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Abstract. A y-procedure to compute an optimal distance in the two-block Nehari problem is
described.Explicit formulae for an optimal solution to the two-block Nehari problem in terms of the optimal
distance value are given.Similar formulae are obtained for a two-block H™ approximation problem known
as the DF(disturbance feedforward) problem.

1. Introduction

In control design the so-called DF problem is a two-block H™ optimization problem which reduces
to a two-block Nehari problem.In fact there are also other design problems which can be solved via two-
block Nehari problem.

State space solutions for the two-block Nehari problem have been described in [10],[11].If we try
to perform efectively the state space construction for the suboptimal solution to the H~ problem an ill-
conditioned computation appears when approaching the optimum of the same nature as the one mentioned
by Habets[9] and Gahinet[6] in connection with the robust controller.One of the aims of the present paper
is to remove this ill-conditioning by using a singular perturbation approach as in [4],[5].

As a main result,this procedure leads to explicit formulae for an optimal solution to the two-block
Nehari problem depending on the optimal value y, evidentiating thus the fact that the optimal value is
attained for a finite dimensional linear time-invariant system.Explicit formulae for the optimal solution to the
DF problem are also obtained.

On the other hand there are known formulae for an optimal value of H™-norm in terms of some
Hankel and Toeplitz operators[13],[16].In the present paper,starting with a state-space construction of the



suboptimal solution it is shown that this optimal value solves a specific transcendental equation which may
simply be solved approximatively by an iterative procedure(y-procedure). The y-procedure proposed in this
paper has been performed for an example considered in [1] leading to the same results.For the same

example,state-space formulae for the solution are also given.

2. The two-block Nehari problem

Consider the two-block Nehari optimal problem consisting in computation of the optimal norm:

G, (s) -G(s)

inf
in G, (s)

GERH,

:=Yo i G,,G, €RH" (1)

The suboptimal Nehari problem associated to y>y, involves determining G €RH,” for which:

G, (s) -G(s)

(2)
G, (s) <Y

In [10],[11] the following solution to the suboptimal Nehari problem has been proposed in a slightly
different form:

D, Gi(s)

a realization of .then the suboptimal Nehari problem (2)

C,
Theorem 1 Let [A.B,{ c:

2

has a solution if and only if v> IG,[. and ¥’>p(QR(y)),where p(.) denotes the spectral radius of (.),Q is the
positive-semidefinite solution of the Lyapunov equation:

ATQ+QA+CC,+ GG, =0 (3

and R(y) is the positive-semidefinite stabilizing solution to the Riccati equation:
AR+RAT+(RC, +BD,) (y2I-D,0,)(C,R+D,BT)+BBT=0 (4)

In the assumptions above,a solution to the suboptimal Nehari problem (2) has the realization:
G(s):=(-IA-My)CCY.~(@B+ G;'D,).C, My).D, ) ©)
where:

Wiy):= A2~ QAty)] i
o

An alternative proof for the necessity part in the theorem will be given in the Appendix,the reverse



Proposition 1 if y>/G,I. and ¥">p(QR(y)) then W(y) is the positive-semidefinite stabilizing
solution to the game-theoretic Riccati equation:

[A+BD, (v*1-D,0,)'C; + By*I-D,'D) ' BTQ| Way) + W) A+BD, (v*1- D,y )" Gy +
B(y’I-D,'0,)'B Q|+ Wv)[-CTC+y QBB TQ+ (v ' QBD, +y &) (v*1- D,0;) " -
(v'D,B7Q+yC,) | WMy) + B(y*I-D,'D) BT =0 @)

where C:=[C, C,].

Proof. From (4) we deduce that:

AT G'v¥-p,0,)'C,
-8 A

where we denoted:

] [A+G,'(v*I-D,0,) ' C,A() |

/ H /
Ay | A

A= A+BD; (v*I-D,0,)C,
B:- BD, (y’1-D,0,)'D,B " + BB

Consider now the similarity transformation:

for which one obtains:

AT GloP-D0) G, 1 I ] [ ! |
T 7| =T A+G'(y1-D,0,)
P y = nm[ C,(v*1-D,0,) " C,Aty) |
and therefore:
(A74r208 ATQ+1?0BQ+C(v¥1-D,0,)"C,+QA| [ i1~ @AlY)
-y28 -y 2B8Q-A Alv)
rYzf—QR(Y)l A CTtv2- n-1c
" [A+&/(v*1-D,0;) " C,A) |

Using (3) and the fact that A+C,’(y*I-D,D,") 'C R(y) is hurwitz since R(y) is a stabilizing solution
for (4),we deduce after some direct calculations that W(y) is a stabilizing solution for (7).

In order to prove that W(y) is positive-semidefinite we consider the Cholesky factorization
R(y)=S"(y)S(y) and we obtain:



Wly) = Rnly?l - QAT = S Tyl v?/-S1) @S (1) 1" S(v)
Since ¥*>p(QR(y)).from the equality above we conclude that W(y)>0.
8

Remark 1 In the main body of this paper we shall assume that the systems G, and G, are

minimal and hence Q and R(y) are positive-definite and also W(y) is positive-definite.
o

Remark 2 The game-theoretic Riccati equation (7) can be written in a Lyapunov equivalent form:

[A-my)c, e, |my) + Win[A-mneC]” + W) C, M) +{[1+My)Q)B +
WY)G,' Dy} (v2I1-D; ') { BT[1+QWy)]+ D, C,My) } = 0 ®)

For the y-procedure proposed in this paper,a crucial role is played by the dependence of p(QR(y))
with respect to y.

Lemma 1 The function y—p(QR(y)) is monotonically decreasing.

Proof. Let y,>y,>1G,l. and R(y,) and R(y,) the stabilizing solutions to the corresponding Riccati

equations:
AR(y)) +Rly,)AT+[Aly)) G+ BD,'|(v} - D,0,)) [ C,Aly,) + D,B |+ BB T=0
AR(yp) + Ry A T+[Aly,) G + BD, (v /- D,0;) ' [ C,Al) + 0,8 7]+ BB T=0

When substracting the two equations above one obtains after some direct calculations:
{A+[A )G+ BD,|(vi1-D,0,) ' Gy} Atyy) - Rty | + [ Alyy) - Aty |-
(A+[At,)C+ BD,|(xil - D,D) G, } T - [Aly) - At |G (i1~ D,0,) " G, Aty,) -
Ay, |- R G + BO,|[(v3l- D,0,) ' - (v31- D,0;.) | €, Aty) + D,B ] = 0

Since y,>y, and A+[R(y,)C,"+BD,")(y,’I-D,D,’) 'C, is stable we deduce from the Lyapunov equation
above that R(y,)-R(y,)<0. Then,using Proposition A1 from Appendix we conclude that p(QR(y,))<p(QR(y,))-

Remark 3 We have to stress that the stabilizing solution R(y) depends smoothly upon y;there are

several arguments in favor of this statement:we may reffer for instance to the way R(y) is obtained in a

4



generalized Popov-Yakubovich theory[10].We may also reffer to the iterative procedures to obtain the

solution to the Riccati equation;we may also reffer to a implicit function argument.
3. A y-procedure

We shall describe an iterative procedure in order to determine y, defined by (1).One of the main

results of this paper is:

Theorem 2 The transcendental equation:

¥2=p(QAM) o

has a unique solution.

Proof Since itis a known fact that y>=p(G,,, G,,;+G,, G.;)(see[13]) where G,,, denotes the Hankel
operator associated with G, and G, is the Toeplitz operator associated to G,,it follows that y,> )G, L.

Assume now that (9) has no solution on [IG,.,=);then,since y*-p(QR(y)) is continuous with respect
to y.from Lemma 1 it results that y¥*-p(QR(y))>0 forall y>1G,|.,therefore according to Theorem 1 it follows
that y,=I1G,l. which contradicts the fact mentioned above, namely y,>|G,|..;it follows that equation (9) has
a solution.

The uniqueness of this solution is a direct consequence of Lemma 1 and of the continuity of y*
p(QR(y)) with respect to y.

We give now the algorithm to compute y, with an assigned level of tolerance £>0.

1¥ Step Compute |G,l. and set y=|G,L.;

27 Step Solve the Riccati equation (4).If |p(QR(y))+’|<e then set y,=l*+p(QR())]* and
STOP;otherwise,go to 3;

37 Step Set y«—[*+p(QR(y))]” and return to 2.

4. A well-conditioned solution to the two-block Nehari problem

Let y>|G,L. and consider a balanced realization of with respect to R(y) and Q,that is R(y)

2




and Q are diagonal and equal.Such a balanced realization can be obtained from any arbitrary minimal

G

(s)
realization (A,B,C,D) of Gt(s) by performing the following procedure:

1* Step Determine the solutions Q and R(y) of (3) and (4),respectively;
2™ Step Perform a Cholesky factorization Q=2"Z;
3™ Step Determine the singular value descomposition:

ZAY)ZT=UY)Z3(v)U Ty)
with U(y) orthogonal;
4" Step Define T(y):=L *(y)U"(y)Z and compute T(y)AT (y);T(y)B and CT(y).

Remark 4 In the balanced realization all matrices will depend upon y and for y?=y.+¢ they will
depend upon ¢;this dependence is smooth around e=0 because the dependence R(y) is smooth.

(=]

|

mmmmmawdmnwbmmmlmhmmﬂmmreaizam[,mlz;],[z‘
2

Gy(s)
Gy(s)

of in the sense mentioned above,that is:

) R, 0
Gly) = Ay) =2(y) [ 0 Ry

where r,(Y)>..>r,(y); L, =diag(r(y)l,..r,(y)!,) and I, are nxn, unit matrices k=1,..,p.
Let take y=/y, +& where y, is the solution of the equation Y*=p(QR(y)), therefore W(y) becomes:

(10)

A,
Wiy):= AW v-QmAW " = ¢ (1)
0 sz(?)
where:
Waal):= B [¥?1-R()]™ & v =|vaee (12)

Consider the following partitions of A, 8 and € conformally with (11):



Ay A G| [Cn Cp
A Ax G| [Ca Cx

With the notations above a solution to the optimal two-block Nehari problem is given by the
following theorem:

A- 4

=
L]

(13)

Theorem 3 Assume that C,,’C,, is nonsingular;let y, satisfying
Yo =p(QR(y,);then v, is the optimal Nehari distance and the system G(s).=(A,B,C,D,) with:

Ay:= Ci3C(CiiCyy) " [ Azt - Gy, Waglo)] - Agh + CriCiaWinlo)
B,:= Ci3Cy(Cy1C1) (YoB, + Co1 D) - Ryl By -CaaD),
C,:= C,,(Ci1C, )7 Ay - CJCquz(YoJI +CyoWos (o)

D,:= Cy,(Cy1Cyy) (1B, + CaD,) + D,

(14)

is an optimal solution to the two-block Nehari problem.

Proof We shall prove first that A, is antistable.When writing the Lyapunov equation (8) for Y=Y,

in the partitioned form corresponding to (13) and when taking into account that r,(Yo)=Ys,.0ne obtains:

- The block (1,1) of (8):

CiiCiy = (¥oBy + G\ D,) (13- D, D,) (468, + D, C;y) (15)
+ The block (1,2) of (8):

AZ*T = CJCm Woo(vo) + (0B, + G D,)(va!- DJD,)" .
[¥3B: + By CopPpaly o)) [51 - R(¥o)] ™ =0

- The block (2,2) of (8):

(16)

[Azz = WarlY9) Ci2C10] Won(¥o) + Wag(o) [ Asg - Wog(10) Cy2Cl T +
Waalyo) C1aCiaWanlyo) + [1o! - Ri(yo)l [ Y28, + Faalyo) CoblDy) - (17
(Yo!- 0. D) " [¥38," + Dy CooRyly M Iv2l - Ry )] ™ = 0

From expression (14) of A, and from (16) we deduce that:



[Anz - Was(Y) CizCial " = ~A,+ C,3C,1(Cy1Cy1) [ Az - Ci1 CoaWinly ] =
-A,-Cp3Cy, MYoN T(yo)

where we have denoted:

A
M(vo) := (Ci1Cyy) (B, + Cpy D) (v3l - D, D) 2

(18)
A
Myo) := [vo! - Ra(vo)) [Y3B, * Roolo) Car Dol (v3! - D, D) 2
Therefore (18) becomes:
~Ag WY o) - Waal¥ JA, - MY M T(v ) C, G Wl ) - 9

W,,(v ) Cy ;C, 1My N r('!u) + Woo(v0) Gy ;cu’ Woo(vo) + Myo) Myo) T=0

With expression (14) for C, and with notations (18) we also have:

C,=- CyyM(yo)N r(Yo) + CyoWoo(vo)
therefore:

Co'Co = MM T(vg) C:1C,y My (o) + Woslro) CizCraWanlro) -
MM T(rg)C11CiaWonlro) - Wosl(o) C12Cy MYoIN o)
When substituting the first two terms from the right side of the equation above into (19) we obtain:

- A, Wilvo) - WaslYo)A, + C, C, - My )M T(vo) Cy1 Coy MyoN T(vg) +

(20)
MyoN T(vo) =0
Using (15) and (18) one can directly verify that (20) is equivalent with:
*Aorwzz(‘fo) - WolvdA, + corca + 1)
Myol{!- Pro) [P (v Pyl ' P T(vo) } N T(yo) = 0
where P(y)):=(y,’I-D,'D,) "(y,B,"+D,'C,,).
Since I-P(y)[P'(vy) P(v,)] 'P(v,)20 we deduce that:
~Ag Wyolvo) - W1 o)A, + C, C, < 0 (22)

From the expressions (14) of A, and C, it follows that -A_+C,,’C_=A,," It is known from [7] that when
performing a balancing transformation to a stable system,the block A,, corresponding to the balanced
realization,is stable too (this result is given in [7] for the antistable case but it also remains valid in the

stable case;the result was proved for the balancing with respect to Gramians but it can be directly applied



A e
for the system | A,[B | (R(Tdczr+502r)(7§f"9g025 2lv[ C;

] for which the Gramians are just the solutions

Q and R(y,) of (3) and (4),respectively).
Since .;'\:,2,‘r is stable it follows that the pair (C,-A ) is detectable;therefore,because W,.(y)>0 we
conclude from (22) that A, is antistable.

We shall prove now that:

Gi(s)-G(s)
T 21 (23)
Gy(s)
We have the following realization:
Gi(s)-Go(s) | ADEiB
Gz(S, F ( U ' d)
where:
Ao B ¢, -c D,-D
A= iBy=| :iCe=| ' L] ' ° (24)
0 A, B, ¢, o D,
Consider the Riccati equation:
A1 +TIA,+(11B,+ C4 D) (v3l-D D) '(Bju+D]C)+CJC,=0 (25)
We shall prove that (25) is verified by:
0
@ ]
m- (26)
01 -Wylvg

where the dimension of / equals the number of columns of A ,,.

When writing (25) in the partitioned form corresponding to (24) and (26) one obtains that the block
(1.1) of (25) is just (3);the block (1,2) of (25) vanishes because of the expressions of A, and C, and the
block (2,2) coincides with (21).Then we conclude that I1 verifies (25).
Consider now the adjoint system of G,i.e.:
t - —A‘rX' Cdru

(27)

y=B/x+D/]u

A direct calculation using (21) gives for an arbitrary u(—:L’(-oo,oo):



fy Tydt= f(x B,+uD) (B/x+D/ ) dt = - f{" TAJ+TA, +
(1C] + BDS) (val-D D) (CH+DBJ) 1x-u DB/ x-
T T I 3 (28)
x"8,0/u-u"D,D u}dt= - f[ -XTix-u "C lix-x "IXx-x T C,u+
x(WC + BDJ) (1ol - D D) (CH+ DBS) x-u D B]x-
x"B,D/u-D D/ u)dt
Since A, is dichotomic,the term:
:I:(i Tlx+x TILR) it = -f-g‘(x X ot
vanishes,then from (28) it follows that:

[vTyat=-[IxT(1C] + BDJ) vyl - DD4) " - ul (vl - DD -

[(v/ - DL (CA+ DB x-u)dt vy [uTuct

From the equality above we deduce that:
fy"yo‘:s 1§Iu Tudt

for all u€L*(-e,) therefore the L™-norm of (-A,,-C,’,B,’,D,’) is less or equal than y, Since the L™-norm of
a system equals the L™-norm of its adjoint,it follows that |G,]_<y,.

We shall prove now by contradiction that in fact (23) we have an equality.Assume that there exists G e AH."
and § such that:

Gy(9) - G(s)l &
Gy(9)

From Proposition 1 we deduce that p(QR(y,))<p(QR(¥ )) therefore § 2-p(QR(¥))<0 which contradicts
the necessity part of Theorem 1. Therefore we conclude that we have in fact:

10



61(5) '69(5) |- _
Gy(s) »

and hence the theorem is completely proved.
o
Remark 5 If C,, =0,an optimal solution to the two-block Nehari problem (1) can be obtained
using the suboptimal solution (5);with the partitions (10)=(13) af A,B,C and W.,in such situation no
singularities appear for y—y, and when taking y=y, one will obtain an optimal solution.lf C,,'C,, is
singular,by performing to it an orthogonal transformation,we shall obtain from (5) with yY=y,2+¢ a singularly
perturbed system which fast component with the dimension equal to the rank of C,,’C,,,may be reduced
according to the theory of singular perturbations;therefore if n°denotes the order of G then the dimension
of the optimal Nehari approximation equals n-rank(C,,’C,,).
(a]
Remark 6 The theorem proves that the optimal solution to the two-block distance problem may
be obtained in a form of a finite dimensional time-invariant system that is in a form proper,rational transfer
matrix function.The same conclusion follows from the construction in [8).
m}
We have shown in Section 3 how one may compute y, with an assigned level of tolerance;since
the realization (14) of the optimal solution depends on y, we investigated what is the influence of an
inaccurate determination of y, upon the attenuation property of (14).Related to this problem we obtained
the following result:

Theorem 4 Let y=y,;+O(¢) and denote by G, the system (14) obtained when replacing v, with
y.then G, is antistable and:

I Gy(s)-G(s)

= 3 (29)
G(s) [ Yo+ Ae)

Proof It is known from [14] that if a self-adjoint operator G(y) is smooth then its eigenvalues and

its orthonormal eigenvectors u,/=1,..,n are smooth functions of y;therefore when performing the balancing
procedure described at the beginning of this section,one obtains a smooth dependence of T and T with
respect to e.Then G, defined in the statement of the theorem will have the following realization:

A =A,+Oe);B,=B,+Oe); C,= C,+xe); D,= D,+Oe) (30)

therefore G, is antistable for e sufficiently small.

11



We shall prove now that |G,(s)-G(s)|.<O(¢);indeed,we have:

'
(G0 = C, [e* B ugs)ds + DAt (31)
where:
r
e=e™+ [e™ (A, -A)e o 32)
0

Since A, and A, are stable,there exists o,p>0 such that:
t r
fad,(r—t)(A’_Ao)eAﬂdrl. <PB Mr—Aolfe -a(t-v)g-atge - B |A;‘A¢| tes!
0 0 P

Taking into account that A-A,=O(e) we deduce from the last inequality above and from (32) that;

o™ =" ¥(te)
with ¥(t, ¢) bounded and lim,_,¥(t, £)=0;therefore,from (30) and (31) it follows that I1G,(s)-G (s)1.<O(e).We
also have:

G,(5) - G{s) =|G1<s)—G,(s)+G,(sa-G,(s-)l
Gy(s) Gy(s) ‘
IG,(s)—G.cs)L
+1G[s) -G, =Yo+ e
G(9) 1G(s) - G,()].. = yo + Ae)

therefore (29) is proved.

5. H” approximation for a H,~ system

In the preceding section a solution has been described for the H, (antistable) approximation for
aH™ system (stable).Motivated by applications to the two-block H™ approximation problem,we shall describe
now the solution to the problem of approximating an H . system by a H” one.

In state space formulation(time domain) this new problem is obtained in the simpliest way from the
former one just by changing the sense of time which amounts to changing A« -A;B«-B.

The time change represents an izometric transformation in L%R) spaces and hence if the Nehari
problem is stated in terms of input-output operators the distance is not affected.

In frecquency domain approach the transformation amounts in changing s to -s and since the norm
is calculated for s=jo it is seen again the optimal value y, is the same as for the problem considered in
Section 2.

12



Corresponding to the modifications indicated above the optimal solution to the new Nehari problem

is readily obtained.

Theorem 3’ Let G ,(s):=(A.B,C,,D,) and G(s):=(A,B,C, D,) be two minimal systems with antistable
evolution.Associate the Lyapunov equation:
A’Q+QA=-Cc, + G'c,
with the solution Q positive definite and the Riccati equation:
AR+RAT-(RC, -BD,)(y’I - D,0,)"(C,R-D,B™) - BBT=0
Let R(y)>0 be the solution to this equation such that -A+[R(y)C,-BD, )(¥’I-D,D,")'C, is
stable.Assume again that C,,'C,, is nonsingular.Let y, be the unique solution to the equation
Y=p(QR(y));then vy, is the optimal Nehari distance and the system G(s):=(A,B,C,D,) with:
T T TR
A, = C;5C,4(C1Cyy) '[Az + Cy1 CiaWos(Y()] - Aar - C1;C12W22(1°)
By = C12C11(C1iCiy) " (YoBy - Co1Dy) - Alvo) By + C3 0,
C, = -Cyy(C11Chy) "[Azt + Cy1 CyaWaslo)] + CaWanlyo)

Tin 32
D, = - C;1(Cy,Cyy) ‘(7031 e CzrDz) + D,
where A,B,C,D,i,j=1,2 and W,(y,), R,(y,) are defined as in Section 4,is an optimal stable approximation

(33

to the given antistable system.

6. The two-block H™ problem

Consider the system:
X=Ax+Byu, + By
¥y = Cyx+Dy,u, + Dyyu,

Y2 = Cx+y
with D,,’D,, invertible.We look for a stabilizing controller:

R,=AX,+Bu,
Ye=Cx,+Du,

such that after taking u_=y, and u,=y, the norm of the input-output operator from u, to y, is minimal. This
problem can be reduced to a two-block Nehari problem.Let X, Y be the stabilizing solutions to the standart

Riccati equation:

13



ATX+ XA-(XB,+C,'D,,)(D,1D,,) (B, X+ Dy3C,) + C,'C, =0

AY+YAT-YG'C,Y+B,B, =0
Construct the corresponding double coprime factorization

s alln vl 7

(A,B,C,)=NM"=M"N with:

where:
AfB,F‘ B, -H
M -U 5 _
N v(s’" F /I 0
C, 0 /

with F:==-(D,,'D,,) '(B,X+D,,’C,) and H:=-YC, .

A parametrized family of stabilizing controllers is written as:

K=K k'

K| [m - U] L
K N V |I
After coupling this family of controllers to the system one gets the input-output operator:

Ty,u. =T+ Tl Ty

where:

where:

A+B,F -B,F B,
0  A+HG, B‘*H"lc‘l*'pﬂﬁ'o‘izﬂ'oﬂl

To(8):=(A+B,F, B,, C, + D,F, Dyy)

Ty(s):=(A+HGC,,B,+H,C, l)
In order to have T,, T,,"€RH™ we assume that A-B,C, is hurwilz; such an assumption is usually

711(5)?’[

made in the literature related to the so-called DF problem[2].

Under such assumption,by denoting £ = - L T,, we may write:

7},«. ol Tuc

Taking into account the choice for F and H we get that T,(D,,’D,)"" is inner.Let T,,* be a
completation such that [T,, T,,'] is inner.A realization for [T,, T,,"] is:

14



P |
A+B,F ‘ B(DiDy) 2 -X'CDj;
[Ty Til9)-

A
C,+D,F 012(01;919) £ Dy,
where D,," is such that [D,(D,,’D,)* D,,"] is unitary.
Write:

L
Ty,u‘ s rl‘l '[7;2 T&][o]

Since [T,, T,,'] is inner,we have:

17, |.=|[T|z Tial" Ty [g”_ (34)
A realization for [T,, T,,']'T,, is:
£ = ~(A+BATE~(C, + D,,AT(C, + DyyF)x, +
(C, + D,,F)"D,,Fx, - (C, + D,,F) "D, u
% = (A+B,P)x, - B,F x,+ Byu
%, = (A+HC) x, +(B, +Hu
9, = By'€ + Di3(C, + DypF)x, - Dy3D,,F X, + DD, u
¥z = ~(D)"C,X "€ + (D) (C, + DypF)x, + (Dj5) "Dy u

When performing the coordinate transformation:

/I -X 0
S=0 / 0
0 0 1/

one obtains the following equivalent realization for (34):
€ =-(A+B,A%,-Bu
X, = (A+B,Ax, - BFx,+ Biu
% = (A+HC)x, + (B, + Hu
91 = By €, - DyaDyoF x, + DDy u
Vo= =(D;)"C X "€, +(Dy3) "Dy u

where B,:= (C, + D,,F)'D,, + XB, .After reducing the unobservable part one obtains the equivalent realization
of [Ty Ty, T T,y
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[ -(A+B,AT 0 -8,
0 A+HC, B, +H

”?z na'n1(3)3=
B’ -D3D,F | DD,
| -(Dp)"C X 0 (Di2)"Dy,

é,l
G,

G, (s):=(A+HC,, B, +H,-D,3;D,,F,0)

Let consider the partition:

(T2 Toal'Ty =

where it is obvious that G, = G,,+ G,, with:

G, (9):=(-(A+B,F)",-B,, B, D;3D,,)
Ga(s):= (-(A+B,F)T, - 91 - (DR)"C X, (D)D)

where é" and GI are antistable and é" is stable.

Denoting by [ = [-G,,,the two-block H™ has been transformed in a two-block Nehari problem

analysed in the previous section.

The computation for the optimal distance y, can be performed as in Section 3 and the realization
of an optimal solution is given by (33).

Remark 7 In the construction of an optimal robust controller with respect to perturbations in the
normalized left coprime factorization the robust controller solves a disturbance attenuation problem
associated to a fictious plant.This problem is also a DF problem and hence we may use the procedures
in this paper to compute the optimal robustness radius and the optimal robust controller;in fact this remark
may be considered as providing a test for our computations.

7. An example

In the same way as in the previous section a weighted mixed sensitivity problem is also reduced
to a two-block Nehari problem[3],[15].In this section weshall consider an example of such problem taken

from [1] and we shall compute by our procedure the optimal y, and the corresponding optimal solution. This

problem consist in determining:
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. Ms>+¢(s>f«s)l l N
Ks)eRH" s)
where:
M) = -2(s+10)(s+0.125)(s-0.12) . S(s) = 0.1s+1
(s+0.1)(s+1)(105+/2) 10s+/2

) - .
o(s) = (10s-y2)(s-1)
(10s+y2)(s+1)
We transformed this problem in a two-block Nehari problem and when applying the algorithm

described in Section 3 we obtained for the tolerance level e=10", y,=1.100437963947;this optimal distance
can be achieved with the optimal solution K(s).=[A_B,C,D ] determined using formulae (33),where:

-0.2039 -0.0
Ao ={ 104] : Bo i [1 ]
1 0 0
C,=[-0.0469 -0.0049] ; D,=-0.9003

Appendix

A1. Proposition A1l. LetA A, and B be three symmetric, positive-definite matrices having the
same dimension and assume that A,<A_;then p(A,B)<p(A,B) where p(.) denotes the spectral radius of (.).

Proof. In the assumptions of the statement we have:

1

"BZAEB%

N

1 1 1
B?AB =B%(A,-A)B%<0

1 1 1 1

1 i 1 1 3 3 3 1
therefore B2A,B2%<B?A,B2 .Since o(B2A,B?)=0(A,B) and o( B2A,B ?)=0(A,B),where o(.) denotes the

set of eigenvalues of (.),we deduce that p(A,B)<p(A,B)
A2.The necessity part of Theorem 1

We shall sketch the proof of the fact that if the suboptimal two-block Nehari problem has a solution
G then y>1G,1. and y*>p(QR(y)).The first inequality follows immediately since we have:
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1Gx(s)l. <

Gy(s) - G(s) l .
Gy(s) ¥

In order to prove that ¥*>p(QR(y)) we shall consider the augmented plant P(s) defined as:

/I 0 o][r o
As)=|Gi(s) .| A,18 0],|C|, |0 !
GZ(S) 0 Cz Dz 0

Define now the operator R:L?(-o5,90, R™ P ) =+ *(-o0,0, R™ ') where (m,,p,) are the dimensions of G,

and R:=PJP with:

Since:
¥?1+(G,-G)'(G,-G)+G,;G, G,-G
(G,-G)° !

it follows that R has a signature and the anticausal Toeplitz operator associated to R,denoted by R has the

s ¢lda )

same signature. If we define the operator Af(-o,00, R™ ™) —+L%(-es,20, R™ " );(Au)(t)=u(-1) it follows that ARA and
its causal Toeplitz operator have the same signature.Then using a known result[10] it follows that the
Riccati equation associated to A'RA has a stabilizing solution; direct calculations show that this equation
is just (7).Let denote by W this stabilizing solution;using the operatorial reprezentation of W (see[10]) and
the fact that R has a signature,it follows that W is positive definite,therefore from (6) we deduce that
¥>p(QR(y)).The same idea can also be found in [17] for the infinite dimensional case for the Pritchard-

Salamon class of systems.
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