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Abstract

IfN eN,0<p<1and (X)), are r.i.p-spaces it is shown that there
is C > 0 such that for every f € ﬂ:’:l Xx there exists fE ﬂ:;l H(Xk)
with ||f = fllx, < C-distx, (f, H(X)) for every 1 <k < N. Also, if II is
a convex polygon in R? it is proved that the N-tuple (H(X1),..., H(XN))
is K j7-closed with respect to (X1,..., Xn) in the sense of G.Pisier.



1 Preliminaries

The results of this note are closely related to previous work in [KLW] and
[Pi]. It is very well known that if f € L™ there exists f € H* such that
17 = flloo = distes (f, H®) (cf. for instance [Po]). Also, it is obvious that such a
relation holds when L? and H? are instead of L and H® respectively. On the

other hand, V. Kaftal, D.Larson and G.Weiss [KLW] have recently obtained the '

following joint norm control Nehari type theorem (we shall give a qualitative
version of it):

Theorem 1.1 There is C > 0 such that for every f € L™ there ezists fe H*
with N
If = fllo < C-disteo(f, H)

If = fll2 < C - disto(f, H?).

They have used this result to obtain another proof of Sarason’s theorem on the
closure-of H* + C [Sa]. The best approximant in L*°- norm (or in L?- norm)
is not a solution for the question in theorem 1.1 (cf. [KLW]). At the same time,
Gilles Pisier has pointed out to the authors that this “qualitative version” can
be rephrased in therms of the interpolation theory as follows (see also [Pi]):
Theorem 1.2 The couple (H?, H®) is K- closed with respect to (L%, L*).

and it can be deduced from some deep inferpolation work of P.W.Jones based
on Carleson measure techniques (cf. [J]). This means that there exists C > 0
such that {
Ki(f,H? H®) < C- K(f,L* L™)

for all f € H? and t > 0, where K, is the usual Peetre functional cf.[BS]. Our
main task in the present paper is to obtain results of the same type but for N-
tuples of Hardy p- spaces, 0 < p < 1. To be mare clearly, we shall give now some
notations and definitions. Let IT = P, P,...Py be a convex polygon in the plane
R? with vertices Py = (vg,wi). By a N- tuple of Banach (or quasi-Banach)
spaces we mean a family (A,..,Ay) of N Banach (or quasi-Banach) spaces
Ar (1 < k < N) which are continuously embedded in a common Hausdorff
topological space. We shall denote the inner product of R? by < -,- >. Given
t = (t1,t2) € R? we define the K- functional by

N N
Kn(l,a,(Ar)izy) = inf{ Ze<t’Pk>|lak”Ak ya= Zak ,ar € A}
k=1 k=1

for a € Ay + ...+ An (cf. [CP]). Given any interior point ¥ = (d,,9;) of IT and
any 1 < ¢ < co the interpolation space [A4], '"»AN]E,q;K is defined as the set of
all elements a € A; + ... + Ay for which the norm

lallg e = ([ (757 K@Ea)yraiye
o=,



is finite (see also [CP]). If we consider the closed subspaces Sy C Ay 1 < k< N
we say that the N- tuple (S,...,Sn) is K- closed with respect to (4, ..., An)
if and only if there is C > 0 such that

Kn (f, a, (Sk);cvzl) <C- K”(Z’ a, (A’C){cv-_-l)

forallt € R? and a € Uf,:l Sk.

Following [P] we shall denote simply by X an arbitrary rearrangement in-
variant p- space of functions 0 < p <1 (in short r.i.p-space) on the real axis R
equipped with the Lebesgue measure. In a few words this means that X is a p-
Banach space of functions which is rearrangement invariant and its norm is p-
convex (see [LT]). We also consider

H(X)={F:U — C, Fanalytic; sup||F(- + iy)||x < o0}
y>0

the classical Hardy space of analytic functions on the upper half plane U gener-
ated by X. We have to remark that ||F||g(x) ~ ||f||x where f is the boundary
function of F. This means in particular that the map i : H(X) — X, i(F) = f
is an embedding and so, we can see H(X) spaces inside X spaces. Let now
(X)E_, r.i.p- spaces.

It is natural from our point of view (via theorems 1.1 and 1.2) to ask himselfs
the following questions:

Questionl [s the N- tuple (H(X}1),..., H(Xn)) Kp- closed with respect
to (X1,..,Xn) 7 '

Question2 Is there any C' > 0 such that for every f € ﬂf___le there
exists f € ﬂ,lcvzl H(X}) with

If = flix. < C-distx, (f, H(Xt))

forevery 1< k< N?

These are the problems we are mainly concerned. Actually, in this paper
we settle both questions in the affirmative. However, the matricial techniques
developed in [KLW] does not seem to extend to this more difficult case of N-
tuples of Hardy spaces. Our arguments are based on the powerful method due
to Peter Jones [J] which provides constructive solutions of 8- equation with
Carleson measure data, and L® estimates for this solutions at the boundary.

2 The solution of the problems

First, we shall recall the main result of P.W.Jones (cf. [J] or [BS]). A measure
p on the upper half plane U is said to be a Carleson measure if there exists a
constant C' > 0 such that |p|(Q) < C|I| for each Q of the form Q = I x (0, |I])
where [ is an open interval in R . The smallest constant C > 0 for which the



inequality holds , is called the Carleson norm of x and will be denoted by ||u||c.
For more results on Carleson measures the reader is referred to [GR). For ¢ € U
we shall denote by

B() ={weU;0< Im(w) <Im(£)}.
Define kernels K,(2,€), K2(z,€),K(2,€) in U x U by

Ki(2,6) = g—f’f‘—(g)

Ky (z,8) = exp ((i — 1)\ / i%(z()fz + \/5)

1 1 |pl(w)
- d .
e =% =5 e )

(2.1) K(z,6) :exp{~i/

The partial differential operator 8 is defined by the formula

51 = (e +ify)

where f is the derivate of f with respect to variable x (and similarly , f,). So,
we have the following theorem (cf. [J], [BS]).

Theorem 2.1 Let p be a Carleson measure on U. Then., the functions
defined for j = 1,2 by

1 1
50 =1 [ KoK OwuE

satisfy the distributional equation Ef, = p and the estimate ||fj||L=m) < ||ulc-
Moreover , if I is an interval centred at a point zg and if Q@ = I x (0,|I|) ,then
the function defined by

1@ = [ [ ekt 0x . odue

satisfies 0 f(+;Q) = pq (the restriction of p to Q) and also the inequalyties

1£(z:Q)| < Cllullc - exp (—,/'il“T"'“'),z €R.

The main step in the proof of our problems will be solved with the help of the
following divisibility result which may be of independent interest. The reader is
also referred to the work of Jean Bourgain [Bo] for other analytic decomposition
theorems.




Lemma 2.2 Let 0 < p <1 and N € N. There is C(= C(p, N)) > 0 such that
ifa € HP + H® can be written as a = my + ...+ mpy where (mk)f:’=l C LP 4+ L™
then, there exists (ax)l_, C HP + H® witha =a; + ...+ ay and

1> larllix < C-11 Y Imelllx

keA k€A
for every r.i.p- space X and for all AC{1,..,N}.

Proof: Let 0 < p<1, N € Nand a € HP + H*. We also consider a sequence
(mg)N_| C LP + L*® with a = m; + ...+ my. For F an analytic function on U
we recall the definition of the nontangential maximal operator (cf. [BS])

NF(z):= sup |F(t+iy)|,z€eR
t+iyel;
where [ := {t +iy; |t — t| < y} C U. Also, we denote by g* the decreasing
rearrangement of |g| (see [LT]). The present proof bears the same ideas as in
the proofs of [BS Theorem 5.10.6] and [M Lemma 2.4 ]. We have two cases.
Case 1: tlim (Na)*(t) =0
— 00 :
For r a negative integer we denote by A, the following subset of R:
!
A, = {:z:;}e R; Na(z) > 2"}
|

As there, we obtain an infinite colection C(= C,) of dyadic intervals and an
integer valued function m with thé following properties:

a) each I € C is a Whitney interval for some A,,.

b) If I,J € C and their interiors have non - empty intersection , then one of
the intervals is contained in the ot{her.

)IfI,J€C,JCI,J#I then
!
m(I) < m(J).

d)IEC(I):={J €C;J CI,J#1} then

SO <.

Jec(I)

e) Na is bounded by 2™) on the set E(I) defined by
EN) =1\ |J J=I\Anu.
Jec(I)

f)If I € C, then
| E(I) 121 1] /2.

g) the colection {E(I)} ec is disjoint with union equal to A,.




For each [ € C ,let R(I) =1 x (0,5|I]) and let

U, = | JR(I)
I

ry) = R\ J R(J) (I€c).

Jec(n)

It follows that
la(z) |< 2™ (2 € I(I))

and so , the function aj := a - 1p(s) then satisfies
lar(z) |< 2™ Lrn.

Moreover , 0 ay is absolutely continuous with respect to arclength measure on
the boundary (relative to U, ) of I'(I) and

0 ar|lc < 25-2m0).
If we denote by @ := 3", .. 2"‘(1)15;(1) it follows that
(2.2) (@7(t) < 2(Na)"(t/8)(t > 0)

(For all this estimates see the detailes in [BS] p.421). Define now u to be the
arclength measure on the union of the boundaries (relative to U, ) of the sets
I'(I)(I € C) . Then , p is a positive Carleson measure with ||u|lc < 225 (see
[BS] p.421). We define by

me) =) - 1 [ [ ke 0K, d@ae)

where K is given by (2.1) using the measure H—lﬁl_c . It follows that A; is analytic

and ) ;. Ar converges uniformly on compact subsets to analytic function A,.
It also follows that

(2.3) Y 2D 4z) < C
TeC

cf. [BS] p.422 . Now , using the relation (2.2) it follows that
1 1
/ (@) (u)du < C- / (Na?)*(u)du
0 0
and so, by [M Remark 2.3] we obtain

/O (@) (wdu < C- / (la)* (w)du (¢ > 0)




With the help of the [BS Corollary 5.10.5] since lim;—oo(Na)*(t) = 0, there
exists disjoint measurable sets e(I) such that | e(I) |=| E(I) | and

C- [ Ja(@)Pdz > 20| B(1) |
e(f)
So , there exists weights wr such that sup;c w; < C and

(S | alz) P dz)/?
2m(I). | E(I) [1/p

wr -
There exists also weights A; such that sup;c. A\ < C(= C(p, N)) and

Uiy | m3(2) P daz)/
(2.4)° Ar “”Z (;r)nUJ;E(I) R

We consider now the functions

oy | my P 1/p ;
(H](z)) r-——l‘_(z w 1%‘711‘11@) D=2, ISJ'STL

IeC,

We claim that there exists a subsequence (rx)§2, of negative integers su%b that
H*(z) converges for a.e £ € R , when k£ — 00,1 < j < N . Indeed;, since
evety r.i.p-space X is included in L” + L (cf. [P] ) it follows that there exists
m] ELPa,ndm € L% such that mJ_m]+m ,1<j < N. We can write
the following 1nequaht1es forafixed1<j < N: |

(f(])' f(1)|m;. |p I
k — A 3 < __f______ PI l/p <
”%‘j ] E(I) ll/P 14l <) Z zmoe ()] | A y”

e Imi P
P 1/p.
<C (% S a] IE(I SNP

Using the definition of A; and Jones’s theorem 2.2 we deduce the following
relations:

(25) APl < C-2mDr | E(1) |

So , we obtain that

(fe(]) | m;- lp)”p ;
(26) || Z )\[W]W | Al I ”LP < C- ”mj”Lp .
Iec,



Similarly ,

/p
(Jury |5 )
(2.7) 1> Mw [W [Ar | lze <
lec,
<CHmyllze 11 Y 2,,,(1) [ Al <

Iec,
<C- ”mj Lo
by (2.3) . Now , if M is an arbitrary interval in R , using inequalities 2.6 and

2.7 1t follows that
(] 1 P2 < C

with C > 0 independent of r and dependent of m; ,m_;’ and M. Using standard
measure theory arguments together with Alaoglu’s theorem it follows, since M
is arbitrary, and j belongs to the finite set {1,2,..., N} that our claim holds.
So, we may assume from the begining that H7(z) converges a.e £ € R when
r— 00,1 <3< N. We take now A a Banach limit and we shall define the
wanTed functions (a; )]’-V:1 as follows:

(Lory I ms )77 - .
*1;(2) =MD Mw !WAI(Z)L:-J ,2€U ,1<j<N.
IeC,

We have to remark that (a_,) —, are analytic functions and moreover,

a;+ ... +any = A(( Z AD:22) = M(A)r22y) =a,

|
| Iec,

i . |
by 2.4, since ||la- ly¢||zeom) < C-2" and ||0 (a- 1y, )|lc < C-2". We define now
the operator T on (L' + L*®)(R) as follows :

fe(l)l /P
T(H)() Z W rm(—m FAr (P22
Iec,

T 1s a quasilinear operator and

oy | H D2

o [E@ e | AT OV <

ITHlzr < MUY Arwr
Iec,

] _
<CAY Qf,{f)?l,;m 14712)722,) <

< (by (2.5)) < C-[[H]||zs



Similarly , for H € L we can write:

fe(l) | H )Y P -0
|ITH||Le < C'f\((ll(lezcj oD | B [iF7 [ A7 )Pllee)r22y) <

< C A llm MUY gy 1 A7 1=)720) <
IeC,

< (by (2.3)) <C AL

It follows that T maps Y into itself for every Y r.i.space. Let now consider
AC{l,..,N} and X be a r.i.p- space. We can thus write: '

1D lalllx = I laePINE < € ITC ImeP)IIE

keA keA keA

by the claim proved above. Since X is a r.i.p- space then it follows that X? =
{f;|1fI1™P € X} is a r.i.space (cf. [P] ) and we obtain that

I laelllx < C- 1D ImelPIE < C(= Clo, N)) -1 S Imalllx

keA keA keA

by Jensen’s inequality, and the proof is complete in this case.

Case 2: limy_,(Na)*(t) = a >0

If we take a look at the [M Remark 2.3], it follows using [BS Corollary
5.10.5] that there exists an increasing sequence (F,), of sets of finite measure
with | B [T oo such that | a(z) |> § whenever z € |J3%, En. This implies in
particular that if X is a Banach limit

(28) W@) =M [ 1P 2 5

Let to such that (Na)*(¢) < 2« for t >t . Using [M Lemma 2.5] in the case
X = L?, there exists a function ag in H? such that

laollzr» < C- / “(NayP) (u)du

(2.9) lla — agllge < C - (Na)*(to) < 2Ca

It follows using the above relations, that
4 13 t
[ @y u s [(@vary @it [(Via - a) ) <
0 0 0
t 1
< / (NaP)*(u)du + Cta? < C - / (NaP)*(u)du
0 0

10



and so, by [M Remark 2.3]

/0 (Jaol)" (w)du < C - /0 (Iaf?)" (u).

Since (L', L*°) is a Calderén couple (cf. [BS]) we deduce that there exists a
linear operator ¥ bounded on L! and on L™ with ¥(f) > 0 for f > 0 and
¥(|al?) = |ao|P. Also, there is a function 0 < ¢; < 1 such that |a[P = ¢;|m, [P +
..+p1|lmy|P and thus f; = ¥(p1/m;j[P) > 0for 1 < j < N. We deduce that there
exists 0 < o] < C(p, N) with the property ag = <p2fll + ...+ @ f,lvp Since
ag € HP we deduce that lim;—, o (Nap)* (t) = 0 and so, we can apply the first case
of our proof and obtain a sequence (ak)k , of analytic functions with sum ag.
On the other hand , there exists weights (8, ), such that 0 < 8, < C(= C(p, N))

and

N

(2.10) ﬂnZ(/ | mg |P>”P:(/E la )i/,

j=1 YEn

We shall define now the quasilinear operator on LP + L*° by the formulae

1
V(H) := (((Bn— / ]H"l’“’w a—ap|.
= Mg g, VDT
For H € L then T(H) =0 and if H € L™ then |
2C« |
IT(E)llee < |H||lzw - —— < C - [|H||z
o ,

by inequalyties 2.8 and 2.9. Using a result from [L’] it follows that V maps X
on X boundedly, for every r.i.p-space X. We consider the functions :

!

a; = () ﬁnIEl/ | m; [P)/P)2 ) (a —ag) ,1<j< N,

We have a'11+...+a'1’\, = a—ap, by 2.10. We put now a; = a;+a;, je{1,..,N}
and we remark that a; + ...+ ay = ag + a — ag = a. We can write

I lalx < C- I lealf P lx < € 1S K12 =

jEA JEA j€EA
1
=C- W erlmPIYE < Clo, NS Imjllix
JEA jEA

by Jensen’s inequality. Similar,

1D _lajlllx < Clo, N) - IV ImPP)/P)lIx < C -1 Y Imylilx

JEA JEA JEA

11



as above. These two relations completes the proof A.

We can give now the complete solution of our problems. The following
two results are easy consequences of the above lemma (applied for Ay = {k},
1 < k < N) and of definition of K- functional. Let IT a convex polygon in R2
and (Xk)f’:l r.i.p- spaces, 0 < p <1.

Theorem 2.3 The N- tuple (H(Xy),..., H(Xy)) is K- closed with respect to
(X1, XN).

Corollary 2.4 We have the equality

[H(X,), "-7H(XN)]5,q;K = H([X,, "-’XN]E,q;K)
where ¥ € IntIT and 1 < ¢ < 0.
Finally, we shall present the proof of the Nehari type theorem.
Theorem 2.5 There is C(= C(p,N)) > 0 such that for every f € ﬂf:l Xk
there exists f € ﬂivzl H(Xy) with '

If = Fllx. < C-distx, (f, H(X4))

for every 1 <k < N.

Proof: We will make an induction over N. The case N = 1 is obvious. We
assume that we know the result for N and we shall prove the case N + 1. So,
let f € (' Xx. Using the induction hypothesis, there is f; € ﬂkN=l H(Xk)
such that [|f — fil|x, < C-distx,(f, H(Xk)) for every 1 < k < N. Also, there
is fo € H(Xj41) such that ||f — follxey, <2-distx, ., (f, H(Xg41)). Let now
9i = f—fi,i=1,2. Then, fi — f = g — g;. Since f; — f, is analytic, using
lemma 2.2 we find analytic functions k;, i = 1,2 such that f; — fa = hy—hy and
moreover, |lhi|lgx) < C - ||gillx, i = 1,2 for every r.i.p- space X. Then, our

wanted function is f 1= fi +h1 = fo+hy € (o) H(X:). Indeed, if 1 < k< N

we can write:
If = fllxe <IIf = fillx, + Ihallx, < C-llaallx, < C - distx, (f, H(X)).
On the other hand,
1F = Fllxuss SNF = Foll g + Ihallxy, < C- distx,,, (£, H(Xks1))
which ends the proof A.

Corollary 2.6 Let 0 < p; < p; < ... < py < 0. There is C(= C(p1, N)) > 0
such that for every f € ﬂivzl LPx there ezists f € ﬂgzl HPx with

If = fllLex < C - distpn (f, HP*).
foralll1 <k <N.

12




Remarks

(1) A moment of reflection on the proof of lemma 2.2 shows us that in the
particular case p = 1 the constant C(= C(p, N)) > 0 becomes an universal
constant and so, it does not depend of N.

(2) In the particular case N = 2 theorem 2.3 was obtained by the author
in [M] (also, the situation p = 1 of this case has appeared in [X]). Using it, in
[M] it is shown how it is possible to transport the classical “weak interpolation
theory” in the analytic context of Hardy “quasi”- spaces.

(3) All the results of this note holds also in the case of Hardy spaces on the
unit disk, since it is well known that Jones’s 8- method can be transported in
this situation.

(4) In [Pi] it is also trated the non- commutative case of upper triangular
matrix spaces. That paper has motivated (together with [KLW]) the present
work.. We shall end with an apparently open problem: It is true the non-
commutative version of the above theorems 2.3 and 2.5 ? In [Pi] only the cases
N =2 and X = LP are considered. We conjectured that the answer is yes.
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