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Dilation operators in excessive structures; Existence and unicity

by N. Boboc and Gh. Bucur

Introduction

Let V = (V)az0 be a proper submarkovian resolvent of kernels on a measurable
space (X B) such that the set £y of all V-excessive functions on X which are finite
V-a.s. is min-stable, contains the positive constant functions and generates B. We
suppose that X is a Lusin space and that it is semisaturated with respect to V (i.e
any V-excessive measure on X, dominated by an V-excessive measure on X of the
form p oV is also of the same form). The above conditions are equivalent with the
fact that there exists a right process on (X, B) for which V is the associated resolvent.

In the paper ([4],[5]) we consider two submarkovian resolvents ¥ = (V, Jaistis YW =
(Wa)aso on (X, B) which possesses a reference measure and such that the absorbent
points with respect to V and W are the same. If &y C &y, if any s € & is lower
semicontinuous with respect to the fine topology generated by & and if for any
A € B and any positive B-measurable functlon f we have

Vpaf < Wpga f

(where Vpa (resp. Wga) is the balayage on A with reqpect to &y (resp. EW)) then
there exists an other submarkovian resolvent ¥ = (Vor)aZO such that & = & and
such that . ' .

Vof <Wo.f VYa>0and f 20, B-— measurable.

In fact there exists a kernel @ on (X, B) such that Q(&w) C &,
SA(@s+t—Qt+Qf) € Ew
for any s, t'é Ew and any positive B-measurable function f on X and such that
Wfi=Vf+QWf VY f>0, B-—measurable.

This type of kernels was firstly considered by G. Mokobodzki ([11]) in conection with
the subordination in excessive structures. Moreover if ) is such a kernel for which

W bounded == i%f QEW =0
then for any u € &, we have
UE SW = Qu jgv U

This Jast problem was considered recently by R. K. Getoor and M. J. Sharpe ([10])
in the frame of the right processes without reference measure.

In this paper we deal with the above problems in the general frame of H-cones.
We give two H-cones S,T such that S is an H-subcone of T (i.e. S C T and for
any M C S we have AsM = ArM and respectively VoM = VoM if moreover M is
increasing and dominated in S). Here S (resp. T') is instead of &y (resp. £y) in the
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preceding considerations. A map Q) : S — S is called a (S, T)-dilation operator on
Saf

1) 51,52 € S, 81 £ 59 => @Qs1 21 Q32 21 59

2)seS,uel, Qsdru<s=u€sb.
It is proved that if ) verifies 1) then the property 2) is equivalent with each of the
following properties:

3) 1A (@s1+52—Q2+Qf) €S Vsi,,€8, fe(S-29),

4) 51,82 €5, 51— Qs1 < 53— Qs = 51— Q51+ Qs € S;5€ 5, t e T =
3s' € S;(s—Qs)At=5 — Qs

If B is a balayage on T' then the operator B# on S defined by

B#s=A{s'"€ S |s > Bs)

is a balayage on S. If @ is a (S, T)-dilation operator then we have

5) B¥f - Bf = QB*f - B(QB*f) V /€ (S-9),
and therefore ‘

6. Bf < B*Af Y- fe (8=

Under suplimentary conditions (which are quite natural) we proved that if Q
verifies 1) then 2) <= 5). Moreover if the property 6) holds then there exists a
minimal (5, 7")-dilation operator P on S (i.e an (S, T')-dilation operator on S such
that any other (S5, 7')-dilation operator @ verifies the relation

.PSjTQS Vseb.

We consider also the problem when there is a unique (5, T')-dilation operator. It
is shown for instance that the unicity holds in one of, the following situations:

a) T contains sufficiently many quasi-continuous elements, does not exists ab-
- sorbent balayages on T' and there exists a balayage B on S which is a (5, T)-dilation
operator.

- b) 5 =&y where W = (W, )a50 is a proper submarkovian resolvent on (X, B) as
in the begining of this introduction such that there is no fine open sets of the form
{z} and T is the H-cone of all a-excessive functions.

Finally we consider the problem when given a (5, T)-dilation operator Q on S we .
can extend it to a map Q : D(Q) — T defined on a solid subcone D(Q) of T such
that S C D(Q) and such that we have, for any u € D(Q), the relation

u € S(Q) <:>C~2u =T u.

If V, W are two proper submarkovian resolvents on (X, B) which have all proper-
ties from the begining of this introduction except the existence of reference measure,
we can apply the above considerations to the H-cone Ezcy and Ezcyy of excessive
measures on (X, B) associated with V and W respectively.

1. Localizable dilation operators in H-cones

Let S be an H-cone. We recall ([4], [5]) that a map P : § — S is called a local-

izable dilation operator (l.d-operator) on S if P is additive, increasing, contractive,
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continuous in order from below and if for any 5,0 € 5 and any [ € (S —S), we have
sA(Ps+t—Pi+Pf)e S,

It is known that if P is an l.d-operator on S then the convex cone Sp of § — §
given by ‘

Spi={s~Ps|se§)}

endowed with the natural order relation from S — S is also an H-cone. Moreover we
have

tES,UESp:>i/\uESp
fE(S—S')+,uESp:>Pf/\u€Sp

and for any s € S there exists a unique $o € S such that s — Ps = So — Psg and if
t € S is such that sy — Psy <t — Pt then so < t. (See [5])

Concerning the lattice operations on the H-cone Sp we remember that for any
subset A of Sp (resp. any upper directed and dominated subset A in Sp ) we have

é\A = S/_\SA (resp. ;/A B S\—/S A).

Remark, TtV =V ), isa proper submarkovian resolvent on a measurable
space (X, B) and there exists a reference measure then the cone Ey of all V-excessive
functions on X which are finite V-a.s. is an H-cone. In this case, supposing that
X Is semisaturated (i.e any H-integrale on &y dominated by a measure on X is also
represented as a measure on X ) then the above notion of localizable dilation operator
in nothing else then a kernel of subordination on &, is the sense of Mokobodzki [11].

We remember that for any f € (5 — S)+ the map By : S — S given by sts =
Bps=nteS|t>sA(nf), V)ne N} = Vaen B(s A (nf)) is a balayage on S.

Proposition 1.1. Let P be a l.d-operator on S. The following assertions are
equivalent:

a) For any s,t € S such that

{uESp[ugs}:{ueSp‘]uSt}

we have s = ¢.
b) For any s,t € S such that

{ueSplu<syCc{ueSp|u<t)

we have s < ¢, ;

c) For any f € (S — ), such that By < P we have f =0 .

Proof. Obviously a) <= b)
b) = ¢). Let s,t € S be such that s < ¢ and let f =1t—s. If we suppose that
By < P then from the relations

BquPuSu Muels



we get

/,.))j'!l = jjj[f)f?/, S BIP'I_L S Bfu, Bfu = ]31.[)'“‘

[)’fu = /}/Bju S PBfu S Bfu; Bfu = PB/U
and therefore, using the definition of By, we have
vess w2 Pying) MrneN=v>uA(nf) (V)neN

Particularly, taking v = Pu,

(Pu) A (nf) = uA (nf) (V)n e N,

(= Pyl Aofe0, (u—Pu)/\t:(u~Pu)/\[(t——3)+5]_<_

S(u—-PU)/\(t—s)—i—(u—Pu)/\slz(u—Pu)/\s

Hence if u — Pu < ¢ we get u — Pu < s and therefore, using the hypothesis we
have s=1t, f=0.
c) = b). Let sp,t0 € S be such that for any u € S we have

=P sp=S . Py < 1y
or equivalently :
u— Pu<sg = u~— Pu< v, where Vg 1= Sg A tg.
Hence, since for any u € S we have (u — Pu) A sy € Sp we deduce
(v = Pu) A sg < (u~— Pu) A v, (u— Pu) A (sg—wp) =0
for a,ny u E.S. Hence

0 < (u— Pu) An(so—vo) < nf(u— Pu)A (so—v0)] =0

bl

uAn(so —vo) < PuAn(so— o) + (u— Pu) An(so —vo) = Pu A n(so — vp)
for any u € S and any n € N. We get

B(So—vo)(u> = B(so—vo)(Pu) = Pa, B(So—vo) s P

and using the hypothesis sy — vy = 0, sg < tp.

Remark. We remember ([3], [5]) that any balayage B on S is a l.d-operator on
5 and we denote by Sp the set Sp = {s — Bs|s ¢ S}

Proposition 1.2. Let P be a l.d-operator on S and let B be a balayage on S
such that B < P. Then the map Q on Sy defined by

Q(s— Ps)= Ps— Bs = Ps — BPs
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is a l.d-operator on Sy and Sp = (SB)g-
Proof. Let B be a balayage on S such that B < P. From

s€ 5= BPs < Bs = B%s < BPs; B*s < PBs < . Da

it follows that
PBs = Bs=BPs (¥)s€S.

We have

Q(s—Ps)=Ps—Bs<s—Bs (V)se$
Obviously @ is additive. If s;,5, € S are such that
» s1 — Bs; < 83 — Bs,
we deduce
Ps; — Bs; = Ps; — PBsy < Psy — PBsy = Psy — Bsq

l.e the map () is increasing. If the family (s; — Bs;)ier increases to s — Bs, without
loss of generality we may suppose that the family (s;)icr increases to s. In this case
the family (Ps; — Bs;)ier is increasing and since (Psi)i T Ps, (Bs;); T Bs we get

\/ Q(s; — Bs;) = Q@(s — Bs)

€]

i.e ) is continuous in order from below. -
Let now u =s— Bs,v=t—Bt, f = w; —w; € (Sp — Sp)+ where s,t € . We
have f € (S = S)y,v— Qv =t — Pt and :

uN(Qut+v—Qu+Qf)=sA(Ps+t— Pt+ Pf)— Bs.
Since P is a l.d-operator on S it follows that the element
r:=sA(Ps+t— Pt+ Pf)
belongs to S and Br = Bs. Hence
uA(Qu+v—Qu+Qf)=r— Bre Sg
and therefore ) is a l.d-operator on Sg. From the relations
5= Ps=(s—Bs)— (Ps— Bs)= (s — Bs) - Q(s = Bs) (¥)s€8

we deduce the equality
op ={8p)a:

Corollary 1.3. Let P be a l.d-operator on S and let B be the balayage on S
defined by

B=\{Bs|fe(S-S),Bs <P}
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Then the map @) : Sy — Sy given by
(s — Bs) = Ps — Bs

is a l.d-operator on Sy such that there is no function g € (Se — SB)+, g Z 0 such
that BJ» < Q.

Proof. We consider g € (Sg — Sg), and suppose that BfB < Q. Obviously
g € (5 —5)4 and using ([3], [6]) we deduce

(BY Vv B)(s) = B)%(s— Bsj+Bs - (W)seS

From the definition of B it follows that B, 5:B:ahdB, YV B =B
Hence B22(s— Bs)=0  (Yise S :

Remark. From Proposition 1.2 and Corollary 1.3 we see that for any l.d-operator
P on S we have Sp = (Sp)q where B is a balayage on S and Q is a l.d-operator on
Sp which verifies one of the assertions from Proposition 1.1.

In the sequel we suppose that P is a (I.d)-operator on S which verifies one of the
equivalent assertions a)-c) from Proposition 1.1.

We recall ([4]) that if T is an H-cone then a convex subcone S of T is termed an
H-subcone of T if S, endowed with the natural order relation of T is an H-cone and
for any subset (resp. any upper directed and dominated subset) A of S we have

ANA=N\A (resp. \é/A: YA)

If S is an H-subcone of T then for any balayage B on T the map B*¥ : § — §
defined by :

Bfsi= At € §|t> Bs)

is a balayage on S and we have BB#s = Bs for any s € S (see [4]).
Definition. An H-cone S is called a complete H-cone if any subset A of S such

ot ; (V(P’\G))):O M)peS.

nelN* \a€A

1s bounded.

In Ay we show that: for any H-cone S there exists a unique (up to an isomorphism)
complete H-cone S such that S is a solid and increasingly dense convez subcone of S
which is termed the completion of S.

Theorem 1.4. There exists an order preserving embeding  : § — Sp such that
0(t) - 0(Pt) =t — Pt (V)teS.
More precisely for any s € S we have

0(s) = \/{u € Sp |u < s}

Sp



and 0(S) is an H-subcone of Sp.
Proof. First we remark that for any s € S the set A := fa € Spla<s)is
bounded in Sp. Indeed, for any v € Sp we have

A (Yo (9) < 2 (rD)s 4 2
neN* \a€A i nelN* n neclN* "

Since Sp is increasingly dense in Sp then for any element w € Sp we consider an
increasing family (v;); in Sp such that w = Vi v;.

Let us denote
e 4 (320

neN* \a€A

The set A is upper directed because for any ¢t € S-we have (t — Pt) A s € Sp.

iy A (Y (Erwan)) = A (v (Erw)) =c

neN* \a€A nelN* \a€A
and therefore
wO:wo/\w:\/(wo/\vi) =0

The H-cone Sp being complete we deduce that A is bounded. We put, for any
SES,
0(s) = \/{u € Sp |u<s)
Sp

Since, for any s € S, the family {u € Sp | u < s} is upper directed it follows that
for any s;,5, € S we have : :

0(s1 4+ s2) > 0(sy) + 0(s,).
If u€ Sp and u < 57 + s, then we have

uAs; €S5p, uAsy € Sp, uSuAs +uAs,

uAs < 9(31)7 ulsy < ‘9(32)7 u < 6(31) T ‘9(32)

1.e 0(s1 + s2) < 0(s1) + 6(s2). Obviously 4 is increasing.
Suppose now that s;,s, € S are such that 0(s1) < 0(s2). Then for any u € Sp,
u < s; we have

v < 8(s1) < 8(s3) =\ {olv € Sp,v < 55},

Sp

u=\/{uAvveSp,v <sa} = \{uAvve Sp,v< Sp} =
§p SP

.:\/{u/\vlv €9p,0 < 85} <8,
S .



Hence s; < s,.
We show now that for any s € S we have

0(s) ~ 6(Ps) = s — Ps

or equivalently

g Ps +0(Ps) = 0(s)
Indeed, if u € Sp is such that u < Ps then we have

s=Ps+ueSp, 8$—Ps+u<s and 8 = Pgus Al
Hence u being arbitrary we get
8= Ps+0(Ps) <H(s)
Let now u € Sp be such that u < s. Then we have
u<s— Ps+ Ps, u < (s—Ps)+uA Ps
Since u A Ps belongs to Sy we get
u< (s—Ps)+0(Ps)
and therefore, u being arbitrary, we obtain
0(s) <s—Ps+8(Ps); s— Ps= 0(s) — O(Ps).
To prove that 6(5) is an H-subcone of Sp we consider now A C S arbitrary.
" Obviously we have
BANA) < N\o(A)
s 3p
Conversely if v € Sp is such that u < 0(s) for any s € A then we have u < sdorall
s'€ A and therefore :
w S NA w8 A
s s
Since Sp is increasiﬁgly dense in Sp we deduce

No(A) = 9(/5\/1).

Let now A be an upper directed and dominated subset of S. Obviously we have

oy 4) 2 \/o(a)

For the converse inequality we consider an element u € Sp such that u < (Vg A).
We have

uZ VA, u= \{uhs|asc A
s 5=

8



Sinceu As € Sp and u A s < s we gel

u:\/{s/\ulsEA}<\/ s) | s € A}.

Sp Sp

The element u € Sp being arbitrary and Sp being increasingly dense in Sp we get

oy 4) < Vo, oty 4= Vot

Remark. 1. In the sequel we identify S with its image 6(S) in Sp. In this way
S becomes an H-subcone of Sp.

2. For any balayage B on Sp (or equivalently on Sp) we denote by B# the
balayage on S associated with B by

Bioe hlkeSTis Bs}. (V)s € S.

3. For any f € (S — S); we have Pf € Sp. The assertion follows from the fact
that Pf € (S - S); and uA Pf € Sp for any u € Sp. B
It f € (S~ S5)4 we shall denote by Bj the balayage on Sp defined by

Bu= AN{veSp|v>uvA(nf) (V) n € N}
and we remark that in this case we have
Bfs=\{teS|t>sA(nf) (Y)neN).
Theorem 1.5. For any balayage B on Sp and any s € S we have
B#s — Bs = PB*s — BPB*s,
Proof. For any s € S we put
Ls := Ps+ B(s — Ps)
Since B(s. ~ Ps) € Sp, B(s — Ps) < s — Ps we get
Ps+ B(s — Ps)=sA(Ps+ B(s— Ps)) € §
On the other hand for any ¢ € S such that
t—Pt<s=(s—Ps)+ Ps
there existé 81,82 € S such that

t‘"Pt:(Sl—P31)+(32_P32),

= Ps1. = 8<="Ps, 85— Psy < Ps.

9



Hence
B(t — Bt) = B(s; — Ps;) + B(sy — Psy) < B(s — Ps) + (s — Ps,)

and therefore
B(t — Pt) < B(s = Ps) + Ps,

BS:\/{B(u—Pu)[ue Syu =Py <8} <

< B(s—Ps)+ Ps=1Ls

From the above considerations we have
s > Ls > B*s, L(B*s)= B#*s

and therefore

B*s — Bs = P(B*s) — BP(B*s)
Corollary 1.6. For any balayage B on Sp and any f € (S — §); we have

Bf < B*f.

2. (S8,T)-dilation operators

In this section we suppose that T is an H-cone and S is an H-subcone of T.
Definition. If Q : S — Sis a (I.d)-operator on S such that

81,82.€ 5, 81 £ 83 == Qs5y <p Qsp 27 59

and such that the set

So = {s ~ @sls € 5}
is a solid subset of T' with respect to the natural order of T’ then @ will be termed an
(S,T)-dilation operator.

Remark 1. If S is an H-cone and P is an l.d-operator on S which verifies one
of the equivalent properties a)-c) from Proposition 1.1 then P is an (S, T)-dilation
operator where T' is the completion of the H-cone Sp. Moreover in this case Sp is
increasingly dense on 7.

Remark 2. If Q is an (S, T')-dilation operator then Q is an (S, Ty)-dilation
operator where Tj is the smallest naturally solid subcone of T such that o C Ty

Theorem 2.1. Let Q : $ — S be an additive, increasing an continuous in order
from below map such that

51,82 € 5, 81 < 89 => Q31 =7 Qsq =7 8.

Then the following assertions are equivalent:
a) @ is an (S, T)-dilation operator.
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b) For any element u € T such that there exists s € S for which Qs <p u < s we
have u € S. .
¢) The set Sg defined by

So ={s—Qs|s € 5}
1s a solid subcone of T' (w.r. to the natural order of T') and for any sy, s, € S we have
51—@s1 <8 — Qs =35, —Qs; +Qs; €S
d) There exists an (.5, T')-dilation operator Q; such that
Q18 27 Qs (V)se S

Proof. a) = b). If u € T and there exists s € S such that Qs <7 u < s then
the element u — Qs belongs to T and we have u — Qs < s — Qs. Since So 1s a solid
part of 7' with respect to the natural order then there exists s’ € S with

§—Qs =u—Qs<s—Qs.
Since @ is a localizable dilation operator on S we deduce
u=s—-Qs+Qs=sA(Qs+s-QseS

b) = a). Let s1,8, € S and f € (S — S), be arbitrary and let u be the element
of § — S defined by

ui= sy A (Qsy+ 51— Qs1 +Qf).
From hypothesis we have u € T' and

Q@s2 21 u < 89

i.e u € S and therefore @ is localizable dilation operator on S. It remains to show
that the set Sg is solid in T

Let w € T and s € S be such that u < s — Qs. Let us consider the element so € S
defined by

so= \N{s€eS|ugs —Qs}

Obviously we have u + Qso < ¢ for any s’ € S such that u < s’ — Qs
Since S is an H-subcone of T' we get ‘

u+Q30§/\{s'ES|u§s’—Q3'} = 59, u < 50 — Qsg.
Obviously we have u + Qsg € T and |
Qso 27 u+ Q3o < 59
Hence the element s, := u + @Q)so belongs to S and we have
So < S0, U= Sy — @0 < S5 — @S

11



The last inequality implies that s, > s and therefore 5o = So. Hence u = sy — Qs,.
The relations a) == ¢) and a) = d) are obvious.
c) = b). Let u € T and s € S be such that

Qs Sru<s

The element ¢ := u — Qs belongs to T and t = u — Qs < s — Qs.
Hence there exists s; € S such that t = s; — Qs;. From the hypothesis and using the
inequality

s1—Qs1 <s—Qs
we get
u=t4+Qs=3 —Qs;+Qs€S.
d) = b). Let @, be an (5, T)-dilation operator such that
@18 27 Qs (V)se S
and let w € T, s’ € S be such that
Qs' 2ru<s

We have then
Q18 2r Qs Zru<s

and therefore u € S. '
For any balayage B on T' we denote by B# the balayage on § given by

B¥fs=N\{s€S|s>Bs} - (V)seS.
Obviously we have
Bs < B¥s, B(B*s)=Bs (¥)s€S.

Theorem 2.2. If @ is an (S, T)-dilation operator then for any balayage B on T
we have

B*s — Bs= QB*s — BQB*s  (¥)scS.
Proof. Let s € S and let B be a balayage on T. We put

u:= Bs+ QB%s — BQB*s
From the relations
BB*s = Bs, Bs— BQB*s = B(B*s — QB*s) < B*s — QB*s

and using the fact that @ is an (5, T)-dilation operator we deduce that v € S and
Bs < u < B#*s. Hence u = B*s and therefore

B#*s — Bs = QB#*s — BQB*s.

12



Corollary 2.3. If there exists an (S, 1')-dilation operator () on S then for any
S € (5 —=5); any balayage B on T we have

Bf < B*J.

Proposition 2.4. Let ) be an (S,7)-dilation operator and let B be a balayage
on I'. Then the following assertions are equivalent

a) B(s—Qs) =0 (V)se S

b) B#s < Qs . Ve E §

¢) B¥s = QB*s MseS

d) B¥s = B*(Qs (V)se S

Proof. a) = b). If s € S then the relation a) implies:

Bs= BQs < Qs.

Since Qs € S we deduce B#s < Qs.
b) = ¢) and ¢) = d) follow from the fact that for any s € S we have

B#s < Qs < s = B*s = B#(B*s) < Q(B*s) < B*s

B*s = QB*s < Qs = B#s = B*(B*s) < B*Qs < B*s.

The relation d) = a) may be obtained from the fact that for any s € S we have
Bs = BB*#s.
Theorem 2.5. Let @ be an (S, T)-dilation operator and let By be the greatest
balayage on T which vanishes on Sg. Then the balayage By is absorbent (i.e Byt < ¢
for any ¢t € T') and for any s, s” € S we have

s' < 8" = Bys' <1 Bys".
Particularly, if there is no absorbent balayage B on T, B # 0 such that
s',s"€S, & <s"= Bs <y Bs"

then Sg is increasingly dense in 7.
Proof. For any s € S we consider the balayage B,_q; on T defined by

B,_gs(u) := \/ {u An(s = Qs) | n € N}

Since s — Qs € T the complement ([3]) B;_q, of the balayage B,_q, is absorbent
([1])- Moreover for any s',s" € S we have

. (SI 5 QS,) + (3// "y QS”) — (Sl + -3” _ Q(S/ + S”))’

Bs’l—Qs' S BSI+SII_Q(3/+SH), Bs”—Qs" S le_*_sll'__Q(s/_i_sH)

and therefore the family (B,_,,)ses of absorbent balayages on T' is decreasing. Hence
the map By : T' — T defined by

Bou= A\ B, q,u= A B;_q.u
SES SES

13



i1s also an absorbent balayage on 1" and moreover we have By(s—Qs) =0 forall s € S
and
s',8" € 5,8 < 5" = Bps' = Bo(Qs) <1 Bo(Qs") = Bys” <p §”

The fact that By is the greatest balayage which vanishes on Sg follows from the fact
that for any such a balayage B on T' and any s € S we have

B(B,—qsu) = \/ B(n(s—Qs)Au) < \/ nB(s—Qs) =0
nelN nelN

and therefore

BAB,_g, =0
Hence, using ([1], [3]) we have

B =Bnl=1587 (Bs-—Qs VB;—Qs) = (B/\ BS—QS) v (B /\B.;—Qs) o

= B A\ B;—QS S B.IS—QS

and therefore, the element s € S being arbitrary,

B _<_ /\ B;-—Qs == BO-

SES

From the preceding considerations we see that By is in fact the complement of the
balayage V,cs Bs—qs- If there is no trivial absorbent balayage B on T such that

8,8 €8, § <& = Bs' <34 Bs"

it follows that By = 0 and therefore I = V/,c5 B,—gs which liedes to the conclusion
that the convex subcone Sg is increasingly dense in T.

Theorem 2.6. For any balayage B on T which verifies one of the equivalent
properties a)-d) from Proposition 2.4 for a given (S, T')-dilation operator Q on S we
have

s',s" € 8,5’ < 8" => B¥s' <4 B¥s" <7 "

Particularly if there is no trivial balayage L on S such that
S/, s"e S, P < gl s T of <7 Ls" L g"

. then Sg is increasingly dense in T'.
Proof. From Proposition 2.4 we deduce

s, 8" € 85,5 <" = Bts' = Q(B*s') <7 Q(B*s") < B#s"

s €S => B¥s= Q(B#s) <1 Qs =<7 s.

The last part of the proof follows from Theorem 2.5.
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3. Existence of (9,7)-dilation operators

In this section S and 1" are two H-cones such that S is a convex H-subcone of T. For
any balayage B on T' we denote by B# the balayage on S defined by

B¥si= A\ft-e 5|2 Bs)

We want to construct, under some suplimentary conditions, an (S, T)-dilation
operator on S.

Theorem 3.1. The following assertions are equivalent:

1) for any balayage B on T and any f € (S — S), we have

Bf < Btf

2) for any balayage B on T and any f € (S — S), there exists an element ¢t € T
such that:

‘B*¥f - Bf =t— Bt

3) for any balayage B on T, any f € (S — S), and any element s € S such that
f < s we have

O<B*f—Bf=rs

4) for any finite family (fi)ies, fi € (S —S),, any finite family (Bi)ier of balayages
on T' and any s € S such that ZB{#fi < s we have
el

O <> (B¥fi—Bifi) =r s
iel

Proof. The relations 4) => 3) = 1) and 2) = 1) are obvious.

1) = 2). Let f € (S —5); and let B be a balayages on T. For any balayages
M on the H-cone Tg, where

TB = {t*BtltET},
there exists a balayage B; on T, B; > B, such that
M(t — Bt) = Bt — Bt MteT

(see [6]).
Since the element B* f — Bf belongs to T — T it remains to show that M(B¥*f —
Bf) < B*f - BJ. (see [3))

We have, using the hypothesis, M(B* f — Bf) = B,(B* f)— B\Bf < B¥(B*[) -
BiBf = B¥f — Bf. Hence 1) <= 2).

1) = 3). Let f € (S—S); and let B be a balayage on T. If t € S is such that
f £t we have

t—(B#f—Bf)~Bt:(t—Bt)—(B#t—Bt)Jr(B#(t—f)~B(t—f))
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i.e the element u := { — (B* f — Bf) — Bt belongs to Ty — T. We show now that
u € T'g. Indeed, if we consider a balayage M on Tg there exists a balayage B; on T,
Bi > B such that

M(s — Bs) = By(s — Bs) MseT

and therefore

M(u) = By(u) = By(t — B*f) - Bi(Bt - Bf) <

ng(t—B#f)—(Bz—Bf):B#t—B#erBf—Btgt—(B#f—Bf)—Bt,

Mu <wu

Hence u € Tg. On the other hand we have u <t — Bt and therefore u + Bt € T 1.e
t—(B*f—-Bf)eT.

3) = 4). We proceed inductively and we suppose that for any system ( fi, fs, . .. fn)
of elements of (S — S); and any system (By, Ba, ..., By) of balayages on T such that

ZBi#fi < s, where s € §, we have
=1

n

s — Z(Bz#fi —B:f)eT

=1

Let now {fi, fa,..., fay1} be a subset of (S — S); (By,Bs,...,Bn41) be a system
n+1 ¢

of balayages on T such that ZBi#f’i < s where s is an element of 5. We have
=1

ntl n+1
s — Z(Bi#f,- — Bif;) € T and we want to show that s — Z(B,#f,- — B;f;) is an

=2 i=1
element of 7.

If we denote

n+1 n+1 | .
f=s=>AB¥fi=Bif)), u=s->.(BFfi - B:f:)
1= 1=2

and by Rf the reduite of f with‘respect to the H-cone T' then we have
wueT, u=f+(Bfh-Bih), vz f, vz RS
On the other hand for any o € (0,1) we have
Bof > B(aRf) = aRf
where B, is the balayage on T' defined by

teT, Bst= \/ R(tAng), g:=(f—aRf)s.
neN
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(see [2]). On the other hand we have
By(BY fi = Bifi) =0, B.f = Biu > B\Rf > Bi(aRJ).

From the relations

Bof 2 Ba(afif) = aRf

Bif 2 Bi(aRf)
and using the fact that for any s € T' we have

(BaM.Bijs = (Bag) ¥ (B3]

it follows that
(BoaV By)f > (Ba V Bi)(aRf) > aRf

From the relation O < u — B# f; we deduce
(BaV B1)f = (BaV By)(u — BY fi) + (Ba V B1)(B1 f1) <

< (BaVB)*(u—BFfi)+ Brfy = (B, VB )*u—Bfi + Bifi <
<u-(Bffi—-Bifi)=f.

Hence for any o € (0,1) we have
f>(ByV By)f > aRf

and therefore f = Rf € T.
Lemma 3.2. Suppose that
Bf < B¥f

for any f € (S — S); and any balayage B on T and we denote by Pg the map
: S — T defined by

PBS .= B#s — B#SATBS.

Then we have

1. Pg(sy + s3) = Ppsi + Pgs,

2. 81,82 €5, 51 < 5 => Ppsy =1 Ppsy 27 39

3. PB(B#S) = Pgs VseS _

4. Pp is continuous in order from below (i.e s; T s,51,5 € S => Pgs; T Pgs).
For the proof see [4].

In the sequel, in this section we suppose that the pair (S,T) verifies the following
two conditions:

a) Any increasing family of S, dominated in T is dominated in S.

b) For any ty,t; € T such that

feES -8, <t = f<t

then t1 < tq.

17



Remarks. 1) If S is complete then the property 1) is verified.
2) The property 2) is equivalent with the following one: for any ¢ € T we have

t=V{B(f) | f€(S =), f <1}

where Rf means the reduite of f in the H-cone 7'
Lemma 3.3. Suppose that

| Bf & BYf
- for any f € (S — S); and any balayage B on T'. Then if u € T' is such that
Je(S—=8), fSu=Ppf=ru

for any balayage B on ' thenu € S. _
Proof. Let f € (S—S5)4, f <u and let B be a balayage on T'. We show that

B¥f < u.
Indeed, we have, by hypothesis Pgf =<7 u, and therefore there exists v € T with
u=uv+ Pgf. |
Suppose ‘t-ha.t f = s —t where s,t € 5. We have |
B¥(s—t)+v = B*sArBs — Bif*&ix/"\rBt +u

and therefore

B(s —1) + Bv = B*s A Bs — B*1ApBt + Bu.

Hence we get
w4+ B(s —1t)+ Bv=v+ B*(s — t) + Bu.

Since Bv < v and s —t < u we deduce
B(s —t) < Bu

and therefore

w> B*(s—1)=DB*f

We show now that

w> R(f)=nA{€S§|s2f}
It is known ([2]) that for any o € (0,1) we have

| I
RO = BI () < 2 BEU)
where h = (f — aR® f); and By is the balayage on S defined by

Bl =N {s"€S|s" =5 Anh (V) n € N}.
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If B, denote the following balayage on 7'
Byt = /\{th"‘e T|t">t'Anh  (V)n e N}

then we have already remarked that By = (B,)* and thercfore:

| 1 Rt TR
R (f) < =Bi(f) = ~(B*(f) € =,
a a a
a3 (f) < u.
Since a € (0,1) is arbitrary we get R8(f) < u.

If we denote, for any ¢ € 5 — 9,
R'(g)=n{teT|t2g}
obviously we have R7(g) < R®g and from the preceding considerations we deduce

w= \{ET ()| f€(S=8)4, fSu} <

SVIR (N Fe(8=-8)s, fu} Sy,

u=V{R () fe(S=8, FSu}les

The above result is an extension of a similar one ([4]) given in the case where S
and 7" are standard f{-cones of functions.
Notation. Suppose that Bf < B¥ [ for any f € (S — S)4 and any balayage B
on 1. In the following, for any s € S, we shall denote by Ps the element of T' given
by '
Ps :z"‘\;‘}{ZPBisi I finite, s; € S, Zsi < s, B; balayage on T'}
i€l i€l

Lemma 3.4. lf s € S and v € T are such that
FPs <7458

then v € 5.
Proof. If f € (S~ 5)4 is such f < u then for any balayage 55 on T' we have

Ppf =7 Pgs 2¢ Ps Zru, Ppf<u

The assertion follows now from the previous lemma.
Corollary 8.5. Tor any s € S we have Ps € S and

Ps < s.
Proof. Indeed, from Theorem 3.1 we deduce

Pis “ir-s

19



and from Lemma 3.4 we get Ps €' S
Theorem 3.6. The above map P: S — § is an (5,T)-dilation operator on S.
Moreover for any (S, T')-dilation operator () on S we have

Ps=Zp Qs (¥)s€S.
Proof. By definition and by Corollary 3.5 we have
51,82 € S, 81 < 82 = Ps1 21 Psy 31 5.

From ([4], Theorem 2.8) it follows that P is additive and continuous in order from
below. Using now Lemma 3.4 and Theorem 2.1 we deduce that P is (S, T)-dilation
operator on 5.

Since for any ba,laya,ge B on S we have

B*s — Bs = QB*s — BQB*s <r QB*s <r Qs
we deduce, from the definition of Pg, that

Pps =r Q

n

" and therefore Ps <t @s.
Theorem 3.7. Let @ : S — S be a nmp which is additive, continuous in order
from below and such that

81,826 '8, 81 5 8y =68y 2 Q8 Hr .5,

Then Q is an (S, T)-dilation operator iff for any balayage B on T and any s € 5 we
have ‘ '

B*s — Bs = QB*s - BQB*s

Proof. If ) is an (5,1")-dilation operator then from Theorem 2.2 we have
B#s — Bs = QB*%s — BQB¥s

for any 5 € S and any balayage B on T. Conversely suppose that this formula holds
for any s € S and any balayage B on T'. We have for any balayage I on T and any
se s, :

B#*s — Bs = QB%*s — BQB*s <r QB%s 21 Qs

and therefore

Bearns &, Pedlls

Using Theorem 2.1 the preceding inequality and Theorem 3.6 we deduce that @ is an
(S, T)-dilation operator on S.-
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4. On the unicity of (5,T)-dilation operator

In this section S and T will be H-cones such that S is an H-subcone of T and the
following are fulfiled:

a) Any increasing family in S, dominated in 7' is also dominated in S

b) For any ty,1, € T such that

(Fe(S-S)lfst)Clfe—5!f<t)

we have t; <1, o
¢) For any f € (§ — 5)4 and any balayage B on T we have

Bf < B*f

In the preceding section we have proved that in the above conditions there exists
(S, T)-dilation operators on S. Moreover there exists an (S, T)-dilation operator P

on & Such that for any (F’ T)-dilation operator @ on S we have Ps < Qs (or more
precisely Ps <p Qs) for all s € S. This remarkable (5, T)-dilation operator on S will

be termed Llu minimal (S, T)-dilation operator on §.

In this section we deal with the unicity problem for the family of (S, T)-dilation
operators on S.

For the simplicity reasons we suppose that the H-cone f contains sufficiently many
quasi-continuous elements.
We remember that an element u € 1" is termed quasicontinuous if for any increasing
family (u;); of T' such tlat Vierti = u we have Aoy R(u — u;) = 0 where R means
the reduite operator on 1. We say that T’ contains xufﬁcun‘uy many quasi-contbinuous
elements if any elen 1mL of § is the suppemum of the family of its quasi-continuous
minorants.

Lemma 4.1. Let C be an H-cone which contains sufficiently many quasi-continuous
elements and let ¢ : ¢ — C be an additive, increasing, continuous in order from
below map such that

S1, 392 € C, s1 < 89 s > © (31} = (,/(92) = §3.

" Then there exists a recurrent balayage ([7]) B on C such that
p(s) = Bs (V) s € C.
' Proof. We denote .
Co:={s € C|p(s) =0}
={teCltAs=0 (¥)s€ Co}
First we show that if s; € Cy and 53 € C are such that s; < s, then 57 =% so.

Indeed, let us put

! !
u=8; 89, 8 = 81 — U, S = S — U
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7 = / ol o ! . Q3 ! ) 7 /g ! .
We have s| € Cy, s, s =0, s§ < s} Since p(s7) =X 51, (1) 2 p( 2 = s we
deduce ¢(s}) = 0 and therefore s; € CoNCy, s; = 0. Hence sy =u = s ’

Now, for any quasi-continuous element s € C we put

U

M

Bs=\/{t|teCy, t<s}=\{t|teCi|t=s}

It is easy to see that B is additive, increasing and continuous in order from below.
Since Bs < s then Bs is also quasi-continuous and BBs = Bs. The map

s — \/{Bt |t <s, { quasi-continuous} = Js
is a balayage on C which extends the above map B and we have
~ 31>SQEC) 81§57:>}331ﬁBQ V/\ 52,

and therefore B is a recurrent balayage on C.
Morecover, for any quasi-continuous element s of C' we have

s — Bs € Co, p(s) = ¢(Bs)

and therefore p(s) 2 Bs = Bs < s.

Theorem 4.2. Suppose that there is no recurrent bale ayage on T different from
zero. Then for any balayage B on S which is an (S, T)-dilation operator we have
B = @ for any (S,7)-dilation operator @ in .S with

Proof. Let Q be a (S, 7)-dilation operator on S and B be a balayage on 5 such
lnt
vilat

6.5 =% Bs < Qs.

Then we have

Bs = B%s < Q(Bs) =t Bs

and therefore Bs = Q(Bs) for any s € S.
We consider now the map M : T —— T defined by

Mu=\/[{Q(s— Bs)|s—Bs<u, s€ S5}
Since
s,t€ S ,s—Bs<t— Bt =>Q(s— Bs) 2r Q(t - Bt) = Qt — Bt =r t— Bt

we deduce \
u,v € T,u <v= Mu =37 Mv 2rv.

From Lemma 4.1 it follows that there exists a recurrent balayage L on 7' such that

Mu =r Lu.
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Using the hypothesis we get L =0 and therefore M = 0,
s €S = s =B = Bs.

Remark. If B is a balayage on S such that Sp := {s — Bs | s € S} is solid in
T then it follows that B is a (S, T)-dilation operator on S. Therefore the preceding
theorem shows that if there is no recurrent balayage on 7' different from zero and B
is a balayage on S such that Sp is solid in 7" then any (S, 7')-dilation operator @ on
S which dominates B coincides with B.

Corollary 4.3. If the minimal (5, 7)-dilation operator P on S is a balayage on
S and there is no recurrent balayages on 7' then any (5,T)-dilation operator on S is
equal with P.

The following example show that the above theorem fails if we drop the supplementary
condition abote 7.

Example 1. We consider an H-cone S which is recurrent (i.e the natural order
coincides with the specific order in ) and for any « € [0, 1} we denote by P, the map
P, : S — S defined by P,S = «- S. It is easy to see that the pair (9’ S) verifies the
conditions from the beginning of this section and that P, is a (5, .5)-dilation operator
on S for any a € [0,1].

We remark that Py = 0 is the minimal (5, S)-dilation operator on S and that F
and P, are balayages on S. In this example Sp, = S for any & € [0,1) and Sp, = {0}.

The Lo‘ owing example shows that the above corollary holds even if the minimal
(S, T)-dilation operator is not a balayage on 5.

;Ma;np}_e 2. Let S be the H-cone of all positive, increasing and lower semi-
continuous real functions on the open interval (—1,1) of R. We consider the map
B} . § — S where for any subset A C (—=1,1) and any s € S we have

As = A\{t € S|t 2 s on A}.

't is known that B is a localizable dilation operator on S and Spy is solid and
increasingly dense in the set 7" of all positive, real functions on (~1,1) such that their
restrictions to (—1,0] and (0,1) are increasing and lower semicontinuous. We show
that any (S, T)-dilation operator on S coincides with B,

Indeed, we consider the H-cone S; of the restrictions to (—1,0] of all s € S and
the map 1" : S; — Sy defined by

Tt=Q(1)/(-1,)

where 1 is ‘equal t on (—1,0] and equal £(0) on (0,1). Obviously T verifies the con-
ditions from Lemma 4.1. Since there is no recurrent balayages on Sy different from
zero we get Tt = 0 for any ¢t € Sy and therefore '

QD g =0 VeC S
Let now s € S and let s, 1= s|(-1,0- We have

s< §1+ B(o’])s,
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Qs =1 Q(s1) + Q(B®Ys).
Since Q(s_l)](_l,o} =0, BOYs|_1 0y = 0 we deduce
Q'SI(——LO) =0
We consider now the H-cone Sy given by
Syi={s € 5| sl(-1,0 =0}
It is easy to see, using the preceding consideration that the map s — @)s verifies the

conditions from Lemma 4.1 with respect to the H-cone S, and therefore, since there
is no recurrent balayages on Sy different from zero, we get

QS =10 Vs = 52.
Because B(-10s <¢ ¢ for any s € S we get

s— B-10s ¢ S,

and therclore
Q(s) + Q(B(“l 0

Hence for any s,f € S we have
ge=ton (1,0} = Qs= 1

and therefore

S € G o OS = O([) -1,0) ) 5 }ﬂ( 10
i noe BE10s = BOs.on /0 1) and Qs = 0 on (~1,0] we have

Qs < B,
Let now P be the minimal (S, T)-dilation operator on S. It remains to show that
Bl%s = Ps Vses§

Indeed if s € S is a continuous function then there exists v € S, v < s such that
s — BI%s = 4 — Pu. From B%s =0 on (—1,0] and Pu < B it follows that

s=wuon (-1,0].
and therefore Pu = Ps. Hence
s—u= B0 Ps, Ps=p B0

and therefore s — v € S. Because s is continuous we deduce that u and Biots — Ps
are also continuous. From the fact that B{%s — Ps = 0 on (~1,0] and that B{%s is



. { . }
constante on (0, 1) we deduce that B1%s— Ps is also constante on (0, 1) and therefore
being continuous is equal to zero. Hence

BOg = pg.

Theorem 4.4. Suppose that there is no absorbent balayages B on T different
from zero such that
3173.2 € S, 81 < 8o == BS} = }332

and that there exists a balavage By on S which is a (5,7")-dilation operator on S.
Then By is the only (S, T')-dilation operator on S.

Proof. From hvpotnems it follows that there is no recurrent balayages on T
different from zero and therefore, using Theorem 4.2, any (5, T')-dilation operator @)
on S such that Qs > Bys for any s € S, is equal with By,

To finish the proof we show that By is the minimal (S, T)-dilation operator on S.

Let P be the minimal (9,7)-dilation operator on S and let s be an arbitrary
element of 5. We have s — Bs < s — Ps and since the set Sp 1s increasingly dense in
T we can choose an increasing family (s; — Bs;)ies such that V;ep(s; — Bs;) = s— Ps.
On the other hand the set Sp being a solid subcone of 7" we deduce that for any ¢ € 1
there exists ¢; € S such that ¢; — Pt; = s; — Bs; and moreover taking, for every ¢ € I
the smallest element #; of S with the above property then we deduce (see [ 5 ]) that
the family (¢;)ies is increasing and dominated by s. If we denote ¢ = V¢ t; we get

(P'LL._;)I' T B F _P'Lll‘)g Tt~ Pt = s~ Ps.

A\

Using the fact that s; — Bs; = 1;— Pt; we get Bi; = BPl; for any 1 € I and therefore,

passing 0 the limite Bf = BPt or equivalently Bs = BPs. Hence Bs < Ps i.e
Ba= Pg
Let now V = (V) Jo>o be a submarkovian resolvent on a measurable space (X B
pa

such that its initial kernel V; = V is bounded and absolutely continuous with respect
to a finite measure .

It is know that in this case the convex cone £ = &) of all V-excessive functions
on X which are finite V-a.s i1s an H-cone. Iurther we suppose that &y separates the
points of X containes the positive constant functions, is min-stable and generates
o-algebra B.

It is know also ([11]) that if « > 0 then the kernel @ = aV, is a (£, &,)-dilation
operator on & where &, is the H-cone of all a-excessive functions on X with respect
to V. In this case we have

Vi-aV,Vf=V.f

and therefore the H-cone
Eo={s—aV,s|sel}

is a solid and increasingly dense subcone of &,
Proposition 4.5. If there is no absorbent points of X with respect to £ then any
(€, &x)-dilation operator () on £ such that

aVas S, @5 Ysel
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coincides with aV, .
Proof. Let Q be a (£, &,)-dilation opeator on &£ such that

aVys e, Qs Vsel
or equivale‘ntly _
aVoVf=<e, QVSf. YfeF

We have '
Wf=Vf-QVf=e Vf—aVVf=Vof

for any f € F; and therefore there exists g € 7, ¢ < 1 such that
Wi =Vekaif)e . VF&F
Hence

QVI=Vi=Volg-f) = Vol +aVf~g-[) = Val((1 = g)f +aV f) = aVi(ef + V )

where ¢ = 1—;3 On the other hand if fi, f, € F; we have

VASVf, = QV fi Ze. QV fo.

or equivalently

VHSVh=ef+Vi<efu+Vfe V-—as

We want to show that the set A :=[e > r > 0} is V-negligible for any r» > 0. In the
contrary case let A" = {z € A| limy_,, @V, (14)(z) = 1}.

It is known that A~ is a sub-basic subset of X and for any s € £, there exists a
sequence( fu)s in Fp, fu= 0 on X\ A" such that (V fa)n is increasing and

B s = sup Vf,
n

We show that any = € A* is an absorbent point. We consider z € A* and (Un)n an
decreasing sequence of natural open neighborhoods of z such that N,U, = {z}. We
take f, 1= 1x\u,n,.- Then for any g € F, such that g = 0 on X\U, NA*, Vg < V],
we have

eg+Vg<efut+Vifa

and therefore
eg+Vg<Vf, withU,nA".

Let (gm)m be a sequence such that g,, = 0 on X\U, N A* and Vyg,, T B 4V f,.
Since
Vg T Vfi onlU.nA®

and since
€gm + ng £ an VméeN
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we deduce that : 5
gmn — 0, gm < Jn

and therefore Vg, — 0, Vf, =0 on U, N A*. Hence
: 1
6= |(Savn) @ =0

i.e {z} is absorbent.

From the hypothesis we get that A* is V- neghglble for any 7 > 0 and so @ = aV,.

Theorem 4.6. If there is no fine open singleton subset of X with respect to £
then any (&, £,)-dilation operator on £ coincides with aV.

Proof. Let P be the minimal (£, ,)-dilation operator on £. We want to show
that P = Q. We have

PVf=e QVf=e. VS  VfeF

and

Vi=Va(f+ V), QVf=aWVf
Since PV f € € C &, there exists g5 € F; such that

PVf=Valgs), gr<aVlf.
On the other hand the kernel W on (X, B) given by
Wi=Vi=PV] . FTeh
verifies the compietc maxim principle, W f € &, and
Wf=Valf+aVf-gy)
But the kernel V, verifies also the complete maximum principle and
Wl =V, (1 +aVl—a).
We deduce that
Wi=Va((1+aV1l—g)-f) VfieFR
and thergfore for any f € F, we have
f+eVf—-g;=(1+aVl—-g)-f, V—as.

or equivalently

gr=aVf—(aVl—g)-f, V-as.
Hence if we put e = V1 — 2g; we get

0 <e,
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ef_<_Vf V—as, VfeF
PVf = aVa(Vf —¢f)
On the other hand we have, for any fi, f € Fy such that Vf; < Vf,,
' PV fy <e, PVfy
or equivalently

aVo(V fi — €f1) Re, aVa(V f2 —€f2).

This relation is equivalent also with the following
Vhi-eh<Vfa—efs V-—as

Since there exists a reference measure g on X with respect to V and since &

generates B it follows that B is countable generated and therefore there exists a
V-negligible subset M of X, M € B for which we have

ef <Vfon X\M, VfeF
We want to show that
N e=20 Y — a.s
Indeed let T' = {z € X\M | ¢(z) > 0}. For any = € T we have

Vf(z) 2 e(z)f(z) VfEFR
and therefore
V(l{r}) > ¢(z).
Let now g € F, be such that Vg < V1 and such that g(z) = 0. We have
P(Vg) jﬁa P(Vlr)
or equivalently
Vg—eg<V1,—€l, V —as.

Hence
€(z) < V1y(z) — Vg(z).

Since

BX\EIV1, = sup{Vg | g € Fi, Vg < Vigy, g(z) = 0)

it follows
e(z) < V1g(z) — BXM=V 1 ().

But
V1, = BXMaV1, on X\{z}.

i.e. {z} is fine open with respect to €. From the hypothesis we deduce that ¢ = 0
and therefore P = oV, .
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The fact that any (&, &,)-dilation operator Q on £ coincides with aV,, follows now
from the preceding proposition.
Remark. The assertion of the above Theorem fails if instead of "there is no fine

open singleton in X" we put "there is no absorbent points in X with respect to £”.
We consider X = {1,2} and

A

Vi) = flz) + 5@ + ) Ve X.

The associated resolvent will be V = (V,)a>0 where

B 1 flz) + fly)
Vaf(w)—f(‘”)+(1+a)(2a+l)( 2 )

We have
E =&y ={lor,2) | 21,25 2 0, 27.552s; 295 58 }

&= gvl = {(11,1’2) | T,z 20 l z1 < 23z, 72 < 25-’131}
and the map @ : £ — & defined by

Ly )

QV () e

is a (&, &, )-dilation operator on £ such that
QVf =6, WV
and @ # . |

5. The compression operator associated with a (S5, T)-dilation operator

In this section S, T are two H-cones as in the preceding sections and @ is a given
(S, T)-dilation operator on S. We intend to extend @ to amap @ : D(Q) — T where
D(Q) a solid convex subcone of T, containing S such that Q is additive, increasing,
continuous in order from below and such that

u,v € D(Q), v < v= Qu =7 Qu.
and to show that for u € D(Q) we have
u€ S < Qu =7 u.

Proposition 5.1. Let us denote by Q the operator on Sg := {s — Qs | s € 5}
defined by

Qs —Qs)=Qs - Q.

Then Q is additive, increasing, continuous in order from below and
s—Qs<t—Qt=> (s — Qs) <r Qlt - Q1.
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Proof. By definition we get immediately that Q is additive and that

s—Qs<t—Qt= Q(s — Qs) <r Q(t — Q1).

Let now (s; — @s;)ics be an increasing family in Sg such that

V(si — Qs;) = s — Qs.

i€l
We denote by s (resp. s') the smallest element in S such that
si—Qsi=s;—Qs;, s—Qs =5~ Qs

We know that
S,‘-QS;SSJ‘—QS]'——_—?SSSS}SS’.

If we denote by t' := V¢, s! we get t < &’ and

V(si~Qsi)=t—-Qt= 3'_— Qs’

el

Hence s/ <t a1

Qs — Qs) = Q(s' - Q') = Qs' - Q%

Qs;TQs; Qs 1Q%"

From
Qsi — @si) + Qs = Qs;
we get
V Qs - Qs) + V Qi = V Qs
i€l i€l icl
V Q(si = Qs) + Q%' + Qs
i€l
V Qs — Qs:) =V Q(si — @si) = Q5" = Q') = Q(s - Qs).
i€l iel

Corollary 5.2. If we denote
DQ):={ueT|IveT, s—Qs<u= Q(s—Qs) <v}
then D(Q) is a solid convex cone in T, Sg C D(Q) and

u— \/ Q(s-Qs)

s—Qs<u

is a map from D(Q)) in T which is additive increasing, continuous in order from below
coincides with () on Sg. We denote also by @) this map and we have
a) uuz € D(Q), w1 < uz = Qu1) =r Q(uz)
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b) Sc D(Q)and Qs <rs, Vse&.

Remark. The map Q is a compression operator on T. Hence the set

T(Q) = {u € D(@Q) | Qu =r u}

is an H-subcone of S with S C T(Q) (see [4]).

From now on we suppose that the set

Si={seS| A Qs =0)

a€N

is increasingly dense in S where (2 is the first ordinal number which is not countable
and where Q® is defined inductively by Q% = s and :

@%s =0 /\ QPs).

B< o

Remark. If S is a standard H-cone then there exists a balayage B on S such
that

Bs= /\ Q%s

a€QR

for any universally continuous element s of S and therefore Bs = Q(Bs) forany s € S
or equivalently

Bs < Qs.

for any s € S. Hence the fact that Sg is increasingly dense in S follows from the fact
that there is no balayages B on S, different from zero, dominated by Q.

Theorem 5.3. If Su is increasingly dense in S then Qs = Qs and the set
{s — Qs|s € Sa} is increasingly dense in T.

Proof. We have inductively, for any a € Q2 and any s € Sg,

s 0 %si= Z(Qﬁs - Q(Qﬁs))

B<a

and therefore

Qs — Qs =3 [Q™s — Q(Q7s)].

f<o

Hence for any s € S there exists an increasing family (s; — @si)icr in Sg such that
s; € Sp and such that

V(si—Qsi) = s

i€l

\/ Qs —~@8;) = Qs — oty Nea-elh
iel
Since a is arbitrary in £ we get

\ Q(si — Qsi) > QS

I
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Q(s) 2 V Q(si — Qs:) > Qs,

j i€l

Qs = Qs.

The equality Qs = Qs for any s € S.foll_ows from the fact that Sp is increasingly
dense in S and from the fact that @ and @) are continuous in order from below on S

and respectively D(Q).
We have, for any u € T,

u= \/(uAs)

‘seS

. Because Sg is solid in T it will be sufficient to show that for any s € S there exists
an increasing family (s; — @s;)ier, where s; € Sg such that Vcp(si —@s;) = s. From
the first part of the proof it follows that this assertion is true if s € Sg. The general
assertion follows from the fact that Sg is increasingly dense in S.

Theorem 5.4. Suppose that Sg is increasingly dense in S. Then for any u €

D(Q) we have o
u€ S < Qu <7 u.

Proof. Let us denote

T(Q) := {u € D(Q) | Qu =1 u}.

Suppose u € T(Q) and there is no v € T(Q) such that u—v € T(Q) and Quv = v.Since
v — Qu € T then from Theorem 5.3 there exists an increasing family (s; — @s;)ier
where s; € Sp and

\/(Sz —@s;) = u.— Qu.

1€l

Since Ayeq @%si = 0 it follows that
S,'—QS,‘SS]'—QSJ'SU—@—U:—QS(SSJ'Su.

1If we put

S = \/s,'

i€l
we get s < u and .
s—-Qs=u—-Qu :
Since there is no v € T(Q), such that u — v € T(Q) and Qu = v then we get u < s

and therefore
=8, .UE.S:

| Suppose now that u € D(Q) is such that Qu = u. For any s € So we have
s € T(Q) and therefore u A s € T(Q). Since Qs = Qs it follows that

/\@as=0

a€Q
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and therefore there is no v € T(Q) with v < u A s such that Qu = v. Hence u A s is
as in the first part of the proof an so u A s € §. On the other hand

w=\"fuAs)

s€Sn

and therefore u € S.
A. Complete H-cones; The complection of an H-cone

In this section we develop the notion of complete H-cones and the procedure of
completion of a given H-cone. In the frame of hyperharmonic cones the same problem
was studied in [8] and [9].

Definition. Let S be an H-cone ([3]). A non empty subset a of S is called a
Cauchy family if « is a solide subset of S (with respect to the natural order), « is
upper directed and for any s € S we have '

A (E)r) =

Remark. It is easy to see that for any s € S the set 3 given by
' 5::{t€5|t<s}

is a Cauchy family on S. In this particular case the Cauchy family 5 is bounded and
s = Vs.

Definition. An H-cone S is termed complete if any Cauchy family of S is
bounded.

Theorem 6.1. The dual of any H-cone is a complete H-cone.

Proof. Let S*.be the dual of the H-cone S ([3]). Without loss of the generality
we may suppose ([9]) that S* separates S.

Let a be a Cauchy family in S* and let u be the functional on S deﬁned by

p(s) :=sup{v(s) | v € o}
Since « is upper directed it follows that p is additive, increasing and continuous in
order from below. On the other hand from ([8]) it follows that for any n € N, 0 € S~
and any s € S with 6(s) < co there exist s7,s} € S with ‘
1 3 1
sttsi=s (ou) (D) +o = ((n) n0) )=V ((5+) A0)
n n e NN
If  # 0 and s € S is such that 6(s) > 0 then there exists £ € 5, n € N such that
, ' 1
t<s, 0 <(t) < oo, (-—u) A B(t) < 8(2).
n

Indeed, in the contrary case we have, for any t € S, t < s with 0(t) < co

0= (b)) 0= () 4) 0
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and therefore

R(G— (%p) /\-9> (1) =sup{(0— (%u) /\9) (u) |ue€ S,ulﬁ ap=0

If we denote i
P =R (0— (——p) A 9>
) n

we have r, € S*, (rn)n Is increasing, r, < ¢ and

og(lu)wwn
n

From the fact that o is a Cauchy family we get
A (lp)/\H::O, I N, wlt) =0 (V) t < s with 8(t) < o0
neN* R neN

and therefore 6(s) = 0 which contradicts the hypothesis. Hence for any s € S and
any 0 € S* with 6(s) > 0 there exist n € N*, t € S, t < s such that 0(t) < oo and

1&%#) AO(t) < O(t).
ence taking t7,t3 € S such that
i =t (u) 60 +003) = (2u) A00) <00) = 0) + 0(22)
we deduce the existence of t7 € S such that
i <s, 0<O(t]), p(t}) < nd(t]) < oo.
Let now s € S be arbitrary and let us put
A:i={te S|t <s,pu(t) < oo}

) Obviously A is a solid and upper-directed subset of S and for any { € A and any
n € N we have (nt) A s € A. We denote

T=VA

and we have (n7) A's = 7 for any n € N*. Hence B,s = 7 where B, is the balayage

on S given by
Byu=\/ ((n7) Au)
neN

We want to show that 7 = s. If (B,)" is the complement of the balayage B, ([3],
[1]) we have
(B,)u 3 u, (B,))B;u=0, (B;)uVBu=u

for any u € S. To show that 7 = s it will be sufficient to prove that (B;)'s = 0. Let
now sq := (B,)(s) and suppose that sq # 0. Then there exists v € S* such that

0 < v(so) < 0.
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If we put 8 := (B.)*v we get 8(sg) = v(so) and therefore 0 < 8(sg) < co. From the
first part of the proof we find tg € S, tg < 5o and ng € N* with

(2n) (to) < 0(to)

Obviously to < 7 and therefore B,t; = to. Since

-Blitg:te=Blto)

it follows that:
B,/rto = (B;to) BTto, BTB,,rtQ = B;_to

0 = B;BTB;tO = B,Irto, B:.to = 0
Hence from the equality '
6=(B,)0
we get the contradictory relation 6(to) > 0.

Definition. Let S be an arbitrary H-cone. The completion of S is a complete H-
cone S such that S is isomorphic with a solid and increasingly dense convex sub-cone
of S.

Remark. The completion of S is uniquely determined up to an isomorphism of_
H-cones.

Theorem 2. For any H-cone there exists its completion.

Proof. Let S be an H-cone and let us denote by C the set of all Cauchy family
in S. For any a,b € C and a € Ry we put

atb:={s+t|s€a,teb}

aa:={as|s € a}
It is easy to see that a + b, aa € C and the map
(gl F b

is a composition low on C which is comutative, associative and 6 is the neutral element
of C with respect to this low. The following relations are obvious too:

l-a=4a, ala+b)=ca+ab

(a+ B)a = aa+ fa, a(fa) = (af)a
for all @, 8 € R, and a,b € C. For s,t € S and a € R, we have also

s+ti=35+1, @E=a-3

s<t<=3Ct
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In C we consider the following relation

a<bE&L (V)sea=s=V{teb|t<s))

Obviously we have
¢ Ch=5a%<b

and for any s,t € &
e — ]

Moreover, if a,b € C then
a<b< (s€a=35<b).
It is easy to verify that for any a,b,c € C and «, 8 € R, we have

a<b=a+c<b+c

a<b= aa<ab

We have also the relation
a+c<b+c=>a<b

Indeed, if we suppose a + ¢ < b+ c then we deduce inductively that a + nc < b+ nc
for any n € IN* and therefore

aSbJr-Tl;-c (V)n € N*

Hence for any s € a we have
1 1
S=\/{u+;v|ueb,vEc,u+—v§s}.
n

Since the set
1 1
{u+-v|u€bve€cu+—v<s}
n n

is upper directed we deduce

1 |
s=\{sA(u+-v)|uebvecut+-v<s}<
n n

S\/{s/\u[uéb}—%\/{s/\i—v]véc}

and therefore the element ¢ being a Cauchy family we get

A (\/(S/\—lev))ZO, s=\{sAu|ueb}

nEN‘ vEC
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Hence a < b.
We denote by ”~" the equivalence relation on C given by

a~b<g>a_<_bandb§a

If (a;)ier is a family in C then we consider the set
a:={teS|t<a; (V)i€l}
One can easely verify that a is a Cauchy family and

ala; (N)ield

beC b<a; (Viel=b<a.

The above element a of C will be denoted A;¢; a; and it represent the greatest minorant
of the family (a;);es in the preordered set (C,<). We have

/\a,-+b§/\(a,-+b) (V)bEC

i€l 1€l

and we shall prove that the converse inequality holds. Let for that ¢t be an element
of Nics(ai +b). For any: € I we have f < a; + b and if we consider ug € S defined by

uw = \{ueblu<t}
then @p < b and we can show that
Rt —w) <ai (M)i€l

Indeed, since < a; + b for all 7 € I we deduce that for any i1 € I there exists an
increasing family (o + B3)aea With o) € ai, By € b with

t=\{(ch +85) €A}
Since B <wup forallze I, A € A we deduce
t—uo < \V{eh+8 1 er} < V{di€aleg<t} (V)iel,

R(t—uw) < \V{i€ailai <t} (V)iel

Ri-up)<a;- (Miel

If we consider now n € S such that

tzR(t—UQ)+T
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then r < uo and therefore 7 < @ < b. Hence

f=R(t—uy) +7< Nai+b
i€l

Let now (b;)ies be an increasing family in C which is dominated in (C, <). We put
borme st B ekl
It is easy to see that b € C and

“H<h (Wied

ceCie2bitdiel=e2b

" The above element b is denoted by Ve b; and itis the smallest majorant of the family
(b;)ies in the preordered set (C,<). For any ¢ € C we have

\/b—l-c \/b Y+ ¢

el i€l

'Now.‘We consider a,b € C such that b < a. We put
Rla—1b):= N\{ceCla<b+c}

We have ;
R(a —b) < a; a < b+ R(a —b).

We want to show that there exists a’ € C such that
a~ R(a—0b)+d.

Let s € S be such that 3 < a and let ¢t € S such that t<-b.
We put

repi= Rls =), 7"3 =8 — Tt

The family (rs,:)i<s 18 decreasmg and (7} )ep 18 mcreasmg in 5. We have

S = Tey + rs,t’s S /\ Tspt =+ V rs,t
t<b i<b

If we consider r,; and 7, given by

s
ey ! ins v !
T’ub = A rsst’ rs,b 9 rS,t

teb teB

it follows that the family (rs)s<a (resp. (r;,b)gsa' ) is increasing (resp. decreasing)
and we have
I (V)s€ 5,5<a
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Hence

and therefore
Obviously we have

and if we put a’ := As<p 5 We get

a ~ \/F,,b—i-a’

§<a

On the other hand we have

Vr;,b s VT;,t <b

i<h
and therefore ‘
as\ys< \/ Fop + b, R(a—0) > \/ Tsp-

<a

Let now ¢ € C be such that a < b+c. For any s € S with 3 < a wehave § < b+c
and therefore there exists two increasing families (£x)xea, (ux)rea Where ty € b, uy € ¢

and
S = \/ (t,\ + u,\)
AEA

Gt

5<a 5<a

If we put ¢ := V,ty, u = V,uy we have

’

s=t+u,t<b a<e

Hence

r'tzs-—R(S—t):S—u:t;T;,bSt’ Tab S €

$,

\/ Fs,b S c, \/ Fs,b S R(a = b)

3<a 5<a
and therefore
Fsp ~ R(a—b), a~ R(a —b) —d'.
<a

W

From the above considerations we deduce that the quotient space C/ ~ is an
H-cone with respect to the addition operation and multiplication with positive real
numbers induced by the same operations from C. The map

8§ —> 3

from S into C/ ~ is an order preserving morphism. Since for any a € C we have
@ ~ Vit it follows that S is increasingly dense in C/ ~. Obviously S is a solid
subset of C/ ~. Let now § be a Cauchy family in C/ ~. We put

‘A = U{a{a € 9}
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Since the family (a).es is upper directed it follows that A is upper directed in S.
Since any a € C is'solid in S we deduce that A is also solid in S. It remains only to
show that for any s € S we have

A (ven(G9) =0

This assertion may be obtained from the fact that 8 is a Cauchy family in C/ ~

A CGN) = 406G - A e G =

eN

Remark. In [8] is presented a scheme for a completion of an H-cone in the
cathegory of cones of hyperharmonics. Such a completion was realised in large in [9].
Using this type of completion one can construct also a completion of an H-cone in
the cathegory of H-cones.
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