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1. Introduction

Let H be a Banach space, g : H —] — 00, +00] be a convex, lower semicontinuous
proper function and h; : H —] — 00,400], i = 1,n, be convex mappings. Precise
hypotheses will be stated in the sequel, for each result. We consider the standard
convex programming problem with inequality constraints:

(1.1) Minimize {g(z)}
subject to e
(1.2) hi(z) <0, i =T,n.

We define the feasible (convex) set

(1.3) C={z€H; hz) <0, i=T7)

assumed to be nonvoid (admissibility) and we denote by Z € C a solution of (1.1),
(1.2), supposed to exist. We also introduce the convex mapping h : H —] — 00, +00],
h(z) = max{hi(z); ¢ = I,n} and the problem (1.1), (1.2) may be equivalently refor-
mulated as (1.1) and

(1.4) h(z) < 0.

This work discusses the classical question of the Lagrange multipliers associated to
7 and of the related constraint qualification conditions if a "nondegenerate” (involving
g essentially) characterization is obtained.

In the next section, we show by a direct argument a geometric property of convex
functions (valid on H\C) which is a consequence of the Slater [11] condition. This
allows to obtain a modified nondegenerate Lagrange multipliers rule involving k., the
positive part of A.

A new explicit constraint qualification, strictly weaker than the Slater condition,
is formulated and the standard Karush-Kuhn-Tucker [7], [8] conditions are reobtained
(under this assumption) via subdifferential calculus.

In the last section the continuity hypotheses on g are relaxed by means of an
alternative approach based on the Minty [9] theorem on maximal monotone operators
in Banach spaces, Barbu [2].

Finally, we underline that the literature on the relaxation of constraint qualifica-
tions in the mathematical programming or of interiority conditions in optimal control
is quite rich: Zowe and Kurcyusz [17], Clarke [5, Ch. VI], Troltzch [16], Barbu and
Pavel (3], Tiba [12], Neittaanmaki and Tiba [13, Ch. VI], Tiba and Bergounioux [14],
Vinter and Ferreira [18]. Generally, qualification conditions on the feasible set are
required, while our hypothesis is related to the behaviour of A on the complementary -

of C.



2. Slater condition and exact penalization

Theorem 2.1. Let h be convezr proper lower semicontinuous and let the Slater as-
sumplion

(2.1) 32e€eC:h(2)<0

be fulfilled. Then,¥Vr >0,V z € B(z,r)\C, we have

(2.2) h(z) > -—-@ dist (z,C).
Proof.

Take a = —h(z) > 0 and denote by S the line passing through Z,z in H. If
h(z) = 400, then (2.2) is trivial. Therefore, we may assume that A is finite on the
closed segment [z] C S since it is convex, proper. Then k|s is continuous on the
open segment |2z[C S. As z € H\ C and C is closed, there is € > 0 such that A > 0
on B(z,e)N|zz[ due to (1.3). Since h is convex, it follows that '1_1.131_ h(y)ls > 0.

By, Proposition 3.1.2., Hiriart-Urruty and Lemarechal [6, Ch. I], we have that
lim A(W)ls < h(&) < 0.
y—i+

We suppose that a unit vector u, [u|y = 1is chosen parallel to S and a parametriza-
tion of S with respect to u and some origin is given. The above discussion shows the
existence of Z €)Zz[ such that k(Z) =0,z € C._Let X, A, A be the "coordinates” of
Z, 7, z on S, respectively and assume that A<i <k

ForyES y = pu, p € R, we define

a -~
(23) J) = 2%
f being an affine mapping on S. We notice by (2.3) that
(2.4) f(z) = 0= h(3),
. h 1'\ Risiaca
(23) f) = 223 - %) = h(@®)2 2 2 43)
since h(Z) <0 and 0 < el O Lt < 1. Due to the convexity of h|s and the

affine character of f, we get by (2.4), (2 5) that

hz) 2 f(z) = Z(A=X) == |z - |u2




since Z € C. This ends the proof.
Remark. Suggested by Theorem 2.1, we formulate the following explicit con-

straint qualification:
(2.6) VM C Hbounded: M\ C # 0,

3emr > 0: h(z) 2 em |z — projez |y, Vz € M\ C,

which is strictly weaker than (2.1) by the above result and by the example of A
satisfying (2.1) and its positive part h, for which (2.1) fails but not (2.6).

If C is bounded, then cp may be choosen independent of M. Moreover, in (2.6) a
neighbourhood of C' may be taken into account instead of H, by the convexity of h.

Remark. By (2.6) and (1.3), we have
(2.6) h(z) — h(projc z) 2 em | z — projc = |n

for z € M\ C. Relation (2.6)’ expresses that the subgradients of k in z, dh(z), are
"far” from zero. This will play an essential role in the next section.

Theorem 2.2. Let h : H —] — 00, +00] be convez lower semicontinuous proper
and g : H — R be convez continuous. Then, if T is a solution of (1.1), (1.4) and (2.6)
is satisfied, there is A > 0 such that T is a minimum point of g + Ah, over H.

Proof.

Let B(Z,¢) be a "small” ball around Z. We show the minimum property of g+ Ak,
(for some A > 0) on B(Z,¢) and it will follow on H, by convexity. For any y € B(Z,¢),
projc y € B(Z,¢€) since T = proje 7 and proje (-) is nonexpansive. We have

9(y) — g(projc (¥)) 2 (w,y — proje ¥)u+xu 2 —L |y — projcy |u

for any w € dg (proj¢ y) and for L >| w |y- given by the boundedness of 8g(-) on
B(%,€) due to the continuity of g. Then

(2.7) 9(y) + L |y — projc y |u> g(projc v) 2 ¢(%).
By (2.6), we have

(2.8) hi(z) > c. |z — projc z |, Vz € B(Z,e) \ C.
Then, (2.7), (2.8) yield, for y € B(Z,¢) \ C:

(2.9) o) + ém(y) > g} + L1y~ proje 2

)= o)+ Eyte
2 9(z) = g( )+c¢h+( )-

Relation (2.9) remains valid for y € B(Z,€) N C since hy|c = 0 and this finishes the

proof with A = = 2> 0.



Remark. The above proof is based on direct exact penalization arguments as
in Lemarechal and Hiriart-Urruty [6, Ch. VII 1.2]. We remark that only g locally
Lipschitzian is necessary in this setting. On the contrary, based on subdifferential
calculus rules (which are known to be equivalent with the separation theorem, Ti-
chomirov [15], p. 52), we shall get the standard Karush-Kuhn-Tucker optimality
conditions (Theorem 2.3 below).

Ezample. For H = R, if (2.6) fails, then the conclusion of Theorem 2.2 may be
not valid. We take §(z) = z, z € R and

= 3 2<0
h(3)={3, £

and we consider the minimization of § subject to h(:z) < 0 (i.e. z > 0). The solution

is Z = 0 and (2.6) is not fulfilled since &’ = 0 for z € C. For any A > 0, we define the

nondegenerate Lagrange function gx(z) = §(z) + Ak4(z) = §(z) + Ak(z). Obviously,
1

Ty - s provides a global minimum for g\ and z, # Z, VA > 0. For A = 0, the

infimum on R is not attained.

Theorem 2.3. Assume (2.6) and that g and h;, i = 1,n, are convez continuous
on H. IfT is a solution of (1.1), (1.2) there are \; > 0, i =1, n, such that

(2.10) 0 € 09(z) + 3" Adhi(2),
i=1
(2.11) Aihi(Z)=0,i=T1,n
Proof.

This is a consequence of Theorem 2.2 and of the Dubovitskij~-Milyutin theorem
which is valid under the continuity assumptions, Tichomirov [15], p.52:

Oh(z) ={ 2. Awsi A € Ry, 3 ) =1, w; € Ohy(2)},
JET () J€T(z)
T(z) = {5; hi(z) = h(z)}.
We also use that hy = sup(0, k) and the additivity rule 8(g + Ak, ) = 8g + A\0h,
to finish the proof.

Ezample. As a byproduct of Theorem 2.1, we put into evidence a class of function-
als on H which have the exact penalization property for convex closed sets C C H
such that 0 € C. We denote by p. : H —]—o00, +00] the Minkowski (gauge) functional
associated to C and we define, for € > 0:

(2.10) h*(z) = e(pe(z) — 1)+

5



The following properties are obvious:

C={zeH (z)=0), Ve>0,
h*(z) — +o0, fore — 00, Vz € H\C,
hé(z) = 0fore — 0, Vz € aff (C).

Moreover, if h*(z) = &(pc(z) — 1), then it satisfies the Slater condition %¢(0) = —¢,
V & > 0 and Theorem 2.1 shows that h® satisfies (2.6). If g is a continuous convex
mapping with a minimum in Z € C, then (by the proof of Theorem 2.2) thereise > 0
such that Z is a minimum for g + A® on H.

It is well known that the distance function, dist (z, C), has the exact penalization
property, Hiriart-Urruty and Lemarechal [6, Ch. VII, 1.2}, while (2.10) is an example
of a different nature.

3. Maximal monotonicity

In this section we assume that H is a reflexive Banach space. Then, an equivalent
norm may be defined such that H and the dual H* are strict convex, Asplund [1].

By using a different technique, we prove the nondegenerate Lagrange multipliers
rule under condition (2.6) and with general convex lower semicontinuous proper map-
ping g : H —] — 00, +00]. This is important since it allows to add to the problem
(1.1), (1.2) some abstract type constraints z € A C H convex, closed nonvoid subset,
by the standard trick of redefining g as 400 outside A.

Theorem 3.1. Let h : H — R be convez continuous satisfying (2.6) and 0 €
Oh(0). Then, the operator N C H x H* given by

0, if h(z) < 0
(3.1) N(z) = { Mw, A > 0,w € Bh(z), if h(z) =0
0 if h(z) > 0

is mazimal monotone and N(z) = 8l¢(z), the normal cone to C at z.
In (3.1), it is possible that no z € H satisfies h(z) < 0 and, then, the first line
disappears.

Proof
By the definition of the subdifferential, we have N(z) C Ng(z),V z € H. This is
obvious if z € C or h(z) < 0. If z € C and h(z) = 0, we have

h(z) — h(y) < (w,z — Y)uxu+, Yz € Oh(z), Yy € H
that is
(3:2) 0< X(w,z — y)uxn, VA20,Vy €C

since h(z) — h(y) = —h(y) = 0. Relation (3.2) proves the inclusion. It yields that
N C H x H* is monotone and we have to show its maximality to get the desired

6



equality. Since dh C H x H* is maximal monotone, the Minty theorem, Barbu [2,
Ch. II] gives the existence of zy, € H such that

(3.3) F(zy —y) + A8h(z)) 30

where A > 0, F: H — H* is the duality mapping and y € H is arbitrary.
We show that z, € C for A "sufficiently big”. If y € C, we may take zo = z) =y
and A = 0. Then (3.3) becomes (by using (3.1)):

(3.4) F(zo —y) + N(z0) 2 0.
Therefore, we may assume h(y) > 0. By the definition and properties of the Moreau-
Yosida regularization, Barbu and Precupanu [4, Ch. 2.3], we have

(3.5) h(a2) = haly) - 5 10h:(0)fly. =

A
= h(y) - 5 ol

where w) is some element in Oh(z,).
If z) & C for some A > 0, then k(z,) > 0 and (3.5) gives

2ha(y)  2h(y)

2

Taking into account hypothesis (2.6), we get:
(3.7) e |za — proje zaly < h(za) — h(proj¢ zx) <

< (Oh(zr),zx — projo za)uxu+ < |0h(za)|y. - |22 — projc zily,
where ¢, > 0 is a constant depending on y* since |zl < |y*|y. by 0 € 9h(0).
Combining (3.6), (3.7) we get:
2h(y)
Y B Do L
<=
which is a contradiction for A big enough.

By this discussion and since N(z) is a cone, we conclude that for any y € H, the
equation

(3.8) F(z.-y)+ N(z.)30

has a solution z. € C.
Assume now that N C H x H* is not maximal monotone. This means that there

isz' € H,y' € H*® such that y’ ¢ N(z') and
(3.9) (z=2', y =y )uxn 20

for any z € C, any y € N(z).



By (3.8) there is 2° € C, solution for the equation
(3.10) Fa®— '~ F(y)) +4° =0
with some y° € N(z°). Choosing z = z°% y = % in (3.9), we get
(2% =2, =F(2°—2' = F7'(y)) = ¥ )uxr- 2 0
//-’_‘“
that is
02 (2°—2' = F'(y) = (=F7'(¢)), F(z°—2' = F7'(¢)) = F(=F(y")nxn--

Since F is strictly monotone in H x H’, we get z° = 2’ and y° = y’ by (3.10) and the
proof is finished.

Remark. The inclusion N C N¢ is well known and the equality N = N¢ is an
abstract regularity condition, necessary and sufficient for the nondegenerate Lagrange
multipliers rule to hold (Hiriart-Urruty and Lemarechal [6, Ch.VIL.2]). Another "basic

constraint qualification” may be formulated via tangent cones as well, Rockafellar [10).

Corollary 3.2. Let g : H -] — 00, +00] be convez lower semicontinuous proper,
continuous in some point of C and T be a solution of (1.1), (1.2). If h satisfies the
assumptions of Theorem 8.1, then there are A; > 0 such that

0 € 99(Z) + i)«;@h;('x’), Aihi(Z)=0,i=T1,n.

i=1

Proof
Since g is continuous in a point of C, we have the additivity rule 0 € 8¢(Z)+ N¢(Z).
The proof is finished by Theorem 3.1 and the Dubovitskij-Milyutin theorem.

Remark. The hypothesis 0 € dh(0) is not restrictive since if the Slater condition
does not hold, then V z € C is a minimum point for k by C = {z € H; k(z) = 0}
and h > 0 on H. Therefore a simple shifting on h gives 0 € h(0). If the Slater
condition is fulfilled the results are wellknown.
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