
dfr
I M A R

INSTITUTUL DE MATEMATICA
AL ACADEMIEI ROMANE

P R E P R I N T  S E R I E S  O F  T H E  I N S T I T U T E  O F  M A T H E M A T I C S

O F  T H E  R O M A N I A N  A C A D E M Y

lssN 02503ffr8

FROI ' i  D IFFUSIONS TO PROCESSES WI .TH JUMPS

by

Luc i  an BEZNEA and Luc ret  i  u  ST0 l jCA

PREPR I  NT No .7 /  199\

BUCURESTI



FROI4  D IFFUSIONS TO PROCESSES WITH JUMPS

by
. \

L u c i a n  B E Z N E A x )  a n d  L u c r e l i u , S T O l C A x )

lvtay', 199\

x )  l n s t i t u t e  o f  M a t h e m a t i c s  o f  t h e  R o m a n i a n  A c a d e m y , .  P . 0 . B o x  1 ' 7 6 \ ,

R O - 7 0 7 0 0  B u c h a r e s t '  R o m a n i a ,



From diffusions to processes with jumps
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ABSTRACT. We study the consequences in the probabil ist ic structure of the process
which follow after the perturbation of the integral part of the infinitesirna,l genelator of
a Markov process. Introducing or eLiminating jumps of a process learls to addition or
subtraction of an integral part to the infinitesimal generator. Moreover, we constrnct pure
jump processes with trajectories of bounded variation generated by a ciass of L6vy kernels
on a complete metric space.

INTRODUCTION. A Markov process may be modif ied by el iminating ihe
jumps greater as a strictly positive number e. Immediately after the moment
of a jump eradication,the process is continued with the same law as before.This
corresponds to a ki l l ing at the moment of the f irst jump greater as e, completed
with a resurrection. The appropriate transformation of the infinitesimal i;enerator is
the fol lowing: i f  the init ial process has the L6vy kernel / f  (r,  dy) then the inf inite-
simalgenerator of the modified process is obtained by subtracting the operator IE
defined by

Mu@) ' :  [  { " { i l  -  , ( r ) )X{ l r -s1; , tN (* ,dy)

from the original generator (Theorem 1.6). The question is whether we obtain a
continuous paths process when e tends to zero?

lVe provg,(Coroilary 2.3) that when the initial process has the infiniiesjmal ge-
nerator L + N , where .L is a second order elliptic differential operator and F is given
by

l r " ( " )  :  [  { " t i l -  r ( r ) )  N(r ,d,y)

( i .e. / /  is a f irst order L6vy kerne,,n ,n" sense of [2]) then it  is possible to pass r,o
the l irnit  and the l imil  process is the diffusion induced by L.

Similarly, i t  is possible to introduce jumps in the evolution of a process. The
corresponding modif ication for the inf initesiLnal operator is the addit ion of arr
operator l ike the above I* 1Th"o.em 1.8). Start ing with a cl i f fusion generated
by an elliptic operator ,L and a fir'st orcler L6vy kernel /y', we prove that the process
with gener aLor L * F may be obtained as a lirait of the processes generated by
,L + 1{".
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Irr the gr:ncra,l  ciLsc of a sccond olclc:r Lt ivy l<r:rncl l ,hc a,pproximation procedure
shorrld br: rnodif ied. ' I 'his t, irne, at ea,ch zlpproxirnat, ion stcp t,he ki l l ing ancl lhe
resurrecl ion should be accornpanied by a drif l ;  mocli f ication.

' l ' frr:  abovc idca,s suggesl tha,t a pufe jurnp proc(jss can be constructed starl ing
from a given kerncl. ln Section 3 we show lhat, under cert,ain srnoothness condit ions,
a f irst order L6vy kernel on a complete melric space generafes a Markov process of
pure jumps. This result is well  known for bounded kernels (see e.g. [3]), when the
process is regular step. In our case the obt,ained process has pure jr-p trajectories of
bounded variat ion. The method was inspired by the treatment in R.' for stochastic
differential equations with jumps (cf.[5]) and is available for L6vy kernels which
are represenied on a measurable space by a map satisfying Lipschitz regularity
condiLions. The main tool is a Poisson point process which generates the jumps.

1 Modification of jumps

Let E be a locally compact space with countable base and
/:(Q,f ,Ft.,xt, | t ,P") be a standard (Markov) process with state space E.
Denote by A the point at infinity, ( the iifetime of the process X, t theo-algebra of
Borel sets of E and t. its universaliy completion. We refere to [l] for basic facts and
notions concerning Markov processes and to [+] for the stochastic integral calculus.
Let N be the L6.uy lcernel associated with X in the following sense: N (r, d,y) is a posi-
t ive measure on E\ {z} and N (*,9 \ y) ( oo for any ir € B and any neighborhood
v of. x; the function r '- .-* 1/(",a\ {r}) is t*-measurabie for any A € t. ;  for any
bounded  pos i t i ve func t i on  f  e  ( t . 8 t . )o+  w i th  / : 0  on  A5 , : :  \ f u ,a ) l y  e  E \ , ,
the following formula holds:

( 1  1 )
"' [E 

r (x,- 
"",] 

: ,'U"' I r {r",a) N (x,,dy) dsf ,

for any r e X,t > 0. Such a kernel N(x,dy) is exactly the L6vy measure of the
process X with respect to the addit ive functional 41:: f  n ( from [B].

We remark that the set of values of s considered in the left side sum is at
most countable, namely the jump moments of the sample paths. We can regard
the jumps of ihe slandard process X as a point process. More precisely, this
point process takes values in lhe space (E x E) U {6}, where 6 is a f ict i t ious point
a t tached  to  E  x  E .  Fo r  eve ry  a . ,  €  Q  we  pu t  J (w) : : { s  >  0 /X"_ ( r )  f  X " ( r ) } ,
n(u. ' ) (s)  : :  (X"- ( r ) ,X, (&r) )  i f  s  €  - r (a . ' )  and n(u. , ) (s) : :  d  i f  s  €  n*  q j l r ; .  In  rh is
way we have defined a point process of class (QL) in the sense of [a]. To see this,
for  any A e t8 t  and t  )  0  we put

\

l r '  l  r^(X", y)N(X ", da).a ( (0 , l l  x  A )  : :



LetV be a neighborhood of  the diagonal  As of  [ i  x  f i , l \ : :  E x l t \  V and let  us
: define the real valuecl function h on E by:

h ( x ) : -  [  , n @ , y ) N ( r , d y )  , r  e  E .

lf. A1, :: Ih
I Xnr(r,y)/t '(r, dV) Sk, (V)A € N. Therefore for all I ) 0 and k e N we have

n ( ( 0 , t 1  ,  B * ) :  [ '  I  X a r ( X , , y ) N  ( X " ,  d y ) c t s  <  k t .
J o  J

I f  we put f i .  : :  n - A i t  fol lows that the stochastic. integrals with respect to fr are

martingales. Indeed, Iet us Put

At(t) ': I f (x"-, x") , Ar(t) ,= [' I f (x,,v) /{ (x", dv) d's,
s € J t  

- - o /  1  -  r \  /  
J o  J  "  \  " ' , v l  \ '

w h e r e  f  e ( t g t ) a * , s u p p . f  C B r f o r s o m e k a n d  J 1  - f i L d ) ' : ( 0 , t ] n J ( a r ) , u e  O .

If r < t then using the Markov property and (1.1) we have:

r - , r l  t  / t \  i  r , t r . - l  |  ,  
^  ' \

E lAtlt) 
- At\)lf,) - (Ar(') - Allr)) :

,'f".fr. f (x,-,x,)'t] - ,"U,' I f {r,,v)N(x", d'v)dslr,f :

E lAi(t- r) o 0,lf,J - Ec lA,U 
- r) o 0,lf,f -

nx'le,1t- r) - Ailt  -")] :  o.

As a consequence (cf.[a], Theorem 3.1 ) we have the following:
Lemma L.L. l f  g:  P(s,  ( r ,y) ,a)  is  an f1-predictable funct ion such that

, ' |  [^ '  lp (r ,  (X"- ,  v)  , ' )  lN (X, da) ds]  (  oo,
LJO

E'| [^'  lr(", (X,-, v) , ')  l ' /{  (x", di l  ds)( oo,
L/0

f o r a l l t > O , t h e n

n(d(t ) , :  D e (s,  (X, ,  X")  ,  ' )  -  [^ '  , ( r ,  (X,- ,  v)  ,  ' )  N (X, ,  dv)  ds
s€J t  

Jo

is a. square integrable martingale.
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Theorem 1.2.  Let  1 : (Q,F, f t ,X1,01,P"  )  be a s tandar t l  process wi th  s tute space

E, Ld.ay lcernel N and inf,nitesimal generator W (in the sense that the resoluent of

X consi,dered on ti has the inf.nitesimal generator W with domain D(W) g tf')

Let A 9 E x E \ AE,, and def,ne the kelnel N' by

I f  we suppose that  sup / / '1(z)  1x and put
x€E

7 : :  in f  i l  >  0 l  6 , - ,  X , )  e  A) ,

then the following assertions hold:
(i) T is a stopping time which is almost surely stri,ctly positiae and 

[ygTp 7 (,wh'ere \

T p , k  e  N  a r e  t h e  i t e r a t e s  o f  T  ( i . e .  T s : T , T r + t : T r * T  o 0 7 r ) .

(ii) The process X' obtained by killing X at the moment T has the infinitesirnal

generatorw - N'. I f  rnoreouer X is a Feller process and N'(C") g C" then Xt is a

FeIIer process too.
Proof. By (1.1) applied for / :: X,r we deduce:

As a consequence the process X has almost surely on the interval (0,t] at most a I

finite number of jumps in A. Consequently, almost surely ? > 0 und 
,lit 

Tr 2 (

Therefore the proof of the first assertion is complete.
Since ? is a strictly positive terminal time,by killing X at the moment 7 we get

a standard process X/ with state space B.If we denote by (U")"ro (resp.(U'o)o>o)

the resolvent of X (resp.X') then the following equality holds for all a ) 0:

U o : U , " + p F U " .

" On the other hand bv Lemma 1.1 with

p(s ,  ( r ,  y ) , r )  :  e - " ' f  (x ,a )x t (x ,y ) ,  f  e  ( t "  I  t . )a+

we deduce that m(g) is a martingale. Therefore, taking / independent of e, i.e.

f  (* ,y)  -  f  (y) ,  we have E' ln(v)Q)]  :  0 or equivalent ly

Consequently, '

"  
P F f  : U ' " N ' f  '

It now follows that

(1.2) Uo = U'" + U'" N'U"

I

N'h(x) : :  I  y { r ,y)h(y) / { (x ,da) ,  (V)h,e t j * .
J

E',l#{, < tl (x,-, X") € A}l : t" 
l lr 'AI'1 

(x")r'] = r sup N'1(r)

E' l"-" flxr)] = u'llr' e-o'N' f(x")dr] .



and by Lemma 1.4 below we conclude thal W - Nt is the inf initesirnalgr:nerator of
( {J ' " ) ,>o '

If  X is Feller and N'(C,) g C" then, as in the proof of Lemma 1.4, for suff iciently
large o we have U"(C.): U'"(C") and therefore X' results Feller.

Remark L.3.With the notation from the aboue proof, taking f independent of

A, w€ deduce the following equality which will be used later:

E' l"-" ' I (xr-)] : u'"(f N't)(r), (V)r e E.

Lemma 1.4.  Let  (U") , r ,  and (U' " )oro be two resoluents of  bounded l inear
operators on the Banacl t .  spaceB such.  that l lu" l l , l lU ' " l l  <  * , fo ,  a l l  a  ,  and hauing
the infinitesimal generators W and W' (with domains DW ) and D(W')). If K is
a bounded l inear operator onB, then the fol lowing assert ions are equiaalen,t:
(i) U" - U'o = U'" KU", for euery o > 0.
( i i)  D(W) : D(W') and W : W' + K.
Pro.of)'(i)+(ii)" Since Uo : U'"(I + KU") and 1 + KU" is invertible on B for
large a i t  fol lows that D(W) : Im(U") : Im(U'") -- ,D(W'). I f  a >' 0 then
( a - w ' -  I { ) u " :  ( c - w ' ) u ' " ( I  +  K U " ) -  K I J ' , "  -  I { U t , I { U o  :  I  +  I { ( U "  -

U'")  -  K(U'"KU") : , f .  Hence W :W' *  K.
" (i i)+ (i l '  Wehave: U'" KUo = U'"((o-W')- (a- W))U":U'"((o- VV')U" - I) =
Uo - U'o , which completes the proof of the lemma.

Corollary L.5. Let X be a standard process with state space E, L6,uy kernel N
and inf,nitesimal generatorW.lf 

IEB/fttrl 
1a then the f,rst iu^p of the process

X defines a strictly positiae stopping time and killing the process at the rnoment of
the f.rst ju*p we get a continuous paths.standard process with infinitesinzal generator
W  _  N ,

The next theorem gives a probabilistic way to rebuild the process X starting
from X'. We use the construction of resurrected processes. We recall the notation
from [6]:

Let X:(f),f ,71.,X6,0r,P') be a standard process and .|y' a resurrection kernel.
We set

W ; :  { t r :  (c , , ,e , r . r r , . . . )  €  f l * /  ( ( r ; )  :0  =+ cu ;11  :  a i+z  -  . . .  -  6 }

a n d  f o r  u : ( . o r t " t r , . . . )  Q W  ,

s,(u,)  : :  f  ( ( r i )  ,  soo(to) ' :  J lgs,( to)
.  J  - v

X , ( r o )  ,  i f l < s s ( ? r )
X t - , , ( . , ) (u ;+ r ) ,  i f  s ; ( ' r . u )  S  t  <  s i+ r (u i )

{ i .o)ur , . . . ) . ,  i f  t  <  to( r )

t -s i ( . , )o i+r  t ta ;+2t" . ) t  i f  s ; ( tu)  < t  <  s t+r( tu) .

\

Y,(r) ' :  
{

O,(r) ': { l3



' fhen lherc exisl on W a probabil i ty l l"  and an adequate f i l trat ion (9,) such that
Y  :=  (W,9 ,9 r ,Y r ,O , ,11 " )  i s  a  Markov  p rocess  and  k i l l i ng  Y  a t  t he  momen t . s6  i t
becomes equivalent with X under P". ' Ihe kernel /V gives t,he distr ibutiorr of Y,o
condit ioned by the evolution up lo s6

Theorem 1.6. With. the hypothesis and notation from Theorem 1.2 we haue:
' t .

(i) If for all w e Q we put

R(a,dy)::  -xII<(-d3L N' (X7-(a),da) +x1r2ai(cu)e o(dy)'  
N ' l  (Xr- ( r ) ) '

then R is a resurrection lcernel for the process X' and the resurrected process is
equiualent with X,
(ii) If for all a e Q we def,ne -

Q@,dy)  : :  X1r<6y(c. , )e  xr_py(dy)  + X{r><i ( r )e{da)

then Q is a resurrection kernel for the process X' and the resurrected process has
the inf inite.gimal generator W - N'+ N'1 and D(W)!D(W - /t ' '+ /f '1). I f  in addi-
t ion X is a Feller process,l/ ' (C") e Co'and /{ '1 is a continuous function then the
resurected process is also Feller..
Proof . Note that the expresion defining R 'makes sense even if Xr- (r) €

[t{'1 : 0] because in this case the first term vanishes. Recall that (U")",>o
(resp. (U'")">o) denotes the resolvent of X (resp.X'). Also , we denote by
Y:(W,9.,9uY,Or,f l") the resurrected process with the kernel R and by (V")">o

its resolvent. To prove the first assertion it suffices to show that U" -- Vo,, for all.
a ) 0. By Lemma 1.7 below we have for any g e ti+i

Efil"-"* g(v".)] : E'" [r-*t'fi(',e)] : E' le-'r R(''u)] = E" 
[.-"tffi#]

From Remark 1.3 we get now that

: U'" N'g(r), (V)c e B

and therefore, for any ,f € ti* and r € E,

u'" f (r) + u'" N'v"/(r).

Hence for o suff iciently large we have Vo : (I-U'^Nt)-tUtd. Using also (1.2) we

deduce Vo : Uo
W" prou" .tow assert ion ( i i) .  This t ime we denote by Y:(W ,9,gr,Yr,O1,l i") the

proces's obtained resurrecting X' with the kernel Q and by (7").>6 its resolvent.

Efile-"'o n (Y", )]

v" f (r) : Efillo"* "-"' t (Y) dtl.: EfrUo" "-"' , (Y) dr] * Efife-"'ovo f (%. )]



U. g € ti* , by Lernrria 1.7 we get

Efrlr-" 'o g(Y,.)]  = E' i  f"- ' '  Q(.,e)] :

E' le-"t'r(', o)] = E' lr-"'g (xr-)] .
By Remark 1.3 we deduce t

4 le-"'o n(Y,,)] - (J'" (g N' r)(r)

and further, for any f e tt+, seting g :: Vo f we get

v" f(*) : u'" f(x) + Efif"-"'o g(y"q)] : u'" f(x) + u'"(N'r . v" f).

The assert ion fol lows now by Theorem 1.2 and Lemma 1.4.
Lemma L.7. Let /:(Q,f , f t ,X1,01,P') be a stand,ard process with state space

E and y:(W,8,}r,Y,Or,i l ' )  be the process obtained by resurrecting X with the
r e s u r c e c t i o n k e r n e l  R .  T h e n f o r  a n y  f  e  ( t -  B t . ) a + , a ) 0  a n d x € E  w e h a a e :

Ef,le-"* 7 (v"o-, v",)] : E'l"-"c [ ,(.,dilf 6c-(,), y)l .
r  L  J  "  - ' )

Proof. Following [6] re have

Efife-"* 7 (%o-, Y".)] :

f l l

J il ' G.o) J n@o-,dv) J rrv (da1) e-"tvot 7 (xc- (ro) , Xo (rt)) :

I  
n"  @o)e-oc( 'o)  |  o@o,dy) f  (xc-(ro)  ,y) .

Theorem t.8. Let /:(Q,F,ft,X1,fu,P" )'be a stand,ard, process with state spoce

, E, N a bounded kernel on E and M : (Mr)rro the multiplicatiag functional of X
defined by

Mt :: €rp (- lr'nr (x") ds) .

We d,enote by t:1fi,F, Fr,?r,lr,P') the subprocess of X ind,uced by M and, by
y:(W,9,9r,Yt,Or, i l ) the process obtained resurrect ing X with the kernel  R giaen
by

R(6, da), : 
##9.\ N (&- @), dy)+ x {a>(} (a),o (dy ),' '  ̂  \ " c - \ " / /

where A e 0. Then the following assertions hold:
(i) If X has the inf"nitesimal generator W then Y has the infinitesirnal generator
W -  Nr  *  N and D(W)  :D(W -  /V l  +  l { ) .
( i i )  I f  for  a l l  t  )  0 andc.. ,  € f )  we put Jr(r) , : {s S t l t  -  s"(u) for  somen 2 1},

!



where sn,n €

we haue:

IN are the iterates of ss

r- .l| \- .-"" f /\, v
l 2 - "  J  \ r ' - ' t r i l  :
ls€Jt I

eno[e  by  (U" ) " ,  (0 \ , ,
see that

trn

Proof. We d
It is easy to

, then fo r  a l l  f  e ( t .  I  t * )u+ ,a  )  0  anr l  x  €  E

I  r t  r  I
E f , l l  e - " "  l f  ( Y , . u \ N ( Y . . d a ) d s l

" L J o  \ " '  J

(V")" the resolvent, oi the processes X,f,Y.

u"( f ) :0" f f )  +  0"1tu t  'u" ( f ) )

Moreover by Lemma 1.4 we have

(1.3) u"(f) :  0"(f) + u"(r/ l  ' j " f f))

(see also ch.lY,(2.22) in [1] ). W" prove first that

(1 .4)  Ef i le - " '7(%o- ,%,) ]  :  0"Uo / { ) (z)  :  Ef iUo"  " - " " roN(Y,)du]  ,

where / o /f(r),: f f(r,y)/r/(", dy), for all r € E. Indeed, by Lemma 1.7 we get

Efife-"' l(Y"o-,%.)] = e"l;"e 1 R(',dy)f (&-l l,r)] :

8,1,,--e r l! (&-) ;{e < (}l : ,'l [ ,-"/;f (x,-) (-d,M)f :
L"  N l  \  s  '  J  L / (o ,c ) -  / v l  ' )

t" l [ ..e-o' fo /r (X,-) M,d,rf - } ' ffo N)(c).
LJ(o,() J

This establishes (1 4).
Taking in  (1.a)  f ( * ,y) , -  f (y)  we deduce that  for  any. f  e  t i+  and a > 0,we

have 
Ef i le-"*  y(y" . ) ]  :0"  N f  (*)

and since V" :0" f * Efi le-""oV" f (X"r)] we obtain

vo =.0" + 0" NV" , (V)a > 0.

From (1.3) and Lemma 1.4 we get that the infinitesimal generator of the pro."r, f

ts W - NI , D(W) : D(W - /f  1). Again by Lemma 1.4 and the above relation

between (t")" and (v")" the f irst assert ion of Theorem 1.8 fol lows.

Let now / € (t.  I t .)a* and a > 0 . Then by the strong Markov property of Y

and (1.a) we have:

f c o  ,  \ l  ' 9

En l i  e-as^f  ( r , " - ,%,)  l :  Lu| [ r -"" ' " -assoos'  f  (Y,o- ,%o)o6""1 :
Lt=r  I  n=o

\



turr[r-*"' E{i^ l"-'"o.f (y"o-, yr)]] :
n=0

E ofr lr-""^ nft. llo"" "-',, o N (y,)rr]] =

E 
uU l.-""" (lo"' ,-"" ro /v (y,) o,) .r""] :

E "* U:"*"""'n 
,-ou.ro 1v (%) o,f : tfill:: "-ou f o u 1v,7 a,f

Consequently we have

t-: I f r"*ufi 
L: 

e-o'^ f (r""_, 
"")j 

ufil,l, "-ou f " N 1n1 a"l .

If for any t e (0, oo] we,put

\

, :  
lo' e-o'f o // (y")ds,

Bfi [I*] - Efilo*] < -.

By standard arguments follows now assertion (ii). Indeed, since f,, : D_ -
Doooor and o1 - o@.- ooo o o,, for all I € (0roo),it follows: tf i t"D*oo; -

Py W:tD""l] = ̂ Ef, lrn ['"""]] : *fi.[o- o o1]'which leads to Efi [I] : Eftto,l.
rnus tneorem l.U ls proved.

2 11 . tEL/onvergence oI processes associated with in-
tegro - differential operators

In this section we consider Markov processes in IR,d associated to integro-differential
operators. A first treatment of integro-differential operators in connection with
Feller semi-groups they generate was given by Bony, Courrbge and priouret 

[2]. The
main tool in our approach is an ), priori estimate of Schiuder type obtained by
Pragarauskas and Mikulevicius [Z] (sle (2.5) below).

Let L be a second order elliptic differential operator with Holder coefficients
in R{

d d

l ,  ' :  f aii (r)\ ie + ! ai(r; 0; * a(r).
i ' i =7  i= l

I ,  ' :  D .-"".f (Y,-,Y,) , ot
s€Jr

then we have already proved that

(2  1 )



The matrix (alt) is assumed to be symetric and uniform ell ipl, ic i .e.

f  '"@)e'€i > /r, l€1,, (v) x, €: (€') e mr,
1 , 7 = l

the coefficient o is nonpositive and all the coefficients have flnite Holder norms)

la; i lo,o, lat lo,o,  la lo,o I  Kz,  (v) i ,  j .

Let /{ : ly'(r, dy) be a positive kernel on IR.d such that 1/(r, {r}) : 0, lor all
r € IR.d and

(2.2) / t ' ( r ,  Rd \  B(r ,  t ) )  : '0,  c e IRd

(2.4) |  [^.  .u(y - r) ly -  xlzN(r,dy) -  l :  u(y - r ' ) ly -  r '12 t{(r ' ,d.y) l
J B(r , r )  J  B1x, , r \

S p(r ) l *  -  r ' l " lu lo  ,  (V)  r , , r '  €  Rd,u € tu(R' ) , r  e  (0 ,1 ]

where p:(0,1] -r  (0,o9) ir  a funct ion such that lg*r(r) :0 and B(x.,r)  denotes
the closed ball of center r and radius r. Note that condition (2.3) with r : 1 gives
the usual finiteness required to a. L6vy kernel, while as r ---f 0 we get a uniform
integrability condition.

For z € C'?(Rd) and r € Rd we define

:  r l  d  . \
Nu(x) :: I lu(a) - 

"(') 
- l0;"(*)(a' - *') ) ru1', ay;.' r  

\  r - r  /

The integro-differential operator

W : - -  L + f r

is a Waldenfels operator (see [2]) and N is called the L6vy kernel ol W. Le[ W :-
W - 0t be the associated parabolic operator on IR x R'. By a sign change, t -+ -t,

this operator is of the type studied in [7]. Theorem 8 from [7] gives the fol lowing
result:

\

I  la  -  * l 'N(r , ,dy)  < p(r) ,  (v)  c € IRd,r  e (0,  r1,
B (a,r)

(2.a)
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T h e o r e m  2 . 1 .  U t " > 0  a n d f  e C 3 ' " ( 1 0 , t , ]  x R . d )  t A e n  t h e r e e i l s t s a u n i q u e

fitnction u e CIP(O,1o] x F.d) such thut

W u = f  u n d z ( 0 , . ;  : 9 .

Moreouer  there et i ,s ts  a constant  c :  c( to ,d,d,  Kr , I {2 ,  p)  snch that

(2.5) lulz," < cl.f 10,".

(Here Cf'" denotes the closure of the space Cf; of al l  inf ini ie differenliable functions
of compact support with respect to the Holder norm | 1p,".)

We remark that W has the posit ive maximum principle because a ( 0. Namely,
i f  u € C:(P,/,]  x iRd) has a posit ive maximum at the point (t ,u) € (0, t , ]  x lRd then
Wu(t,r) S 0. This implies the fol iowing propert ies:

1 ' .  i f  u  e Cl (10, t , ]  x  Rd) ,  u1r=o (  0  and Wu) 0 then u (  0 .
2.  I f .  u  e Cl (0,1, ]  x  R.d)  sat is f ies Wu :0 then l r l ,  <  lu l r=olo.
From Theorem 2.1 we get the following:
3o. If  /  e C;'"(R') then there exists a unique function u e Cl,"([0,m) x Rd)

such that Wu :0 and u(0, ') - /. Moreover for each fo ) 0 there exists a constant
c such that

(2 .6) luglo,r"lxmalz ,o I clf lz,o.

We introduce the notation Prf (r) -- u(t,r) for / and u related as in 3' abbve.
For each , > 0 we have a linear operator P1 : C!'" , C:,". According to 1o this
operator is monotone (i.e. / > 0 implies Prf 2 0) and from 2o we deduce that it
is a contraction ( i .e. lPrf los l /1,). Obviously the family (P,),>o is a semi-group
which admits a unique.extension, denoted by the same symbol, to the space Coof.
all continuous functions in IRd vanishing to infinity. It is easy to see that (&),ro is
a Feller semi-group whose infinitesimal operator extends I4l.

Let us put now

(2.7)  / f , . ( t ,  d ,y)  : :  XB(" , , ' ,1 .  N(x,dy)  , .  M,( r ,dy)  : :  N(x,dy)  -  N,(x ,dy) .

S " 
* 0, NI, approximate //.  The operators I4l, : :  L *ff ,und Wi :- l ,  I

lt'" are similar to W so that they generaLe Felier semi-groups (P,'),>o and (Pi')r>o
respectively. Denote by (Q,)rto the semi-group generated by .L. A straightforward
computation leads to the fol lowing estimate

(2 .8) lF"r lo , ,  <  cp(r ) lu lz , , ,  (V)  u  €  C2' " (Rd) .

This al lows us to prove the fol lowing result:

\
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Proposit ion 2.2. [ , 'or un,!/ f  e C, untl l ,  > 0 we huue

l y i l n { f  
-  I ' t f l " : o  l , g lP [ f  

-Q , f l " :0 .

Proof.  LeL f  e Cf,  and set u(t , r )  : - -  P1f(r) ,  u( t ,x) : :  p{ f  ( r ) .  Then we have
(L + M, -  0,)( ,  -  u)  :  f f ,2.  Combining (2.5),  (2.8) and (2,6) we ger

lP{ f - Ptf lz," S cp(r)l f lr ,".

Lett ing r - ' .  0 we get 
|$ l f i l  -  P,f l" :  0. Since Cf; is dense in Co and rhe

operators PI and P1 are contractions, this relation extends to any function f g C".
The second convergence is checked similarly.

Now let us consider the case of a first order L6vy kernel. More precisely we
suppose that N is a kernel on IRd such that 1{(2, {r}) :  0 for al l  c € Rd, (2.2) holds
and the following conditions are satisfii:d:

(2.e) I  l y - x l N ( x , d a ) S p *  t  r e R d , r € ( 0 , 1 ] ,
J  a @ l ) ' "  

I  \

(2.10) |  [^ .  ,@ -  *) ly  -  r lN(r ,  d i l  -  t^ .  .u(a -  , ) la -  x ' lN(r ' ,dy) l'  J n@,,) J 81,',,1 \'

S  p ( r ) 1 ,  -  r ' l " l u l o ,  x , r '  €  R ' , u  e  t 6 ( R d )
where |g3 n(r) : 0. We denote bV N the operator

l r " ( ' )  , :  
|  { " { i l -  r ( " . ) )  N(x,dy) ,  (v)u e c ' (Rr) .

An integro-differential operator W has the first order L6vy kernel /f if it is of the
form

.  W : L * N ,
where ,[ is a second order elliptic differential operator with Holder coefficierts as in
(2.1). Such an operator W may also be written in the formW : L'* F, where
L '  : :  L  *D!=rb iE; ,  wi th  b i ( r )  : -  f  (y ' -  z t ;N(r ,dy)  .  Condi t ions d,ssumed ensure
that bt e C0'"(R.d) and /t '  satisf ies (2.3) and (2.4).Consequently the preceding results
may be applied to W . In particular there is a Feller semi-group associated with I4l. If
N"  and M,  are the kernels  der ived f rom. l {  as in  (2.7) ,  the operatorsW,: :  L+M,
and Wi ::  L * fr,  g"n".ute semi-groups (Pi)116 and (Pi"),>o that are Fellerian.
Similar to (2.8) the fol lowing inequali ty holds:

lF" r lo , .  <  p( r )c lu l r , . ,  (V)u e Ct ' " (Ro) .

As a consequence we have a result analogous to Proposition 2.2 :
Proposit ion 2.2'.  The assert ion from Proposit ion 2.2 holds true in the case of

the frst order Lduy kernels.

t
\
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Under the assunrl ion l ,hat l t '  is a f irst, orcler L6vy kernel, lel us denol,e by X , Y ,
Y ' ,Y ' '  the processcs havi r rg  respecl ive ly  t ,he sr : rn i -groupr  (Q,) ,>0,  ( / ' , ) , ru ,  (P i ) r ro ,
(Pi ' ) r ro .Relat ion (1.1)  is  sat is f ied by the processes Y,Y '  and Y ' '  w i th  t ,he kernels
N, M, and /V" (cf. Th6orbme 10 in [5]). The process Y' can be constructed from
X by ki l l ing with a mult ipl icative functional and resurrecting l ike in Theorem l.B,
so introducing jumps counted by the bounded kernei M,. ,On the other hand the
process Y' '  can be obtained from Y by el iminabing the jumps larger than r, with
the procedure from Theorem 1.6.

If  l f  is not a f irst order L6vy kernel but just satisf ies condit ions (2.2)-Q.a) we
st i l l  preserve the notat ion X,Y,Y' ,Y ' '  for  the processes associa led wi th  the sern i -
groups (8, ) , r0 ,  (&) ;0,  (P i ) , t0 ,  (P i ' ) , r0 .  Then the probabi l is l ic  re la t ions between

X and Y' or Y and Y' '  area l i t t le bit more complicated. Since M: M - f UnAr,
i = 1

the process Y'is obtained from X f irst transforming it  as inrTheorem l.8-with

the kernel M, and..then introducing the effect of the drift - 
2b;0;, 

The proba-

bilistic interpretation of the drift modification for processes with jumps is analo-
gous to the Cameron-Martin-Girsanov transformation in the case of diffusions (see
Th6orbme 25 in [5]). The process Y'" can be constructed from Y by using Threorem

1.6 with the kernel M, and ihen taking into account the influence of the drift f 6t0,.

Proposit ions 2.2 and 2.2' imply the fol lowing conclusion:
Corollary 2.3. I f  eith.er N satisf,es(2.9), (2.10) and,W: L+ff o, N satisf ies

(2.3) , Q.l and W -- L + N then the process Y is the lirnit in distribution of the
processes Y' and the diffusion X is the limit in distribution of th,e processes Yt' ,
as r tends to zero.
For the proof see Theorem 1.6.1 and 4.2.5 in [3]

3 Pure j,r*p processes on metric spaces

Let (E,d) be a complete separable metric space. We denote by t the o-algebra of
all Borel measurable subsets of E. Let (U,U) a measurable space on which a o-finile
measuren is  f ixed and le t  g  i  E xU - - - -+ E an t@Ult -measurablefunct ion.  We
suppose that the fol lowing condit ions are satisf ied:
( 3 . i )  

! r O ( r , e @ , u ) ) n ( d u )  
1 c ,  f o r  a l l  x  e  E  ;

(3.2) Thereexists an increasingsequenc" (Ur)reN e U with n(Ur) ( oofor al l  A e N
such that  

, ] i_ . l too 
:0  where ak ' . : .EB/ytu-  d( r ,p( r ,u) )n(du.)  ;

( 3 . 3 )  d ( t p ( r , u ) , p ( r ' , " ) )  <  d ( r , r ' )  |  c d ( r , r ' ) . d ( r , v @ , u ) ) ,  f o r  a l l  r , r '  e  E ,  u  e  U ;
where c is a posit ive constant.

Example. Let (-0, d) be a metrizable compact space, o e E a f ixed point, n a

Radon  measureon  E \ {o }  w i th  Id (o , r )n (d r )  (  ooand  a func t i on  g i  ExE ' - "+  E
such  bha t  V@,o )  =  r  and  d (V@,y ) ,V@' ,A ' ) )  1  d (x , r ' )  +  d (y , , y ' )  f o r  a l l  r , r ' ,

\
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l J , ! J ' €  d .  I [ 'we  take  U  ' :  f l \  { o }  t hen  cond i t i on  (3 .1 )  (3 .3 )  a re  fu l f i l ed .
If for all I e ta anc.l z € E we put

then we oblain a kernel on E which is of frrsl order bV S t). As in Section 2
we associate to this L6.ay kernel A/ the operator A/ defined by N/(t)
t :  [  ( f  (y)  -  / ( " ) )  N(r ,dy) . l t  is  wel l  def ined,  fo l lowing (3.1) ,  a t  l i :asb in  the case
when / is Lipschitz conbinuous on E.

The fol lowing exislence result for a Markov process generaLed bV /{ wil l  br: a

consequence of Theorem 3.4 below:

Theorem 3.1. There erists a quasi-left-continuous, strong Markoa process on
E haaing cadlag trajectories and for which the if.nitesimal operator contains in its
domain the Lipschitz conti,nuous functions on E and coincides with N on these

functions.
In fact this process wiil be a jump process with trajectories of "bounded va-

riation" (as it is suggested by the infinitesimal operator which is associated to a

first order L6vy kernel). The next Lemma gives us the convenienl notion of jump

trajectory with bounded variation. The proof is left to the reader.
Lemma 3.2. Let "f , [0, oo) .-.---+ E be a function whi.ch is right continuous and

has teft limits and let D c (0, co) be at most countable such that

I  a(F('-), /( ')) < *
s€D

and i f  0  (  t r  1 t2 then .

d(f (tr), f (tz)) S

The function f i,s then continuous at each point o/ [0, m) \ D and constant on each
open interual which does not contain points of D. Moreoaer if g , E -----+ lR, is

Lipschitz continuous then

g(f( t r ) )  -  g( / ( t ' ) )  : ( g ( / ( ' ) )  -  g ( / ( " - ) ) ) .
s € ( t 1 , t 2 ] n D

The start ing point for the construction of a ju-p process is the Poisson poinl

process (with characterist ic measure n) which wil l  generate the jumps. Therefore

we begin with some considerations concerning the point functions.
Let p : Dp --+ rJ be a point function, D, C(0,-) being al most countable, such

that the fol lowing condit ion is satisf ied:
(3 .4)  #{ t  e  re  n  (0 ,  

" l lp re 
Ur}  <  oo,  for  a l l  u  )  0 ,k  €  N,

where pr : :  p( t ) .  For  any /c  e N we put  D1, : :  { t  e  Dr fp,  EUr\  and we def ine the

fol lowing sequence (which depends on k):

16  : :  0  t  rm* r :  i n f  { l  >  r * l t  E  Dr } .

N/(")  ,= 
l r f  

(p(r ,u))n(du)

\

T
4 , t z

d( / ( ' - ) ,  / ( " ) ) .
lnD"e (
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Lemma 3.3. Let us s'uPPose tlt,at:
(3.5) there erists lim Y,k({, p) uniformly
\ / ,t-oo

Then tlt,e limit trajectorY
Y,(€,p)  ,=

In  fa ,c t , ,  in  our  ca,se we wi l l  have,h lg#((0,u]  n  Dl )  :  oo ancl  therefore r -  wi l l  be

finite for any m € N. lf t e fi we nay define a trajeclory as follows:

y r r (€ ,p )  : :  €  i f  t  e  [ 0 ,  r r )  ,Y rk (€ ,p ) : : qV :^G,P) ,P , ^ )  i f  t  €  l r ^ , r *+ t ) '

on each cornpact interual [0,r1, u ) 0'

l im Y,k(€,  p)
A-o

Itas the following Pro'Perties:
( 3 . 6 )  Y o ( € , p ) : € ;'p 

I tne bajectory t r-+ Y1((,p) is right continuous and has left limits;

(3.5)Yt(€,p) :  v(Y,-({ ,p) ,  pt)  ,  for  a l l  t  e D, ;

is q a1v,1qi,,p),Y,(t,p)) s ,efn1",,1 
d(Y"-(€,p), %(€'p)) if s < t '

The proof is obvious.

L"t no* p be a Poisson point process on a probabil i ty space (Q,F,P) with

values in (U^,U) having the characieristic measure n and (f)t a-filiration with

respect to'which p b"olm", an (f1)1-adapted point process (see [a])' Recall that

i f  for b.ny t,s 2 0 with l*s € D we put 01p, ::  pt '1s then glp is an (f"+t)"-

adapted Poisson point process wiih the same characteristic measure as p' since by

hypoth"rir r(u*) < oolo. all k e N, we deduce lhat condition (3.a) is verified a's'

ty^tt" Poisson point process p. In the sequel r*,Yrk(€,p) and yr(€'p) wil l  appear

nu.turally randomized. tn thi" way (r-),, will be a sequence of stopping times' For

a random variable €, Yk and Y become processes'

Theorem 8.4. If € t (J -+ E is an fs-rneo,surable random uariable then

cond,ition (3.5) is sotirfi,rd in probabilitv (where { - €(') and p: P(w)' u e Q)'

Moreouer the following assertions hold:

a) If we define 
x,@),: x(€(r),p(r)) , c.r € f,)

!

then a.s.
(3 .10) t d(X"-, X,,) ( oo , (V)t 2 0

u€Don[0,t]

and, Xt is the unique adapted process which satisfies a's'

b)  I f  we put  Z{a) : :  Y1(a( t ' ' ) ,p( ' ) ) ,  o  € f , ) ,  where

F6-rneasurable random u ariable then

(3.6 )-(3. 1o) .
\ : u - - - 1  E i s a n o t h e r

< e""'E [d({, q)]

The following equality is satisf'ed a's'

'  X+ , ( r ,P (u ) ) :Y ' (Y ' ( t 'P ( ' ) ) '  o 'P ( ' ) )  '  x  e  E '

B ir,rp d(X,,2)1
f s ( l  J

Ic)
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is a Cauchy sequence. For anY

: :  suP , t (Y : ( t " ,p ) ,Y :  ( ( ,  p ) ) ,
s ( t

Y,'-({ ,  d) 'a

Y"'({, P))

)  k  we in t roduce

i l ,p(Y!-(4, n), r ,))

p),")) No(ds,du),

to Up,

[4] al lows us to'replace the

and Yf being predictable

jthat  (Yk)reN

q*, i ( t )

xu*(p')d
[0,t ]

r '0,1(t) : :  t  xu,\v^(p,)d
s€Dpn[o,t]

t
DPn[o

Xu,yuo(P")d

il,

(":(e, p),Y!-(€,n))

Proof. We show
the notal ion:

rp; ( t )  : - \-
/r

u P t  I

If s : Trn+r

then using

(n: (e , il,Y:-(€, r)) . d (r"! (e ,

(yl (g, p), e(v,l (€,
t

= 
|  |  

o ( ' : - (€ 'P) '
o U r

\a

(vJ-((, o),

(vJ- (e, il, v(Y!-({, r), r"))

Yj-G,*)) 'a (":(e , p),vv!-({,p),n")) ;

(",'-(g, p),Y,j (€, n))

r'ls€

t

I
= l

J
0

a n d u =
also (3.3)

s  (vk r  rq  
F s  \ S l .

! o (r:-(€,r), e(Y!-(€,p), ";) no(as, a").
4\ur

r* , where rm) n't € N, are the stopping times related

we have:

p), y,i(€,p)) : a (v(v!-((,p), p),v(Y!-(€,r),r,))

(""1(e, p),Y!-(1,r)) + cd (rf 11,

t
u1t1s , t€Dp

s d (vi(€,

= " u 
[/,,,,

< d

d

p),vi(€,p))+ xu,\un(Pt)d

Therefore we get Qr,i  1 c'r14(t)+r'k, j(t).  Theorem 3'1 in

integrals with No(ds, du) by integrals with dsn(d"), Y:-

processes. By (3.1) we obtain

I t r

El,*, i l :  E I I l  .  . .  a (v:-({,p), Y,'-(€,p)) d
LJ J(0, r lxUA \

d (':-({ ' p),
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: W" conclucle LhaI Elq1,,1(r)] < , ' iE[r1,,(s)]ds * ta1, and by Gronwall 's lemma we

set  
)v, r , , tDl  1,  tape" ' t .

Sinceby (3.2) we haver,HL Elqr, i ( t ) ) :0 one can f ind asubsequence (Yki(( ,p)) ;eN

which converges uniformly a.s. on the trajectories to Y({'p) i 'e'

,[* t? 
o (n:'({' P)' Y((' P)) : o ' (v)r ) o a's'

From Lemma 3.3 i t  fol lows that the process X1 :: Yr(t,d verif iLs condit ions

(3.6)- (3.9) .  To check (3.10)  we compute

I  I  t r  1 t  . - . - 1
EI  t  d (x " - , x . ) l  :E |1 , ,  l ^d (x , - ,e (x , ,u ) )n (du)ds l  '

f seDon [o , t ]  )  
* - - -  J

By (3.1) it results that the right hand term in'the above relation is dominated by

ct which implies the finiteness asserted in (3.10). Let us now prove the uniqueness.

If (f ,),  is another process verifying a.s. condit ion (3.6)-(3. '10) then we define

e*(t) :: ,"!g a(r,ute ,?),y,) , r'x(t) '= 
".fi1o,,,xutu-(n,) 

d,(Y"-,Y,) ,

r6( t )  : :  I  xur (p, )d . ( " : (g ,e) ,%-)  'd( r : - (1 ,p) ,  e(Y: - (€ ,p) ,p" ) )  .
s€Don[o,t]

'  
As before we obtain 8* 1 6 ' to(r) * r 'o(t) and

t,

Elqn(t)l S "' J 
B[q;(s)]ds * ta*-

0

" Again from Gronwall's lemma we get

(3.11)  B[qo( t ) ]  < ta1,e"" t

and in the l imit we deduce Y - X a.s.

Let us prove now the inequality from assertion b). For the approximation se-

quences Yrr(€,p) and Yro(n,p) we have lhe estimate:

d(r,*{{,  d,Y!(n, i l )

1c t o(":-((,p), Y!-(,t,n)) a (r1({,p), e(Y:-(€,p),n")) + dG,d.
- s€Don[o,t]

By the method used above we obtain the desired inequality.
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' fhe equaliby from c) is verif ied by each of the processes Yrr(*,p), Moreover we

have:
a$ ! ( ,k (x, p),  0,p),Y,(Y1(r,  p),  0,p))

S d(Y,(Y: (* ,p) ,gp) ,Y"(Y1(x,p) ,0 ,p) )  +  d(Y: (Ytk( r ,p) ,0p) ' ,Y"(Y,k(" ,p) ,9 ,p) ) '

From assert ion b) ancl (3.11) we get now: E la1Vy1V,o1r,P),0rP),Y,(Y1(r,p),0,pDl
< e""Ela1vrk1*,p),Yr(r,R)] + se"" a1, 1(te"2(slr)  a se" '")a1, '  when k tends to

inf inity we deiuce a convergence on a subsequence and the relation from c) fol lows'

Proof of Theorem 3.1. Obviously the proces.s slart ing frorn r € .0.wil l  be given

by Theorem 3.4 taking t@) : , .  We consider bhe canonical trajectbry space for

this process. More PreciselY let

W: :  { t u :  [ 0 ,oo )  -  E lw is  cad lag  and  sa t i s f i es  (3 '9 )  and  (3 '10 )  ] ,  
\

P ' : : P o Y ( x , p ) - t , r e  E .  ,  X r ( * ) : = u ( t )  , w € W '

Let now f e Ct (:: the real valued Lipschitz continuous functions on B). From

Theorem 3.4 b) we deduce that the function prf (r) on B defined by

P,f (*)  : :  E' l f  (X,) l :  El f  (Y(" 'P)) l

is Lipschitz continuous and using monotone class arguments it is t-measurable for

all / e t. The Markov property follows from

Elf  (Y+,(r ,dl f , l :  El f  (Y,(Y( ' ,p) ' ,O,pDlFi:  P' f  (X,)

where we have used assertion c) from'Theorem 3.4 as well as the fact that 0p is

independent from Ft and identically disiributed with p.

If k € N let n6 :: Xur" ' n and lf* be the corresponding operator

From Lemma 3.1 it follows that, the process Xf :- Vf (xr! is the solution of the

martingale problem associated to the bounded operator N*. By Theorem 4'4'1 in

[3] we Jed,lse that Xf is a Markov process and its semi-group has the infini[esimal

generator lft. Moreover from (3.11) we get

sup lP,f (r) - Pf f (r)l < /{ '  E[qr(r)] 1 l i ta1,e"'t 1
-t: tr

where 1{ is the Lipschitz constant of the function f e Ct. Moreover lhe following

estimates hold for any r e E:

P,f(r) -  f(r)
p . f ( r ) - P f  f ( r ) , ,  L ' ^-  wo l ( " ) l  +  l :O t  ,  

- t - r -  r ru r .

t

Nk y1*1 , :  I  l f  @@,"))  -  / (c) ln(du).'  
JUx

P,f (,) - /( ') -  w/(" ) l  S I
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The strong Mar:kov property and the quasi- left-continui ly fol low now as in the

Pel ler ian case (see ch. l  (8 .11)  and (9.+)  in  [ t ] ) '
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