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From diffusions to processes with jumps
by

Lucian BEZNEA and Lucretiu STOICA

Institute of Mathematics of the Romanian Academy
P.0.Box 1-764, RO-70700 Bucharest, Romania

ABSTRACT. We study the consequences in the probabilistic structure of the process
which follow after the perturbation of the integral part of the infinitesimal generator of
a Markov process. Introducing or eliminating jumps of a process leads to addition or
subtraction of an integral part to the infinitesimal generator. Moreover, we construct pure
Jump processes with trajectories of bounded variation generated by a class of Lévy kernels
on a complete metric space.

INTRODUCTION. A Markov process may be modified by eliminating the
jumps greater as a strictly positive number €. Immediately after the moment
of a jump eradication,the process is continued with the same law as before.This
~ corresponds to a killing at the moment of the first jump greater as e, completed
with a resurrection. The appropriate transformation of the infinitesimal generator is
the following: if the initial process has the Lévy kernel N(z,dy) then the infinite-

simal generator of the modified plocess is obtained by subtracting the operator N¢
defined by

Fou(z) = [ (uy) = (@) xemsioe) Mz, o)

from the original generator (Theorem 1.6). The question is whether we obtain a
continuous paths process when ¢ tends to zero?
We prove (Corollary 2.3) that when the initial process has the infinitesimal ge-

nerator L+ N, where L is a second order elliptic differential operator and N is given
by

Nu(z) = [ (uly) - u(2)) N(z, dy)

(i.e. N is a first order Lévy kernel in the sense of [2]) then it is possible to pass to
the limit and the limit process is the diffusion induced by L.

Similarly, it is possible to introduce jumps in the evolution of a process. The
corresponding modification for the infinitesimal operator is the addition of an
operator like the above N¢ (Theorem 1.8). Starting with a diffusion generated
by an elliptic operator L and a first order Lévy kernel N, we prove that the process

with generator L 4+ N may be obtained as a limit of the processes generated by
L+ Ne.



In the general case of a second order Lévy kernel the approximation procedure
should be modified. This time, at each approximation step the killing and the
resurrection should be accompanied by a drift modification.

The above ideas suggest that a pure jump process can be constructed starting
from a given kernel. In Section 3 we show that, under certain smoothness conditions,
a first order Lévy kernel on a complete metric space generafes a Markov process of
pure jumps. This result is well known for bounded kernels (see e.g. [3]), when the
process is regular step. In our case the obtained process has pure jump trajectories of
bounded variation. The method was inspired by the treatment in R™ for stochastic
differential equations with jumps (cf.[5]) and is available for Lévy kernels which
are represented on a measurable space by a map satisfying Lipschitz regularity
conditions. The main tool is a Poisson point process which generates the jumps.

1 Modification of jumps

Let E be a locally compact space with countable base and
X=(Q,F,F,X:,0,P*) be a standard (Markov) process with state space E.
Denote by A the point at infinity, ¢ the lifetime of the process X, £ the o-algebra of
Borel sets of £ and £* its universally completion. We refere to [1] for basic facts and
notions concerning Markov processes and to [4] for the stochastic integral calculus.
Let N be the Lévy kernel associated with X in the following sense: N (z,dy) is a posi-
tive measure on '\ {z} and N (z, £\ V) < oo for any z € E and any neighborhood
V' of z; the function z = N (z, A\ {z}) is £*-measurable for any A € £*; for any
bounded positive function f € (£*® £*),, with f = 0 on Ag := {(y,y) /y € E},

the following formula holds:
[/ [ F N (X,

for any ¢ € X,t > 0. Such a kernel N(z,dy) is exactly the Lévy measure of the
process X with respect to the additive functional A, :=t A ¢ from [8].

We remark that the set of values of s considered in the left side sum is at
most countable, namely the jump moments of the sample paths. We can regard
the jumps of the standard process X as a point process. More precisely, this
point process takes values in the space (E x E) U {8}, where § is a fictitious point
attached to £ x E. For every w € Q we put J(w) :={s > 0/X,_ (w) # X, (w)},
n(w)(s) := (X,-(w), X,(w)) if s € J(w) and n(w)(s):= 6§ if s € Ry \ J(w). In this
way we have defined a point process of class (QL) in the sense of [4]. To see this,
for any A€ £Q & and t > 0 we put

(1.1) DT P e

s<t

A((0,4] x A) : //XA (X0, y)N(X,, dy).



Let V be a neighborhood of the diagonal Ag of £ x fs, A := [£ x [;\ 'V and let us

define the real valued function h on IV by:
. /XA(a;,y)N(:r,dy) z€k.

If Ax := {h < k},k € N and By := AN (Ax x E) then Ugew Bx = A and
[ xB,(z,y)N(z,dy) < k, (¥)k € N. Therefore for all t > 0 and k € N we have

A((0,1] x By) = / /XBK (X,,y) N (X,,dy)ds < kt.

If we put 7 := n — 7 it follows that the stochastic integrals with respect to n are
martingales. Indeed, let us put

= S X) A= [ [ 1)V (X dy)ds,

56.](

where f € (£ ® £),,, suppf C By for some k and J; = Ji(w) := (0,t]NJ(w),w € .
If r < t then using the Markov property and (1.1) we have:

E” [Ag(t) - A,(0)|1 7] = (As(r) = A(n) =

> f(XeXo) |

SEJ;\Jr

E*[Af(t — 1) 0 8,|F) — E=[Af(t =)0 9,|f,] =

S g [/Tt/f(Xs,y)N(Xs,dy)d5|fr] =

EXr [yt —7) = Ayt —7)] = 0.

As a consequence (cf.[4], Theorem 3.1 ) we have the following:
Lemma 1.1.If ¢ = (s, (z,y),w) is an Fy-predictable function such that

B [ [/ oo, (ems) )WY (s ) 5] < o,

[/ o (s, (Xo—s9) )lQN(Xs,dy)dS} < oo,
for all t > 0,then

= o (X X)) = [ (s (Xems9), )N (X, dy) ds

s€J;

is a square integrable martingale.



Theorem 1.2. Let X =(Q,F,F,,X,,0,,P%) be a standard process with state space
E, Lévy kernel N and infinitesimal generator W (in the sense that the resolvent of
X considered on & has the infinitesimal generator W with domain D(W) C &;).
Let A C E x E\ Ag,and define the kelnel N' by

= [xa(@h)N(z.dy), (DheE &,

If we suppose that sup N'1(z) < oo and put
z€E

— inf{t > 0/ (Xie, X.) € A,

then the following assertions hold:

(i) T is a stopping time which is almost surely strictly positive and llm Ty > (,where
k—o0

Tk, k € N are the iterates of T (i.e. Ty =T, Tj41 =T + T 0 07,).

(i) The process X' obtained by killing X at the moment T has the infinitesimal
generator W — N'. If moreover X is a Feller process and NYGCo) € Co then X' 450
Feller process too.

Proof. By (1.1) applied for f := xa we deduce:

Bolllsc X, XeA} = [/ N'1(X ds] <titelgN’l( )

As a consequence the process X has almost surely on the interval (0,t] at most a
finite number of jumps in A. Consequently, almost surely 7' > 0 and klirn i >C.
—00

Therefore the proof of the first assertion is complete.

Since T is a strictly positive terminal time,by killing X at the moment T we get
a standard process X' with state space E.If we denote by (U*)aso (resp.(U'*)as0)
the resolvent of X (resp.X’) then the following equality holds for all a > 0:

B =02 o BRTP2.
On the other hand by Lemma 1.1 with

e(s,(z,4),w) = e f(z,y)xalz,y), fE(E"®E),,

we deduce that 7i(p) is a martingale. Therefore, taking f independent of z, i.e
f(z,y) = f(y), we have E* [7i(¢)(T)] = 0 or equivalently

E* [e “’Tf(XT)] = E° [/OT e”‘”N’f(Xs)ds} )

Consequently,
Pt =N
It now follows that
(1:2) Ue =y” + UN'U*



and by Lemma 1.4 below we conclude that W — N’ is the infinitesimal generator of
e e

If X is Feller and N’(C,) C C, then, as in the proof of Lemma 1.4, for sufficiently
large a we have U*(Cs)= U"*(C,) and therefore X' results Feller

Remark 1.3. With the notation from the above proof, taking f mdcpendent of
y, we deduce the following equality which will be used later:

E* 7T f (Xz)] = U(fN'1)(z), (V)z€E.

Lemma 1.4. Let (U%), ., and (U?),5q be two resolvents of bounded linear
operators on the Banach space B such that U], |U|| < L, for all « , and having
the infinitesimal generators W and W’ (with domains D(W ) and D(W')). If K is
a bounded linear operator on B, then the following assertions are equivalent:

(o) U = U =l KU~ Jorevery o > 0.

(i) DIW) = D(W') and W = W' 4+ K.

Proof.” (1)=(11)” Since U* = U'*(I + KU%) and I + KU* is invertible on B for
large « it follows that D(W) = Im(U®) = Im(U"®) = D(W'). If ¢ > 0 then
(¢ = W' = K)U* = (a« — W)U(I + KU*) — KU'"™ — KUKU* = I + K(U* -
U'®) - KUK} = 1. Hence W.= W'+ K.

?(i)=(i)” We have: U KU® = U*((a=W")—(a=W))U*=U"*((a—W"U*-1I) =
U® — U'®, which completes the proof of the lemma.

Corollary 1.5. Let X be a standard process with state space E, Lévy kernel N
and infinitesimal generator W .If su;E)Nl(aj) < oo then the first jump of the process

X defines a strictly positive stoppifzg time and killing the process at the moment of
the first jump we get a continuous paths standard process with infinitesimal generator
W-N. j

The next theorem gives a probabilistic way to rebuild the process X starting
from X’. We use the construction of resurrected processes. We recall the notation
from [6]: : |

Let X=(Q,F,F,X:,0:,P%) be a standard process and N a resurrection kernel.
We set

A {w = (wo,wl, ) € QN/ C(w,) == Wit1 = Wip2 = ... = 6}

and for w = (wp,wy,...) € W,

Silw)ia= i((wj) ,  Seo(w) := lim sn(w)

n—oo

Xi(wo) if t < so(w)
At i wz—H s if s,-(w) S tx S¢+1(’LU)
L (Otwo,wl,...), ifd < So('LU) »
et(w) LI { (Ot_s‘.(w)wiﬂ,w,-ﬂ, ), lf si(w) S 1< si+1(w).

5



Then there exist on W a probability [I* and an adequate filtration (G,) such that
Y .= W,G,G,Y.,0,,117) is a Markov process and killing Y at the moment sq it
becomes equivalent with X under P*. The kernel N gives the distribution of Y,
conditioned by the evolution up to sq.

Theorem 1.6. With the hypothesis and notation from Theorem 1.2 we have:
(i) If for all w € Q we put ; :

Xr<y(@)
dy) = == —(w),d
R(w, dy) i (XT_(w))N (X7-(w),dy) + xyr>¢y(w)eal(dy)
then R 1is a resurrection kernel for the process X' and the resurrected process is

equivalent with X,
(i) If for all w € Q we define

Q(w,dy) := Xr<c}(W)exr_()(dY) + XiT>c}(W)ea(dy)

then @ 1s a resurrection kernel for the process X' and the resurrected process has
the infinitesimal generator W — N'+ N'1 and D(W)=D(W — N'+ N'1). If in addi-
tion X 1is a Feller process, N'(C,) C C, and N'l is a continuous function then the
resurrected process is also Feller..

Proof. Note that the expresion defining R ‘makes sense even if Xr_(w) €
[N'1 = 0] because in this case the first term vanishes. Recall that (U*)aso
(resp. (U'*)a»0) denotes the resolvent of X (resp.X’). Also , we denote by
Y=(W,G,G.,Y;, ©,,117) the resurrected process with the kernel R and by (V*)aso
its resolvent. To prove the first assertion it suffices to show that U* = V¢, for all
a > 0. By Lemma 1.7 below we have for any g € &, :

B [om ()] = B [ R 9)] = B [T, 9)] = 57 | TR

From Remark 1.3 we get now that
Ef [0 (Y)] = U N'g(e), (V)ae B

and therefore, for any f € &, and z € E,

veste) = B[ e v a| = B [ [ et (v de] + B7 [emeeves (%)

_ = U2 fla) L TNV f ).
Hence for o sufficiently large we have V* = (I-U"*N')~'U’* . Using also (1.2) we
deduce V& = U~ .
We prove now assertion (ii). This time we denote by Y=(W, G,G,,Y;, ©,11%) the

)
process obtained resurrecting X’ with the kernel Q and by (V*)s»0 its resolvent.



If g € &, , by Lemma 1.7 we get
75 e g (V)] = B [e4Q(.9)] =

E® [faTQ(-,g)] ~ g* [e—aTg (XT—)} :
By Remark 1.3 we deduce ‘

B [e7og (V)] = U (9N"1)(2)
and further, for any f € &, seting g := Vf we get

Vef(z) = U"f(z) + £

e—cxsog (Yso)] _ Ulaf(.’l,‘) = U/a(Nll ; Vaf).

The assertion follows now by Theorem 1.2 and Lemma 1.4.
Lemma 1.7. Let X=(Q,F ,F;,Xt,0:,P%) be a standard process with state space
E and Y=W,G,G.,Y;,0,117) be the process obtained by resurrecting X with the

resurrection kernel R. Then for any f € (€* ® £*),, ,a >0 and z € E we have:

B 720 (Yam Yal] = 57 (672 [ RO, d)S (-]
Proof. Following [GJ we have

EI?I [e_asof(yso—aym)] i

[ 1% (dwo) [ R (o, dy) {am (don) €701 (X (n), Xo (1) =

J T (duos) &7 [ R (w, dy) £ (Xe- (w0) ,9).

Theorem 1.8. Let X =(Q,F,F,, X, 0:,P?) be a standard process with state space
E, N a bounded kernel on E and M = (M,),5, the multiplicative functional of X
defined by * »

M, :=exp (— /; N1 (Xs)ds) ;

We denote by 5(\:(@,7?, ﬁt,)/(\t,gt,}s:”) the subprocess of X induced by M and by
Y=W,G,G.,Y:,0,,117) the process obtained resurrecting X with the kernel R given

by
(@) o 3
N (Xz_(®),dy) + X (esey(@)ea(dy),

where & € Q. Then the following assertions hold:

(i) If X has the infinitesimal generator W then Y has the infinitesimal generator
W — N1+ N and D(W) = D(W — N1+ N).

(i) If for all t > 0 and w € Q we put Jy(w):={s < t/s = s,(w) for somen > 1},

i



where s,,n € IN are the iterates of so,then for all f € (£* ®E&*),, ,a>0andz € L
we have:

T
Eq

Z e_asf()/s—-,}/_g)

s€Jy

=z ([ e [ 00N (Vedy) s

Proof. We denote by (U%),, (e (V), the resolvents o e processes XYY
[t is easy to see that

~

U(f) = 0°(f) + T2(N1- US(f)).
Moreover by Lemma 1.4 we have :
(1.3) U(f) = U°(f) + US(N1- U°(f))

(see also ch.IV,(2.22) in [1] ). We prove first that

(14) B [ f (Yoo, Yao)] = 0°(f 0 N)(2) = Ef [/0 e f o N(Yu)du] ;
where fo N(z):= [ f(z,y)N(z,dy) , for all z € E. Indeed, by Lemma 1.7 we get
Eﬁ [e_o‘sof (Ygo—7 Yso)] = E'x [e_aE/R(.’dy)f (5(\2_()7y)] L

e [t (%) 2 <0

\ 5
This establishes (1.4).
Taking in (1.4) f(z,y) := f(y) we deduce that for any f € &, and a > 0 we
have :

e [/(0,0 e_mf;iN (Xr—)(;dMT)} =

E e"“’foN(X,._)M,dr} = U“(foN)(a;).

o

¢

BE [ f (Ya)] = 0N f(2)
and since V& =0 f + EZ [e=** Ve f (X,,)] we obtain
Ve = e £ 0PNV (Mas0.

From (1.3) and Lemma 1.4 we get that the infinitesimal generator of the process %
is W— N1, DW) = D(W — N1). Again by Lemma 1.4 and the above relation
between (U*)q and (V), the first assertion of Theorem 1.8 follows.

Let now f € (6" ® £*),, and @ > 0. Then by the strong Markov property of Y
and (1.4) we have:

EIJ':I {i e—asnf <Y3n— : }/Sn)} =, io: EI?I [e—asne—asoo@mf (Yso—’ Y:?o) o @8n] 24

n=1 n=0



X Bf [ Eyn [ f (Yoo, ¥ay)]] =
n=0
> oo [ [" oo N () ]| =
n=0 0
Z EISPI ’:e—as" (/30 e_aufo N (Yu) du> 0 @"sn} =
n=0 0

co 371+50°®sn Sco
Z%U emhmmﬂ=%ve%mwmﬂ.
n=0 93t S0

Consequently we have

o [ge‘”"f (Yy)} _ B UO‘” e f o N(Yu)duJ :

If for any ¢ € (0, co] we put

Zg = E e—as]v (Ys—a)/s) RN Of = At 6"°‘st N(}/S) dS,

SEJ:

then we have already proved that

B0 =l

By standard arguments follows now assertion (ii). Indeed, since ¥, = Yoo —
200, and 0y = 0 — 05,00, for all ¢ € (0,00),it follows: Ef [Y, 00, =
Ef [E"[T.]] = B3 [E% [000]] = E§ [0 0 ©,] which leads to E& [,] = EE o).
Thus Theorem 1.8 is proved.

2  Convergence of processes associated with in-
tegro - differential operators

In this section we consider Markov processes in R? associated to integro-differential
operators. A first treatment of integro-differential operators in connection with
Feller semi-groups they generate was given by Bony, Courrege and Priouret [2]. The
main tool in our approach is an & priori estimate of Schauder type obtained by
Pragarauskas and Mikulevicius (7] (see (2.5) below).

I&et'L be a second order elliptic differential operator with Hdélder coefficients
in R}

d d

(2.1) L= 5" a"%(x)8,0; + z—: a'(z)0; + a(z).

t,5=1



The matrix (a¥) is assumed to be symetric and uniform elliptic i.e.
d " o > 7
S @) 2 Kilel, (V) o= () eRY

i,j=1

the coefficient a is nonpositive and all the coefficients have finite Holder norms,
!GUIO,G’lal'O,mIalO,a = [(27 (v) 27.7

Let N = N(z,dy) be a positive kernel on R? such that N(z,{z}) = 0, for all
z € R¢ and

(2.2) N(z,R*\ B(z,1)) =0, zeR?

(23) | ly=alPNG,d) <o), (1) zeR:re ()
B(z,r)

@y [ wy=oli=aPNEd) = [* uly=aly- 2PN dy)

<p(r)le—aPlulo , (V) z,2" € R ue &(RY),r € (0,1]
where p : (0,1] — (0,00) is a function such that lir% p(r) = 0 and B(z,r) denotes

the closed ball of center z and radius r. Note that condition (2.3) with r = 1 gives
the usual finiteness required to a Lévy kernel, whlle as 7 — 0 we get a uniform
integrability condition.

For u € C*(R?) and z € R? we deﬁne

Fu(e)i= [ (4t0) = ) 30ty - o) Mo a):
~ The integro-differential operator
Wi=L+N
is a Waldenfels operatc;r (see [2]) and N is called the Lévy kernel of W. Let W :=
W — 0, be the associated parabolic operator on R x R% By a sign change, t — —t,

this operator is of the type studied in [7]. Theorem 8 from [7] gives the following
result: .

10



Theorem 2.1. Ift, > 0 and f € C>*([0,(,] x RY) then there exists a unique
function u € C2*([0,1,] x RY) such that

Wha=f and w(0,:] =40.
Moreover there exists a constant c = c(t,,d, o, K1, Ko, p) such that

(2.5) ul2a < cffloa

(Here C#* denotes the closure of the space C of all infinite differentiable functions
of compact support with respect to the Holder norm | |g,.)

We remark that W has the positive maximum principle because a < 0. Namely,
if u € C2([0,t.) x R?) has a positive maximum at the point (¢,u) € (0,,] x R then
Wu(t,z) < 0. This implies the following properties:

1°. If u € C2([0,2,) x R?), u=o < 0 and Wu > 0 then u < 0.

2°. It u € C2([0, 5] x R?) satisfies Wu = 0 then |ul, < |uj=olo-

From Theorem 2.1 we get the following:

3°. If f € C>*(R?) then there exists a unique function u € C>*([0,00) x R?)
such that Wu = 0 and »(0,-) = f. Moreover for each ¢, > 0 there exists a constant
¢ such that

(2.6) [Ui0,tgxR 4|20 < €] fl2,a

We introduce the notation P, f(z) = u(t,z) for f and u related as in 3° above.
For each t > 0 we have a linear operator P, : C>* —s C%*, According to 1° this
operator is monotone (i.e. f > 0 implies P,f > 0) and from 2° we deduce that it
is a contraction (i.e. |Pflo< |fl,). Obviously the family (P,)is0 is a semi-group
which admits a unique extension, denoted by the same symbol, to the space C, of
all continuous functions in R? vanishing to infinity. It is easy to see that (P)eso s
a Feller semi-group whose infinitesimal operator extends W.

Let us put now

(2.7) N.(z,dy) := XB(@;r) - N(z,dy) , M (z,dy):= N(z,dy) — N,(z,dy).

As r — 0, M, approximate N. The operators W, := L + Mv, and W! := L +

N, are similar to W so that they generate Feller semi-groups (P );s0 and (P/")is0
respectively. Denote by (Q):>o0 the semi-group generated by L. A straightforward
computation leads to the following estimate

(2.8) INotlow < cp(M)ulee , (V) ue C2(RY).

This allows us to prove the following result:

11



Proposition 2.2. For any f € C, and t > 0 we have
UplER s Bl =1 . Dl = Qufl=0

Proof. Let f € C° and set u(t,z) := P f(z), v(t,z) := P} f(z). Then we have
(L+ M, —8)(v—u) = Nyu. Combining (2.5), (2.8) and (2:6) we get

e B flsie £ cp(r)|fl2,a-

Letting r —. 0 we get li_rg]P{f — Piflo = 0. Since C% is dense in C, and the
operators P/ and P, are contractions, this relation extends to any function f € C,.
The second convergence is checked similarly.

Now let us consider the case of a first order Lévy kernel. More precisely we
suppose that /N is a kernel on R? such that N(z, {z}) = 0 for all z € R¢, (2.2) holds

and the following conditions are satisfied:

(2.9) /B( =2V, dy) S pe 2R e (0,1,

(210) | [ uly—aly—alN(z,dy) - /B( 2y =)l = 2N dy)]|
= p(T‘)I:L‘ T xllalulo ) x)xl = Rdau & gb(Rd)
where lim p(r) = 0. We denote by N the operator

Nu(z) := [ (u(y) - u(s)) Nz, dy), (V)ue CHRY).

An integro-differential operator W has the first order Lévy kernel N if it is of the
form

W=L+N,
where L is a second order elliptic differential operator with Hélder coefficients as in

(2.1). Such an operator W may also be written in the form W = L' + N, where
L' =L+ L, b9;, with b(z) := [(y' — 2')N(z,dy) . Conditions assumed ensure
that b € C%*(R?) and NV satisfies (2.3) and (2.4).Consequently the preceding results
may be applied to W. In particular there is a Feller semi-group associated with W. If
N, and M, are the kernels derived from N as in (2.7), the operators W, := L + M,
and W/ := L + N, generate semi-groups (FP])i»o and (P/7)is0 that are Fellerian.
Similar to (2.8) the following inequality holds:

INetlow < p(r)clulie, (V)ue CH(RY).

As a consequence we have a result analogous to Proposition 2.2 :
Proposition 2.2°. The assertion from Proposition 2.2 holds true in the case of
the first order Lévy kernels.

12



Under the assumtion that N is a first order Lévy kernel, let us denote by X, Y,
Y7 Y the processes having respectively the semi-groups (Q)i>0, (£)i>0, (P} )i>o0,
(P/")is0. Relation (1.1) is satisfied by the processes Y, Y™ and Y'" with the kernels
N, M, and N, (cf. Théoreme 10 in [5]). The process Y" can be constructed from
X by killing with a multiplicative functional and resurrecting like in Theorem 1.8,
so introducing jumps counted by the bounded kernel M,. ‘On the other hand the
process Y™ can be obtained from Y by eliminating the jumps larger than r, with
the procedure from Theorem 1.6.

If N is not a first order Lévy kernel but just satisfies conditions (2.2)-(2.4) we
still preserve the notation X, Y, Y, Y’ for the processes associated with the semi-
groups (@e)eos (Poises (B )isos (PR)iso: Then the probabilistic relations betwecn

X and Y™ or Y and Y are a little bit more complicated. Since M M, — }: b'o;,
the process Y is obtained from X first transforming it as m Theorem 1. 8 with
the kernel M, and then introducing the effect of the drift — Z b'9;. The proba-

bilistic interpretation of the drift modification for processes with jumps 1s analo-

gous to the Cameron-Martin-Girsanov transformation in the case of diffusions (see

Théoréme 25 in [5]). The process Y'” can be constructed from Y by using Theorem
d .

1.6 with the kernel M, and then taking into account the influence of the drift ) b'0;
1=1

Propositions 2.2 and 2.2’ imply the following conclusion:

Corollary 2.3. If either N satisfies (2.9), (2.10) and W = L+N or N satisfies

(2.3) ,(24) and W = L + N then the process Y is the limit in distribution of the
processes Y and the diffusion X is the limit in distribution of the processes Y™,
as r tends to zero.

For the proof see Theorem 1.6.1 and 4.2.5 in [3]

3 Pure jump processes on metric spaces

Let (E,d) be a complete separable metric space. We denote by £ the o-algebra of
all Borel measurable subsets of £. Let (U,U) a measurable space on which a o-finite
measure 1 is fixed and let ¢ : E x U — E an £ @ U /E-measurable function. We
suppose that the following conditions are satisfied:

(3.1) Jd(m,go(m,u))n(du) <c,forallz e E;

(3.2) There exists an increasing sequence (Ug)ken € U with n(Uy) < oo for all k € N
such that lim ay = 0 where aj := sup Jow, 4z, (z,u))n(du) ;

k—oo 3

(8.3): dleplz,u),ola’ u)} = diz, x)—{-cd(m z')-d(z,p(z,u)), for all z,z' € E,u € U;
where c is a positive constant.

Example. Let (E,d) be a metrizable compact space, o € I a fixed point, n a

Radon measure on F\ {o} with [ d(o,z)n(dz) < co and a function p: Ex E — E

such. that: vz, o) = =z and dle(z,9);olz',y)) = dlza )+ dlyy) for all e, 2,
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y,y' € E. Il we take U := £\ {0} then condition (3.1)-(3.3) are fulfiled.
If for all f € & and z € F we put

Nf(@):= | f(o(e,uw)n(du)

then we obtain a kernel on £ which is of first order by (3.1). As in Section 2
we associate to this Lévy kernel N the operator N defined by Nf(:c)
= [ (f(y) — f(z)) N(z,dy). It is well defined, following (3.1), at least in the case
when [ is Lipschitz continuous on F.

The following existence result for a Markov process generated by N will be a
consequence of Theorem 3.4 below:

Theorem 3.1. There ezists a quasi-left-continuous, strong Markov process on
E having cadlag trajectories and for which the ifinitesimal operator contains in its
domain the Lipschitz continuous functions on E and coincides with N on these
functions. ;

In fact this process will be a jump process with trajectories of "bounded va-
riation” (as it is suggested by the infinitesimal operator which is associated to a
first order Lévy kernel). The next Lemma gives us the convenient notion of jump
trajectory with bounded variation. The proof is left to the reader.

Lemma 3.2. Let f : [0,00) — E be a function which is right continuous and
has left limits and let D C (0,00) be at most countable such that

> d(f(s=), f(s)) < o0

s€D
and 1f 0 < t; <ty then

diftiod s 3 ddle=) i)

s€(ty,t2]ND

The function f is then continuous at each point of [0,00) \ D and constant on each
- open interval which does not contain points of D. Moreover if g : E — R 1s
Lipschitz continuous then

g(f(t2)) —g(ft:)) = > (9(f(s)) — 9(f(s—)))-

s€(t1,t2]ND

The starting point for the construction of a jump process is the Poisson point
process (with characteristic measure n) which will generate the jumps. Therefore
we begin with some considerations concerning the point functions.

Let p: D, — U be a point function, D, C (0,00) being at most countable, such
that the following condition is satisfied: »

(3.4) #{t € D, N (0,u]/p € U} < o0, for all u >0,k € N,
where p; := p(t). For any k € N we put Dy := {t € D,/p, € U} and we define the
following sequence (which depends on k): :

Tov= i i it > 7 lte Dl

14



In fact, in our case we will have lim 4((0,u] N Di) = oo and therefore 7, will be
U OO

finite for any m € N. If € € £ we may define a trajectory as follows:
}/tk(éﬂj) = 6 if ¢ € [0’T1> ) Ytk(é’p) i (P(Y-r]:n(éap)ap”rm) if ¢ S [TmaTm-i-l)-

Lemma 3.3. Let us suppose that:
(3.5) there exists klim Y(é,p) uniformly on each compact interval [0 s w0,

Then the limit trajectory .
Yi(¢,p) = lim Y (¢, p)

k—co
has the following properties:
(3.6) Yo(&,p) =€ ;
(3.7) the trajectory t — Yi(€,p) is right continuous and has left limits,
(3.8) Yi(&,p) = (Yi-(§,p),pe) , for all t€ Dy
(3.9) d(Y,(€,p), V(&) £ & d(Ya-(§,p), Yu(€sp)) fs <2

u€DpN(s,t]
The proof is obvious.

Let now p be a Poisson point process on a probability space (Q,F,P) with
values in (U,U) having the characteristic measure n and (F,); a filtration with
respect to which p becomes an (F)r-adapted point process (see [4]). Recall that
if for any t,s > 0 with ¢t +s € D we put 0.ps = pi+s then O;p is an’ (Fstt)s
adapted Poisson point process with the same characteristic measure as p. Since by
hypothesis n(Uy) < oo for all k € N, we deduce that condition (3.4) is verified a.s.
by the Poisson point process p. In the sequel 7, , YF(€,p) and Yi(€,p) will appear
naturally randomized. In this way (Tm)m will be a sequence of stopping times. For
a random variable ¢, Y* and Y become processes.

Theorem 3.4. If¢ : U — E 15 an Fo-measurable random variable then
condition (3.5) is satisfied in probability (where ¢ = é(w) and p = p(w), w € Q).
Moreover the following assertions hold:

a) If we define

X,(w) 1= H{e(w), p(w)), w €0

then a.s.

(3.10) X X ese, (VE 0

u€DpN[0,t]
and X, is the unique adapted process which satisfies a.s. (3.6)-(3.10).
b) If we put Z,(w) := Yi(n(w),pw)), w € Q, wheren : U — E is another
Fo-measurable random variable then

E [Sup s Zs)} < e E [d(¢,m)] -

s<t

¢) The following equality 1s satisfied a.s.

YH_S(:E,p(w)) = YS(Yt(xap(w))?etp(w))a o O

15



Proof. We show that (Y*

Jken is a Cauchy sequence. For any j > k we introduce
the notation:

gr.(1) := sup d(Y(€,p), Y7 (€,p)),

s<t

resltli= 0 mmmw@immmimm)d@i@mwwimmm&

seDpN[0,t]

= [ [a(rEEp). Y6 ) 4 (Y R)9(VE(EP) ) Nolds, du),
0 U

k

A= S xopulead (V). )

s€DpN[0,1]

=0 XUj\{Jk(ps)d(K’L(é,p),@(KJ;(ﬁ,p),ps))

s€DpN[0,t]

= [ [ d(Yi(n) eV & p),u)) Nolds, du).

0 U;\Ux

If s = Ty and v = 7, , where 7,, m € N, are the stopping times related to Uk,
then using also (3.3) we have:

d(YHE D), YI(ED)) = d(0(YE(E),pe) 0 (YL (6,9),74))

2 (YE(6,0), Y2 (6,9) +ed (YE (), YL (6,9)) - 4 (Y60, (Y (6, 2):s))

d (Y (,p), YL (p))
dYHER YIED) + T xopn(e)d (YL(ER) Y (E)

v<t<s,t€Dp

Therefore we get qi; < -7k ;(t) +7% ;(t). Theorem 3.1 in [4 ] allows us to replace the

integrals with N,(ds,du) by integrals with dsn(du), Yk and Y?_ being predictable
processes. By (3.1) we obtain

Elrus) = B U/mwk}*@MY”@m)Oimmwuimmm»mwwﬁ

<c-E U(O,t]d(Yk (€,p), Y (&p)) d }
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4
We conclude that E[g;(t)] < ¢* [ Eqr;(s)]ds + tax and by Gronwall’s lemma we
0

get S
Elqri(1)] < tage®

Since by (3.2) we have .Lim Elgr;(1)] = 0 one can find a subsequence (Y*(£,p))ien
JyK—0O0

which converges uniformly a.s. on the trajectories to Y'(¢,p) i.e.

lim supd (¥,%(€,p), Y (€,p)) =0, (V)t 2 Oas.

1200 st

From Lemma 3.3 it follows that the process X, := Yi({,p) verifies conditions
(3.6)-(3.9). To check (3.10) we compute

% X)) } {// Xy o(Xs,u)) n(du)ds| .

s€DpN[0,1]

By (3.1) it results that the right hand term in*the above relation is dominated by
¢t which implies the finiteness asserted in (3.10). Let us now prove the uniqueness.
If (Y}); is another process verifying a.s. condition (3.6)-(3.10) then we define

e A K ) = S g e X

s<t s€DpN[0,1]

)= Y xupa)d (YEE ), Yer) - d (YE(&D),0(YE(E,p),Ps) -

s€DpN[0,t]

As before we obtain g < ¢ 7¢(t) + ri(t) and

E[g:(t)] < & / Elqi(s)]ds + tay.

Again from Gronwall’s lemma we get
(8.11) Elqk(t)] < bl

and in the limit we deduce ¥ = X a.s.
Let us prove now the inequality from assertion b). For the approximation se-
quences Y/(€,p) and Y/ (n,p) we have the estimate:

dE e m Y p)) ‘
<c Y d(YEER)YEM D) d(YE(ER), (YA EP),p)) +d(&m)
& s€DpNI[0,t]

By the method used above we obtain the desired inequality.
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The equality from c) is verified by each of the processes Y (z,p), Moreover we
have:

d(Y (Y (2, p),0p), Ya(Y(z, p), 0.p))
g d(YS(Ytk(I’p)7 Qtp)’ YS(Yf(I’p)vgtp)) i d(Ysk(Ytk(g;’p)’ etp)u Ys(ytk(a:,p),&p)).
From assertion b) and (3.11) we get now: E [d(Ys"(YLk(a:,p),Otp),Ys(Yt(:c,p),Otp))]

< et F [d(Ytk(x,p),Yt(:c,p)] + setqy, < (te°2(s+t) + se"*)ay. When k tends to

infinity we deduce a convergence on a subsequence and the relation from ¢) follows.

Proof of Theorem 3.1. Obviously the process starting from = € E will be given

by Theorem 3.4 taking {(w) = z. We consider the canonical trajectory space for
this process. More precisely let

W = {w: [0,00) — E/w is cadlag and satisfies (3.9) and (3.10) ).

P?:=PoY(z,p)',z€E , Xyw):=w(t),weW.

Let now f € C (:= the real valued Lipschitz continuous functions on E). From

Theorem 3.4 b) we deduce that the function P,f(z) on E defined by

P.f(z) = E°[f(X:)] = E[f(Yi(z,p))]

'is Lipschitz continuous and using monotone class arguments it is E-measurable for
all f € £. The Markov property follows from

E[f(Yis(z,0)/ F) = E[f(Yo(Ye(2, D), 0:p)) [ Fo] = Pof(X:)

where we have used assertion c¢) from Theorem 3.4 as well as the fact that 6ip is
independent from F; and identically distributed with p.
If k € N let ng := xy, - n and N* be the corresponding operator

N f(@) = [ lp(w,w) = f()in(dw)

k

From Lemma 3.1 it follows that the process X§ := Y*(z,p) is the solution of the
martingale problem associated to the bounded operator N*. By Theorem 4.4.1 in
[3] we deduce that X{ is a Markov process and its semi-group has the infinitesimal

generator N*. Moreover from (3.11) we get

sup |P,f(z) — PEf(z)| < K - Elgu(t)] < Ktage®,

where K is the Lipschitz constant of the function f € C;. Moreover the following
estimates hold for any z € E:

|Pcf(x)t‘ f(z) = Nf(fl:)l < lPtf(x)t— f(z) —Nkf(x)l—}— lPtf(x) _t Py f(z)

I + Kayg.
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The strong Markov property and the quasi-left-continuity follow now as in the

Fellerian case (see ch.I (8.11) and (9.4) in [1]).
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