

×

×

## INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

×

x

# PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

# DILATION OPERATORS IN EXCESSIVE STRUCTURES;

EXISTENCE AND UNICITY

Бy

N.Boboc and Gh. Bucur

PREPRINT No.9/1994

### DILATION OPERATORS IN EXCESSIVE STRUCTURES;

#### EXISTENCE AND UNICITY

by

N.Boboc and Gh. Bucur \*\*

May, 1994

- \*) Faculty of Mathematics, University of Bucharest, Str.Academiei 14, R0-70109 Bucharest, Romania.
- \*\*) Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, R0-70700
  Bucharest, Romania.

#### Dilation operators in excessive structures; Existence and unicity

#### by N. Boboc and Gh. Bucur

#### Introduction

Let  $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$  be a proper submarkovian resolvent of kernels on a measurable space  $(X, \mathcal{B})$  such that the set  $\mathcal{E}_{\mathcal{V}}$  of all  $\mathcal{V}$ -excessive functions on X which are finite  $\mathcal{V}$ -a.s. is min-stable, contains the positive constant functions and generates  $\mathcal{B}$ . We suppose that X is a Lusin space and that it is semisaturated with respect to  $\mathcal{V}$  (i.e any  $\mathcal{V}$ -excessive measure on X, dominated by an  $\mathcal{V}$ -excessive measure on X of the form  $\mu \circ V$  is also of the same form). The above conditions are equivalent with the fact that there exists a right process on  $(X, \mathcal{B})$  for which  $\mathcal{V}$  is the associated resolvent.

In the paper ([4],[5]) we consider two submarkovian resolvents  $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$ ,  $\mathcal{W} = (W_{\alpha})_{\alpha \geq 0}$  on  $(X, \mathcal{B})$  which possesses a reference measure and such that the absorbent points with respect to  $\mathcal{V}$  and  $\mathcal{W}$  are the same. If  $\mathcal{E}_{\mathcal{W}} \subset \mathcal{E}_{\mathcal{V}}$ , if any  $s \in \mathcal{E}_{\mathcal{V}}$  is lower semicontinuous with respect to the fine topology generated by  $\mathcal{E}_{\mathcal{W}}$  and if for any  $A \in \mathcal{B}$  and any positive  $\mathcal{B}$ -measurable function f we have

$$\mathcal{V}_{B^A} f \leq \mathcal{W}_{B^A} f$$

(where  $\mathcal{V}_{B^A}$  (resp.  $\mathcal{W}_{B^A}$ ) is the balayage on A with respect to  $\mathcal{E}_{\mathcal{V}}$  (resp.  $\mathcal{E}_{\mathcal{W}}$ )) then there exists an other submarkovian resolvent  $\overline{\mathcal{V}} = (\overline{\mathcal{V}}_{\alpha})_{\alpha \geq 0}$  such that  $\mathcal{E}_{\mathcal{V}} = \mathcal{E}_{\overline{\mathcal{V}}}$  and such that

$$V_{\alpha}f \leq W_{\alpha}f \quad \forall \alpha \geq 0 \text{ and } f \geq 0, \quad \mathcal{B}-\text{measurable.}$$

In fact there exists a kernel Q on  $(X, \mathcal{B})$  such that  $Q(\mathcal{E}_{\mathcal{W}}) \subset \mathcal{E}_{\mathcal{W}}$ ,

$$s \wedge (Qs + t - Qt + Qf) \in \mathcal{E}_W$$

for any  $s, t \in \mathcal{E}_{W}$  and any positive *B*-measurable function f on X and such that

$$Wf = Vf + QWf \quad \forall f \ge 0, \quad \mathcal{B} - \text{measurable}.$$

This type of kernels was firstly considered by G. Mokobodzki ([11]) in conection with the subordination in excessive structures. Moreover if Q is such a kernel for which

$$Wf$$
 bounded  $\implies \inf Q^n Wf = 0$ 

then for any  $u \in \mathcal{E}_{\mathcal{V}}$  we have

$$u \in \mathcal{E}_{\mathcal{W}} \iff Qu \prec_{\mathcal{E}_{\mathcal{V}}} u.$$

This last problem was considered recently by R. K. Getoor and M. J. Sharpe ([10]) in the frame of the right processes without reference measure.

In this paper we deal with the above problems in the general frame of *H*-cones. We give two *H*-cones S, T such that *S* is an *H*-subcone of *T* (i.e.  $S \subset T$  and for any  $M \subset S$  we have  $\wedge_S M = \wedge_T M$  and respectively  $\vee_S M = \vee_T M$  if moreover *M* is increasing and dominated in *S*). Here *S* (resp. *T*) is instead of  $\mathcal{E}_W$  (resp.  $\mathcal{E}_V$ ) in the preceding considerations. A map  $Q: S \longrightarrow S$  is called a (S, T)-dilation operator on S if

1)  $s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow Qs_1 \preceq_T Qs_2 \preceq_T s_2$ 

2)  $s \in S, u \in T, Qs \preceq_T u \leq s \Longrightarrow u \in S.$ 

It is proved that if Q verifies 1) then the property 2) is equivalent with each of the following properties:

3)  $s_1 \wedge (Qs_1 + s_2 - Q_2 + Qf) \in S \quad \forall s_1, s_2 \in S, f \in (S - S)_+$ 

4)  $s_1, s_2 \in S, \ s_1 - Qs_1 \leq s_2 - Qs_2 \Longrightarrow s_1 - Qs_1 + Qs_2 \in S; \ s \in S, \ t \in T \Longrightarrow \exists s' \in S; (s - Qs) \land t = s' - Qs'$ 

If B is a balayage on T then the operator  $B^{\#}$  on S defined by

$$B^{\#}s = \wedge \{s' \in S \mid s' \ge Bs\}$$

is a balayage on S. If Q is a (S,T)-dilation operator then we have

5)  $B^{\#}f - Bf = QB^{\#}f - B(QB^{\#}f) \quad \forall f \in (S - S)_{+}$ and therefore

6)  $Bf \leq B^{\#}f \quad \forall f \in (S-S)_+.$ 

Under suplimentary conditions (which are quite natural) we proved that if Qverifies 1) then 2)  $\iff 5$ ). Moreover if the property 6) holds then there exists a minimal (S,T)-dilation operator P on S (i.e an (S,T)-dilation operator on S such that any other (S,T)-dilation operator Q verifies the relation

$$Ps \preceq_T Qs \qquad \forall s \in S.$$

We consider also the problem when there is a unique (S, T)-dilation operator. It is shown for instance that the unicity holds in one of the following situations:

a) T contains sufficiently many quasi-continuous elements, does not exists absorbent balayages on T and there exists a balayage B on S which is a (S,T)-dilation operator.

b)  $S = \mathcal{E}_{\mathcal{W}}$  where  $\mathcal{W} = (W_{\alpha})_{\alpha>0}$  is a proper submarkovian resolvent on  $(X, \mathcal{B})$  as in the begining of this introduction such that there is no fine open sets of the form  $\{x\}$  and T is the H-cone of all  $\alpha$ -excessive functions.

Finally we consider the problem when given a (S, T)-dilation operator Q on S we can extend it to a map  $\tilde{Q} : D(Q) \longrightarrow T$  defined on a solid subcone D(Q) of T such that  $S \subset D(Q)$  and such that we have, for any  $u \in D(Q)$ , the relation

$$u \in S(Q) \iff \widetilde{Q}u \preceq_T u.$$

If  $\mathcal{V}$ ,  $\mathcal{W}$  are two proper submarkovian resolvents on  $(X, \mathcal{B})$  which have all properties from the begining of this introduction except the existence of reference measure, we can apply the above considerations to the *H*-cone  $Exc_{\mathcal{V}}$  and  $Exc_{\mathcal{W}}$  of excessive measures on  $(X, \mathcal{B})$  associated with  $\mathcal{V}$  and  $\mathcal{W}$  respectively.

#### 1. Localizable dilation operators in *H*-cones

Let S be an H-cone. We recall ([4], [5]) that a map  $P: S \longrightarrow S$  is called a localizable dilation operator (*l.d*-operator) on S if P is additive, increasing, contractive, continuous in order from below and if for any  $s, t \in S$  and any  $f \in (S - S)_+$  we have

$$s \wedge (Ps + t - Pt + Pf) \in S.$$

It is known that if P is an l.d-operator on S then the convex cone  $S_P$  of S - S given by

$$S_P := \{s - Ps \mid s \in S\}$$

endowed with the natural order relation from S-S is also an H-cone. Moreover we have

$$t \in S, \ u \in S_P \Longrightarrow t \land u \in S_P$$
$$f \in (S - S)_+, \ u \in S_P \Longrightarrow Pf \land u \in S_F$$

and for any  $s \in S$  there exists a unique  $s_0 \in S$  such that  $s - Ps = s_0 - Ps_0$  and if  $t \in S$  is such that  $s_0 - Ps_0 \leq t - Pt$  then  $s_0 \leq t$ . (See [5])

Concerning the lattice operations on the *H*-cone  $S_P$  we remember that for any subset *A* of  $S_P$  (resp. any upper directed and dominated subset *A* in  $S_P$ ) we have

$$\bigwedge_{S_P} A = \bigwedge_{S-S} A \quad (\text{resp. } \bigvee_{S_P} A = \bigvee_{S-S} A).$$

Remark. If  $\mathcal{V} = (V_{\alpha})_{\alpha > \alpha}$  is a proper submarkovian resolvent on a measurable space  $(X, \mathcal{B})$  and there exists a reference measure then the cone  $\mathcal{E}_{\mathcal{V}}$  of all  $\mathcal{V}$ -excessive functions on X which are finite  $\mathcal{V}$ -a.s. is an H-cone. In this case, supposing that X is semisaturated (i.e any H-integrale on  $\mathcal{E}_{\mathcal{V}}$  dominated by a measure on X is also represented as a measure on X) then the above notion of localizable dilation operator in nothing else then a kernel of subordination on  $\mathcal{E}_{\mathcal{V}}$  is the sense of Mokobodzki [11].

We remember that for any  $f \in (S - S)_+$  the map  $B_f : S \longrightarrow S$  given by  $B_f^S = B_f s = \wedge \{t \in S \mid t \ge s \land (nf), (\forall) n \in \mathbb{N}\} = \bigvee_{n \in \mathbb{N}} R(s \land (nf))$  is a balayage on S.

Proposition 1.1. Let P be a *l.d*-operator on S. The following assertions are equivalent:

a) For any  $s, t \in S$  such that

$$\{u \in S_P \mid u \le s\} = \{u \in S_P \mid u \le t\}$$

we have s = t.

b) For any  $s, t \in S$  such that

$$\{u \in S_P \mid u \le s\} \subset \{u \in S_P \mid u < t\}$$

#### we have $s \leq t$ .

c) For any  $f \in (S - S)_+$  such that  $B_f \leq P$  we have f = 0.

**Proof.** Obviously a)  $\iff$  b)

b)  $\implies$  c). Let  $s, t \in S$  be such that  $s \leq t$  and let f = t - s. If we suppose that  $B_f \leq P$  then from the relations

$$B_f u \le P u \le u \qquad (\forall) \ u \in S$$

we get

$$B_f u = B_f B_f u \le B_f P u \le B_f u; \quad B_f u = B_f P u$$

$$B_f u = B_f B_f u \le P B_f u \le B_f u; \quad B_f u = P B_f u$$

and therefore, using the definition of  $B_f$ , we have

$$v \in S, v \ge Pu \land (nf) \ (\forall) n \in \mathbb{N} \Longrightarrow v \ge u \land (nf) \ (\forall) n \in \mathbb{N}$$

Particularly, taking v = Pu,

$$(Pu) \wedge (nf) = u \wedge (nf) \quad (\forall) \ n \in \mathbb{N},$$

$$(u - Pu) \wedge f = 0, \ (u - Pu) \wedge t = (u - Pu) \wedge [(t - s) + s] < 0$$

$$\leq (u - Pu) \land (t - s) + (u - Pu) \land s = (u - Pu) \land s$$

Hence if  $u - Pu \leq t$  we get  $u - Pu \leq s$  and therefore, using the hypothesis we have s = t, f = 0.

c)  $\Longrightarrow$  b). Let  $s_0, t_0 \in S$  be such that for any  $u \in S$  we have

$$u - Pu \leq s_0 \Longrightarrow u - Pu \leq t_0$$

or equivalently

$$u - Pu \leq s_0 \Longrightarrow u - Pu \leq v_0$$
, where  $v_0 := s_0 \wedge t_0$ .

Hence, since for any  $u \in S$  we have  $(u - Pu) \land s_0 \in S_P$  we deduce

$$(u - Pu) \wedge s_0 \leq (u - Pu) \wedge v_0, \ (u - Pu) \wedge (s_0 - v_0) = 0$$

for any  $u \in S$ . Hence

$$0 \le (u - Pu) \land n(s_0 - v_0) \le n[(u - Pu) \land (s_0 - v_0)] = 0,$$

 $u \wedge n(s_0 - v_0) \le Pu \wedge n(s_0 - v_0) + (u - Pu) \wedge n(s_0 - v_0) = Pu \wedge n(s_0 - v_0)$ for any  $u \in S$  and any  $n \in \mathbb{N}$ . We get

$$B_{(s_0-v_0)}(u) \le B_{(s_0-v_0)}(Pu) \le Pu, \ B_{(s_0-v_0)} \le P$$

and using the hypothesis  $s_0 - v_0 = 0$ ,  $s_0 \le t_0$ .

Remark. We remember ([3], [5]) that any balayage B on S is a *l.d*-operator on S and we denote by  $S_B$  the set  $S_B = \{s - Bs \mid s \in S\}$ .

Proposition 1.2. Let P be a *l.d*-operator on S and let B be a balayage on Ssuch that  $B \leq P$ . Then the map Q on  $S_B$  defined by

$$Q(s - Ps) = Ps - Bs = Ps - BPs$$

is a *l.d*-operator on  $S_B$  and  $S_P = (S_B)_Q$ .

**Proof.** Let B be a balayage on S such that  $B \leq P$ . From

$$s \in S \Longrightarrow BPs \le Bs = B^2s \le BPs; \ B^2s \le PBs \le Bs$$

it follows that

$$PBs = Bs = BPs \quad (\forall) s \in S.$$

We have

$$Q(s - Ps) = Ps - Bs \le s - Bs \quad (\forall) \ s \in S$$

Obviously Q is additive. If  $s_1, s_2 \in S$  are such that

$$s_1 - Bs_1 \le s_2 - Bs_2$$

we deduce

$$Ps_1 - Bs_1 = Ps_1 - PBs_1 \le Ps_2 - PBs_2 = Ps_2 - Bs_2$$

i.e the map Q is increasing. If the family  $(s_i - Bs_i)_{i \in I}$  increases to s - Bs, without loss of generality we may suppose that the family  $(s_i)_{i \in I}$  increases to s. In this case the family  $(Ps_i - Bs_i)_{i \in I}$  is increasing and since  $(Ps_i)_i \uparrow Ps$ ,  $(Bs_i)_i \uparrow Bs$  we get

$$\bigvee_{i\in I} \mathbf{Q}(s_i - Bs_i) = Q(s - Bs)$$

i.e Q is continuous in order from below.

Let now u = s - Bs, v = t - Bt,  $f = w_1 - w_2 \in (S_B - S_B)_+$  where  $s, t \in S$ . We have  $f \in (S - S)_+$ , v - Qv = t - Pt and

$$u \wedge (Qu + v - Qv + Qf) = s \wedge (Ps + t - Pt + Pf) - Bs.$$

Since P is a l.d-operator on S it follows that the element

$$r := s \wedge (Ps + t - Pt + Pf)$$

belongs to S and Br = Bs. Hence

$$u \wedge (Qu + v - Qv + Qf) = r - Br \in S_B$$

and therefore Q is a *l.d*-operator on  $S_B$ . From the relations

$$s - Ps = (s - Bs) - (Ps - Bs) = (s - Bs) - Q(s - Bs) \quad (\forall) s \in S$$

we deduce the equality

$$S_P = (S_B)_Q.$$

Corollary 1.3. Let P be a l.d-operator on S and let B be the balayage on S defined by

$$B = \bigvee \{B_f \mid f \in (S - S)_+, B_f \le P\}$$

Then the map  $Q: S_B \longrightarrow S_B$  given by

$$Q(s - Bs) = Ps - Bs$$

is a *l.d*-operator on  $S_B$  such that there is no function  $g \in (S_B - S_B)_+, g \neq 0$  such that  $B_g^{S_B} \leq Q$ .

**Proof.** We consider  $g \in (S_B - S_B)_+$  and suppose that  $B_g^{S_B} \leq Q$ . Obviously  $g \in (S - S)_+$  and using ([3], [6]) we deduce

$$(B_g^S \lor B)(s) = B_g^{S_B}(s - Bs) + Bs \qquad (\forall) \ s \in S$$

From the definition of B it follows that  $B_g \leq B$  and  $B_g \vee B = B$ . Hence  $B_g^{S_B}(s - Bs) = 0$   $(\forall) s \in S$ .

Remark. From Proposition 1.2 and Corollary 1.3 we see that for any l.d-operator P on S we have  $S_P = (S_B)_Q$  where B is a balayage on S and Q is a *l.d*-operator on  $S_B$  which verifies one of the assertions from Proposition 1.1.

In the sequel we suppose that P is a (l.d)-operator on S which verifies one of the equivalent assertions a)-c) from Proposition 1.1.

We recall ([4]) that if T is an H-cone then a convex subcone S of T is termed an H-subcone of T if S, endowed with the natural order relation of T is an H-cone and for any subset (resp. any upper directed and dominated subset) A of S we have

$$\bigwedge_{S} A = \bigwedge_{T} A \quad (\text{resp. } \bigvee_{S} A = \bigvee_{T} A)$$

If S is an H-subcone of T then for any balayage B on T the map  $B^{\#}: S \longrightarrow S$  defined by

$$B^{\#}s := \wedge \{t \in S \mid t \ge Bs\}$$

is a balayage on S and we have  $BB^{\#}s = Bs$  for any  $s \in S$  (see [4]).

Definition. An H-cone S is called a *complete* H-cone if any subset A of S such that

$$\bigwedge_{a \in \mathbf{N}^*} \left( \bigvee_{a \in A} \left( p \land \left( \frac{a}{n} \right) \right) \right) = 0 \qquad (\forall) \ p \in S.$$

is bounded.

In  $A_1$  we show that: for any *H*-cone *S* there exists a unique (up to an isomorphism) complete *H*-cone  $\overline{S}$  such that *S* is a solid and increasingly dense convex subcone of  $\overline{S}$  which is termed the completion of *S*.

Theorem 1.4. There exists an order preserving embedding  $\theta: S \longrightarrow \overline{S}_P$  such that

$$\theta(t) - \theta(Pt) = t - Pt \qquad (\forall) \ t \in S.$$

More precisely for any  $s \in S$  we have

$$\theta(s) = \bigvee_{\overline{S}_P} \{ u \in S_P \mid u \le s \}$$

and  $\theta(S)$  is an *H*-subcone of  $\overline{S}_P$ .

**Proof.** First we remark that for any  $s \in S$  the set  $A := \{a \in S_P \mid a \leq s\}$  is bounded in  $\overline{S}_P$ . Indeed, for any  $v \in S_P$  we have

$$\bigwedge_{n \in \mathbf{N}^*} \left( \bigvee_{a \in A} v \wedge \left( \frac{a}{n} \right) \right) \le \bigwedge_{n \in \mathbf{N}^*} \left( v \wedge \frac{s}{n} \right) \le \bigwedge_{n \in \mathbf{N}^*} \frac{s}{n} = 0$$

Since  $S_P$  is increasingly dense in  $\overline{S}_P$  then for any element  $w \in \overline{S}_P$  we consider an increasing family  $(v_i)_i$  in  $S_P$  such that  $w = \bigvee_i v_i$ . Let us denote

$$w_0 = \bigwedge_{n \in \mathbf{N}^*} \left( \bigvee_{a \in A} \left( \frac{a}{n} \wedge w \right) \right)$$

The set A is upper directed because for any  $t \in S$  we have  $(t - Pt) \land s \in S_P$ . Hence

$$w_0 \wedge v_i = \bigwedge_{n \in \mathbf{N}^*} \left( \bigvee_{a \in A} \left( \frac{a}{n} \wedge w \wedge v_i \right) \right) = \bigwedge_{n \in \mathbf{N}^*} \left( \bigvee_{a \in A} \left( \frac{a}{n} \wedge v_i \right) \right) = 0$$

and therefore

$$w_0 = w_0 \wedge w = \bigvee_i (w_0 \wedge v_i) = 0.$$

The *H*-cone  $\overline{S}_P$  being complete we deduce that *A* is bounded. We put, for any  $s \in S$ ,

$$\theta(s) = \bigvee_{\overline{S}_P} \{ u \in S_P \mid u \le s \}$$

Since, for any  $s \in S$ , the family  $\{u \in S_P \mid u \leq s\}$  is upper directed it follows that for any  $s_1, s_2 \in S$  we have

$$\theta(s_1 + s_2) \ge \theta(s_1) + \theta(s_2).$$

If  $u \in S_P$  and  $u \leq s_1 + s_2$  then we have

u =

$$u \wedge s_1 \in S_P, \ u \wedge s_2 \in S_P, \ u \leq u \wedge s_1 + u \wedge s_2$$

 $u \wedge s_1 \leq \theta(s_1), \ u \wedge s_2 \leq \theta(s_2), \ u \leq \theta(s_1) + \theta(s_2)$ 

i.e  $\theta(s_1 + s_2) \leq \theta(s_1) + \theta(s_2)$ . Obviously  $\theta$  is increasing.

Suppose now that  $s_1, s_2 \in S$  are such that  $\theta(s_1) \leq \theta(s_2)$ . Then for any  $u \in S_P$ ,  $u \leq s_1$  we have

$$u \leq \theta(s_1) \leq \theta(s_2) = \bigvee_{\overline{S}_P} \{ v | v \in S_P, v \leq s_2 \},$$
  
$$\bigvee_{\overline{S}_P} \{ u \wedge v | v \in S_P, v \leq s_2 \} = \bigvee_{S_P} \{ u \wedge v | v \in S_P, v \leq s_2 \} =$$

$$= \bigvee_{S} \{ u \wedge v | v \in S_P, v \leq s_2 \} \leq s_2.$$

Hence  $s_1 \leq s_2$ .

We show now that for any  $s \in S$  we have

$$\theta(s) - \theta(Ps) = s - Ps$$

or equivalently

$$s - Ps + \theta(Ps) = \theta(s)$$

Indeed, if  $u \in S_P$  is such that  $u \leq Ps$  then we have

$$s - Ps + u \in S_P$$
,  $s - Ps + u \leq s$  and  $s - Ps + u \leq \theta(s)$ 

Hence u being arbitrary we get

$$s - Ps + \theta(Ps) \le \theta(s)$$

Let now  $u \in S_P$  be such that  $u \leq s$ . Then we have

$$u \leq s - Ps + Ps, \ u \leq (s - Ps) + u \wedge Ps$$

Since  $u \wedge Ps$  belongs to  $S_U$  we get

$$u \le (s - Ps) + \theta(Ps)$$

and therefore, u being arbitrary, we obtain

$$\theta(s) \le s - Ps + \theta(Ps); \quad s - Ps = \theta(s) - \theta(Ps).$$

To prove that  $\theta(S)$  is an *H*-subcone of  $\overline{S}_P$  we consider now  $A \subset S$  arbitrary. Obviously we have

$$\theta(\bigwedge_{S} A) \le \bigwedge_{\overline{S}_{P}} \theta(A)$$

Conversely if  $u \in S_P$  is such that  $u \leq \theta(s)$  for any  $s \in A$  then we have  $u \leq s$  for all  $s \in A$  and therefore

$$u \leq \bigwedge_{S} A, \quad u \leq \theta(\bigwedge_{S} A).$$

Since  $S_P$  is increasingly dense in  $\overline{S}_P$  we deduce

$$\bigwedge_{\overline{S}_P} \theta(A) = \theta(\bigwedge_S A).$$

Let now A be an upper directed and dominated subset of S. Obviously we have

$$\theta(\bigvee_{S} A) \ge \bigvee_{\overline{S}_{P}} \theta(A)$$

For the converse inequality we consider an element  $u \in S_P$  such that  $u \leq \theta(\bigvee_S A)$ . We have

$$u \leq \bigvee_{S} A, \ u = \bigvee_{S-S} \{u \land s \mid s \in A\}$$

Since  $u \wedge s \in S_P$  and  $u \wedge s \leq s$  we get

$$u = \bigvee_{S_P} \{ s \land u \mid s \in A \} \le \bigvee_{\overline{S}_P} \{ \theta(s) \mid s \in A \}.$$

The element  $u \in S_P$  being arbitrary and  $S_P$  being increasingly dense in  $\overline{S}_P$  we get

$$\theta(\bigvee_{S} A) \leq \bigvee_{\overline{S}_{P}} \theta(A), \ \ \theta(\bigvee_{S} A) = \bigvee_{\overline{S}_{P}} \theta(A).$$

**Remark.** 1. In the sequel we identify S with its image  $\theta(S)$  in  $\overline{S}_P$ . In this way S becomes an H-subcone of  $\overline{S}_P$ .

2. For any balayage B on  $\overline{S}_P$  (or equivalently on  $S_P$ ) we denote by  $B^{\#}$  the balayage on S associated with B by

$$B^{\#}s = \bigwedge \{t \in S \mid t \ge Bs\} \qquad (\forall)s \in S.$$

3. For any  $f \in (S - S)_+$  we have  $Pf \in \overline{S}_P$ . The assertion follows from the fact that  $Pf \in (S - S)_+$  and  $u \wedge Pf \in S_P$  for any  $u \in S_P$ .

If  $f \in (S - S)_+$  we shall denote by  $B_f$  the balayage on  $\overline{S}_P$  defined by

$$B_{f}u = \bigwedge \{ v \in \overline{S}_{P} \mid v \ge v \land (nf) \quad (\forall) \ n \in \mathbb{N} \}$$

and we remark that in this case we have

$$B_f^{\#}s = \bigwedge \{ t \in S \mid t \ge s \land (nf) \quad (\forall) \ n \in \mathbf{N} \}.$$

Theorem 1.5. For any balayage B on  $\overline{S}_P$  and any  $s \in S$  we have

 $B^{\#}s - Bs = PB^{\#}s - BPB^{\#}s.$ 

**Proof.** For any  $s \in S$  we put

$$Ls := Ps + B(s - Ps)$$

Since  $B(s - Ps) \in S_P$ ,  $B(s - Ps) \le s - Ps$  we get

$$Ps + B(s - Ps) = s \land (Ps + B(s - Ps)) \in S$$

On the other hand for any  $t \in S$  such that

$$t - Pt \le s = (s - Ps) + Ps$$

there exists  $s_1, s_2 \in S$  such that

$$t - Pt = (s_1 - Ps_1) + (s_2 - Ps_2),$$

$$s_1 - Ps_1 \le s - Ps, \ s_2 - Ps_2 < Ps.$$

Hence

$$B(t - Bt) = B(s_1 - Ps_1) + B(s_2 - Ps_2) \le B(s - Ps) + (s_2 - Ps_2)$$

and therefore

$$B(t - Pt) \le B(s - Ps) + Ps,$$

$$Bs = \bigvee \{ B(u - Pu) | u \in S, u - Pu \le s \} \le$$

 $\leq B(s - Ps) + Ps = Ls$ 

From the above considerations we have

$$s \ge Ls \ge B^{\#}s, \ L(B^{\#}s) = B^{\#}s$$

and therefore

$$B^{\#}s - Bs = P(B^{\#}s) - BP(B^{\#}s)$$

Corollary 1.6. For any balayage B on  $\overline{S}_P$  and any  $f \in (S-S)_+$  we have

 $Bf \le B^{\#}f.$ 

#### 2. (S,T)-dilation operators

In this section we suppose that T is an H-cone and S is an H-subcone of T. Definition. If  $Q: S \longrightarrow S$  is a (l.d)-operator on S such that

$$s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow Qs_1 \preceq_T Qs_2 \preceq_T s_2$$

and such that the set

$$S_Q := \{s - Qs | s \in S\}$$

is a solid subset of T with respect to the natural order of T then Q will be termed an (S,T)-dilation operator.

Remark 1. If S is an H-cone and P is an l.d-operator on S which verifies one of the equivalent properties a)-c) from Proposition 1.1 then P is an (S,T)-dilation operator where T is the completion of the H-cone  $S_P$ . Moreover in this case  $S_P$  is increasingly dense on T.

Remark 2. If Q is an (S,T)-dilation operator then Q is an  $(S,T_0)$ -dilation operator where  $T_0$  is the smallest naturally solid subcone of T such that  $S \subset T_0$ 

Theorem 2.1. Let  $Q: S \longrightarrow S$  be an additive, increasing an continuous in order from below map such that

$$s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow Qs_1 \preceq_T Qs_2 \preceq_T s_2.$$

Then the following assertions are equivalent: a) Q is an (S, T)-dilation operator. b) For any element  $u \in T$  such that there exists  $s \in S$  for which  $Qs \preceq_T u \leq s$  we have  $u \in S$ .

c) The set  $S_Q$  defined by

$$S_Q = \{s - Qs | s \in S\}$$

is a solid subcone of T (w.r. to the natural order of T) and for any  $s_1, s_2 \in S$  we have

$$s_1 - Qs_1 \le s_2 - Qs_2 \Longrightarrow s_1 - Qs_1 + Qs_2 \in S$$

d) There exists an (S, T)-dilation operator  $Q_1$  such that

$$Q_1 s \preceq_T Q s \qquad (\forall) s \in S$$

**Proof.** a)  $\Longrightarrow$  b). If  $u \in T$  and there exists  $s \in S$  such that  $Qs \preceq_T u \leq s$  then the element u - Qs belongs to T and we have  $u - Qs \leq s - Qs$ . Since  $S_Q$  is a solid part of T with respect to the natural order then there exists  $s' \in S$  with

$$s' - Qs' = u - \mathbf{Q}s \le s - Qs.$$

Since Q is a localizable dilation operator on S we deduce

$$u = s' - Qs' + Qs = s \land (Qs + s' - Qs') \in S$$

b)  $\implies$  a). Let  $s_1, s_2 \in S$  and  $f \in (S - S)_+$  be arbitrary and let u be the element of S - S defined by

$$u := s_2 \wedge (Qs_2 + s_1 - Qs_1 + Qf).$$

From hypothesis we have  $u \in T$  and

$$Qs_2 \preceq_T u \leq s_2$$

i.e  $u \in S$  and therefore Q is localizable dilation operator on S. It remains to show that the set  $S_Q$  is solid in T.

Let  $u \in T$  and  $s \in S$  be such that  $u \leq s - Qs$ . Let us consider the element  $s_0 \in S$  defined by

$$s_0 = \bigwedge \{ s' \in S \mid u \le s' - Qs' \}$$

Obviously we have  $u + Qs_0 \leq s'$  for any  $s' \in S$  such that  $u \leq s' - Qs'$ . Since S is an H-subcone of T we get

$$u + Qs_0 \le \bigwedge \{s' \in S \mid u \le s' - Qs'\} = s_0, \ u \le s_0 - Qs_0.$$

Obviously we have  $u + Qs_0 \in T$  and

$$Qs_0 \preceq_T u + Qs_0 \le s_0$$

Hence the element  $s'_0 := u + Qs_0$  belongs to S and we have

$$s'_0 \le s_0, \ \ u = s'_0 - Qs_0 \le s'_0 - Qs'_0$$

The last inequality implies that  $s'_0 \ge s_0$  and therefore  $s'_0 = s_0$ . Hence  $u = s_0 - Qs_0$ .

The relations a)  $\implies$  c) and a)  $\implies$  d) are obvious.

c)  $\implies$  b). Let  $u \in T$  and  $s \in S$  be such that

$$Qs \preceq_T u \leq s$$

The element t := u - Qs belongs to T and  $t = u - Qs \le s - Qs$ . Hence there exists  $s_1 \in S$  such that  $t = s_1 - Qs_1$ . From the hypothesis and using the inequality

$$s_1 - Qs_1 \le s - Qs$$

we get

$$u = t + Qs = s_1 - Qs_1 + Qs \in S.$$

d)  $\Longrightarrow$  b). Let  $Q_1$  be an (S,T)-dilation operator such that

$$Q_1 s \preceq_T Q s \qquad (\forall) \ s \in S$$

and let  $u \in T, s' \in S$  be such that

$$Qs' \preceq_T u \leq s'$$

We have then

$$Q_1s' \preceq_T Qs' \preceq_T u \leq s'$$

and therefore  $u \in S$ .

For any balayage B on T we denote by  $B^{\#}$  the balayage on S given by

$$B^{\#}s = \bigwedge \{s' \in S \mid s' \ge Bs\} \quad (\forall) s \in S.$$

Obviously we have

$$Bs \leq B^{\#}s, \ B(B^{\#}s) = Bs \qquad (\forall) \ s \in S.$$

Theorem 2.2. If Q is an (S,T)-dilation operator then for any balayage B on T we have

$$B^{\#}s - Bs = QB^{\#}s - BQB^{\#}s \qquad (\forall) \ s \in S.$$

**Proof.** Let  $s \in S$  and let B be a balayage on T. We put

$$u := Bs + QB^{\#}s - BQB^{\#}s$$

From the relations

$$BB^{\#}s = Bs, \ Bs - BQB^{\#}s = B(B^{\#}s - QB^{\#}s) \le B^{\#}s - QB^{\#}s$$

and using the fact that Q is an (S,T)-dilation operator we deduce that  $u \in S$  and  $Bs \leq u \leq B^{\#}s$ . Hence  $u = B^{\#}s$  and therefore

$$B^{\#}s - Bs = QB^{\#}s - BQB^{\#}s.$$

Corollary 2.3. If there exists an (S,T)-dilation operator Q on S then for any  $f \in (S-S)_+$  any balayage B on T we have

$$Bf \le B^{\#}f.$$

Proposition 2.4. Let Q be an (S,T)-dilation operator and let B be a balayage on T. Then the following assertions are equivalent

a) B(s - Qs) = 0  $(\forall) s \in S$ b)  $B^{\#}s \leq Qs$   $(\forall) s \in S$ c)  $B^{\#}s = QB^{\#}s$   $(\forall) s \in S$ d)  $B^{\#}s = B^{\#}Qs$   $(\forall) s \in S$ **Proof.** a)  $\Longrightarrow$  b). If  $s \in S$  then the relation a) implies:

$$Bs = BQs \leq Qs.$$

Since  $Qs \in S$  we deduce  $B^{\#}s \leq Qs$ .

b)  $\implies$  c) and c)  $\implies$  d) follow from the fact that for any  $s \in S$  we have

$$B^{\#}s \le Qs \le s \Longrightarrow B^{\#}s = B^{\#}(B^{\#}s) \le Q(B^{\#}s) \le B^{\#}s$$
$$B^{\#}s = QB^{\#}s \le Qs \Longrightarrow B^{\#}s = B^{\#}(B^{\#}s) \le B^{\#}Qs \le B^{\#}s$$

The relation d)  $\implies$  a) may be obtained from the fact that for any  $s \in S$  we have  $Bs = BB^{\#}s$ .

Theorem 2.5. Let Q be an (S,T)-dilation operator and let  $B_0$  be the greatest balayage on T which vanishes on  $S_Q$ . Then the balayage  $B_0$  is absorbent (i.e  $B_0t \leq_T t$ for any  $t \in T$ ) and for any  $s', s'' \in S$  we have

$$s' \leq s'' \Longrightarrow B_0 s' \preceq_T B_0 s''.$$

Particularly, if there is no absorbent balayage B on  $T, B \neq 0$  such that

 $s', s'' \in S, \ s' \leq s'' \Longrightarrow Bs' \preceq_T Bs''$ 

then  $S_Q$  is increasingly dense in T.

**Proof.** For any  $s \in S$  we consider the balayage  $B_{s-Qs}$  on T defined by

$$B_{s-Qs}(u) := \bigvee \{ u \land n(s-Qs) \mid n \in \mathbf{N} \}$$

Since  $s - Qs \in T$  the complement ([3])  $B'_{s-Qs}$  of the balayage  $B_{s-Qs}$  is absorbent ([1]). Moreover for any  $s', s'' \in S$  we have

$$(s' - Qs') + (s'' - Qs'') = (s' + s'' - Q(s' + s'')),$$

 $B_{s'-Qs'} \leq B_{s'+s''-Q(s'+s'')}, \quad B_{s''-Qs''} \leq B_{s'+s''-Q(s'+s'')}$ 

and therefore the family  $(B'_{s-Q_s})_{s\in S}$  of absorbent balayages on T is decreasing. Hence the map  $B_0: T \longrightarrow T$  defined by

$$B_0 u = \bigwedge_{s \in S} B'_{s-Q_s} u = \bigwedge_{s \in S} B'_{s-Q_s} u$$

is also an absorbent balayage on T and moreover we have  $B_0(s-Qs) = 0$  for all  $s \in S$ and

$$s', s'' \in S, s' \leq s'' \Longrightarrow B_0 s' = B_0(Qs') \preceq_T B_0(Qs'') = B_0 s'' \preceq_T s''$$

The fact that  $B_0$  is the greatest balayage which vanishes on  $S_Q$  follows from the fact that for any such a balayage B on T and any  $s \in S$  we have

$$B(B_{s-Qs}u) = \bigvee_{n \in \mathbb{N}} B(n(s-Qs) \wedge u) \le \bigvee_{n \in \mathbb{N}} nB(s-Qs) = 0$$

and therefore

$$B \wedge B_{s-Qs} = 0$$

Hence, using ([1], [3]) we have

$$B = B \land I = B \land (B_{s-Qs} \lor B'_{s-Qs}) = (B \land B_{s-Qs}) \lor (B \land B'_{s-Qs}) =$$

$$= B \land B'_{s-Qs} \le B'_{s-Qs}$$

and therefore, the element  $s \in S$  being arbitrary,

$$B \leq \bigwedge_{s \in S} B'_{s-Qs} = B_0.$$

From the preceding considerations we see that  $B_0$  is in fact the complement of the balayage  $\bigvee_{s \in S} B_{s-Qs}$ . If there is no trivial absorbent balayage B on T such that

$$s', s'' \in S, \ s' \leq s'' \Longrightarrow Bs' \preceq_T Bs''$$

it follows that  $B_0 = 0$  and therefore  $I = \bigvee_{s \in S} B_{s-Qs}$  which liedes to the conclusion that the convex subcone  $S_Q$  is increasingly dense in T.

Theorem 2.6. For any balayage B on T which verifies one of the equivalent properties a)-d) from Proposition 2.4 for a given (S,T)-dilation operator Q on S we have

$$s', s'' \in S, s' \leq s'' \Longrightarrow B^{\#}s' \preceq_T B^{\#}s'' \preceq_T s''$$

Particularly if there is no trivial balayage L on S such that

$$s', s'' \in S, \ s' \leq s'' \Longrightarrow Ls' \preceq_T Ls'' \preceq_T s''$$

then  $S_Q$  is increasingly dense in T.

**Proof.** From Proposition 2.4 we deduce

$$s', s'' \in S, s' \leq s'' \Longrightarrow B^{\#}s' = Q(B^{\#}s') \preceq_T Q(B^{\#}s'') \preceq B^{\#}s''$$

 $s \in S \Longrightarrow B^{\#}s = Q(B^{\#}s) \preceq_T Qs \preceq_T s.$ 

The last part of the proof follows from Theorem 2.5.

#### 3. Existence of (S, T)-dilation operators

In this section S and T are two H-cones such that S is a convex H-subcone of T. For any balayage B on T we denote by  $B^{\#}$  the balayage on S defined by

$$B^{\#}s := \bigwedge \{ t \in S \mid t \ge Bs \}$$

We want to construct, under some suplimentary conditions, an (S, T)-dilation operator on S.

Theorem 3.1. The following assertions are equivalent:

1) for any balayage B on T and any  $f \in (S - S)_+$  we have

$$Bf \le B^{\#}f$$

2) for any balayage B on T and any  $f \in (S - S)_+$  there exists an element  $t \in T$  such that:

$$B^{\#}f - Bf = t - Bt$$

3) for any balayage B on T, any  $f \in (S - S)_+$  and any element  $s \in S$  such that  $f \leq s$  we have

$$O \le B^{\#}f - Bf \preceq_T s$$

4) for any finite family  $(f_i)_{i \in I}$ ,  $f_i \in (S-S)_+$ , any finite family  $(B_i)_{i \in I}$  of balayages on T and any  $s \in S$  such that  $\sum_{i \in I} B_i^{\#} f_i \leq s$  we have

$$O \leq \sum_{i \in I} (B_i^{\#} f_i - B_i f_i) \preceq_T s$$

Proof. The relations  $4) \Longrightarrow 3) \Longrightarrow 1)$  and  $2) \Longrightarrow 1)$  are obvious.

1)  $\implies$  2). Let  $f \in (S - S)_+$  and let B be a balayages on T. For any balayages M on the H-cone  $T_B$ , where

 $T_B := \{t - Bt \mid t \in T\},\$ 

there exists a balayage  $B_1$  on  $T, B_1 \ge B$ , such that

$$M(t - Bt) = B_1 t - Bt \qquad (\forall) \ t \in T$$

(see [6]).

Since the element  $B^{\#}f - Bf$  belongs to  $T_B - T_B$  it remains to show that  $M(B^{\#}f - Bf) \leq B^{\#}f - Bf$ . (see [3])

We have, using the hypothesis,  $M(B^{\#}f - Bf) = B_1(B^{\#}f) - B_1Bf \le B_1^{\#}(B^{\#}f) - B_1Bf = B^{\#}f - Bf$ . Hence 1)  $\iff$  2).

1)  $\implies$  3). Let  $f \in (S - S)_+$  and let B be a balayage on T. If  $t \in S$  is such that  $f \leq t$  we have

$$t - (B^{\#}f - Bf) - Bt = (t - Bt) - (B^{\#}t - Bt) + (B^{\#}(t - f) - B(t - f))$$

i.e the element  $u := t - (B^{\#}f - Bf) - Bt$  belongs to  $T_B - T_B$ . We show now that  $u \in T_B$ . Indeed, if we consider a balayage M on  $T_B$  there exists a balayage  $B_1$  on T,  $B_1 \ge B$  such that

$$M(s - Bs) = B_1(s - Bs) \qquad (\forall) \ s \in T$$

and therefore

$$M(u) = B_1(u) = B_1(t - B^{\#}f) - B_1(Bt - Bf) \le$$

 $\leq B_1^{\#}(t - B^{\#}f) - (Bt - Bf) = B_1^{\#}t - B^{\#}f + Bf - Bt \leq t - (B^{\#}f - Bf) - Bt,$ 

 $Mu \leq u$ 

Hence  $u \in T_B$ . On the other hand we have  $u \leq t - Bt$  and therefore  $u + Bt \in T$  i.e  $t - (B^{\#}f - Bf) \in T$ .

3)  $\Longrightarrow$  4). We proceed inductively and we suppose that for any system  $(f_1, f_2, \ldots, f_n)$  of elements of  $(S-S)_+$  and any system  $(B_1, B_2, \ldots, B_n)$  of balayages on T such that  $\sum_{i=1}^{n} B_i^{\#} f_i \leq s$ , where  $s \in S$ , we have

$$s - \sum_{i=1}^{n} (B_i^{\#} f_i - B_i f_i) \in T$$

Let now  $\{f_1, f_2, \ldots, f_{n+1}\}$  be a subset of  $(S - S)_+$   $(B_1, B_2, \ldots, B_{n+1})$  be a system of balayages on T such that  $\sum_{i=1}^{n+1} B_i^{\#} f_i \leq s$  where s is an element of S. We have

 $s - \sum_{i=2}^{n+1} (B_i^{\#} f_i - B_i f_i) \in T$  and we want to show that  $s - \sum_{i=1}^{n+1} (B_i^{\#} f_i - B_i f_i)$  is an element of T.

If we denote

$$f = s - \sum_{i=1}^{n+1} (B_i^{\#} f_i - B_i f_i), \quad u = s - \sum_{i=2}^{n+1} (B_i^{\#} f_i - B_i f_i)$$

and by Rf the reduite of f with respect to the H-cone T then we have

 $u \in T$ ,  $u = f + (B_1^{\#} f_1 - B_1 f_1)$ ,  $u \ge f$ ,  $u \ge Rf$ .

On the other hand for any  $\alpha \in (0, 1)$  we have

$$B_{\alpha}f \ge B_{\alpha}(\alpha Rf) = \alpha Rf$$

where  $B_{\alpha}$  is the balayage on T defined by

$$t \in T$$
,  $B_{\alpha}t = \bigvee_{n \in \mathbb{N}} R(t \wedge ng)$ ,  $g := (f - \alpha Rf)_+$ .

(see [2]). On the other hand we have

$$B_1(B_1^{\#}f_1 - B_1f_1) = 0, B_1f = B_1u \ge B_1Rf \ge B_1(\alpha Rf).$$

From the relations

 $B_{\alpha}f \ge B_{\alpha}(\alpha Rf) = \alpha Rf$ 

$$B_1 f \ge B_1(\alpha R f)$$

and using the fact that for any  $s \in T$  we have

$$(B_{\alpha} \lor B_{1})s = (B_{\alpha}s) \lor (B_{1}s)$$

it follows that

$$(B_{\alpha} \lor B_1)f \ge (B_{\alpha} \lor B_1)(\alpha Rf) \ge \alpha Rf$$

From the relation  $O \leq u - B^{\#}f_1$  we deduce

$$(B_{\alpha} \vee B_{1})f = (B_{\alpha} \vee B_{1})(u - B_{1}^{\#}f_{1}) + (B_{\alpha} \vee B_{1})(B_{1}f_{1}) \leq \\ \leq (B_{\alpha} \vee B_{1})^{\#}(u - B_{1}^{\#}f_{1}) + B_{1}f_{1} = (B_{\alpha} \vee B_{1})^{\#}u - B_{1}^{\#}f_{1} + B_{1}f_{1} \leq \\ \leq u - (B_{1}^{\#}f_{1} - B_{1}f_{1}) = f.$$

Hence for any  $\alpha \in (0,1)$  we have

$$f \ge (B_{\alpha} \lor B_1) f \ge \alpha R f$$

and therefore  $f = Rf \in T$ . Lemma 3.2. Suppose that

$$Bf < B^{\#}f$$

for any  $f\in (S-S)_+$  and any balayage B on T and we denote by  $P_B$  the map  $P_B:S\longrightarrow T$  defined by

$$P_B s := B^\# s - B^\# s \bigwedge_T B s.$$

Then we have

1.  $P_B(s_1 + s_2) = P_B s_1 + P_B s_2$ 

2.  $s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow P_B s_1 \preceq_T P_B s_2 \preceq_T s_2$ 

3.  $P_B(B^\# s) = P_B s \quad \forall s \in S$ 

4.  $P_B$  is continuous in order from below (i.e  $s_i \uparrow s, s_1, s \in S \implies P_B s_i \uparrow P_B s$ ). For the proof see [4].

In the sequel, in this section we suppose that the pair (S,T) verifies the following two conditions:

a) Any increasing family of S, dominated in T is dominated in S.

b) For any  $t_1, t_2 \in T$  such that

$$f \in (S - S)_+, \ f \le t_1 \implies f \le t_2$$

then  $t_1 \leq t_2$ .

Remarks. 1) If S is complete then the property 1) is verified. 2) The property 2) is equivalent with the following one: for any  $t \in T$  we have

$$t = \lor \{ R(f) \mid f \in (S - S)_+, f \le t \}$$

where Rf means the reduite of f in the H-cone T.

Lemma 3.3. Suppose that

$$Bf \le B^{\#}f$$

for any  $f \in (S - S)_+$  and any balayage B on T. Then if  $u \in T$  is such that

 $f \in (S-S)_+, f \leq u \Longrightarrow P_B f \preceq_T u$ 

for any balayage B on T then  $u \in S$ .

**Proof.** Let  $f \in (S - S)_+$ ,  $f \leq u$  and let B be a balayage on T. We show that

 $B^{\#}f \le u.$ 

Indeed, we have, by hypothesis  $P_B f \preceq_T u$ , and therefore there exists  $v \in T$  with

$$u = v + P_B f.$$

Suppose that f = s - t where  $s, t \in S$ . We have

$$B^{\#}(s-t) + v = B^{\#}s \bigwedge_{T} Bs - B^{\#}t \bigwedge_{T} Bt + u$$

and therefore

$$B(s-t) + Bv = B^{\#}s \bigwedge_{T} Bs - B^{\#}t \bigwedge_{T} Bt + Bu.$$

Hence we get

$$u + B(s - t) + Bv = v + B^{\#}(s - t) + Bu.$$

Since  $Bv \leq v$  and  $s - t \leq u$  we deduce

$$B(s-t) \le Bu$$

and therefore

$$u \ge B^{\#}(s-t) = B^{\#}f$$

We show now that

$$u \ge R^S(f) := \wedge \{ s' \in S \mid s' \ge f \}$$

It is known ([2]) that for any  $\alpha \in (0, 1)$  we have

$$R^{S}(f) = B_{h}^{S}(R^{S}(f)) \le \frac{1}{\alpha} B_{h}^{S}(f)$$

where  $h = (f - \alpha R^S f)_+$  and  $B_h^S$  is the balayage on S defined by

$$B_h^S s' = \wedge \{ s'' \in S \mid s'' \ge s' \wedge nh \qquad (\forall) \ n \in \mathbb{N} \}.$$

If  $B_h$  denote the following balayage on T

$$B_h t' := \wedge \{ t'' \in T \mid t'' \ge t' \wedge nh \quad (\forall) \ n \in \mathbb{N} \}$$

then we have already remarked that  $B_h^S = (B_h)^{\#}$  and therefore:

$$R^{S}(f) \leq \frac{1}{\alpha} B_{h}^{S}(f) = \frac{1}{\alpha} (B_{h})^{\#}(f) \leq \frac{1}{\alpha} u,$$
$$\alpha R^{S}(f) \leq u.$$

Since  $\alpha \in (0, 1)$  is arbitrary we get  $R^{S}(f) \leq u$ . If we denote, for any  $g \in S - S$ ,

$$R^T(g) = \wedge \{t \in T \mid t \ge g\}$$

obviously we have  $R^{T}(g) \leq R^{S}g$  and from the preceding considerations we deduce

 $u = \bigvee \{ R^T(f) \mid f \in (S - S)_+, \ f \le u \} \le$ 

$$\leq \bigvee \{ R^{S}(f) \mid f \in (S - S)_{+}, \ f \leq u \} \leq u,$$
$$u = \bigvee \{ R^{S}(f) \mid f \in (S - S)_{+}, \ f \leq u \} \in S.$$

The above result is an extension of a similar one ([4]) given in the case where S and T are standard H-cones of functions.

Notation. Suppose that  $Bf \leq B^{\#}f$  for any  $f \in (S - S)_{+}$  and any balayage B on T. In the following, for any  $s \in S$ , we shall denote by Ps the element of T given by

$$Ps := \bigvee_T \{ \sum_{i \in I} P_{B_i} s_i | \text{ I finite, } s_i \in S, \sum_{i \in I} s_i \leq s, B_i \text{ balayage on } T \}$$

Lemma 3.4. If  $s \in S$  and  $u \in T$  are such that

$$Ps \preceq_T u \leq s$$

then  $u \in S$ .

Proof. If  $f \in (S - S)_+$  is such  $f \leq u$  then for any balayage B on T we have

$$P_B f \preceq_T P_B s \preceq_T P s \preceq_T u, \quad P_B f \leq u$$

The assertion follows now from the previous lemma. Corollary 3.5. For any  $s \in S$  we have  $Ps \in S$  and

 $Ps \preceq_T s.$ 

Proof. Indeed, from Theorem 3.1 we deduce

$$Ps \preceq_T s$$

19

and from Lemma 3.4 we get  $Ps \in S$ .

Theorem 3.6. The above map  $P: S \longrightarrow S$  is an (S,T)-dilation operator on S. Moreover for any (S,T)-dilation operator Q on S we have

 $Ps \preceq_T Qs \quad (\forall) s \in S.$ 

Proof. By definition and by Corollary 3.5 we have

$$s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow Ps_1 \preceq_T Ps_2 \preceq_T s_2.$$

From ([4], Theorem 2.8) it follows that P is additive and continuous in order from below. Using now Lemma 3.4 and Theorem 2.1 we deduce that P is (S,T)-dilation operator on S.

Since for any balayage B on S we have

$$B^{\#}s - Bs = QB^{\#}s - BQB^{\#}s \preceq_T QB^{\#}s \preceq_T Qs$$

we deduce, from the definition of  $P_B$ , that

$$P_{Bs} \preceq_T Qs$$

and therefore  $Ps \preceq_T Qs$ .

Theorem 3.7. Let  $Q: S \longrightarrow S$  be a map which is additive, continuous in order from below and such that

$$s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow Qs_1 \preceq_T Qs_2 \preceq_T s_2.$$

Then Q is an (S,T)-dilation operator iff for any balayage B on T and any  $s \in S$  we have

$$B^{\#}s - Bs = QB^{\#}s - BQB^{\#}s.$$

Proof. If Q is an (S, T)-dilation operator then from Theorem 2.2 we have

$$B^{\#}s - Bs = QB^{\#}s - BQB^{\#}s$$

for any  $s \in S$  and any balayage B on T. Conversely suppose that this formula holds for any  $s \in S$  and any balayage B on T. We have for any balayage B on T and any  $s \in S$ ,

$$B^{\#}s - Bs = QB^{\#}s - BQB^{\#}s \preceq_{T} QB^{\#}s \preceq_{T} Qs$$

and therefore

 $P_{Bs} \preceq_T Qs, \quad Ps \preceq Qs.$ 

Using Theorem 2.1 the preceding inequality and Theorem 3.6 we deduce that Q is an (S, T)-dilation operator on S.

#### 4. On the unicity of (S,T)-dilation operator

In this section S and T will be H-cones such that S is an H-subcone of T and the following are fulfiled:

a) Any increasing family in S, dominated in T is also dominated in S

b) For any  $t_1, t_2 \in T$  such that

$$\{f \in (S-S)_+ \mid f \le t_1\} \subset \{f \in (S-S)_+ \mid f \le t_2\}$$

we have  $t_1 \leq t_2$ 

c) For any  $f \in (S - S)_+$  and any balayage B on T we have

 $Bf \le B^{\#}f$ 

In the preceding section we have proved that in the above conditions there exists (S,T)-dilation operators on S. Moreover there exists an (S,T)-dilation operator P on S such that for any (S,T)-dilation operator Q on S we have  $Ps \leq Qs$  (or more precisely  $Ps \leq_T Qs$ ) for all  $s \in S$ . This remarkable (S,T)-dilation operator on S will be termed the minimal (S,T)-dilation operator on S.

In this section we deal with the unicity problem for the family of (S, T)-dilation operators on S.

For the simplicity reasons we suppose that the H-cone T contains sufficiently many quasi-continuous elements.

We remember that an element  $u \in T$  is termed quasicontinuous if for any increasing family  $(u_i)_i$  of T such that  $\bigvee_{i \in I} u_i = u$  we have  $\bigwedge_{i \in I} R(u - u_i) = 0$  where R means the reduite operator on T. We say that T contains sufficiently many quasi-continuous elements if any element of S is the suppernum of the family of its quasi-continuous minorants.

Lemma 4.1. Let C be an H-cone which contains sufficiently many quasi-continuous elements and let  $\varphi : C \longrightarrow C$  be an additive, increasing, continuous in order from below map such that

 $s_1, s_2 \in C, \ s_1 \leq s_2 \Longrightarrow \varphi(s_1) \preceq \varphi(s_2) \preceq s_2.$ 

Then there exists a recurrent balayage ([7]) B on C such that

$$\varphi(s) \preceq Bs \qquad (\forall) \ s \in C.$$

Proof. We denote

$$C_0 := \{ s \in C \mid \varphi(s) = 0 \}$$

$$C_1 := \{ t \in C \mid t \land s = 0 \quad (\forall) \ s \in C_0 \}$$

First we show that if  $s_1 \in C_1$  and  $s_2 \in C$  are such that  $s_1 \leq s_2$  then  $s_1 \leq s_2$ . Indeed, let us put

 $u = s_1 \ s_2, \ s'_1 = s_1 - u, \ s'_2 = s_2 - u.$ 

We have  $s'_1 \in C_1$ ,  $s'_1 \quad s'_2 = 0$ ,  $s'_1 \leq s'_2$ . Since  $\varphi(s'_1) \preceq s'_1$ ,  $\varphi(s'_1) \preceq \varphi(s'_2) \preceq s'_2$  we deduce  $\varphi(s'_1) = 0$  and therefore  $s'_1 \in C_0 \cap C_1$ ,  $s'_1 = 0$ . Hence  $s_1 = u \preceq s_2$ .

Now, for any quasi-continuous element  $s \in C$  we put

$$Bs = \bigvee \{t \mid t \in C_1, t \leq s\} = \bigvee \{t \mid t \in C_1 \mid t \leq s\}$$

It is easy to see that B is additive, increasing and continuous in order from below. Since  $Bs \preceq s$  then Bs is also quasi-continuous and BBs = Bs. The map

 $s \longrightarrow \bigvee \{Bt \mid t \leq s, t \text{ quasi-continuous}\} = \tilde{B}s$ 

is a balayage on C which extends the above map B and we have

$$s_1, s_2 \in C, \ s_1 \leq s_2 \Longrightarrow \widetilde{B}s_1 \preceq \widetilde{B}s_2 \preceq s_2,$$

and therefore  $\tilde{B}$  is a recurrent balayage on C.

Moreover, for any quasi-continuous element s of C we have

$$s - Bs \in C_0, \varphi(s) = \varphi(Bs)$$

and therefore  $\varphi(s) \preceq Bs = \tilde{B}s \preceq s$ .

Theorem 4.2. Suppose that there is no recurrent balayage on T different from zero. Then for any balayage B on S which is an (S,T)-dilation operator we have B = Q for any (S,T)-dilation operator Q in S with

$$Bs \leq Qs \quad \forall s \in S.$$

**Proof.** Let Q be a (S,T)-dilation operator on S and B be a balayage on S such that

 $s \in S \Longrightarrow Bs \leq Qs.$ 

Then we have

 $Bs = B^2 s \leq Q(Bs) \preceq_T Bs$ 

and therefore Bs = Q(Bs) for any  $s \in S$ . We consider now the map  $M: T \longrightarrow T$  defined by

$$Mu = \bigvee \{Q(s - Bs) \mid s - Bs \le u, s \in S\}$$

Since

$$s, t \in S, s - Bs \leq t - Bt \Longrightarrow Q(s - Bs) \preceq_T Q(t - Bt) = Qt - Bt \preceq_T t - Bt$$

we deduce

$$u, v \in T, u \leq v \Longrightarrow Mu \preceq_T Mv \preceq_T v.$$

From Lemma 4.1 it follows that there exists a recurrent balayage L on T such that

 $Mu \preceq_T Lu.$ 

Using the hypothesis we get L = 0 and therefore M = 0,

$$s \in S \Longrightarrow Qs = QBs = Bs.$$

Remark. If B is a balayage on S such that  $S_B := \{s - Bs \mid s \in S\}$  is solid in T then it follows that B is a (S,T)-dilation operator on S. Therefore the preceding theorem shows that if there is no recurrent balayage on T different from zero and B is a balayage on S such that  $S_B$  is solid in T then any (S,T)-dilation operator Q on S which dominates B coincides with B.

Corollary 4.3. If the minimal (S,T)-dilation operator P on S is a balayage on S and there is no recurrent balayages on T then any (S,T)-dilation operator on S is equal with P.

The following example show that the above theorem fails if we drop the supplementary condition above T.

Example 1. We consider an *H*-cone *S* which is recurrent (i.e the natural order coincides with the specific order in *S*) and for any  $\alpha \in [0, 1]$  we denote by  $P_{\alpha}$  the map  $P_{\alpha}: S \longrightarrow S$  defined by  $P_{\alpha}S = \alpha \cdot S$ . It is easy to see that the pair (S, S) verifies the conditions from the beginning of this section and that  $P_{\alpha}$  is a (S, S)-dilation operator on *S* for any  $\alpha \in [0, 1]$ .

We remark that  $P_0 = 0$  is the minimal (S, S)-dilation operator on S and that  $P_0$ and  $P_1$  are balayages on S. In this example  $S_{P_\alpha} = S$  for any  $\alpha \in [0, 1)$  and  $S_{P_1} = \{0\}$ .

The following example shows that the above corollary holds even if the minimal (S,T)-dilation operator is not a balayage on S.

Example 2. Let S be the H-cone of all positive, increasing and lower semicontinuous real functions on the open interval (-1,1) of R. We consider the map  $B^{\{0\}}: S \longrightarrow S$  where for any subset  $A \subset (-1,1)$  and any  $s \in S$  we have

$$B^{A}s = \bigwedge \{t \in S | t \ge s \text{ on } A\}.$$

It is known that  $B^{\{0\}}$  is a localizable dilation operator on S and  $S_{B^{\{0\}}}$  is solid and increasingly dense in the set T of all positive, real functions on (-1,1) such that their restrictions to (-1,0] and (0,1) are increasing and lower semicontinuous. We show that any (S,T)-dilation operator on S coincides with  $B^{\{0\}}$ .

Indeed, we consider the *H*-cone  $S_1$  of the restrictions to (-1,0] of all  $s \in S$  and the map  $T: S_1 \longrightarrow S_1$  defined by

$$Tt = Q(t)/(-1,0)$$

where  $\bar{t}$  is equal t on (-1,0] and equal t(0) on (0,1). Obviously T verifies the conditions from Lemma 4.1. Since there is no recurrent balayages on  $S_1$  different from zero we get Tt = 0 for any  $t \in S_1$  and therefore

$$Q(\bar{t})|_{(-1,0]} = 0 \qquad \forall t \in S_1.$$

Let now  $s \in S$  and let  $s_1 := s|_{(-1,0]}$ . We have

 $s \leq \bar{s_1} + B^{(0,1)}s,$ 

$$Qs \preceq_T Q(\bar{s_1}) + Q(B^{(0,1)}s).$$

Since  $Q(\bar{s}_1)|_{(-1,0]} = 0$ ,  $B^{(0,1)}s|_{(-1,0)} = 0$  we deduce

 $Qs|_{(-1,0)} = 0$ 

We consider now the H-cone  $S_2$  given by

$$S_2 := \{ s \in S \mid s|_{(-1,0]} = 0 \}$$

It is easy to see, using the preceding consideration that the map  $s \longrightarrow Qs$  verifies the conditions from Lemma 4.1 with respect to the *H*-cone  $S_2$  and therefore, since there is no recurrent balayages on  $S_2$  different from zero, we get

$$Qs = 0 \quad \forall s \in S_2.$$

Because  $B^{(-1,0)}s \preceq_S s$  for any  $s \in S$  we get

$$s - B^{(-1,0)}s \in S_2$$

and therefore

$$Q(s) + Q(B^{(-1,0)}s).$$

Hence for any  $s, t \in S$  we have

$$s = t \text{ on } (-1, 0] \Longrightarrow Qs = Qt$$

and therefore

$$s \in S \Longrightarrow Qs = Q(B^{(-1,0)}s) \preceq_T B^{(-1,0)}s.$$

Since  $B^{(-1,0)}s = B^{\{0\}}s$  on (0,1) and Qs = 0 on (-1,0] we have

 $Qs \preceq_T B^{\{0\}}s.$ 

Let now P be the minimal (S, T)-dilation operator on S. It remains to show that

$$B^{\{0\}}s = Ps \qquad \forall \ s \in S$$

Indeed if  $s \in S$  is a continuous function then there exists  $u \in S$ ,  $u \leq s$  such that  $s - B^{\{0\}}s = u - Pu$ . From  $B^{\{0\}}s = 0$  on (-1, 0] and  $Pu \leq B^{\{0\}}u$  it follows that

$$s = u \text{ on } (-1, 0].$$

and therefore Pu = Ps. Hence

$$s-u = B^{\{0\}}s - Ps, \quad Ps \prec_T B^{\{0\}}s$$

and therefore  $s - u \in S$ . Because s is continuous we deduce that u and  $B^{\{0\}}s - Ps$  are also continuous. From the fact that  $B^{\{0\}}s - Ps = 0$  on (-1, 0] and that  $B^{\{0\}}s$  is

constante on (0, 1) we deduce that  $B^{\{0\}}s - Ps$  is also constante on (0, 1) and therefore being continuous is equal to zero. Hence

$$B^{(0)}s = Ps.$$

Theorem 4.4. Suppose that there is no absorbent balayages B on T different from zero such that

$$s_1, s_2 \in S, \ s_1 \leq s_2 \Longrightarrow Bs_1 \preceq_T Bs_2.$$

and that there exists a balayage  $B_0$  on S which is a (S,T)-dilation operator on S. Then  $B_0$  is the only (S,T)-dilation operator on S.

**Proof.** From hypothesis it follows that there is no recurrent balayages on T different from zero and therefore, using Theorem 4.2, any (S,T)-dilation operator Q on S such that  $Qs \ge B_0s$  for any  $s \in S$ , is equal with  $B_0$ .

To finish the proof we show that  $B_0$  is the minimal (S, T)-dilation operator on S. Let P be the minimal (S, T)-dilation operator on S and let s be an arbitrary element of S. We have  $s - Bs \leq s - Ps$  and since the set  $S_B$  is increasingly dense in T we can choose an increasing family  $(s_i - Bs_i)_{i \in I}$  such that  $\bigvee_{i \in I} (s_i - Bs_i) = s - Ps$ . On the other hand the set  $S_P$  being a solid subcone of T we deduce that for any  $i \in I$ there exists  $t_i \in S$  such that  $t_i - Pt_i = s_i - Bs_i$  and moreover taking, for every  $i \in I$ , the smallest element  $t_i$  of S with the above property then we deduce (see [5]) that the family  $(t_i)_{i \in I}$  is increasing and dominated by s. If we denote  $t = \bigvee_{i \in I} t_i$  we get

$$(Pt_i)_i \uparrow Pt, \ (t_i - Pt_i)_i \uparrow t - Pt = s - Ps.$$

Using the fact that  $s_i - Bs_i = t_i - Pt_i$  we get  $Bt_i = BPt_i$  for any  $i \in I$  and therefore, passing to the limite Bt = BPt or equivalently Bs = BPs. Hence  $Bs \leq Ps$  i.e Bs = Ps.

Let now  $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$  be a submarkovian resolvent on a measurable space  $(X, \mathcal{B})$  such that its initial kernel  $V_0 = V$  is bounded and absolutely continuous with respect to a finite measure  $\mu$ .

It is know that in this case the convex cone  $\mathcal{E} = \mathcal{E}_{\mathcal{V}}$  of all  $\mathcal{V}$ -excessive functions on X which are finite  $\mathcal{V}$ -a.s is an H-cone. Further we suppose that  $\mathcal{E}_{\mathcal{V}}$  separates the points of X containes the positive constant functions, is min-stable and generates  $\sigma$ -algebra  $\mathcal{B}$ .

It is know also ([11]) that if  $\alpha > 0$  then the kernel  $Q := \alpha V_{\alpha}$  is a  $(\mathcal{E}, \mathcal{E}_{\alpha})$ -dilation operator on  $\mathcal{E}$  where  $\mathcal{E}_{\alpha}$  is the *H*-cone of all  $\alpha$ -excessive functions on *X* with respect to  $\mathcal{V}$ . In this case we have

$$Vf - \alpha V_{\alpha}Vf = V_{\alpha}f$$

and therefore the H-cone

$$\mathcal{E}_Q = \{ s - \alpha V_\alpha s \mid s \in \mathcal{E} \}$$

is a solid and increasingly dense subcone of  $\mathcal{E}_{\alpha}$ .

Proposition 4.5. If there is no absorbent points of X with respect to  $\mathcal{E}$  then any  $(\mathcal{E}, \mathcal{E}_{\alpha})$ -dilation operator Q on  $\mathcal{E}$  such that

$$\alpha V_{\alpha s} \prec_{\mathcal{E}_{\alpha}} Q_s \quad \forall s \in \mathcal{E}$$

coincides with  $\alpha V_{\alpha}$ .

**Proof.** Let Q be a  $(\mathcal{E}, \mathcal{E}_{\alpha})$ -dilation opeator on  $\mathcal{E}$  such that

 $\alpha V_{\alpha}s \preceq_{\mathcal{E}_{\alpha}} Qs \quad \forall s \in \mathcal{E}$ 

or equivalently

$$\alpha V_{\alpha} V f \preceq_{\mathcal{E}_{\alpha}} Q V f. \quad \forall f \in \mathcal{F}_{b}$$

We have

$$Wf := Vf - QVf \preceq_{\mathcal{E}_{\alpha}} Vf - \alpha V_{\alpha}Vf = V_{\alpha}f$$

for any  $f \in \mathcal{F}_b$  and therefore there exists  $g \in \mathcal{F}_b$ ,  $g \leq 1$  such that

$$Wf = V_{\alpha}(g \cdot f). \quad \forall f \in \mathcal{F}_b$$

Hence

$$QVf = Vf - V_{\alpha}(g \cdot f) = V_{\alpha}(f + \alpha Vf - g \cdot f) = V_{\alpha}((1 - g)f + \alpha Vf) = \alpha V_{\alpha}(\epsilon f + Vf)$$
  
where  $\epsilon = \frac{1-g}{\alpha}$ . On the other hand if  $f_1, f_2 \in \mathcal{F}_b$  we have

$$Vf_1 \leq Vf_2 \Longrightarrow QVf_1 \preceq_{\mathcal{E}_0} QVf_2.$$

or equivalently

$$Vf_1 \leq Vf_2 \Longrightarrow \epsilon f_1 + Vf_1 \leq \epsilon f_2 + Vf_2 \quad \mathcal{V} - a.s$$

We want to show that the set  $A := [\epsilon \ge r > 0]$  is  $\mathcal{V}$ -negligible for any r > 0. In the contrary case let  $A^* = \{x \in A \mid \lim_{\alpha \to \infty} \alpha V_{\alpha}(\mathbf{1}_A)(x) = 1\}.$ 

It is known that  $A^*$  is a sub-basic subset of X and for any  $s \in \mathcal{E}$ , there exists a sequence  $(f_n)_n$  in  $\mathcal{F}_b$ ,  $f_n = 0$  on  $X \setminus A^*$  such that  $(Vf_n)_n$  is increasing and

$$B^{A^*}s = \sup_{n} Vf_n$$

We show that any  $x \in A^*$  is an absorbent point. We consider  $x \in A^*$  and  $(U_n)_n$  an decreasing sequence of natural open neighborhoods of x such that  $\bigcap_n U_n = \{x\}$ . We take  $f_n := 1_{X \setminus U_{n \cap A^*}}$ . Then for any  $g \in \mathcal{F}_b$  such that g = 0 on  $X \setminus U_n \cap A^*$ ,  $Vg \leq V f_n$  we have

$$\epsilon g + Vg \le \epsilon f_n + Vf_n.$$

and therefore

$$\epsilon g + Vg \le Vf_n \quad \text{with } U_n \cap A^*.$$

Let  $(g_m)_m$  be a sequence such that  $g_m = 0$  on  $X \setminus U_m \cap A^*$  and  $Vg_m \uparrow B^{U_n \cap A^*} Vf_n$ . Since

 $Vg_m \uparrow Vf_n$  on  $U_n \cap A^*$ 

and since

 $\epsilon g_m + V g_m \le V f_n \qquad \forall \ m \in \mathbb{N}$ 

we deduce that

$$g_m \longrightarrow 0, \quad g_m \leq \frac{V f_n}{r}$$

and therefore  $Vg_m \longrightarrow 0$ ,  $Vf_n = 0$  on  $U_n \cap A^*$ . Hence

$$\{x\} = \left[ \left( \sum_{n} \frac{1}{2^n} V f_n \right) (x) = 0 \right]$$

i.e  $\{x\}$  is absorbent.

From the hypothesis we get that  $A^*$  is  $\mathcal{V}$ -negligible for any r > 0 and so  $Q = \alpha V_{\alpha}$ .

Theorem 4.6. If there is no fine open singleton subset of X with respect to  $\mathcal{E}$  then any  $(\mathcal{E}, \mathcal{E}_{\alpha})$ -dilation operator on  $\mathcal{E}$  coincides with  $\alpha V_{\alpha}$ .

**Proof.** Let P be the minimal  $(\mathcal{E}, \mathcal{E}_{\alpha})$ -dilation operator on  $\mathcal{E}$ . We want to show that P = Q. We have

$$PVf \preceq_{\mathcal{E}_{\alpha}} QVf \preceq_{\mathcal{E}_{\alpha}} Vf \qquad \forall f \in \mathcal{F}_{b}.$$

and

$$Vf = V_{\alpha}(f + \alpha Vf), \ QVf = \alpha V_{\alpha}Vf$$

\* \*

Since  $PVf \in \mathcal{E} \subset \mathcal{E}_{\alpha}$  there exists  $g_f \in \mathcal{F}_b$  such that

$$PVf = V_{\alpha}(g_f), \quad g_f \leq \alpha V f.$$

On the other hand the kernel W on  $(X, \mathcal{B})$  given by

$$Wf = Vf - PVf, \quad f \in \mathcal{F}_b$$

verifies the complete maxim principle,  $Wf \in \mathcal{E}_{\alpha}$  and

$$Wf = V_{\alpha}(f + \alpha Vf - g_f)$$

But the kernel  $V_{\alpha}$  verifies also the complete maximum principle and

$$W1 = V_{\alpha}(1 + \alpha V1 - g_1).$$

We deduce that

$$Wf = V_{\alpha}((1 + \alpha V1 - g_1) \cdot f) \quad \forall f \in \mathcal{F}_b$$

and therefore for any  $f \in \mathcal{F}_b$  we have

$$f + \alpha V f - g_f = (1 + \alpha V 1 - g_1) \cdot f, \quad \mathcal{V} - \text{a.s.}$$

or equivalently

$$g_f = \alpha V f - (\alpha V 1 - g_1) \cdot f, \quad \mathcal{V} - \text{a.s.}$$

Hence if we put  $\epsilon = V1 - \frac{1}{\alpha}g_1$  we get

 $0 \leq \epsilon$ ,

$$\epsilon f \leq V f \quad \mathcal{V} - \text{a.s.} \quad \forall f \in \mathcal{F}_b$$
  
 $PVf = \alpha V_{\alpha}(Vf - \epsilon f)$ 

On the other hand we have, for any  $f_1, f_2 \in \mathcal{F}_b$  such that  $Vf_1 \leq Vf_2$ ,

$$PVf_1 \preceq_{\mathcal{E}_{\alpha}} PVf_2$$

or equivalently

$$\alpha V_{\alpha}(Vf_1 - \epsilon f_1) \preceq_{\mathcal{E}_{\alpha}} \alpha V_{\alpha}(Vf_2 - \epsilon f_2).$$

This relation is equivalent also with the following

$$Vf_1 - \epsilon f_1 \leq Vf_2 - \epsilon f_2$$
  $\mathcal{V} - a.s.$ 

Since there exists a reference measure  $\mu$  on X with respect to  $\mathcal{V}$  and since  $\mathcal{E}$  generates  $\mathcal{B}$  it follows that  $\mathcal{B}$  is countable generated and therefore there exists a  $\mathcal{V}$ -negligible subset M of  $X, M \in \mathcal{B}$  for which we have

: :

$$\epsilon f \leq V f$$
 on  $X \setminus M$ ,  $\forall f \in \mathcal{F}_b$ 

We want to show that

 $\epsilon = 0$   $\mathcal{V} - a.s$ 

Indeed let  $T = \{x \in X \setminus M \mid \epsilon(x) > 0\}$ . For any  $x \in T$  we have

 $Vf(x) \ge \epsilon(x)f(x) \qquad \forall f \in \mathcal{F}_b$ 

and therefore

 $V(1_{\{x\}}) \ge \epsilon(x).$ 

Let now  $g \in \mathcal{F}_b$  be such that  $Vg \leq V1$  and such that g(x) = 0. We have

 $P(Vg) \preceq_{\mathcal{E}_{\alpha}} P(V1_x).$ 

or equivalently

$$Vg - \epsilon g \leq V \mathbf{1}_x - \epsilon \mathbf{1}_x$$
  $\mathcal{V} - a.s.$ 

Hence

$$f(x) \le V \mathbf{1}_x(x) - V g(x).$$

Since

$$B^{X \setminus \{x\}} V \mathbf{1}_x = \sup\{ Vg \mid g \in \mathcal{F}_b, \ Vg \le V \mathbf{1}_{\{x\}}, \ g(x) = 0 \}$$

it follows

$$\epsilon(x) \leq V \mathbf{1}_{r}(x) - B^{X \setminus \{x\}} V \mathbf{1}_{r}(x).$$

But

$$V\mathbf{1}_x = B^{X \setminus \{x\}} V\mathbf{1}_x$$
 on  $X \setminus \{x\}$ .

i.e.  $\{x\}$  is fine open with respect to  $\mathcal{E}$ . From the hypothesis we deduce that  $\epsilon = 0$  and therefore  $P = \alpha V_{\alpha}$ .

The fact that any  $(\mathcal{E}, \mathcal{E}_{\alpha})$ -dilation operator Q on  $\mathcal{E}$  coincides with  $\alpha V_{\alpha}$  follows now from the preceding proposition.

**Remark.** The assertion of the above Theorem fails if instead of "there is no fine open singleton in X" we put "there is no absorbent points in X with respect to  $\mathcal{E}$ ". We consider  $X = \{1, 2\}$  and

$$Vf(x) = f(x) + \frac{1}{2}(f(x) + f(y)) \qquad \forall x, y \in X.$$

The associated resolvent will be  $\mathcal{V} = (V_{\alpha})_{\alpha>0}$  where

$$V_{\alpha}f(x) = f(x) + \frac{1}{(1+\alpha)(2\alpha+1)} \left(\frac{f(x)+f(y)}{2}\right)$$

We have

$$\mathcal{E} = \mathcal{E}_{\mathcal{V}} = \{ (x_1, x_2) \mid x_1, x_2 \ge 0, \ x_1 \le 5x_2, \ x_2 \le 5x_1 \}$$
  
$$\mathcal{E}_1 = \mathcal{E}_{\mathcal{V}_1} = \{ (x_1, x_2) \mid x_1, x_2 \ge 0 \mid x_1 \le 25x_2, \ x_2 \le 25x_1 \}$$

and the map  $Q: \mathcal{E} \longrightarrow \mathcal{E}$  defined by

$$QVf(x) = \frac{1}{2}f(x) + \frac{5}{4}\frac{f(x) + f(y)}{2}.$$

is a  $(\mathcal{E}, \mathcal{E}_1)$ -dilation operator on  $\mathcal{E}$  such that

$$QVf \preceq_{\mathcal{E}_{\mathcal{V}_1}} V_1 V f$$

and  $Q \neq V_1$ .

#### 5. The compression operator associated with a (S,T)-dilation operator

In this section S, T are two *H*-cones as in the preceding sections and *Q* is a given (S,T)-dilation operator on *S*. We intend to extend *Q* to a map  $\overline{Q}: D(\overline{Q}) \longrightarrow T$  where  $D(\overline{Q})$  a solid convex subcone of *T*, containing *S* such that  $\overline{Q}$  is additive, increasing, continuous in order from below and such that

$$u, v \in D(\overline{Q}), \ u \leq v \Longrightarrow \overline{Q}u \preceq_T \overline{Q}v.$$

and to show that for  $u \in D(\overline{Q})$  we have

$$u \in S \Longleftrightarrow \overline{Q}u \preceq_T u.$$

Proposition 5.1. Let us denote by  $\overline{Q}$  the operator on  $S_Q := \{s - Qs \mid s \in S\}$  defined by

$$\overline{Q}(s-Qs) = Qs - Q^2s.$$

Then  $\overline{Q}$  is additive, increasing, continuous in order from below and

 $s - Qs \leq t - Qt \Longrightarrow \overline{Q}(s - Qs) \preceq_T \overline{Q}(t - Qt).$ 

**Proof.** By definition we get immediately that Q is additive and that

$$s - Qs \leq t - Qt \Longrightarrow \overline{Q}(s - Qs) \preceq_T \overline{Q}(t - Qt).$$

Let now  $(s_i - Qs_i)_{i \in I}$  be an increasing family in  $S_Q$  such that

$$\bigvee_{i\in I}(s_i-Qs_i)=s-Qs.$$

We denote by  $s'_i$  (resp. s') the smallest element in S such that

$$s_i - Qs_i = s'_i - Qs'_i, \ s - Qs = s' - Qs'.$$

We know that

$$s_i - Qs_i \leq s_j - Qs_j \Longrightarrow s'_i \leq s'_j \leq s'.$$

If we denote by  $t' := \bigvee_{i \in I} s'_i$  we get  $t \leq s'$  and

$$\bigvee_{i \in I} (s_i - Qs_i) = t - Qt = s' - Qs'$$

Hence  $s' \leq t$ , s' = t,

$$\overline{Q}(s-Qs) = \overline{Q}(s'-Qs') = Qs'-Q^2s',$$

 $Qs'_i \uparrow Qs; Q^2s'_i \uparrow Q^2s'.$ 

From

$$Q(s'_i - Qs'_i) + Q^2s'_i = Qs'_i$$

we get

$$\bigvee_{i \in I} Q(s'_i - Qs'_i) + \bigvee_{i \in I} Q^2 s'_i = \bigvee_{i \in I} Qs'_i,$$
$$\bigvee_{i \in I} Q(s'_i - Qs'_i) + Q^2 s' + Qs',$$

$$\bigvee_{i \in I} \overline{Q}(s_i - Qs_i) = \bigvee_{i \in I} Q(s'_i - Qs'_i) = Q(s' - Qs') = \overline{Q}(s - Qs).$$

Corollary 5.2. If we denote

$$D(\overline{Q}) := \{ u \in T \mid \exists v \in T, \ s - Qs \le u \Longrightarrow \overline{Q}(s - Qs) \le v \}$$

then  $D(\overline{Q})$  is a solid convex cone in  $T, S_Q \subset D(\overline{Q})$  and

$$u \longrightarrow \bigvee_{s-Qs \leq u} \overline{Q}(s-Qs)$$

is a map from  $D(\overline{Q})$  in T which is additive increasing, continuous in order from below coincides with  $\overline{Q}$  on  $S_Q$ . We denote also by  $\overline{Q}$  this map and we have a)  $u_1, u_2 \in D(\overline{Q}), \ u_1 \leq u_2 \Longrightarrow \overline{Q}(u_1) \preceq_T \overline{Q}(u_2)$  b)  $S \subset D(\overline{Q})$  and  $\overline{Q}s \preceq_T s, \forall s \in S$ .

**Remark**. The map  $\overline{Q}$  is a compression operator on T. Hence the set

$$T(Q) := \{ u \in D(Q) \mid \mathbf{Q}u \preceq_T u \}$$

is an *H*-subcone of *S* with  $S \subset T(\overline{Q})$  (see [4]).

From now on we suppose that the set

$$S_{\Box} := \{ s \in S \mid \bigwedge_{\alpha \in \Omega} Q^{\alpha} s = 0 \}$$

is increasingly dense in S where  $\Omega$  is the first ordinal number which is not countable and where  $Q^{\alpha}$  is defined inductively by  $Q^0 s = s$  and

$$Q^{\alpha}s = Q(\bigwedge_{\beta < \alpha} Q^{\beta}s).$$

Remark. If S is a standard H-cone then there exists a balayage B on S such that

$$Bs = \bigwedge_{\alpha \in \Omega} Q^{\alpha}s$$

for any universally continuous element s of S and therefore Bs = Q(Bs) for any  $s \in S$ or equivalently

$$Bs \leq Qs.$$

for any  $s \in S$ . Hence the fact that  $S_{\Box}$  is increasingly dense in S follows from the fact that there is no balayages B on S, different from zero, dominated by Q.

Theorem 5.3. If  $S_{\Box}$  is increasingly dense in S then  $\overline{Qs} = Qs$  and the set  $\{s - Qs | s \in S_{\Box}\}$  is increasingly dense in T.

**Proof.** We have inductively, for any  $\alpha \in \Omega$  and any  $s \in S_{\Box}$ ,

$$s - Q^{\alpha}s = \sum_{\beta < \alpha} (Q^{\beta}s - Q(Q^{\beta}s))$$

and therefore

$$Qs - Q^{\alpha+1}s = \sum_{\beta < \alpha} [Q^{\beta+1}s - Q(Q^{\beta+1}s)].$$

Hence for any  $s \in S$  there exists an increasing family  $(s_i - Qs_i)_{i \in I}$  in  $S_Q$  such that  $s_i \in S_{\Box}$  and such that

$$\bigvee_{i \in I} (s_i - Qs_i) = s$$
$$\bigvee_{i \in I} Q(s_i - Qs_i) \ge Qs - Q^{\alpha + 1}s \quad \forall \alpha \in \Omega.$$

Since  $\alpha$  is arbitrary in  $\Omega$  we get

V

$$\bigvee_{i \in I} \overline{Q}(s_i - Qs_i) \ge Qs$$

$$\overline{Q}(s) \ge \bigvee_{i \in I} \overline{Q}(s_i - Qs_i) \ge Qs,$$
$$\overline{Q}s = Qs.$$

The equality  $\overline{Qs} = Qs$  for any  $s \in S$  follows from the fact that  $S_{\Box}$  is increasingly dense in S and from the fact that Q and  $\overline{Q}$  are continuous in order from below on S and respectively  $D(\overline{Q})$ .

We have, for any  $u \in T$ ,

$$u = \bigvee_{s \in S} (u \wedge s)$$

Because  $S_Q$  is solid in T it will be sufficient to show that for any  $s \in S$  there exists an increasing family  $(s_i - Qs_i)_{i \in T}$ , where  $s_i \in S_{\Box}$  such that  $\bigvee_{i \in T} (s_i - Qs_i) = s$ . From the first part of the proof it follows that this assertion is true if  $s \in S_{\Box}$ . The general assertion follows from the fact that  $S_{\Box}$  is increasingly dense in S.

Theorem 5.4. Suppose that  $S_{\Box}$  is increasingly dense in S. Then for any  $u \in D(\overline{Q})$  we have

$$u \in S \Longleftrightarrow \overline{Q}u \preceq_T u.$$

Proof. Let us denote

$$T(\overline{Q}) := \{ u \in D(\overline{Q}) \mid \overline{Q}u \preceq_T u \}.$$

Suppose  $u \in T(\overline{Q})$  and there is no  $v \in T(\overline{Q})$  such that  $u-v \in T(\overline{Q})$  and  $\overline{Q}v = v$ . Since  $u - \overline{Q}u \in T$  then from Theorem 5.3 there exists an increasing family  $(s_i - Qs_i)_{i \in I}$  where  $s_i \in S_{\Box}$  and

$$\bigvee_{i\in I} (s_i - Qs_i) = u - \overline{Q}u.$$

Since  $\bigwedge_{\alpha \in \Omega} Q^{\alpha} s_i = 0$  it follows that

$$s_i - Qs_i \leq s_j - Qs_j \leq u - \overline{Q}u \Longrightarrow s_i \leq s_j \leq u$$

If we put

$$s := \bigvee_{i \in I} s_i$$

we get  $s \leq u$  and

$$s - Qs = u - \overline{Q}u$$

Since there is no  $v \in T(\overline{Q})$ , such that  $u - v \in T(\overline{Q})$  and  $\overline{Q}v = v$  then we get  $u \leq s$  and therefore

$$u=s, u\in S.$$

Suppose now that  $u \in D(\overline{Q})$  is such that  $\overline{Q}u = u$ . For any  $s \in S_{\Box}$  we have  $s \in T(\overline{Q})$  and therefore  $u \wedge s \in T(\overline{Q})$ . Since  $\overline{Q}s = Qs$  it follows that

$$\bigwedge_{\alpha\in\Omega}\overline{Q}^{\alpha}s=0$$

and therefore there is no  $v \in T(Q)$  with  $v \leq u \wedge s$  such that  $\overline{Q}v = v$ . Hence  $u \wedge s$  is as in the first part of the proof an so  $u \wedge s \in S$ . On the other hand

$$u = \bigvee_{s \in S_{\Box}} (u \wedge s)$$

and therefore  $u \in S$ .

#### A. Complete *H*-cones; The complection of an *H*-cone

In this section we develop the notion of complete H-cones and the procedure of completion of a given H-cone. In the frame of hyperharmonic cones the same problem was studied in [8] and [9].

Definition. Let S be an H-cone ([3]). A non empty subset  $\alpha$  of S is called a Cauchy family if  $\alpha$  is a solide subset of S (with respect to the natural order),  $\alpha$  is upper directed and for any  $s \in S$  we have

$$\bigwedge_{n \in \mathbb{N}^*} \left( \bigvee_{t \in \alpha} \left( \left( \frac{1}{n} t \right) \land s \right) \right) = 0$$

**Remark**. It is easy to see that for any  $s \in S$  the set  $\overline{s}$  given by

 $\bar{s} := \{t \in S \mid t \le s\}$ 

is a Cauchy family on S. In this particular case the Cauchy family  $\bar{s}$  is bounded and  $s = \sqrt{s}$ .

Definition. An H-cone S is termed *complete* if any Cauchy family of S is bounded.

Theorem 6.1. The dual of any *H*-cone is a complete *H*-cone.

**Proof.** Let  $S^*$  be the dual of the *H*-cone *S* ([3]). Without loss of the generality we may suppose ([9]) that  $S^*$  separates *S*.

Let  $\alpha$  be a Cauchy family in S<sup>\*</sup> and let  $\mu$  be the functional on S defined by

 $\mu(s) := \sup\{\nu(s) \mid \nu \in \alpha\}$ 

Since  $\alpha$  is upper directed it follows that  $\mu$  is additive, increasing and continuous in order from below. On the other hand from ([8]) it follows that for any  $n \in \mathbb{N}$ ,  $\theta \in S^*$  and any  $s \in S$  with  $\theta(s) < \infty$  there exist  $s_1^n, s_2^n \in S$  with

$$s_1^n + s_2^n = s; \ \left(\frac{1}{n}\mu\right)(s_1^n) + \theta(s_2^n) = \left(\left(\frac{1}{n}\mu\right)\wedge\theta\right)(s) = \bigvee_{\nu\in\alpha}\left(\left(\frac{1}{n}\nu\right)\wedge\theta\right)(s).$$

If  $\theta \neq 0$  and  $s \in S$  is such that  $\theta(s) > 0$  then there exists  $t \in S$ ,  $n \in \mathbb{N}$  such that

$$t \le s, \ 0 < \theta(t) < \infty, \ \left(\frac{1}{n}\mu\right) \land \theta(t) < \theta(t).$$

Indeed, in the contrary case we have, for any  $t \in S$ ,  $t \leq s$  with  $\theta(t) < \infty$ 

$$\theta(t) = \left( \left(\frac{1}{n}\mu\right) \land \theta \right)(t) = \bigvee_{\nu \in \alpha} \left( \left(\frac{1}{n}\nu\right) \land \theta \right)(t)$$

and therefore

$$R\left(\theta - \left(\frac{1}{n}\mu\right) \wedge \theta\right)(t) = \sup\left\{\left(\theta - \left(\frac{1}{n}\mu\right) \wedge \theta\right)(u) \mid u \in S, u \le s\right\} = 0$$

If we denote

$$r_n := R\left(\theta - \left(\frac{1}{n}\mu\right) \wedge \theta\right)$$

we have  $r_n \in S^*$ ,  $(r_n)_n$  is increasing,  $r_n \leq \theta$  and

$$\theta \le \left(\frac{1}{n}\mu\right) \land \theta + r_n$$

From the fact that  $\alpha$  is a Cauchy family we get

$$\bigwedge_{n \in \mathbb{N}^*} \left(\frac{1}{n}\mu\right) \wedge \theta = 0, \ \theta \leq \bigvee_{n \in \mathbb{N}} r_n, \ r_n(t) = 0 \ (\forall) \ t \leq s \text{ with } \theta(t) < \infty$$

and therefore  $\theta(s) = 0$  which contradicts the hypothesis. Hence for any  $s \in S$  and any  $\theta \in S^*$  with  $\theta(s) > 0$  there exist  $n \in \mathbb{N}^*$ ,  $t \in S$ ,  $t \leq s$  such that  $\theta(t) < \infty$  and  $\left(\frac{1}{n}\mu\right) \wedge \theta(t) < \theta(t).$ Hence taking  $t_1^n, t_2^n \in S$  such that

$$t_1^n + t_2^n = t, \ \left(\frac{1}{n}\mu\right)(t_1^n) + \theta(t_2^n) = \left(\frac{1}{n}\mu\right) \land \theta(t) < \theta(t) = \theta(t_1^n) + \theta(t_2^n)$$

we deduce the existence of  $t_1^n \in S$  such that

$$t_1^n \le s, \ 0 < \theta(t_1^n), \ \mu(t_1^n) < n\theta(t_1^n) < \infty.$$

Let now  $s \in S$  be arbitrary and let us put

$$A := \{t \in S \mid t \le s, \mu(t) < \infty\}$$

Obviously A is a solid and upper-directed subset of S and for any  $t \in A$  and any  $n \in \mathbb{N}$  we have  $(nt) \land s \in A$ . We denote

$$\tau = \bigvee A$$

and we have  $(n\tau) \wedge s = \tau$  for any  $n \in \mathbb{N}^*$ . Hence  $B_{\tau}s = \tau$  where  $B_{\tau}$  is the balayage on S given by

$$B_{\tau}u = \bigvee_{n \in \mathbb{N}} ((n\tau) \wedge u)$$

We want to show that  $\tau = s$ . If  $(B_{\tau})'$  is the complement of the balayage  $B_{\tau}$  ([3], [1]) we have

$$(B_{\tau})'u \preceq u, \ (B_{\tau})'B_{\tau}u = 0, \ (B_{\tau})'u \lor B_{\tau}u = u$$

for any  $u \in S$ . To show that  $\tau = s$  it will be sufficient to prove that  $(B_{\tau})'s = 0$ . Let now  $s_0 := (B_\tau)'(s)$  and suppose that  $s_0 \neq 0$ . Then there exists  $\nu \in S^*$  such that

$$0<\nu(s_0)<\infty.$$

If we put  $\theta := (B'_{\tau})^* \nu$  we get  $\theta(s_0) = \nu(s_0)$  and therefore  $0 < \theta(s_0) < \infty$ . From the first part of the proof we find  $t_0 \in S$ ,  $t_0 \leq s_0$  and  $n_0 \in \mathbb{N}^*$  with

$$\left(\frac{1}{n}\mu\right)(t_0) < \theta(t_0)$$

Obviously  $t_0 \leq \tau$  and therefore  $B_{\tau}t'_0 = t_0$ . Since

$$B'_{\tau}t_0 \preceq t_0 = B_{\tau}(t_0)$$

it follows that:

$$B'_{\tau}t_0 = (B'_{\tau}t_0) \quad B_{\tau}t_0, \quad B_{\tau}B'_{\tau}t_0 = B'_{\tau}t_0$$

$$0 = B'_{\tau}B_{\tau}B'_{\tau}t_0 = B'_{\tau}t_0, \ B'_{\tau}t_0 = 0$$

Hence from the equality

$$\theta = (B'_{\tau})^* \theta$$

we get the contradictory relation  $\theta(t_0) > 0$ .

Definition. Let S be an arbitrary H-cone. The completion of S is a complete Hcone  $\overline{S}$  such that S is isomorphic with a solid and increasingly dense convex sub-cone of  $\overline{S}$ .

Remark. The completion of S is uniquely determined up to an isomorphism of H-cones.

Theorem 2. For any H-cone there exists its completion.

**Proof.** Let S be an H-cone and let us denote by C the set of all Cauchy family in S. For any  $a, b \in C$  and  $\alpha \in \mathbb{R}_+$  we put

$$a + b := \{s + t \mid s \in a, t \in b\}$$

 $\alpha a := \{ \alpha s \mid s \in a \}$ 

It is easy to see that a + b,  $\alpha a \in C$  and the map

 $(a,b) \longrightarrow a+b$ 

is a composition low on C which is comutative, associative and  $\bar{o}$  is the neutral element of C with respect to this low. The following relations are obvious too:

$$1 \cdot a = a, \ \alpha(a+b) = \alpha a + \alpha b$$

$$(\alpha + \beta)a = \alpha a + \beta a, \ \alpha(\beta a) = (\alpha \beta)a$$

for all  $\alpha, \beta \in \mathbb{R}_+$  and  $a, b \in \mathcal{C}$ . For  $s, t \in S$  and  $\alpha \in \mathbb{R}_+$  we have also

 $\overline{s+t} = \overline{s} + \overline{t}, \ \overline{\alpha s} = \alpha \cdot \overline{s}$ 

 $s \leq t \Longleftrightarrow \bar{s} \subset \bar{t}$ 

In C we consider the following relation

$$a \leq b \stackrel{\text{def}}{\Longleftrightarrow} ((\forall) \ s \in a \Longrightarrow s = \lor \{t \in b \mid t \leq s\})$$

Obviously we have

 $a \subset b \Longrightarrow a \leq b$ 

and for any  $s, t \in S^{\cdot}$ 

$$s \leq t \iff \bar{s} \leq t$$

Moreover, if  $a, b \in C$  then

$$a \leq b \iff (s \in a \Longrightarrow \bar{s} \leq b).$$

It is easy to verify that for any  $a, b, c \in C$  and  $\alpha, \beta \in \mathbb{R}_+$  we have

$$a \leq b \Longrightarrow a + c \leq b + c$$

$$a \leq b \Longrightarrow \alpha a \leq \alpha b$$

We have also the relation

$$a + c < b + c \Longrightarrow a < b$$

Indeed, if we suppose  $a + c \le b + c$  then we deduce inductively that  $a + nc \le b + nc$  for any  $n \in N^*$  and therefore

$$a \le b + \frac{1}{n} \cdot c \qquad (\forall) \ n \in \mathbb{N}^*$$

Hence for any  $s \in a$  we have

$$s = \bigvee \{u + \frac{1}{n}v \mid u \in b, v \in c, u + \frac{1}{n}v \le s\}.$$

Since the set

$$\{u + \frac{1}{n}v \mid u \in b, v \in c, u + \frac{1}{n}v \le s\}$$

is upper directed we deduce

$$s = \bigvee \{ s \land (u + \frac{1}{n}v) \mid u \in b, v \in c, u + \frac{1}{n}v \le s \} \le$$

$$\leq \bigvee \{s \land u \mid u \in b\} + \bigvee \{s \land \frac{1}{n}v \mid v \in c\}$$

and therefore the element c being a Cauchy family we get

$$\bigwedge_{n \in \mathbb{N}^*} \left( \bigvee_{v \in c} (s \wedge \frac{1}{n}v) \right) = 0, \ s = \bigvee \{s \wedge u \mid u \in b\}$$

Hence  $a \leq b$ .

We denote by " $\sim$ " the equivalence relation on C given by

 $a \sim b \stackrel{\text{def}}{\Longleftrightarrow} a \leq b \text{ and } b \leq a$ 

If  $(a_i)_{i \in I}$  is a family in C then we consider the set

$$a := \{ t \in S \mid \overline{t} \le a_i \quad (\forall) \ i \in I \}$$

One can easely verify that a is a Cauchy family and

$$a \leq a_i \quad (\forall) \ i \in I$$

 $b \in \mathcal{C}, \ b \leq a_i \quad (\forall) \ i \in I \Longrightarrow b \leq a.$ 

The above element a of C will be denoted  $\bigwedge_{i \in I} a_i$  and it represent the greatest minorant of the family  $(a_i)_{i \in I}$  in the preordered set  $(C, \leq)$ . We have

$$\bigwedge_{i \in I} a_i + b \le \bigwedge_{i \in I} (a_i + b) \quad (\forall) \ b \in \mathcal{C}$$

and we shall prove that the converse inequality holds. Let for that t be an element of  $\bigwedge_{i \in I} (a_i + b)$ . For any  $i \in I$  we have  $\overline{t} \leq a_i + b$  and if we consider  $u_0 \in S$  defined by

$$u_0 = \bigvee \{ u \in b \mid u \le t \}$$

then  $\bar{u}_0 \leq b$  and we can show that

$$\overline{R(t-u_0)} \leq a_i \quad (\forall) \ i \in I$$

Indeed, since  $\bar{t} \leq a_i + b$  for all  $i \in I$  we deduce that for any  $i \in I$  there exists an increasing family  $(\alpha_{\lambda}^i + \beta_{\lambda}^i)_{\lambda \in \Lambda}$  with  $\alpha_{\lambda}^i \in a_i, \beta_{\lambda}^i \in b$  with

$$t = \bigvee \{ (\alpha_{\lambda}^{i} + \beta_{\lambda}^{i}) \mid \lambda \in \Lambda \}$$

Since  $\beta_{\lambda}^{i} \leq u_{0}$  for all  $i \in I, \lambda \in \Lambda$  we deduce

$$t-u_0 \leq \bigvee \{\alpha_{\lambda}^i + \beta_{\lambda}^i \mid \lambda \in \Lambda\} \leq \bigvee \{\alpha_i' \in a_i \mid \alpha_i' \leq t\} \quad (\forall) \ i \in I,$$

$$R(t - u_0) \le \bigvee \{ \alpha'_i \in a_i \mid \alpha'_i \le t \} \quad (\forall) \ i \in I$$
$$\overline{R(t - u_0)} \le a_i \qquad (\forall) \ i \in I$$

If we consider now  $n \in S$  such that

 $t = R(t - u_0) + r$ 

then  $r \leq u_0$  and therefore  $\bar{r} \leq \bar{u} \leq b$ . Hence

$$\bar{t} = \overline{R(t - u_0)} + \bar{r} \le \bigwedge_{i \in I} a_i + b$$

Let now  $(b_i)_{i \in I}$  be an increasing family in  $\mathcal{C}$  which is dominated in  $(\mathcal{C}, \leq)$ . We put

$$b := \{t \in S \mid (\exists) \ i \in I; \ \overline{t} \leq b_i\}$$

It is easy to see that  $b \in C$  and

$$b_i \leq b \quad (\forall) \ i \in I$$

$$c \in \mathcal{C}, c \geq b_i (\forall) i \in I \Longrightarrow c \geq b$$

The above element b is denoted by  $\bigvee_{i \in I} b_i$  and it is the smallest majorant of the family  $(b_i)_{i \in I}$  in the preordered set  $(\mathcal{C}, \leq)$ . For any  $c \in \mathcal{C}$  we have

$$\bigvee_{i \in I} (b_i + c) \le (\bigvee_{i \in I} b_i) + c$$

Now we consider  $a, b \in C$  such that  $b \leq a$ . We put

$$R(a-b) := \bigwedge \{ c \in \mathcal{C} \mid a \le b+c \}$$

We have

$$R(a-b) \le a; \ a \le b + R(a-b).$$

We want to show that there exists  $a' \in \mathcal{C}$  such that

$$a \sim R(a-b) + a'.$$

Let  $s \in S$  be such that  $\overline{s} \leq a$  and let  $t \in S$  such that  $\overline{t} \leq b$ . We put

$$r_{s,t} := R(s-t), \ r'_{s,t} = s - r_{s,t}$$

The family  $(r_{s,t})_{t \leq b}$  is decreasing and  $(r'_{s,t})_{t \leq b}$  is increasing in S. We have

$$s = r_{s,t} + r'_{s,t}, s \leq \bigwedge_{\overline{t} \leq b} r_{s,t} + \bigvee_{\overline{t} \leq b} r'_{s,t}$$

If we consider  $r_{s,b}$  and  $r'_{s,b}$  given by

$$r_{s,b} = \bigwedge_{t \in b} r_{s,t}, \ r'_{s,b} = \bigvee_{t \in B} r'_{s,t}$$

it follows that the family  $(r_{s,b})_{\bar{s}\leq a}$  (resp.  $(r'_{s,b})_{\bar{s}\leq a}$ ) is increasing (resp. decreasing) and we have

 $s = r_{s,b} + r'_{s,b}$   $(\forall) \ s \in S, \overline{s} \le a$ 

Hence

$$\bar{s} = \bar{r}_{s,b} + \bar{r'}_{s,b} \quad (\forall) \ s \in S, \bar{s} \le a$$

and therefore

$$\bigvee_{\bar{s} \leq a} \bar{s} = \bigvee_{\bar{s} \leq a} \bar{r}_{s,b} + \bigwedge_{\bar{s} \leq a} r'_{s,b}$$

Obviously we have

$$a \sim \bigvee_{\bar{s} \leq a} \bar{s}$$

and if we put  $a' := \bigwedge_{\bar{s} \leq b} \bar{r'}_{s,b}$  we get

$$a \sim \bigvee_{\bar{s} \leq a} \bar{r}_{s,b} + a'$$

On the other hand we have

$$\bigvee r'_{s,b} = \bigvee_{\bar{t} < b} r'_{s,t} \le b$$

and therefore

$$a \leq \bigvee_{\bar{s} \leq a} \bar{s} \leq \bigvee_{\bar{s} \leq a} \bar{r}_{s,b} + b, R(a-b) \geq \bigvee_{\bar{s} \leq a} \bar{r}_{s,b}.$$

Let now  $c \in C$  be such that  $a \leq b+c$ . For any  $s \in S$  with  $\bar{s} \leq a$  we have  $\bar{s} \leq b+c$ and therefore there exists two increasing families  $(t_{\lambda})_{\lambda \in \Lambda}$ ,  $(u_{\lambda})_{\lambda \in \Lambda}$  where  $t_{\lambda} \in b$ ,  $u_{\lambda} \in c$ and

$$s = \bigvee_{\lambda \in \Lambda} (t_{\lambda} + u_{\lambda})$$

If we put  $t := \bigvee_{\lambda} t_{\lambda}, u = \bigvee_{\lambda} u_{\lambda}$  we have

$$s = t + u, \ \overline{t} \leq b, \ \overline{u} \leq c$$

Hence

$$r'_{s,t} = s - R(s-t) = s - u = t; r'_{s,b} \le t, \ \bar{r}_{s,b} \le c,$$

$$\bigvee_{\bar{s} \leq a} \bar{r}_{s,b} \leq c, \quad \bigvee_{\bar{s} \leq a} \bar{r}_{s,b} \leq R(a-b)$$

and therefore

$$\bigvee_{\bar{s} \leq a} \bar{r}_{s,b} \sim R(a-b), \ a \sim R(a-b) - a'.$$

From the above considerations we deduce that the quotient space  $C/\sim$  is an *H*-cone with respect to the addition operation and multiplication with positive real numbers induced by the same operations from C. The map

$$s \longrightarrow \bar{s}$$

from S into  $C/\sim$  is an order preserving morphism. Since for any  $a \in C$  we have  $a \sim \bigvee_{t \in a} \overline{t}$  it follows that S is increasingly dense in  $C/\sim$ . Obviously S is a solid subset of  $C/\sim$ . Let now  $\theta$  be a Cauchy family in  $C/\sim$ . We put

$$A = \bigcup \{a \mid a \in \theta\}$$

Since the family  $(a)_{a\in\theta}$  is upper directed it follows that A is upper directed in S. Since any  $a \in C$  is solid in S we deduce that A is also solid in S. It remains only to show that for any  $s \in S$  we have

$$\bigwedge_{n \in \mathbb{N}^*} \left( \bigvee_{t \in A} s \land \left( \frac{1}{n} t \right) \right) = 0$$

This assertion may be obtained from the fact that  $\theta$  is a Cauchy family in  $C/\sim$  in the following way

$$\overline{\bigwedge_{n \in \mathbb{N}} \left( \bigvee_{t \in A} \left( s \land \left( \frac{1}{n} t \right) \right) \right)} = \bigwedge_{n \in \mathbb{N}^*} \overline{\left( \bigvee_{t \in A} \left( s \land \left( \frac{1}{n} t \right) \right) \right)} = \bigwedge_{a \in \theta} \left( \bigvee \left( \overline{s} \land \left( \frac{1}{n} a \right) \right) \right) = 0$$

**Remark.** In [8] is presented a scheme for a completion of an H-cone in the cathegory of cones of hyperharmonics. Such a completion was realised in large in [9]. Using this type of completion one can construct also a completion of an H-cone in the cathegory of H-cones.

#### References

- [1] L. Beznea and N. Boboc: Absorbent, parabolic, elliptic and quasielliptic balayages in Potential Theory. Revue Roum. Math. Pures et Appl. 38(3) 1993.
- [2] N. Boboc and A. Cornea: Cones convexes ordonnees. H-cones et adjoints de H-cones. C.R. Acad. Sci. Paris 270 (1970).
- [3] N. Boboc, Gh. Bucur and A. Cornea: Order and convexity in potential theory: H-cones. Lectures Notes in Math.853, Springer Verlag. Berlin-Heidelberg-New York 1981.
- [4] N. Boboc and Gh. Bucur: Subordination in excessive structures. Compressions in H-cones. Rev. Roum. Math. Pures et Appl. 37(1) 1992.
- [5] N. Boboc and Gh. Bucur: Pseudodilations in H-cones. Rev. Roum. Math. Pures et Appl. 37, (1992).
- [6] N. Boboc, Gh. Bucur: Compression and dilation operators on excessive structures. Rev. Roum. Math. Pures et Appl. 37(4) 1993.
- [7] N. Boboc, Gh. Bucur: Recurrence and transience in excessive structures. Rev. Roum. Math. Pures et Appl. 38(2) 1993.
- [8] A. Cornea and S.L. Eriksson: Order continuity of greatest lower bound of two functionales: Analysis 7, 1987.
- [9] S.L. Eriksson: Completion of H-cones: Ann. Acad. Scientiarum Finnicae Series A I. Mathematica vol. 15, 1990.

- [10] R.K. Getoor and M.J. Sharpe: Inverse subordination of excessive functions. Preprint, (to appear).
- [11] G. Mokobodzki: Operateurs de subordination des resolvantes. (Manuscrit non publie).