

INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

ISSN 0250 3638

ON THE CONVEX PROGRAMMING PROBLEM

BY DAN TIBA

Preprint No. 2/1995

ON THE CONVEX PROGRAMMING PROBLEM

BY DAN TIBA*)

January 1995

^{*)} Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, RO-70700 Bucharest, Romania

On the convex programming problem

by
Dan Tiba
Institute of Mathematics
Romanian Academy
P.O.Box 1-764
RO-70700 Bucharest, ROMANIA
E-mail address: dtiba@imar.ro

Abstract

The nondegenerate Lagrange multipliers rule is proved under an explicit constraint qualification strictly weaker than the Slater condition. A first approach is based on direct exact penalization arguments, while a second one uses the theory of maximal monotone operators and allows a large class of applications.

Mathematics Subject Classification: 49B27

January 1995

1. Introduction

Let H be a Banach space, $g: H \to]-\infty, +\infty]$ be a convex, lower semicontinuous proper function and $h_i: H \to]-\infty, +\infty]$, $i=\overline{1,n}$, be convex mappings. Precise hypotheses will be stated in the sequel, for each result. We consider the standard convex programming problem with inequality constraints:

(1.1) Minimize
$$\{g(x)\}$$

subject to

$$(1.2) h_i(x) \le 0, \ i = \overline{1, n}.$$

We define the feasible (convex) set

(1.3)
$$C = \{x \in H; h_i(x) \leq 0, i = \overline{1,n}\}$$

assumed to be nonvoid (admissibility) and we denote by $\overline{x} \in C$ a solution of (1.1), (1.2), supposed to exist. We also introduce the convex mapping $h: H \to]-\infty, +\infty]$, $h(x) = \max\{h_i(x); i = \overline{1,n}\}$ and the problem (1.1), (1.2) may be equivalently reformulated as (1.1) and

$$(1.4) h(x) \le 0.$$

This work discusses the classical question of the Lagrange multipliers associated to \overline{x} and of the related constraint qualification conditions if a "nondegenerate" (involving g essentially) characterization is obtained.

In the next section, we show by a direct argument a geometric property of convex functions (valid on $H\backslash C$) which is a consequence of the Slater [11] condition. This allows to obtain a modified nondegenerate Lagrange multipliers rule involving h_+ , the positive part of h.

A new explicit constraint qualification, strictly weaker than the Slater condition, is formulated and the standard Karush-Kuhn-Tucker [7], [8] conditions are reobtained (under this assumption) via subdifferential calculus.

In the last section the continuity hypotheses on g are relaxed by means of an alternative approach based on the Minty [9] theorem on maximal monotone operators in Banach spaces, Barbu [2].

Finally, we underline that the literature on the relaxation of constraint qualifications in the mathematical programming or of interiority conditions in optimal control is quite rich: Zowe and Kurcyusz [17], Clarke [5, Ch. VI], Troltzch [16], Barbu and Pavel [3], Tiba [12], Neittaanmaki and Tiba [13, Ch. VI], Tiba and Bergounioux [14], Vinter and Ferreira [18]. Generally, qualification conditions on the feasible set are required, while our hypothesis is related to the behaviour of h on the complementary of C.

2. Slater condition and exact penalization

Theorem 2.1. Let h be convex proper lower semicontinuous and let the Slater assumption

$$(2.1) \exists \hat{x} \in C : h(\hat{x}) < 0$$

be fulfilled. Then, $\forall r > 0$, $\forall x \in B(\hat{x}, r) \setminus C$, we have

(2.2)
$$h(x) \ge -\frac{h(\hat{x})}{r} \operatorname{dist}(x, C).$$

Proof.

Take $a = -h(\hat{x}) > 0$ and denote by S the line passing through \hat{x}, x in H. If $h(x) = +\infty$, then (2.2) is trivial. Therefore, we may assume that h is finite on the closed segment $[\hat{x}x] \subset S$ since it is convex, proper. Then $h|_S$ is continuous on the open segment $[\hat{x}x] \subset S$. As $x \in H \setminus C$ and C is closed, there is $\varepsilon > 0$ such that h > 0 on $B(x,\varepsilon) \cap]\hat{x}x[$ due to (1.3). Since h is convex, it follows that $\lim_{n \to \infty} h(y)|_S > 0$.

By, Proposition 3.1.2., Hiriart-Urruty and Lemarechal [6, Ch. I], we have that

$$\lim_{y\to \hat{x}+}h(y)|_{S}\leq h(\hat{x})<0.$$

We suppose that a unit vector u, $|u|_H = 1$ is chosen parallel to S and a parametrization of S with respect to u and some origin is given. The above discussion shows the existence of $\tilde{x} \in]\hat{x}x[$ such that $h(\tilde{x}) = 0$, $\tilde{x} \in C$. Let $\hat{\lambda}$, $\tilde{\lambda}$, λ be the "coordinates" of \hat{x} , \tilde{x} , x on S, respectively and assume that $\hat{\lambda} < \tilde{\lambda} < \lambda$.

For $y \in S$, $y \cong \mu u$, $\mu \in R$, we define

(2.3)
$$f(y) = \frac{a}{r}(\mu - \tilde{\lambda})$$

f being an affine mapping on S. We notice by (2.3) that

$$(2.4) f(\tilde{x}) = 0 = h(\tilde{x}),$$

(2.5)
$$f(\hat{x}) = -\frac{h(\hat{x})}{r}(\hat{\lambda} - \tilde{\lambda}) = h(\hat{x})\frac{\tilde{\lambda} - \hat{\lambda}}{r} \ge h(\hat{x})$$

since $h(\hat{x}) < 0$ and $0 \le \frac{\tilde{\lambda} - \hat{\lambda}}{r} = \frac{|\tilde{x} - \hat{x}|_H}{r} \le 1$. Due to the convexity of $h|_S$ and the affine character of f, we get by (2.4), (2.5) that

$$h(x) \ge f(x) = \frac{a}{r}(\lambda - \tilde{\lambda}) = \frac{a}{r} | x - \tilde{x} |_{H} \ge$$

$$\geq \frac{a}{r} | x - \operatorname{proj}_C x |_{H} = -\frac{h(\widehat{x})}{r} \operatorname{dist}(x, C)$$

since $\tilde{x} \in C$. This ends the proof.

Remark. Suggested by Theorem 2.1, we formulate the following explicit constraint qualification:

$$(2.6) \forall M \subset H \text{ bounded} : M \setminus C \neq \emptyset,$$

$$\exists c_M > 0 : h(x) \ge c_M \mid x - \operatorname{proj}_C x \mid_H, \forall x \in M \setminus C,$$

which is strictly weaker than (2.1) by the above result and by the example of h satisfying (2.1) and its positive part h_+ for which (2.1) fails but not (2.6).

If C is bounded, then c_M may be choosen independent of M. Moreover, in (2.6) a neighbourhood of C may be taken into account instead of H, by the convexity of h.

Remark. By (2.6) and (1.3), we have

$$(2.6)' h(x) - h(\operatorname{proj}_C x) \ge c_M | x - \operatorname{proj}_C x |_H$$

for $x \in M \setminus C$. Relation (2.6)' expresses that the subgradients of h in x, $\partial h(x)$, are "far" from zero. This will play an essential role in the next section.

Theorem 2.2. Let $h: H \to]-\infty, +\infty]$ be convex lower semicontinuous proper and $g: H \to R$ be convex continuous. Then, if \overline{x} is a solution of (1.1), (1.4) and (2.6) is satisfied, there is $\lambda \geq 0$ such that \overline{x} is a minimum point of $g + \lambda h_+$ over H.

Proof.

Let $B(\overline{x}, \varepsilon)$ be a "small" ball around \overline{x} . We show the minimum property of $g + \lambda h_+$ (for some $\lambda \geq 0$) on $B(\overline{x}, \varepsilon)$ and it will follow on H, by convexity. For any $y \in B(\overline{x}, \varepsilon)$, $\operatorname{proj}_C y \in B(\overline{x}, \varepsilon)$ since $\overline{x} = \operatorname{proj}_C \overline{x}$ and $\operatorname{proj}_C (\cdot)$ is nonexpansive. We have

$$g(y) - g(\operatorname{proj}_C(y)) \ge (w, y - \operatorname{proj}_C y)_{H^{\bullet} \times H} \ge -L \mid y - \operatorname{proj}_C y \mid_H$$

for any $w \in \partial g$ (proj_C y) and for $L \ge |w|_{H^{\bullet}}$ given by the boundedness of $\partial g(\cdot)$ on $B(\overline{x}, \varepsilon)$ due to the continuity of g. Then

$$(2.7) g(y) + L \mid y - \operatorname{proj}_{C} y \mid_{H} \ge g(\operatorname{proj}_{C} y) \ge g(\overline{x}).$$

By (2.6), we have

$$(2.8) h_+(x) \ge c_{\varepsilon} | x - \operatorname{proj}_C x |_h, \forall x \in B(\overline{x}, \varepsilon) \setminus C.$$

Then, (2.7), (2.8) yield, for $y \in B(\overline{x}, \varepsilon) \setminus C$:

(2.9)
$$g(y) + \frac{L}{c_{\epsilon}} h_{+}(y) \ge g(y) + L \mid y - \operatorname{proj}_{C} y \mid \ge$$

$$\geq g(\overline{x}) = g(\overline{x}) + \frac{L}{c_{\epsilon}}h_{+}(\overline{x}).$$

Relation (2.9) remains valid for $y \in B(\overline{x}, \varepsilon) \cap C$ since $h_+|_C = 0$ and this finishes the proof with $\lambda = \frac{L}{c_*} \geq 0$.

Remark. The above proof is based on direct exact penalization arguments as in Lemarechal and Hiriart-Urruty [6, Ch. VII 1.2]. We remark that only g locally Lipschitzian is necessary in this setting. On the contrary, based on subdifferential calculus rules (which are known to be equivalent with the separation theorem, Tichomirov [15], p. 52), we shall get the standard Karush-Kuhn-Tucker optimality conditions (Theorem 2.3 below).

Example. For H=R, if (2.6) fails, then the conclusion of Theorem 2.2 may be not valid. We take $\tilde{g}(x)=x, x\in R$ and

$$\tilde{h}(x) = \begin{cases} x^2, & x < 0 \\ 0, & x \ge 0 \end{cases}$$

and we consider the minimization of \tilde{g} subject to $\tilde{h}(x) \leq 0$ (i.e. $x \geq 0$). The solution is $\overline{x} = 0$ and (2.6) is not fulfilled since $\tilde{h}' \equiv 0$ for $x \in C$. For any $\lambda \geq 0$, we define the nondegenerate Lagrange function $g_{\lambda}(x) = \tilde{g}(x) + \lambda \tilde{h}_{+}(x) = \tilde{g}(x) + \lambda \tilde{h}(x)$. Obviously, $x_{\lambda} = -\frac{1}{2\lambda}$ provides a global minimum for g_{λ} and $x_{\lambda} \neq \overline{x}$, $\forall \lambda > 0$. For $\lambda = 0$, the infimum on R is not attained.

Theorem 2.3. Assume (2.6) and that g and h_i , $i = \overline{i, n}$, are convex continuous on H. If \overline{x} is a solution of (1.1), (1.2) there are $\lambda_i \geq 0$, $i = \overline{i, n}$, such that

(2.10)
$$0 \in \partial g(\overline{x}) + \sum_{i=1}^{n} \lambda_{i} \partial h_{i}(\overline{x}),$$

(2.11)
$$\lambda_i h_i(\overline{x}) = 0, \ i = \overline{1, n}$$

Proof.

This is a consequence of Theorem 2.2 and of the Dubovitskij-Milyutin theorem which is valid under the continuity assumptions, Tichomirov [15], p.52:

$$\begin{split} \partial h(x) &= \{ \sum_{j \in T(x)} \lambda_j w_j; \ \lambda_j \in R_+, \ \sum_{j \in T(x)} \lambda_j = 1, \ w_j \in \partial h_j(x) \}, \\ T(x) &= \{ j; \ h_j(x) = h(x) \}. \end{split}$$

We also use that $h_+ = \sup(0, h)$ and the additivity rule $\partial(g + \lambda h_+) = \partial g + \lambda \partial h_+$ to finish the proof.

Example. As a byproduct of Theorem 2.1, we put into evidence a class of functionals on H which have the exact penalization property for convex closed sets $C \subset H$ such that $0 \in C$. We denote by $p_c : H \to]-\infty, +\infty]$ the Minkowski (gauge) functional associated to C and we define, for $\varepsilon > 0$:

$$(2.10) h^{\epsilon}(x) = \epsilon(p_{\epsilon}(x) - 1)_{+}.$$

The following properties are obvious:

$$C = \{x \in H; \ h^{\epsilon}(x) = 0\}, \ \forall \ \epsilon > 0,$$
$$h^{\epsilon}(x) \to +\infty, \text{ for } \epsilon \to \infty, \ \forall \ x \in H \setminus C,$$
$$h^{\epsilon}(x) \to 0 \text{ for } \epsilon \to 0, \ \forall \ x \in \text{ aff } (C).$$

Moreover, if $\tilde{h}^{\epsilon}(x) = \epsilon(p_c(x) - 1)$, then it satisfies the Slater condition $\tilde{h}^{\epsilon}(0) = -\epsilon$, $\forall \epsilon > 0$ and Theorem 2.1 shows that h^{ϵ} satisfies (2.6). If g is a continuous convex mapping with a minimum in $\overline{x} \in C$, then (by the proof of Theorem 2.2) there is $\epsilon > 0$ such that \overline{x} is a minimum for $g + h^{\epsilon}$ on H.

It is well known that the distance function, dist (x, C), has the exact penalization property, Hiriart-Urruty and Lemarechal [6, Ch. VII, 1.2], while (2.10) is an example of a different nature.

3. Maximal monotonicity

In this section we assume that H is a reflexive Banach space. Then, an equivalent norm may be defined such that H and the dual H^{\bullet} are strict convex, Asplund [1].

By using a different technique, we prove the nondegenerate Lagrange multipliers rule under condition (2.6) and with general convex lower semicontinuous proper mapping $g: H \to]-\infty, +\infty]$. This is important since it allows to add to the problem (1.1), (1.2) some abstract type constraints $x \in A \subset H$ convex, closed nonvoid subset, by the standard trick of redefining g as $+\infty$ outside A.

Theorem 3.1. Let $h: H \to R$ be convex continuous satisfying (2.6) and $0 \in \partial h(0)$. Then, the operator $N \subset H \times H^*$ given by

(3.1)
$$N(x) = \begin{cases} 0, & \text{if } h(x) < 0 \\ \lambda w, \lambda \ge 0, w \in \partial h(x), & \text{if } h(x) = 0 \\ \emptyset & \text{if } h(x) > 0 \end{cases}$$

is maximal monotone and $N(x) = \partial I_C(x)$, the normal cone to C at x.

In (3.1), it is possible that no $x \in H$ satisfies h(x) < 0 and, then, the first line disappears.

Proof

By the definition of the subdifferential, we have $N(x) \subset N_C(x)$, $\forall x \in H$. This is obvious if $x \notin C$ or h(x) < 0. If $x \in C$ and h(x) = 0, we have

$$h(x) - h(y) \le (w, x - y)_{H \times H^*}, \ \forall \ x \in \partial h(x), \ \forall \ y \in H$$

that is

$$(3.2) 0 \le \lambda(w, x - y)_{H \times H^{\bullet}}, \ \forall \ \lambda \ge 0, \ \forall \ y \in C$$

since $h(x) - h(y) = -h(y) \ge 0$. Relation (3.2) proves the inclusion. It yields that $N \subset H \times H^{\bullet}$ is monotone and we have to show its maximality to get the desired

equality. Since $\partial h \subset H \times H^*$ is maximal monotone, the Minty theorem, Barbu [2, Ch. II] gives the existence of $x_{\lambda} \in H$ such that

$$(3.3) F(x_{\lambda} - y) + \lambda \partial h(x_{\lambda}) \ni 0$$

where $\lambda > 0$, $F: H \to H^*$ is the duality mapping and $y \in H$ is arbitrary.

We show that $x_{\lambda} \in C$ for λ "sufficiently big". If $y \in C$, we may take $x_0 = x_{\lambda} = y$ and $\lambda = 0$. Then (3.3) becomes (by using (3.1)):

$$(3.4) F(x_0 - y) + N(x_0) \ni 0.$$

Therefore, we may assume h(y) > 0. By the definition and properties of the Moreau-Yosida regularization, Barbu and Precupanu [4, Ch. 2.3], we have

(3.5)
$$h(x_{\lambda}) = h_{\lambda}(y) - \frac{\lambda}{2} |\partial h_{x}(y)|_{H^{\bullet}}^{2} =$$
$$= h_{\lambda}(y) - \frac{\lambda}{2} |w_{\lambda}|_{H^{\bullet}}^{2}$$

where w_{λ} is some element in $\partial h(x_{\lambda})$.

If $x_{\lambda} \notin C$ for some $\lambda > 0$, then $h(x_{\lambda}) > 0$ and (3.5) gives

$$|w_{\lambda}|_{H^{\bullet}}^{2} < \frac{2h_{\lambda}(y)}{\lambda} \leq \frac{2h(y)}{\lambda}.$$

Taking into account hypothesis (2.6), we get:

$$(3.7) c_* |x_{\lambda} - \operatorname{proj}_C x_{\lambda}|_H \le h(x_{\lambda}) - h(\operatorname{proj}_C x_{\lambda}) \le$$

$$\leq (\partial h(x_{\lambda}), x_{\lambda} - \operatorname{proj}_{C} x_{\lambda})_{H \times H^{\bullet}} \leq |\partial h(x_{\lambda})|_{H^{\bullet}} \cdot |x_{\lambda} - \operatorname{proj}_{C} x_{\lambda}|_{H},$$

where $c_{\bullet} > 0$ is a constant depending on y^{\bullet} since $|x_{\lambda}|_{H} \leq |y^{\bullet}|_{H^{\bullet}}$ by $0 \in \partial h(0)$. Combining (3.6), (3.7) we get:

$$c_{\bullet}^2 < \frac{2h(y)}{\lambda}$$

which is a contradiction for λ big enough.

By this discussion and since N(x) is a cone, we conclude that for any $y \in H$, the equation

$$(3.8) F(x_* - y) + N(x_*) \ni 0$$

has a solution $x_* \in C$.

Assume now that $N \subset H \times H^*$ is not maximal monotone. This means that there is $x' \in H$, $y' \in H^*$ such that $y' \notin N(x')$ and

$$(3.9) (x-x', y-y')_{H\times H^*} \geq 0$$

for any $x \in C$, any $y \in N(x)$.

By (3.8) there is $x^0 \in C$, solution for the equation

(3.10)
$$F(x^0 - x' - F^{-1}(y')) + y^0 = 0$$

with some $y^0 \in N(x^0)$. Choosing $x = x^0$, $y = y^0$ in (3.9), we get

$$(x^0 - x', -F(x^0 - x' - F^{-1}(y')) - y')_{H \times H^{\bullet}} \ge 0$$

that is

$$0 \ge (x^0 - x' - F^{-1}(y') - (-F^{-1}(y')), \ F(x^0 - x' - F^{-1}(y')) - F(-F^{-1}(y'))_{H \times H^{\bullet}}.$$

Since F is strictly monotone in $H \times H'$, we get $x^0 = x'$ and $y^0 = y'$ by (3.10) and the proof is finished.

Remark. The inclusion $N \subset N_C$ is well known and the equality $N = N_C$ is an abstract regularity condition, necessary and sufficient for the nondegenerate Lagrange multipliers rule to hold (Hiriart-Urruty and Lemarechal [6, Ch.VII.2]). Another "basic constraint qualification" may be formulated via tangent cones as well, Rockafellar [10].

Corollary 3.2. Let $g: H \to]-\infty, +\infty]$ be convex lower semicontinuous proper, continuous in some point of C and \overline{x} be a solution of (1.1), (1.2). If h satisfies the assumptions of Theorem 3.1, then there are $\lambda_i \geq 0$ such that

$$0 \in \partial g(\overline{x}) + \sum_{i=1}^{n} \lambda_i \partial h_i(\overline{x}), \ \lambda_i h_i(\overline{x}) = 0, \ i = \overline{1, n}.$$

Proof

Since g is continuous in a point of C, we have the additivity rule $0 \in \partial g(\overline{x}) + N_C(\overline{x})$. The proof is finished by Theorem 3.1 and the Dubovitskij-Milyutin theorem.

Remark. The hypothesis $0 \in \partial h(0)$ is not restrictive since if the Slater condition does not hold, then $\forall x \in C$ is a minimum point for h by $C = \{x \in H; h(x) = 0\}$ and $h \geq 0$ on H. Therefore a simple shifting on h gives $0 \in \partial h(0)$. If the Slater condition is fulfilled the results are wellknown.

References

- [1] E. Asplund "Averaged norms", Israel J. Math. 5(1967).
- [2] V. Barbu "Nonlinear semigroups and differential equations in Banach spaces", Noordhoff, Leyden (1976).
- [3] V. Barbu, N. Pavel "Optimal control problems with two point boundary condition", J.O.T.A. vol. 77 (1993).

- [4] V. Barbu, Th. Precupanu "Convexity and optimization in Banach spaces", Noordhoff, Leyden (1978).
- [5] F.H.Clarke "Optimization and nonsmooth analysis", Wiley, New York (1983).
- [6] J.-B. Hiriart-Urruty, Cl. Lemarechal "Convex analysis and minimization algorithms", Springer Verlag, Berlin (1993).
- [7] W. Karush "Minima of functions of several variables with inequalities as side conditions", Master's Thesis, Dept. of Mathematics, Chicago University (1939).
- [8] H.W.Kuhn, A.W.Tucker "Nonlinear programming", in J. Neyman (ed.), Proceedings of second Berkeley symposium on mathematical statistics and probability, Berkeley, University of California (1950).
- [9] G.J.Minty "Monotone (nonlinear) operators in Hilbert spaces", Duke Math. J. 29(1962).
- [10] R.T.Rockafellar "Lagrange multipliers in optimization", SIAM-AMS Proceedings 9 (1976).
- [11] M. Slater "Lagrange multipliers revisited", Cowles comission discussion paper no. 403, (1950).
- [12] D. Tiba "Nonqualified convex control problems", Report 424, Technische Univ. München, Inst. for Appl. Math. and Statistics (1993).
- [13] D. Tiba, P. Neittaanmaki "Optimal control of nonlinear parabolic systems", Marcel Dekker, New York (1994).
- [14] D. Tiba, M. Bergounioux "General optimality conditions for constrained convex control problems", SIAM J. Control Optimiz. (1995), (accepted).
- [15] V.M. Tichomirov "Convex analysis", Encyclopaedia of mathematical sciences vol. 14, Springer Verlag (1990).
- [16] F. Tröltzsch "Optimality conditions for parabolic control problems and applications", Teubner Texte 62, Leipzig (1984).
- [17] J. Zowe, S. Kurcyusz "Regularity and stability for the mathematical programming problem in Banach spaces", Appl. Math. Optimiz. 5 (1979).
- [18] R.B. Vinter, M. Ferreira "When is the maximum principle for state constrained problems nondegenerate", J. Math. An. Appl. (1995), (to appear).