f(x) + E_{\Pi}^{x} \left[ e^{-\alpha s_{0}}g(Y_{s_{0}}) \right] = U^{\prime \alpha}f(x) + U^{\prime \alpha}(N^{\prime}1 \cdot V^{\alpha}f).$$

The assertion follows now by Theorem 1.2 and Lemma 1.4.

Lemma 1.7. Let  $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$  be a standard process with state space E and  $Y = (\mathcal{W}, \mathcal{G}, \mathcal{G}_t, Y_t, \Theta_t, \Pi^x)$  be the process obtained by resurrecting X with the resurrection kernel R. Then for any  $f \in (\mathcal{E}^* \otimes \mathcal{E}^*)_{b+}, \alpha > 0$  and  $x \in E$  we have:

$$E_{\Pi}^{x}\left[e^{-\alpha s_{0}}f\left(Y_{s_{0}},Y_{s_{0}}\right)\right]=E^{x}\left[e^{-\alpha \zeta}\int R(\cdot,dy)f\left(X_{\zeta-}(\cdot),y\right)\right].$$

Proof. Following [6] we have

$$E_{\Pi}^{x} \left[ e^{-\alpha s_{0}} f\left(Y_{s_{0}-}, Y_{s_{0}}\right) \right] =$$

$$\int \Pi^{x} \left( d\omega_{0} \right) \int R\left( \omega_{0-}, dy \right) \int \Pi^{y} \left( d\omega_{1} \right) e^{-\alpha \zeta(\omega_{0})} f\left(X_{\zeta-} \left( \omega_{0} \right), X_{0} \left( \omega_{1} \right) \right) =$$

$$\int \Pi^{x} \left( d\omega_{0} \right) e^{-\alpha \zeta(\omega_{0})} \int R\left( \omega_{0}, dy \right) f\left(X_{\zeta-} \left( \omega_{0} \right), y \right).$$

Theorem 1.8. Let  $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$  be a standard process with state space E, N a bounded kernel on E and  $M = (M_t)_{t\geq 0}$  the multiplicative functional of X defined by

$$M_t := exp\left(-\int_0^t N1(X_s)\,ds\right).$$

We denote by  $\widehat{X} = (\widehat{\Omega}, \widehat{\mathcal{F}}, \widehat{\mathcal{F}}_t, \widehat{X}_t, \widehat{\theta}_t, \widehat{P}^x)$  the subprocess of X induced by M and by  $Y = (\mathcal{W}, \mathcal{G}, \mathcal{G}_t, Y_t, \Theta_t, \Pi^x)$  the process obtained resurrecting  $\widehat{X}$  with the kernel R given by

$$R(\widehat{\omega}, dy) := \frac{\chi_{\{\widehat{\zeta} < \zeta\}}(\widehat{\omega})}{N1\left(\widehat{X}_{\widehat{\zeta}-}(\widehat{\omega})\right)} N\left(\widehat{X}_{\widehat{\zeta}-}(\widehat{\omega}), dy\right) + \chi_{\{\widehat{\zeta} \ge \zeta\}}(\widehat{\omega})\varepsilon_{\Delta}(dy),$$

where  $\hat{\omega} \in \hat{\Omega}$ . Then the following assertions hold:

(i) If X has the infinitesimal generator W then Y has the infinitesimal generator W - N1 + N and  $\mathcal{D}(W) = \mathcal{D}(W - N1 + N)$ . (ii) If for all  $t \ge 0$  and  $\omega \in \Omega$  we put  $J_t(\omega) := \{s \le t/s = s_n(\omega) \text{ for some } n \ge 1\}$ , where  $s_n, n \in IN$  are the iterates of  $s_0$ , then for all  $f \in (\mathcal{E}^* \otimes \mathcal{E}^*)_{b+}, \alpha > 0$  and  $x \in E$  we have:

$$E_{\Pi}^{x}\left[\sum_{s\in J_{t}}e^{-\alpha s}f\left(Y_{s-},Y_{s}\right)\right] = E_{\Pi}^{x}\left[\int_{0}^{t}e^{-\alpha s}\int f\left(Y_{s},y\right)N\left(Y_{s},dy\right)ds\right]$$

*Proof.* We denote by  $(U^{\alpha})_{\alpha}$ ,  $(\hat{U}^{\alpha})_{\alpha}$ ,  $(V^{\alpha})_{\alpha}$  the resolvents of the processes  $X, \hat{X}, Y$ . It is easy to see that

$$U^{\alpha}(f) = \widehat{U}^{\alpha}(f) + \widehat{U}^{\alpha}(N1 \cdot U^{\alpha}(f)).$$

Moreover by Lemma 1.4 we have

(1.3) 
$$U^{\alpha}(f) = \widehat{U}^{\alpha}(f) + U^{\alpha}(N1 \cdot \widehat{U}^{\alpha}(f))$$

(see also ch.IV, (2.22) in [1]). We prove first that

(1.4) 
$$E_{\Pi}^{x}\left[e^{-\alpha s_{0}}f(Y_{s_{0}-},Y_{s_{0}})\right] = \widehat{U}^{\alpha}(f\circ N)(x) = E_{\Pi}^{x}\left[\int_{0}^{s_{0}}e^{-\alpha u}f\circ N(Y_{u})\,du\right],$$

where  $f \circ N(x) := \int f(x,y)N(x,dy)$ , for all  $x \in E$ . Indeed, by Lemma 1.7 we get

$$E_{\Pi}^{x} \left[ e^{-\alpha s_{0}} f\left(Y_{s_{0}-}, Y_{s_{0}}\right) \right] = \widehat{E}^{x} \left[ e^{-\alpha \widehat{\zeta}} \int R(\cdot, dy) f\left(\widehat{X}_{\widehat{\zeta}-}(\cdot), y\right) \right] =$$

$$\widehat{E}^{x} \left[ e^{-\alpha \widehat{\zeta}} \frac{f \circ N}{N1} \left(\widehat{X}_{\widehat{\zeta}-}\right); \left\{ \widehat{\zeta} < \zeta \right\} \right] = E^{x} \left[ \int_{(0,\zeta)} e^{-\alpha r} \frac{f \circ N}{N1} \left(X_{r-}\right) \left(-dM_{r}\right) \right] =$$

$$E^{x} \left[ \int_{(0,\zeta)} e^{-\alpha r} f \circ N \left(X_{r-}\right) M_{r} dr \right] = \widehat{U}^{\alpha} (f \circ N) (x).$$

This establishes (1.4).

Taking in (1.4) f(x,y) := f(y) we deduce that for any  $f \in \mathcal{E}_{b+}^*$  and  $\alpha > 0$  we have

$$E_{\Pi}^{x}\left[e^{-\alpha s_{0}}f\left(Y_{s_{0}}\right)\right]=\widehat{U}^{\alpha}Nf(x)$$

and since  $V^{\alpha} = \hat{U}^{\alpha}f + E_{\Pi}^{x} \left[e^{-\alpha s_{0}}V^{\alpha}f\left(X_{s_{0}}\right)\right]$  we obtain

$$V^{\alpha} = \hat{U}^{\alpha} + \hat{U}^{\alpha} N V^{\alpha} \quad , (\forall)\alpha > 0.$$

From (1.3) and Lemma 1.4 we get that the infinitesimal generator of the process  $\widehat{X}$  is W - N1,  $\mathcal{D}(W) = \mathcal{D}(W - N1)$ . Again by Lemma 1.4 and the above relation between  $(\widehat{U}^{\alpha})_{\alpha}$  and  $(V^{\alpha})_{\alpha}$  the first assertion of Theorem 1.8 follows.

Let now  $f \in (\mathcal{E}^* \otimes \mathcal{E}^*)_{b+}$  and  $\alpha > 0$ . Then by the strong Markov property of Y and (1.4) we have:

$$E_{\Pi}^{x}\left[\sum_{n=1}^{\infty}e^{-\alpha s_{n}}f\left(Y_{s_{n-}},Y_{s_{n}}\right)\right]=\sum_{n=0}^{\infty}E_{\Pi}^{x}\left[e^{-\alpha s_{n}}e^{-\alpha s_{0}\circ\Theta_{s_{n}}}f\left(Y_{s_{0}-},Y_{s_{0}}\right)\circ\Theta_{s_{n}}\right]=$$

$$\sum_{n=0}^{\infty} E_{\Pi}^{x} \left[ e^{-\alpha s_{n}} E_{\Pi}^{Y_{s_{n}}} \left[ e^{-\alpha s_{0}} f\left(Y_{s_{0}-}, Y_{s_{0}}\right) \right] \right] =$$

$$\sum_{n=0}^{\infty} E_{\Pi}^{x} \left[ e^{-\alpha s_{n}} E_{\Pi}^{Y_{s_{n}}} \left[ \int_{0}^{s_{0}} e^{-\alpha u} f \circ N\left(Y_{u}\right) du \right] \right] =$$

$$\sum_{n=0}^{\infty} E_{\Pi}^{x} \left[ e^{-\alpha s_{n}} \left( \int_{0}^{s_{0}} e^{-\alpha u} f \circ N\left(Y_{u}\right) du \right) \circ \Theta_{s_{n}}^{*} \right] =$$

$$\sum_{n=0}^{\infty} E_{\Pi}^{x} \left[ \int_{s_{n}}^{s_{n}+s_{0}\circ\Theta_{s_{n}}} e^{-\alpha u} f \circ N\left(Y_{u}\right) du \right] = E_{\Pi}^{x} \left[ \int_{s_{0}}^{s_{\infty}} e^{-\alpha u} f \circ N\left(Y_{u}\right) du \right].$$

Consequently we have

$$E_{\Pi}^{x}\left[\sum_{n=0}^{\infty}e^{-\alpha s_{n}}f\left(Y_{s_{n-}},Y_{s_{n}}\right)\right]=E_{\Pi}^{x}\left[\int_{0}^{s_{\infty}}e^{-\alpha u}f\circ N\left(Y_{u}\right)du\right].$$

If for any  $t \in (0, \infty]$  we put

$$\sum_{t} := \sum_{s \in J_{t}} e^{-\alpha s} f(Y_{s-}, Y_{s}) \quad , \quad \sigma_{t} := \int_{0}^{t} e^{-\alpha s} f \circ N(Y_{s}) ds,$$

then we have already proved that

$$E_{\Pi}^{x}\left[\sum_{n}\right] = E_{\Pi}^{x}\left[\sigma_{\infty}\right] < \infty.$$

By standard arguments follows now assertion (ii). Indeed, since  $\sum_t = \sum_{\infty} - \sum_{\infty} \circ \Theta_t$  and  $\sigma_t = \sigma_{\infty} - \sigma_{\infty} \circ \Theta_t$ , for all  $t \in (0, \infty)$ , it follows:  $E_{\Pi}^x \left[\sum_{\infty} \circ \Theta_t\right] = E_{\Pi}^x \left[E_{\Pi}^{Y_t} \left[\sum_{\infty}\right]\right] = E_{\Pi}^x \left[E_{\Pi}^{Y_t} \left[\sigma_{\infty}\right]\right] = E_{\Pi}^x \left[\sigma_{\infty} \circ \Theta_t\right]$  which leads to  $E_{\Pi}^x \left[\sum_t\right] = E_{\Pi}^x \left[\sigma_t\right]$ . Thus Theorem 1.8 is proved.

# 2 Convergence of processes associated with integro - differential operators

In this section we consider Markov processes in  $\mathbb{R}^d$  associated to integro-differential operators. A first treatment of integro-differential operators in connection with Feller semi-groups they generate was given by Bony, Courrège and Priouret [2]. The main tool in our approach is an à priori estimate of Schauder type obtained by Pragarauskas and Mikulevičius [7] (see (2.5) below).

Let L be a second order elliptic differential operator with Hölder coefficients in  $\mathbb{R}^d$ ,

(2.1) 
$$L := \sum_{i,j=1}^{d} a^{ij}(x)\partial_i\partial_j + \sum_{i=1}^{d} a^i(x)\partial_i + a(x).$$

The matrix  $(a^{ij})$  is assumed to be symetric and uniform elliptic i.e.

$$\sum_{i,j=1}^{d} a^{ij}(x)\xi^i\xi^j \ge K_1|\xi|^2, \quad (\forall) \quad x,\,\xi = \left(\xi^i\right) \in \mathbb{R}^d,$$

the coefficient a is nonpositive and all the coefficients have finite Hölder norms,

 $|a^{ij}|_{0,\alpha}, |a^{i}|_{0,\alpha}, |a|_{0,\alpha} \le K_{2}, \quad (\forall) \ i, j.$ 

Let N = N(x, dy) be a positive kernel on  $\mathbb{R}^d$  such that  $N(x, \{x\}) = 0$ , for all  $x \in \mathbb{R}^d$  and

(2.2) 
$$N(x, \mathbb{R}^d \setminus B(x, 1)) = 0, \quad x \in \mathbb{R}^d$$

(2.3) 
$$\int_{B(x,r)} |y-x|^2 N(x,dy) \le \rho(r), \quad (\forall) \quad x \in \mathbb{R}^d, r \in (0,1],$$

(2.4) 
$$|\int_{B(x,r)} u(y-x)|y-x|^2 N(x,dy) - \int_{B(x',r)}^{\infty} u(y-x')|y-x'|^2 N(x',dy)|$$
  
 
$$\leq \rho(r)|x-x'|^{\alpha}|u|_0 \quad , \quad (\forall) \quad x,x' \in \mathbb{R}^d, u \in \mathcal{E}_b(\mathbb{R}^d), r \in (0,1]$$

where  $\rho: (0,1] \to (0,\infty)$  is a function such that  $\lim_{r \to 0} \rho(r) = 0$  and B(x,r) denotes the closed ball of center x and radius r. Note that condition (2.3) with r = 1 gives the usual finiteness required to a Lévy kernel, while as  $r \to 0$  we get a uniform integrability condition.

For  $u \in C^2(\mathbb{R}^d)$  and  $x \in \mathbb{R}^d$  we define

$$\widetilde{\widetilde{N}}u(x) := \int \left( u(y) - u(x) - \sum_{i=1}^d \partial_i u(x)(y^i - x^i) \right) N(x, dy).$$

The integro-differential operator

$$W := L + \widetilde{\widetilde{N}}$$

is a Waldenfels operator (see [2]) and N is called the Lévy kernel of W. Let  $W := W - \partial_t$  be the associated parabolic operator on  $\mathbb{R} \times \mathbb{R}^d$ . By a sign change,  $t \mapsto -t$ , this operator is of the type studied in [7]. Theorem 8 from [7] gives the following result:

Theorem 2.1. If  $t_o > 0$  and  $f \in C_o^{0,\alpha}([0, t_o] \times \mathbb{R}^d)$  then there exists a unique function  $u \in C_o^{2,\alpha}([0, t_o] \times \mathbb{R}^d)$  such that

$$\mathcal{W}u = f \text{ and } u(0, \cdot) = 0.$$

Moreover there exists a constant  $c = c(t_o, d, \alpha, K_1, K_2, \rho)$  such that

$$(2.5) |u|_{2,\alpha} \le c|f|_{0,\alpha}.$$

(Here  $C_o^{\beta,\alpha}$  denotes the closure of the space  $C_o^{\infty}$  of all infinite differentiable functions of compact support with respect to the Hölder norm  $| |_{\beta,\alpha}$ .)

We remark that  $\mathcal{W}$  has the positive maximum principle because  $a \leq 0$ . Namely, if  $u \in C_o^2([0, t_o] \times \mathbb{R}^d)$  has a positive maximum at the point  $(t, u) \in (0, t_o] \times \mathbb{R}^d$  then  $\mathcal{W}u(t, x) \leq 0$ . This implies the following properties:

1°. If  $u \in C_o^2([0, t_o] \times \mathbb{R}^d)$ ,  $u_{|t=0} \leq 0$  and  $\mathcal{W}u \geq 0$  then  $u \leq 0$ .

2°. If  $u \in C_o^2([0, t_o] \times \mathbb{R}^d)$  satisfies  $\mathcal{W}u = 0$  then  $|u|_o \leq |u|_{t=0}|_o$ .

From Theorem 2.1 we get the following:

3°. If  $f \in C_o^{2,\alpha}(\mathbb{R}^d)$  then there exists a unique function  $u \in C_o^{2,\alpha}([0,\infty) \times \mathbb{R}^d)$  such that  $\mathcal{W}u = 0$  and  $u(0, \cdot) = f$ . Moreover for each  $t_o > 0$  there exists a constant c such that

$$(2.6) |u_{|[0,t_o] \times \mathbb{R}^d}|_{2,\alpha} \le c|f|_{2,\alpha}.$$

We introduce the notation  $P_t f(x) = u(t, x)$  for f and u related as in 3° above. For each t > 0 we have a linear operator  $P_t : C_o^{2,\alpha} \longrightarrow C_o^{2,\alpha}$ . According to 1° this operator is monotone (i.e.  $f \ge 0$  implies  $P_t f \ge 0$ ) and from 2° we deduce that it is a contraction (i.e.  $|P_t f|_o \le |f|_o$ ). Obviously the family  $(P_t)_{t>0}$  is a semi-group which admits a unique extension, denoted by the same symbol, to the space  $C_o$  of all continuous functions in  $\mathbb{R}^d$  vanishing to infinity. It is easy to see that  $(P_t)_{t>0}$  is a Feller semi-group whose infinitesimal operator extends W.

Let us put now

$$(2.7) N_r(x, dy) := \chi_{B(x,r)} \cdot N(x, dy) \quad , \quad M_r(x, dy) := N(x, dy) - N_r(x, dy).$$

As  $r \to 0$ ,  $M_r$  approximate N. The operators  $W_r := L + \widetilde{\widetilde{M}_r}$  and  $W'_r := L + \widetilde{\widetilde{N}_r}$  are similar to W so that they generate Feller semi-groups  $(P_t^r)_{t>0}$  and  $(P_t'^r)_{t>0}$  respectively. Denote by  $(Q_t)_{t>0}$  the semi-group generated by L. A straightforward computation leads to the following estimate

(2.8) 
$$|\widetilde{N}_r u|_{0,\alpha} \le c\rho(r)|u|_{2,\alpha} \quad , \quad (\forall) \quad u \in C^{2,\alpha}(\mathbb{R}^d).$$

This allows us to prove the following result:

Proposition 2.2. For any  $f \in C_o$  and t > 0 we have

$$\lim_{r \to 0} |P_t^r f - P_t f|_o = 0 \quad , \quad \lim_{r \to 0} |P_t^{\prime r} f - Q_t f|_o = 0.$$

Proof. Let  $f \in C_o^{\infty}$  and set  $u(t,x) := P_t f(x)$ ,  $v(t,x) := P_t^r f(x)$ . Then we have  $(L + \widetilde{\widetilde{M_r}} - \partial_t)(v-u) = \widetilde{\widetilde{N_r}} u$ . Combining (2.5), (2.8) and (2.6) we get

$$|P_t^r f - P_t f|_{2,\alpha} \le c\rho(r)|f|_{2,\alpha}.$$

Letting  $r \to 0$  we get  $\lim_{r\to 0} |P_t^r f - P_t f|_o = 0$ . Since  $C_o^{\infty}$  is dense in  $C_o$  and the operators  $P_t^r$  and  $P_t$  are contractions, this relation extends to any function  $f \in C_o$ . The second convergence is checked similarly.

Now let us consider the case of a first order Lévy kernel. More precisely we suppose that N is a kernel on  $\mathbb{R}^d$  such that  $N(x, \{x\}) = 0$  for all  $x \in \mathbb{R}^d$ , (2.2) holds and the following conditions are satisfied:

(2.9) 
$$\int_{B(x,r)} |y - x| N(x, dy) \le \rho_{\infty} , \quad x \in \mathbb{R}^{d}, r \in (0, 1],$$

(2.10) 
$$|\int_{B(x,r)} u(y-x)|y-x|N(x,dy) - \int_{B(x',r)} u(y-x')|y-x'|N(x',dy)|$$

 $\leq 
ho(r)|x-x'|^lpha|u|_0 \ , \ x,x'\in \mathbb{R}^d, u\in \mathcal{E}_b(\mathbb{R}^d)$ 

where  $\lim_{r\to 0} \rho(r) = 0$ . We denote by  $\widetilde{N}$  the operator

$$\widetilde{N}u(x) := \int \left( u(y) - u(x) \right) N(x, dy), \quad (\forall) u \in C^1(\mathbb{R}^d).$$

An integro-differential operator W has the first order Lévy kernel N if it is of the form

$$W = L + N,$$

where L is a second order elliptic differential operator with Hölder coefficients as in (2.1). Such an operator W may also be written in the form  $W = L' + \widetilde{N}$ , where  $L' := L + \sum_{i=1}^{d} b^{i}\partial_{i}$ , with  $b^{i}(x) := \int (y^{i} - x^{i})N(x, dy)$ . Conditions assumed ensure that  $b^{i} \in C^{0,\alpha}(\mathbb{R}^{d})$  and N satisfies (2.3) and (2.4). Consequently the preceding results may be applied to W. In particular there is a Feller semi-group associated with W. If  $N_{r}$  and  $M_{r}$  are the kernels derived from N as in (2.7), the operators  $W_{r} := L + \widetilde{M}_{r}$ and  $W'_{r} := L + \widetilde{N}_{r}$  generate semi-groups  $(P_{t}^{r})_{t>0}$  and  $(P_{t}^{\prime r})_{t>0}$  that are Fellerian. Similar to (2.8) the following inequality holds:

$$|N_r u|_{0,\alpha} \le \rho(r) c |u|_{1,\alpha}, \quad (\forall) u \in C^{1,\alpha}(\mathbb{R}^d).$$

As a consequence we have a result analogous to Proposition 2.2:

**Proposition 2.2'.** The assertion from Proposition 2.2 holds true in the case of the first order Lévy kernels.

Under the assumtion that N is a first order Lévy kernel, let us denote by X, Y, Y<sup>r</sup>, Y'<sup>r</sup> the processes having respectively the semi-groups  $(Q_t)_{t>0}$ ,  $(P_t)_{t>0}$ ,  $(P_t^r)_{t>0}$ ,  $(P_t'^r)_{t>0}$ . Relation (1.1) is satisfied by the processes Y, Y<sup>r</sup> and Y'<sup>r</sup> with the kernels N,  $M_r$  and  $N_r$  (cf. Théorème 10 in [5]). The process Y'<sup>r</sup> can be constructed from X by killing with a multiplicative functional and resurrecting like in Theorem 1.8, so introducing jumps counted by the bounded kernel  $M_r$ . On the other hand the process Y'<sup>r</sup> can be obtained from Y by eliminating the jumps larger than r, with the procedure from Theorem 1.6.

If N is not a first order Lévy kernel but just satisfies conditions (2.2)-(2.4) we still preserve the notation X, Y, Y<sup>r</sup>, Y<sup>rr</sup> for the processes associated with the semigroups  $(Q_t)_{t>0}$ ,  $(P_t)_{t>0}$ ,  $(P_t^r)_{t>0}$ ,  $(P_t^{rr})_{t>0}$ . Then the probabilistic relations between X and Y<sup>r</sup> or Y and Y'<sup>r</sup> are a little bit more complicated. Since  $\widetilde{M_r} = \widetilde{M_r} - \sum_{i=1}^d b^i \partial_i$ , the process Y<sup>r</sup> is obtained from X first transforming it as in Theorem 1.8 with the kernel  $M_r$  and then introducing the effect of the drift  $-\sum_{i=1}^d b^i \partial_i$ . The probabilistic interpretation of the drift modification for processes with jumps is analogous to the Cameron-Martin-Girsanov transformation in the case of diffusions (see Théorème 25 in [5]). The process Y'<sup>r</sup> can be constructed from Y by using Theorem 1.6 with the kernel  $M_r$  and then taking into account the influence of the drift  $\sum_{i=1}^d b^i \partial_i$ .

Propositions 2.2 and 2.2' imply the following conclusion:

Corollary 2.3. If either N satisfies (2.9), (2.10) and  $W = L + \widetilde{N}$  or N satisfies (2.3), (2.4) and  $W = L + \widetilde{\widetilde{N}}$  then the process Y is the limit in distribution of the processes  $Y^r$  and the diffusion X is the limit in distribution of the processes  $Y'^r$ , as r tends to zero.

For the proof see Theorem 1.6.1 and 4.2.5 in [3]

## 3 Pure jump processes on metric spaces

Let (E, d) be a complete separable metric space. We denote by  $\mathcal{E}$  the  $\sigma$ -algebra of all Borel measurable subsets of E. Let  $(U, \mathcal{U})$  a measurable space on which a  $\sigma$ -finite measure n is fixed and let  $\varphi : E \times U \longrightarrow E$  an  $\mathcal{E} \otimes \mathcal{U}/\mathcal{E}$ -measurable function. We suppose that the following conditions are satisfied:

(3.1) 
$$\int d(x,\varphi(x,u))\mathbf{n}(du) \leq c$$
, for all  $x \in E$ ;

(3.2) There exists an increasing sequence  $(U_k)_{k\in\mathbb{N}} \subseteq \mathcal{U}$  with  $n(U_k) < \infty$  for all  $k \in \mathbb{N}$ such that  $\lim_{k\to\infty} a_k = 0$  where  $a_k := \sup_{x\in E} \int_{U\setminus U_k} d(x,\varphi(x,u))n(du)$ ; (3.3)  $d(\varphi(x,u),\varphi(x',u)) \leq d(x,x') + cd(x,x') \cdot d(x,\varphi(x,u))$ , for all  $x, x' \in E, u \in U$ ;

where c is a positive constant.

**Example.** Let (E, d) be a metrizable compact space,  $o \in E$  a fixed point, n a Radon measure on  $E \setminus \{o\}$  with  $\int d(o, x)n(dx) < \infty$  and a function  $\varphi : E \times E \longrightarrow E$  such that  $\varphi(x, o) = x$  and  $d(\varphi(x, y), \varphi(x', y')) \leq d(x, x') + d(y, y')$  for all x, x',

 $y, y' \in E$ . If we take  $U := E \setminus \{o\}$  then condition (3.1)-(3.3) are fulfiled.

If for all  $f \in \mathcal{E}_b$  and  $x \in E$  we put

$$Nf(x) := \int_U f(\varphi(x,u))\mathbf{n}(du)$$

then we obtain a kernel on E which is of first order by (3.1). As in Section 2 we associate to this Lévy kernel N the operator  $\widetilde{N}$  defined by  $\widetilde{N}f(x)$  $:= \int (f(y) - f(x)) N(x, dy)$ . It is well defined, following (3.1), at least in the case when f is Lipschitz continuous on E.

The following existence result for a Markov process generated by  $\widetilde{N}$  will be a consequence of Theorem 3.4 below:

**Theorem 3.1.** There exists a quasi-left-continuous, strong Markov process on E having cadlag trajectories and for which the ifinitesimal operator contains in its domain the Lipschitz continuous functions on E and coincides with  $\tilde{N}$  on these functions.

In fact this process will be a jump process with trajectories of "bounded variation" (as it is suggested by the infinitesimal operator which is associated to a first order Lévy kernel). The next Lemma gives us the convenient notion of jump trajectory with bounded variation. The proof is left to the reader.

Lemma 3.2. Let  $f : [0, \infty) \longrightarrow E$  be a function which is right continuous and has left limits and let  $D \subset (0, \infty)$  be at most countable such that

$$\sum_{s \in D} d(f(s-), f(s)) < \infty$$

and if  $0 \leq t_1 \leq t_2$  then

$$d(f(t_1), f(t_2)) \le \sum_{s \in (t_1, t_2] \cap D} d(f(s-), f(s)).$$

The function f is then continuous at each point of  $[0,\infty) \setminus D$  and constant on each open interval which does not contain points of D. Moreover if  $g : E \longrightarrow \mathbb{R}$  is Lipschitz continuous then

$$g(f(t_2)) - g(f(t_1)) = \sum_{s \in (t_1, t_2] \cap D} \left( g(f(s)) - g(f(s-)) \right).$$

The starting point for the construction of a jump process is the Poisson point process (with characteristic measure n) which will generate the jumps. Therefore we begin with some considerations concerning the point functions.

Let  $p: D_p \longrightarrow U$  be a point function,  $D_p \subset (0, \infty)$  being at most countable, such that the following condition is satisfied:

(3.4)  $\#\{t \in D_p \cap (0, u]/p_t \in U_k\} < \infty$ , for all  $u > 0, k \in \mathbb{N}$ , where  $p_t := p(t)$ . For any  $k \in \mathbb{N}$  we put  $D_k := \{t \in D_p/p_t \in U_k\}$  and we define the following sequence (which depends on k):

$$\tau_0 := 0, \ \tau_{m+1} = \inf\{t > \tau_m/t \in D_k\}.$$

e e In fact, in our case we will have  $\lim_{u\to\infty} \#((0,u]\cap D_k) = \infty$  and therefore  $\tau_m$  will be finite for any  $m \in \mathbb{N}$ . If  $\xi \in E$  we may define a trajectory as follows:  $Y_t^k(\xi, p) := \xi \text{ if } t \in [0, \tau_1) , Y_t^k(\xi, p) := \varphi(Y_{\tau_m}^k(\xi, p), p_{\tau_m}) \text{ if } t \in [\tau_m, \tau_{m+1}).$ 

#### Lemma 3.3. Let us suppose that:

(3.5) there exists  $\lim_{k \to \infty} Y_t^k(\xi, p)$  uniformly on each compact interval [0, u], u > 0. Then the limit trajectory

$$Y_t(\xi, p) := \lim_{k \to \infty} Y_t^k(\xi, p)$$

has the following properties:  $(3.6) Y_0(\xi, p) = \xi$ ; (3.7) the trajectory  $t \mapsto Y_t(\xi, p)$  is right continuous and has left limits;  $\begin{array}{l} (3.8) \ Y_t(\xi,p) = \varphi(Y_{t-}(\xi,p),p_t) \ , \ for \ all \ t \in D_p \ ; \\ (3.9) \ d(Y_s(\xi,p),Y_t(\xi,p)) \le \sum_{u \in D_p \cap (s,t]} d(Y_{u-}(\xi,p),Y_u(\xi,p)) \ if \ s \le t. \end{array}$ 

The proof is obvious.

Let now p be a Poisson point process on a probability space  $(\Omega, \mathcal{F}, P)$  with values in  $(U, \mathcal{U})$  having the characteristic measure n and  $(\mathcal{F}_t)_t$  a filtration with respect to which p becomes an  $(\mathcal{F}_t)_t$ -adapted point process (see [4]). Recall that if for any  $t,s \geq 0$  with  $t+s \in D$  we put  $\theta_t p_s := p_{t+s}$  then  $\theta_t p$  is an  $(\mathcal{F}_{s+t})_{s-1}$ adapted Poisson point process with the same characteristic measure as p. Since by hypothesis  $n(U_k) < \infty$  for all  $k \in \mathbb{N}$ , we deduce that condition (3.4) is verified a.s. by the Poisson point process p. In the sequel  $\tau_m$ ,  $Y_t^k(\xi, p)$  and  $Y_t(\xi, p)$  will appear naturally randomized. In this way  $(\tau_m)_m$  will be a sequence of stopping times. For a random variable  $\xi$ ,  $Y^k$  and Y become processes.

Theorem 3.4. If  $\xi : U \longrightarrow E$  is an  $\mathcal{F}_0$ -measurable random variable then condition (3.5) is satisfied in probability (where  $\xi = \xi(\omega)$  and  $p = p(\omega), \omega \in \Omega$ ). Moreover the following assertions hold:

a) If we define

$$X_t(\omega) := Y_t(\xi(\omega), p(\omega)), \, \omega \in \Omega$$

then a.s.

 $\sum_{u \in D_p \cap [0,t]} d(X_{u-}, X_u) < \infty \ , \ (\forall)t \ge 0$ (3.10)

and  $X_t$  is the unique adapted process which satisfies a.s. (3.6)-(3.10). b) If we put  $Z_t(\omega) := Y_t(\eta(\omega), p(\omega)), \ \omega \in \Omega$ , where  $\eta : U \longrightarrow E$  is another

 $\mathcal{F}_0$ -measurable random variable then

$$E\left[\sup_{s\leq t} d(X_s, Z_s)\right] \leq e^{c^2 t} E\left[d(\xi, \eta)\right].$$

c) The following equality is satisfied a.s.

$$Y_{t+s}(x, p(\omega)) = Y_s(Y_t(x, p(\omega)), \theta_t p(\omega)), x \in E.$$

*Proof.* We show that  $(Y^k)_{k \in \mathbb{N}}$  is a Cauchy sequence. For any  $j \ge k$  we introduce the notation:

$$q_{k,j}(t) := \sup_{s \le t} d(Y_s^k(\xi, p), Y_s^j(\xi, p)),$$

$$r_{k,j}(t) := \sum_{s \in D_p \cap [0,t]} \chi_{U_k}(p_s) d\left(Y_{s-}^k(\xi,p), Y_{s-}^j(\xi,p)\right) \cdot d\left(Y_{s-}^k(\xi,p), \varphi(Y_{s-}^k(\xi,p),p_s)\right)$$

$$= \int_{0}^{t} \int_{U_{k}} d\left(Y_{s-}^{k}(\xi, p), Y_{s-}^{j}(\xi, p)\right) \cdot d\left(Y_{s-}^{k}(\xi, p), \varphi(Y_{s-}^{k}(\xi, p), u)\right) N_{p}(ds, du),$$
$$r_{k,j}'(t) := \sum_{s \in D_{p} \cap [0,t]} \chi_{U_{j} \setminus U_{k}}(p_{s}) d\left(Y_{s-}^{j}(\xi, p), Y_{s}^{j}(\xi, p)\right)$$
$$= \sum_{s \in D_{p} \cap [0,t]} \chi_{U_{j} \setminus U_{k}}(p_{s}) d\left(Y_{s-}^{j}(\xi, p), \varphi(Y_{s-}^{j}(\xi, p), p_{s})\right)$$
$$= \int_{0}^{t} \int_{U_{j} \setminus U_{k}} d\left(Y_{s-}^{j}(\xi, p), \varphi(Y_{s-}^{j}(\xi, p), u)\right) N_{p}(ds, du).$$

If  $s = \tau_{m+1}$  and  $v = \tau_m$ , where  $\tau_m$ ,  $m \in \mathbb{N}$ , are the stopping times related to  $U_k$ , then using also (3.3) we have:

$$d\left(Y_s^k(\xi,p),Y_s^j(\xi,p)\right) = d\left(\varphi(Y_{s-}^k(\xi,p),p_s),\varphi(Y_{s-}^j(\xi,p),p_s)\right)$$

$$\leq d\left(Y_{s-}^{k}(\xi,p),Y_{s-}^{j}(\xi,p)\right) + cd\left(Y_{s-}^{k}(\xi,p),Y_{s-}^{j}(\xi,p)\right) \cdot d\left(Y_{s-}^{k}(\xi,p),\varphi(Y_{s-}^{k}(\xi,p),p_{s})\right);$$

$$d\left(Y_{s-}^{k}(\xi,p),Y_{s-}^{j}(\xi,p)\right) \leq d\left(Y_{v}^{k}(\xi,p),Y_{v}^{j}(\xi,p)\right) + \sum_{v < t < s,t \in D_{p}} \chi_{U_{j} \setminus U_{k}}(p_{t})d\left(Y_{t-}^{j}(\xi,p),Y_{t}^{j}(\xi,p)\right).$$

Therefore we get  $q_{k,j} \leq c \cdot r_{k,j}(t) + r'_{k,j}(t)$ . Theorem 3.1 in [4] allows us to replace the integrals with  $N_p(ds, du)$  by integrals with dsn(du),  $Y_{s-}^k$  and  $Y_{s-}^j$  being predictable processes. By (3.1) we obtain

$$E[r_{k,j}] = E\left[\int \int_{(0,t] \times U_k} d\left(Y_{s-}^k(\xi, p), Y_{s-}^j(\xi, p)\right) d\left(Y_{s-}^k(\xi, p), \varphi(Y_{s-}^k(\xi, p), u)\right) n(du) ds\right]$$
$$\leq c \cdot E\left[\int_{(0,t]} d\left(Y_{s-}^k(\xi, p), Y_{s-}^j(\xi, p)\right) ds\right].$$

We conclude that  $E[q_{k,j}(t)] \leq c^2 \int_0^t E[q_{k,j}(s)]ds + ta_k$  and by Gronwall's lemma we get

$$E[q_{k,j}(t)] \le t a_k e^{c^2 t}.$$

Since by (3.2) we have  $\lim_{j,k\to\infty} E[q_{k,j}(t)] = 0$  one can find a subsequence  $(Y^{k_i}(\xi, p))_{i\in\mathbb{N}}$  which converges uniformly a.s. on the trajectories to  $Y(\xi, p)$  i.e.

$$\lim_{i \to \infty} \sup_{s \le t} d\left(Y_s^{k_i}(\xi, p), Y(\xi, p)\right) = 0, \ (\forall)t \ge 0 \ a.s.$$

From Lemma 3.3 it follows that the process  $X_t := Y_t(\xi, p)$  verifies conditions (3.6)-(3.9). To check (3.10) we compute

$$E\left[\sum_{s\in D_p\cap[0,t]}d(X_{s-},X_s)\right] = E\left[\int_U\int_0^t d(X_{s-},\varphi(X_s,u))\operatorname{n}(du)ds\right].$$

By (3.1) it results that the right hand term in the above relation is dominated by ct which implies the finiteness asserted in (3.10). Let us now prove the uniqueness. If  $(Y_t)_t$  is another process verifying a.s. condition (3.6)-(3.10) then we define

$$q_{k}(t) := \sup_{s \leq t} d(Y_{s}^{k}(\xi, p), Y_{s}), r_{k}'(t) := \sum_{s \in D_{p} \cap [0, t]} \chi_{U \setminus U_{k}}(p_{s}) d(Y_{s-}, Y_{s}),$$
  
$$_{k}(t) := \sum_{\chi_{U_{k}}(p_{s})} d(Y_{s-}^{k}(\xi, p), Y_{s-}) \cdot d(Y_{s-}^{k}(\xi, p), \varphi(Y_{s-}^{k}(\xi, p), p_{s})).$$

$$T_k(t) := \sum_{s \in D_p \cap [0,t]} \chi_{U_k}(P_s) \alpha \left( T_{s-(\varsigma,P)}, T_{s-} \right) \cdots \left( T_{s-(\varsigma,P)}, P(T_{s-(\varsigma,P)}, P(T_{$$

As before we obtain  $q_k \leq c \cdot r_k(t) + r'_k(t)$  and

$$E[q_k(t)] \le c^2 \int_0^t E[q_k(s)]ds + ta_k.$$

Again from Gronwall's lemma we get

$$(3.11) E[q_k(t)] \le ta_k e^{c^2 t}$$

and in the limit we deduce Y = X a.s.

Let us prove now the inequality from assertion b). For the approximation sequences  $Y_t^k(\xi, p)$  and  $Y_t^k(\eta, p)$  we have the estimate:

 $d\left(Y_t^k(\xi,p),Y_t^k(\eta,p)\right)$ 

$$\leq c \sum_{s \in D_p \cap [0,t]} d\left(Y_{s-}^k(\xi,p), Y_{s-}^k(\eta,p)\right) d\left(Y_{s-}^k(\xi,p), \varphi(Y_{s-}^k(\xi,p),p_s)\right) + d(\xi,\eta).$$

By the method used above we obtain the desired inequality.

The equality from c) is verified by each of the processes  $Y_t^k(x,p)$ , Moreover we have:

$$d(Y_s^k(Y_t^k(x,p),\theta_t p), Y_s(Y_t(x,p),\theta_t p))$$

$$\leq d(Y_{s}(Y_{t}^{k}(x,p),\theta_{t}p),Y_{s}(Y_{t}(x,p),\theta_{t}p)) + d(Y_{s}^{k}(Y_{t}^{k}(x,p),\theta_{t}p),Y_{s}(Y_{t}^{k}(x,p),\theta_{t}p)).$$

From assertion b) and (3.11) we get now:  $E\left[d(Y_s^k(Y_t^k(x,p),\theta_t p), Y_s(Y_t(x,p),\theta_t p))\right]$  $\leq e^{c^2s}E\left[d(Y_t^k(x,p), Y_t(x,p)] + se^{c^2s}a_k \leq (te^{c^2(s+t)} + se^{c^2s})a_k$ . When k tends to

infinity we deduce a convergence on a subsequence and the relation from c) follows.

Proof of Theorem 3.1. Obviously the process starting from  $x \in E$  will be given by Theorem 3.4 taking  $\xi(\omega) = x$ . We consider the canonical trajectory space for this process. More precisely let

 $\mathcal{W} := \{w : [0, \infty) \longrightarrow E/w \text{ is cadlag and satisfies (3.9) and (3.10)} \},\$ 

$$P^{x} := P \circ Y(x, p)^{-1}, x \in E$$
,  $X_{t}(w) := w(t), w \in \mathcal{W}.$ 

Let now  $f \in C_l$  (:= the real valued Lipschitz continuous functions on E). From Theorem 3.4 b) we deduce that the function  $P_t f(x)$  on E defined by

$$P_t f(x) := E^x [f(X_t)] = E[f(Y_t(x, p))]$$

is Lipschitz continuous and using monotone class arguments it is  $\mathcal{E}$ -measurable for all  $f \in \mathcal{E}$ . The Markov property follows from

$$E[f(Y_{t+s}(x,p)/\mathcal{F}_t] = E[f(Y_s(Y_t(x,p),\theta_t p))/\mathcal{F}_t] = P_s f(X_t)$$

where we have used assertion c) from Theorem 3.4 as well as the fact that  $\theta_t p$  is independent from  $\mathcal{F}_t$  and identically distributed with p.

If  $k \in \mathbb{N}$  let  $n_k := \chi_{U_k} \cdot n$  and  $\widetilde{N}^k$  be the corresponding operator

$$\widetilde{N}^k f(x) := \int_{U_k} [f(\varphi(y,u)) - f(x)] \mathbf{n}(du).$$

From Lemma 3.1 it follows that the process  $X_t^k := Y_t^k(x, p)$  is the solution of the martingale problem associated to the bounded operator  $\widetilde{N}^k$ . By Theorem 4.4.1 in [3] we deduce that  $X_t^k$  is a Markov process and its semi-group has the infinitesimal generator  $\widetilde{N}^k$ . Moreover from (3.11) we get

$$\sup_{x \in E} |P_t f(x) - P_t^k f(x)| \le K \cdot E[q_k(t)] \le K t a_k e^{c^2 t},$$

where K is the Lipschitz constant of the function  $f \in C_l$ . Moreover the following estimates hold for any  $x \in E$ :

$$\left|\frac{P_{t}f(x) - f(x)}{t} - \widetilde{N}f(x)\right| \le \left|\frac{P_{t}f(x) - f(x)}{t} - \widetilde{N}^{k}f(x)\right| + \left|\frac{P_{t}f(x) - P_{t}^{k}f(x)}{t}\right| + Ka_{k}.$$

The strong Markov property and the quasi-left-continuity follow now as in the Fellerian case (see ch.I (8.11) and (9.4) in [1]).

### References

[1] R. M. Blumenthal, R, K. Getoor, Markov processes and potential theory. Academic Press, New York, 1968.

[2] J.-M. Bony, P. Courrège, P. Priouret, Semigroupes de Feller sur un variété a bord compacte et problemes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum.Ann. Inst. Fourier, Grenoble 18(1968), 369-521.

[3] S. N. Ethier, T. G. Kurtz, Markov processes. Characterization and convergence. Wiley, New York, 1986.

[4] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes  $(2^{nd} ed.)$ . North-Holland/Kodansha, 1989.

[5] J. P. Lepeltier, B. Marchal, Probleme des martingales et équations différentielles stochastiques associées a un opérateur intégro différentiel. Ann. Inst. Henri Poincaré,Section B, 12(1976), 43-103.

[6] P.-A. Meyer, Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier, Grenoble 25, 3-4(1975), 465-497.

[7] R. Mikulevičius, H. Pragarauskas, On the Cauchy problem for certain integrodifferential operators in Sobolev and Hölder spaces. Liet. Matem. Rink., **32**(1992), 299-331.

[8] S. Watanabe, On discontinuous additive fuctionals and Lévy measures of a Markov process. Jap. J. Math. 34(1964), 63-70.