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Abstract

In view of possible applications in Control Theory, several types of derived
cones to reachable sets of general control systems and differential inclusions
are identified.

Though not among the intrinsic tangent cones, Hestenes’s derived cones
to arbitrary subsets of normed spaces [11] proved to have remarcable prop-
erties allowing conceptually simple proofs and significant generalizations of
the Minimum Principle in Optimal Control [13].

The main results for differential inclusions rely on a continuous version
of Filippov’s theorem while in the case of nonsmooth control systems a cer-
tain generalization of the Bendixson-Picard theorem on differentiability of
solutions of differential equations with respect to initial data is needed.

AMS subject classifications: 34A60, 26E25, 49J52
Key words and phrases: differential inclusions, control systems, reach-
able sets tangent cones, derived cones, nonsmooth analysis, variational in-
clusion
1. Introduction

The aim of this paper is to characterize derived cones to reachable sets of
differential inclusions and, in particular, of general control systems, in view
of possible applications in Control Theory.

The concept of derived cone to an arbitrary subset of a normed space
has been introduced by M.Hestenes in [11] and successfully used to obtain
necesarry optimality conditions in Control Theory.



However, in the last 25-30 years, this concept has been largely ignored in
favor of other concepts of tangents cones , that may intrinsically be associated
to a point of a given set : the cone of interior directions, the contingent, the
quasitangent and, above all, Clarke’s tangent cone ([2], (7] , [9] , [10] , [19],
[20] , etc.).

Recently ([13]) one of the authors obtained "an intersection property”
of derived cones that allowed a conceptually simple proof and significant
extensions of the minimum principle in optimal control; moreover, other
properties of derived cones may be used to obtain controllability and other
results in the qualitative theory of control systems.

In the case of control systems defined by smooth parametrized vector
fields a derived cone to the reachable set along a reference trajectory is ex-
plicitely described in Lemma 3.1. in [13], using the derivative of the flow of
the vector field ; in fact, this result may be considered as a suitable inter-
pretation of the computations leading to "cones of variations” to a reference
trajectory (e.g. Cesari, [5],Lemmas 7.4.iii, 7.4.iv, etc)

In order to extend the above mentioned results to more general systems
defined either by differential inclusions, or by nonsmooth parametrized vector
fields, one needs characterizations of derived cones to reachable sets of these
types of control systems.

We obtain first an "intrinsic” derived cone which is closely related to set of
tangent directions to the trajectories of the system ([14]), then we enlarge this
cone by means of certain variational inclusion that generalize the variational
equations in the classical theory of Ordinary Differential Equations.

In order to obtain the continuity property in the definition of a derived
cone we shall essentially use a continuous version of Filippov’s theorem on
lipschitzian differential inclusions.

We note that Filippov’s theorem has been used by Frankowska ([8], [9],
(10]) and Polovinkin and Smirnov ([20], [21]) to obtain estimations of the
contingent and quasitangent cones to reachable sets.

Since a derived cone is a very special type of convex subcone of the qu-
asitangent cone, our result may be considered as refinements of the existing
results of Frankovska ([8], [9], [10]) and Polovinkin and Smirnov ([20], [21])
concerning the contingent and quasitangent cones to reachable sets.

The paper is organized as follows : in Section 2 we present the notations
and the preliminary results from Nonsmooth Analysis to be used in the se-
quel. In Section 3 we prove the existence of certain continuous imbeddings
of a solution of a differential inclusion, in Section 4 we identify an intrin-



sic derived cone defined by a set of tangent directions to the trajectories
of the system, while in the Section 5 we prove the main results providing
larger derived cones obtained by the "transport” of the intrinsic cones by
certain variational inclusions. In the last section we obtain sharper results
of the same type for smooth and nonsmooth control systems that may be
considered parametrized differential inclusions.

2. Notations, definitions and preliminary results

In this paper we shall be concerned mainly with the absolutely continuous
solutions, z(-) : [0,7] — R" of a differential inclusion:

z' € F(t,z), z(0) € Xo (2.1)

which is defined by a given "orientor field”, F(-,-) : D C R x R* — P(R")
(whereP(R") denotes the family of all subsets of R") and by a given set, X, C
R | of initial data; occasionally we shall denote by Sg(T',0, X,) the set of
all absolutely continuous(i.e. in the spaceW'([0,T], R*) = AC([0,T], R"))
solutions of (2.1) that are defined on the interval [0,T]. The set of all solutions
of (2.1) through a point (to,z0) € D will be denoted by Sr(to, Zo).

In fact our object of study is the reachable set of (2.1) defined by:

Rp(T,0,Xo) = {z(T) : z(-) € Sr(T,0, Xo)} (2.2)

In particular, we shall study the reachable set of a standard control system
of the form:

z' = f(t,z,u(t)),z(0) € Xo,u(t) € U a.e.in(0,T) (2.3)

which under reasonable hypothesis (e.g. Aubin-Cellina([1]), Cesari([5]), and
Frankowska([10]), etc ) may be equivalent with parametrized differential in-
clusion:

z' € f(t,z,U), z(0) € Xo (2.3)

Since the reachable set in (2.2) is, generally, neither a differentiable man-
ifold, nor a convex set, its infinitesimal properties may be characterized only
by tangent cones in a generalized sense, extending the classical concepts of
tangent cones in Differential Geometry and Convex Analysis, respectively.

From the rather large number of ”convex approximations”, "tents”, "reg-
ular tangents cones”, etc. in the literature, we choose the concepts of derived
cone introduced by M.Hestenes in [11]:
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Definition 2.1([11]) A subset M C R™ is said to be a derived set to
X C Rtatz € X if for any finite subset {v;...v} C M, there exist so > 0
and a continuous mapping a(-) : [0,s0]* — X such that a(0) = z and a()
is (conically) differentiable at s = 0 with the derivative col[v;,...vi] in the

sense that: i . b
Ia( ) =3 a( ) £=s Z‘i:l '.vil = 0 (2-4)
R 36-0 6]

We shall write in this case that the derivative of a(-) at s = 0 is given by:

k
Da(0)0 = 5" 6;v;, ¥0 = (6s,...,0k) € R} :=[0,00)"
=1

A subset C C R™ is said to be a derived cone of X at x if it is a derived
set and also a convex cone.

For the basic properties of derived sets and cones we refer to M.Hestenes
[11); we recall that if M is a derived set then M [J{0} as well as the convex
cone generated by M, defined by:

k
cco(M) = {D_Ajv;; A; 200, €M, j=1,...k} (2.5)
i=1
is also a derived set, hence a derived cone.

The fact that the derived cone is a proper generalization of the classical
concepts in Differential Geometry and Convex Analysis is illustrated by the
following results([11]): if X C R" is a differentiable manifold and T X is the
tangent space in the sense of Differential Geometry to X at x

T.X = {ve R":3c: (—s,s) = X,ofclassC",c(0) = z,(0) = v} (2.6)

then T:X is a derived cone; also, if X C R" is a convex subset then the
tangent cone in the sense of Convex Analysis defined by:

TCHX = Cl{t(y — z);t >0, y € X} (2.7)

is also a derived cone.

Since any convex subcone of a derived cone is also a derived cone, such an
object may not be uniquely associated to a point z € X ; moreover, simple
examples show that even a maximal with respect to set-inclusion derived
cone may not be uniquely defined: if the set X C R? is defined by:

X =0Cy,C = {(2,2);2 2 0},C2 = {(2,—2),2 <0}  (2.8)
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then C, and C; are both maximal derived cones of X at the point (0,0) € X.
On the other hand, the uptodate experience in Nonsmooth Analysis shows
that for some problems, the use of one of the intrinsic tangent cones may be
preferable.
From the multitude of the intrinsic tangent cones in the literature(e.g.[2],
[18]),the contingent, the quasitangent and Clarke’s tangent cones, defined,
respectively, by:

3,-“'-3

KX ={ve R"3s,, 2 0+,z, € X : — v}

Q:X ={v € R";3¢() : [0,0) = X, ¢(0) =z, (0) = v} (2.9)
C}X = {ve R"\Y(zm,sn) = (2,0+4), Zp € X Jym € X : ym: Im v}

seem to be among the most oftenly used in the study of different problems
involving nonsmooth sets and mappings.

The rather large gap between Clarke’s tangent cone and the quasitangent
one may be diminished by the "assymptotic” variants of the contingent and
the quasitangent cones defined as follows:

AQIX ={veR" : v+Qf CQ}}, AK{X ={ve R": v+ K} Cc K}}
(2.10)
for which equivalent definitions of the same type as those in (2.9) may be
obtained(e.g.[18], [19]).
We recall that, in contrast with K} X, Qf X, the cones C} X, AK} X, AQt X
are convex and are related as follows:

CIXCAKIX cAQIXc@iXxcKtX (2.11)
We note that the use of the cone of interior directions defined by:
IJX={veR": 335, 7> 0: z+ B,(v) C X, Vs € [0,50)},
Bv,r)={we R": |lw—v| <r} (2.12)

as well as of other types of intrinsic tangent cones is severely limited by the
fact that it may be an empty set for large classes of sets.

From Definition 2.1 and from (2.9) it follows that if C C R" is a derived
cone of X at x then C C QX and, on the other hand, Example 2.8, for
which C§ X = AQ§ X = AKF X = {0}, shows that a derived cone may not

5



be contained into any of the cones C} X, AK} X, AQ} X ;an interesting open
question seems to be whether any of these cones is a derived cone.

It is easy to see that if C C I} X is a convex cone then C is a derived cone
and moreover , from Theorem 4.7.4 in [11] it follows that if C is a derived
cone with nonempty interior then Int(C) C I} X.

Using the fact that the classical (Frechet) derivative of a smooth mapping
defined on a differentiable manifold may be defined as the linear mapping
whose graph is the tangent space to the graph of the mapping (e.g.[17]), cor-
responding to each type of tangent cone , say 7. X one may introduce ([1]) a
set- valued directional derivative of a multifunction G(-) : X C R* — P(R")
(in particular of a single-valued mapping) at a point (z,y) € Graph(G) as
follows:

7,G(z,v) = {w € R" : (v,w) € 7(z,)Graph(G)}, v € . X (2.13)

Moreover, in the case of a real-valued function , for each type of tangent
cone one may introduce also two corresponding ezireme directional deriva-
tives in terms of the tangent cone to the epigraph and to the subgraph of the
function, which, in, turn, may define corresponding generalized gradients.

Thus, the large variety of the types of tangents cones generates a corre-
sponding variety of generalized differentiability concepts from which one may
choose the most suitable one for a given problem that involves nonsmooth
sets and mappings.

3. Continuous imbeddings of a solution of a differential inclusion

As already stated, the main tool in characterizing derived cones to reach-
able sets of differential inclusions is a certain version of Filippov’s theorem
([1]) , (10}, etc.).

We recall first several preliminary results we shall use in this section.

Lemma 3.1. ([23]) Let u(:) : I = [0,T] — R" be measurable and let
G(:) : I = P(R") be a measurable closed-valued multifunction. Then, for
every r(-) : I — (0,00) measurable, there erists a measurable selection g(-) :

I — R" of G() (i.e. such that g(t) € G(t) a.e. in I) such that:
lu(t) — g(t)] < d(u(t),G(2)) + r(t)a.e.inl (3.1)

where the distance between a point z € R™ and a subset A C R" is defined
as usual by: d(z,A) = inf{|z — a|;a € A}.
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In what follows we denote by £(I) the familly of all Lebesgue measurable
subsets of the interval I and if A C I then x4(:) : I — {0,1} denotes the
characteristic function of A; as usual, we denote by L'(I, R") the space of
Lebesgue integrable mappings endowed with the norm

T
()l = [ lu(t)ldt, u() € L', ")

Definition 3.2. A subset D C L'(I, R") is said to be decomposable if for
any u(-),v(-) € D and any subset A € L(I) one has ux4 + vxs € D, where
B = I\A. We denote by D(I,R") the familly of all decomposable closed
subsets of L'(I, R™).

In this section (S, d) is a separable metric space, B(S) denotes the family
of Borel measurable subsets of S; we recall that a multifunction G(-) : § —
P(R") is said to be lower semicontinuous (l.s.c.) if for any closed subset
C C R", the subset {s € S;G(S) C C} is closed.

Lemma 3.3. ([6]) Let F*(-,:) : I x S — P(R") be a closed-valued
L ® B(S)-measurable multifunction such that F*(t,-) is l.s.c. for anyt € I.

Then the multifunction G(-) : S — D(I, R") defined by:

G(s) = {v(-) € L'(I,R™) : v(t) € F*(t,s) a.e.in I} (3.2)

is l.s.c. with nonempty closed values if and only if there erists a continuous
mapping p(-) : S — L'(I, R") such that:

d(0, F*(t,s)) < p(s)(t), a.e.inl,Vs€ S (3.3)

Finally, the key tool in what follows is the next formulation of the Bressan-
Colombo result in [3] concerning the existence of a continuous selection of a
l.s.c. multifunction with closed decomposable values:

Lemma 3.4. ([6]) Let G(-) : S — D(I, R™) be a l.s.c. multifunction with
closed decomposable values and let ¢ : S — L'(I,R*),¢ : S — L*(I,R) be
continuous such that the multifunction H(-) : S — D(I, R") defined by:

H(s) = cl{v(-) € G(s) : |o(t) — d(s)(t)] < B(s)(t) a.e.in I} (3.4)

has nonemply values.
Then H(-) has a continuous selection i.e. there ezists a continuous map-
ping h(-) : § — L'(I, R") such that:

h(s) € H(s)Vs € S (3.5)
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In what follows, the orientor field in (2.1) is assumed to satisfy the fol-
lowing hypothesis:

Hypothesis 3.5. (i) F(:,:) : D C Rx R* — P(R") has nonempty closed
values and is L(I) ® B(S) measurable.

(i1) z(-) € AC(I, R") is a solution of (2.1) and there ezists g > 0, L(-) €
L'(I,Ry) such that , for any t € I, F(t,-) is L(t)-Lipschitz on B(z(t), €) in
the sense that:

d(F(t,z), F(t,y)) < L(t)|lz — y|Vz,y € B(z(t),e), t€ I (3.6)
where d(A,B) is the Hausdorff distance
d(A, B) = maz{d"(A, B),d"(B, A)},d"(A, B) = sup{d(a, B);a € A}

In the theorem to follow, S is a separable metric space and a(:) : S —
Xo,y(:) : S — AC(I,R") are given continuous mappings for which there
exists 8o € S and a continuous function p(-) : § — L'(I, R*) such that:

a(so) = 2(0),y(0)(t) = 2(t),p(s0)(t) =0, Vt € I (3.7)
a(s) € B(2(0), 3),u(s)(t) € B(=(t), 3) Ve € I (3.8)
d(y'(s)(2), F(t,y(s)(t)) < p(s)(t) a.einl, Vs € S (3.9)

We shall use the following notations:
i) fo' L(u)du
£(s,t) = T(d(s, 30)) exp(m(t)) + Tla(s) — y(s)(0)|(exp(m(t)) + 1)+
+ [ pls)(w) exp(m(t) — m(u))du (3.10)
and assume that the following condition is satisfied:
£(s,T) < %V.s €S (3.11)

Theorem 3.6 Let z(-) € AC(I,R") be asolution of (2.1) and assume
that F(-,-) satisfies Hypothesis 8.5

Further on, (S, d) be a separable metric space, let a: § — Xop,y: S —
AC(I,R"),p: S — L*(I,R;) be continuous mappings and so € S such that
(8.7)-(3.9), (8-11) are satisfied.

ey .



Then there ezists a continuous mapping z(-) : S — AC(I, R") such that
for any s € S the mapping z(s)(-) is a solution of (2.1) satisfying the follow-
ing conditions:

z(s)(0) = a(s)Vs € S (3.12)
z(s)(s0) = 2(t)Vt e I (3.13)
lz(s)(t) —y(s)()| < &(s,t) V(t,s) €I x S (3.14)

|z'(s)(t)—y'(s)(8)] < L(t)(s, f)+P(3)(f)+(d(s %0))’ : a.einl,Vs € S (3.15)

Proof We denote ¢; = (d(s, s0))?L, b(s) = |a(s) — y(s)(0)],: = 0,1,...,
So =5 ~ {30}, pols)(®) = pls)(t) + ea()

" (m(t) - m(u))"!
p(a)(t) = [ plo)) s

(?:(i)i')' (&(8)T + ¥s)),i = 1,2,... (3.16)

We note that 3,50 pi(s)(t) < £(s,t). Integrating by parts one has ([1] formula
(14) page 122):

/t L(u)p.'(“)du — -[:' p(s)(t) (m(t)(""_tr;.(;!‘))'—l du+
( ( ))'(r_.(s)T +8(s)) < pisa(s)(t) a.e.inl (3.17)

Using the same construction as in [4], we shall constuct a Cauchy sequence
of succesive approximations z;(s)(-) € AC(I, R*) such that for all ¢ > 1 the
mappings s — z;(s)(-) are continuous and have the following properties:

(1)zi(s)(t) € B(z(t),e) Vt € I,z:(s)(0) = a(s)
(11)zi4,(8)(t) € F(t,zi(s)(t)) a.e.in] (3.18)

(113) |21 () (1) — zi(s)(2)] < L(t)pi(s)(t) a.e.in]
From (i) and (ii) we have

[2ia(5)(0) = ()@ < [ Lw)pi(s)(w)du a.ein
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and therefore from (3.17) it follows :
|Zi41(8)(t) — zi(8)| < pisa(s)(¢) a.e.in] (3.19)

For s € So we put zo(s)(t) = y(s)(t) and note that according to (3.8) we
have z4(s)(t) € B(z(t),¢), Y € I.

At the first step we consider the multifunctions Gy(-), Ho(-) defined, re-
spectively, by:

Go(s) = {v € L'(I,R") : v(t) € F(t,y(s)(t)) a.e.in I}

Ho(s) = cl{v € G(s) : |v(t) — ¥'(s)(t)] < p(s)(t) + €o(s)}

Since d(y'(s)(t), F(t,y(s)(t)) < p(s)(t) + €o(s), according with Lemma 3.1,
the set Hy(s) is not empty.
Set F5(t,s) = F(t,y(s)(t)) and note that:

d(0, F5(t,3)) < ly'(s)(2)] + p(s)(2) = p°(s)(2)
and p*: S — L'(I, R") is continuous.

Applying now Lemmas 2.3 and Lemmas 2.4 we obtain the existence of a
continuous selection hg of Hj i.e. such that:

ho(s)(t) € F(t,y(s)(t)) a.c.in

lho(8)(t) — ¥'(s)(2)] < po(s)(t) = p(s)(t) + €o(s)

We define z,(s)(t) = a(s) + [g ho(s)(u)du and note that z, verifies (3.18).
Indeed, one has:

[24(6)(t) = 25(s)(0)] = Ihos)(t) — ¥/(s)(8)] < pofs)(t)
[21()(®) = za(s)(O)] = la(s) = (O + [ I24(s)(w) ~ hls)(w)ldu <

<s) + [ Bo(s)()(w)du < pr(s)(t) — Tes(s) < pa(s)(0)
On the other hand :
lz1(8)(t) — 2(t)] < lza(s)(t) — zo(s)(2)] + |zo(s)(t) — 2(¢)| < &(s,T) + % < 6

Hence (i) is also satisfied since obviously s — z,(s)(-) is continuous
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Suppose we have defined the functions zo,...,z; satisfying (3.18) . Ob-
serve that, since F'(¢,-) is L(t)-Lipschitz on B(z(t), &) from (i), (ii) in (3.18)
and (3.19) it follows:

d(z(s)(t), F(t,zi(s)(t)) < L(t)|zi(s)(t) = ziza(s)(t)] < L(‘)P-‘(S)(t)a-?;’;{])
Denote G;(s) = {v € L'(I,R") : v(t) € F(t,z:(s)(t)) a.e.inl} and consider
the map :

Hi(s) = cl{v € Gi(s) : |v(t) — zi(s)(t)] < L(t)pi(s)(t) a.e.inl}  (3.21)

To prove that H;(s) is nonempty we note first that the real function ¢t —
=1

ri(s)(t) = (d(s,so))z({—_ﬂ%% is measurable and strictly positive for any

s. Using (3.19) we get:

d(zi(s)(2), F(t,zi(s)(t)) < L(t)lzi(s)(t) — ziza(s)(t)] <

L(t) [ 1)) = 2i1(6)(w)ldu < L2) [ Llulpica(e)(u)du =

= 10 sy P + GO

From the last inequality and (3.16) we infer that
d(z;(s)(t), F(t, zi(s)(t)) < L(t)pi(s)(t) — ri(s)(t) < L(t)pi(s)(2)

and therefore according to Lemma 3.1 there exists v € L'(I, R*) such that
v(t) € F(t,z;(s)(t)) a.e. in I and

o(t) — 2i(s)(D)] < d(z"i(s)(t), F(t, zi(s)(2)) + ri(s)(2)

and hence H;(s) is not empty.
Set F7(t,s) = F(t,zi(s)(t)) and note that we may write

d(0, F7(2,8)) < |zi(s)(t)] + L(t)pi(s)(t) = pi(s)(t) a.c.ind

and p; : S — L'(I, R™) is continuous.
By Lemmas 3.3 and 3.4 there exists a continuous map h; : § — L(I, R")
such that

(Tei-a(s) + b(s)))

hi(s)(t) € F(t,z:(s)(t)) a.e.in]
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Ihi(s)(t) — z()(O)] < LO)pi(s)(¢) a-.in
Define now z;4,(s)(t) = a(s) + Jg hi(s)(u)du and note that one has:

|Zis1(s)(2) — 2(t)] < |zisa(s)(2) — zo(s)(2)] + |zo(s)(2) — 2(t)] <
< § |z (s)(t) — zi-1(s5)(1)] + 5 Sé6(sT)+ 5 < ¢
Thus i1 € B(z(t), e). We infer that z,+,( ) verifies (i),(ii) and (iii) in
(3'15\3&11 (3.19) and (iii) we obtain

|Zi41(8)(-) = zi(8)()ac < Pisa(s)(T) (3.22)
On the other hand one has:
pia(s)(T) < P (1p(e)] + T(d(s,30)) + lals) - y(a)O)) (329

where by definition |p(s)| = fg |p(s)(u)|du. From (3.21) and (3.22) we get:

l2esa(8)C) = zils)Cac < T (o(s) + T(d(s, )7 + la(s) - y(s)O)

(3.24)

The function s — |p(s)|ac is continuous. Therefore (3.24) implies that the

sequence z;(s)(-) is Cauchy in the Banach space AC(/, R") and it converges

to some function z(s)(-) € AC(I, R*). Moreover (3.24) implies that for every

s € Sp the sequence {z;(s')(-)} satisfies the Cauchy conditions uniformly in

s’ on some neighbourhood.Hence s — z(s)(:), is continuous from S, into

AC(I,R").

To verify that z(s)(:) is solution of (2.1) it is enough to see that

d(zi(s)(t), F(t,2(s)(t)) < L(t)|zi(s)(t) — z(s)(t)| a.e.in ]
By adding the inequalities (iii) in (3.18), we obtain that:

m(u))*!

’ m(t
sk (6)0) = V(O < )0 + 200 [ po)u)( PO

m k
H(T(d(s, 50)? + ly()(0) — a(s))L( t)z‘ 4 (dls, s0)?
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Similary by adding (3.19) we get:

m k
s ($)0) ~ u(s)(D) — ale) + y()O) < [[(3 LA gy

k=0

¢ k
+{eo(8)T + b(s z; Wl
By passing to the limit we obtain (3.14) and (3.15).
For s = so we define z(sg)(t) = 2(t) for all t € I. It remains to verify
that z: § — AC(I, R™) is continuous in $g.
One has:

|2(s)(:) — 2(s)(-)lac = la(s) — a(so)| + |='(s)(:) — ='(s0)(-)x <

la(s) — a(so)| + |¥'(s)(-) = ¥'(s0)(-)lr + |2"(s)(:) — ¥/ (s)(-)

Using the continuity of a, y, (3.15) and the fact that p(so)(t) = OVt € I, we
infer that x is continuous in sg.

Remark 3.6. Theorem 3.5 above may be interpreted as a continuous
version of the Filippov’s theorem on differential inclusions that is related in
some way to Theorem 3.lin [6]. We note that according to Theorem 3.1 in
(4] under similar hypothesis, for any € > 0 there exists a continuous mapping
z.: S = AC(I, R") satisfying (3.12)-(3.15) in which £(-,-) is replaced by :

§c(s,t) = Teexp(m(t)) + |a(s) — y(s)(0)|(exp(m(t)) + 1)+

- /; p(s)(u) exp(m(t) — m(u))du

If we take € = d(s,sp) for any s we obtain from this result a family of
continuous mapping s — z,(-,-) satisfying (3.12)-(3.14), but we cannot infer
that s — z,(-,) is continuous.

On the other hand , in the proof of Theorem 3.1 in [6], instead of Lemma
3.1. it is used a similar result replacing the measurable function r(¢) > 0 by
a constant € > 0 ;however such a result cannot be used to prove that the set
H;(s) in (3.21) is nonempty since the difference p;4;(s)(2) — [¢ L(u)pi(s)(u)du
may not be minorized by an € > 0.

Remark 3.7. After the completion of this work we became aware of
another related result, Theorem 3.1 in [24], which, however, does not concern
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the problem of a continuous imdedding of a given solution. On the other
hand, studying the more complex problems of viability and relaxation, the
proof of Theorem 3.1 in [24] is much more complicated and the evluation
in (3.14) is replaced by another one in terms of a nonexplicitely defined
monotone function.

4. Intrinsic derived cones defined by tangent directions

In this section we shall identify certain "intrinsic” derived cones to the
reachable set in (2.2) in terms of the set of tangent directions to the trajec-
tories of (2.1) through a point (to,zo) € D, defined as follows ([14]):

T (to,z0) = {v € R" : 3z(-) € Sp(to,z0) : z__(to) = v, } (4.1)

where z’_(1p) = lim,—o_ ﬂbﬁ!-_ﬂ&l is the derivative to the left.
The results in [14] provide certain characterizations of the set Ty (¢o, Zo)
in (4.1) proving, for istance, that one has:

F(to,z0) C Tr (to, zo) C ToF (to, Zo) (42)

provided either F(+,-) is Hausdorfl continuous with closed convex values, or
locally-lipschitz or (continuously) parametrized by a continuous mapping f
as in (2.3)’

On the other hand, according to Theorem 3.3 in [14] the following upper
estimate holds for any multifunction F(-,-):

Tr(to,20) C () () @F((to - 0,t0)\J, B(zo,r)) (4.3)
JeLpy 8,720

where Ly C L(R) denotes the family of all subsets of R of zero Lebesgue
measure.

We shall prove first that if 2(-) is a solution of (2.1) and F satisfies the
Hypothesis 3.5. then for a.e. 7 € (0,T'), the set of tangent directions in (4.1)
coincides with the following set:

Fy(r,2(r)) = {ve R : 30(-) € L'([r — bp,7]),R") 5(t) € F(t,z(t))

1
on|[r — 0o, 7], al_i.%l.;- el o(t)dt = v} (4.4)

14



We recall that 7 € (0,T) is said to be a Lebesgue point of an integrable
mapping, g(-) € L'(I, R") if one has:

tim 2 [ g(t)dt = o(r) (4.5)

and we recall that the set £(g) of all Lebesgue points of g is of full measure.
Proposition 4.1. If z(-) is a solution of (2.1) and F(-,-) satisfies Hy-
pothesis 3.5 then for any Lebesgue point T of L(-) one has:
Tr (7, 2(7)) = Fg (7, 2(7)) (4.6)
Proof. Let v € Tr(7,2(7)) and z(-) € Sp(7,2(7)) such that z(r) = 2(7)
and z’_(7) = v. Since F(-,2(-)) is measurable with closed values, according
to a known result (e.g. [10]) it has an integrable selection ¥ such that:

|2'(t) — B(t)| = d(2'(t), F(t, 2(t)) < L(t)|z(t) — 2(t)| a.e.infr — B, 7]

Since z(-), z(-) are continuous, z(7) = 2(7) and 7 is assumed to be a Lebesgue
point for L(-) from this inequality it follows that:

lim = [ @) ~w(w)dt =0

8—0+

and therefore we may write successively

. 1 — o » 1 —_ ! l I
s [ 0a g [ 0 -ra s} [ o
=g'(r) =9
Hence v € Fy (7,2(7)).
Conversely, if v € Fg (7,2(7)) and © € L'(J, R*) is such that
o(t) € F(t,2(t in[r — 6o,7], li lf o(t)dt =
(1) ,2(t)) a.ean[r — by, T e g ) P =v

then we consider the mapping y defined by:

yl8) = 2(r) 4 [ 5(s)ds t € [r — o, 7]

15
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and note that from Hypothesis 3.5. it follows that:
p(t) := L(t)|=(t) — y(t)| = d(F(t, 2(t)), F(t,y(t)) >
2 d(v(t), F(t,y(t)) = d(y'(t), F(t,y(t)) a.e.in[r — 6o, 7]

We use now Filippov’s theorem on differential inclusions (e.g. [1], [10]) to
obtain the existence of a solution z(-) : [r — 6, 7] — R™ of (2.1) such that:

2(r) = y(r), le(t) = (0] < [ exp(m(t) = m(s))p(s)ds, m(t) = [ L(s)ds

In particular, one has:

z(r—0)—y(r—-0 I it
| ( )By( )ls_é/r-aexpm( 8) ()p(S)dSS

1
e
= 0 Jr-o
which converges to 0 as § — 0+ since (x(s)-y(s)) converges to zero as s — 7
and 7 is a Lebesgue point of L(-).

Therefore we may write:

exp™("=0-m() [(s)|z(s) — y(s)|ds

. z(r—=0)—z2(r) . 2(r—-8)—y(r—0)  y(r-06)-y(r),
sl-l-la ] % 91_14%1[ 0 ¥ 0 1=

BIETIN e . ke .5 SERD WL g
—G]—l-lg-li- 0 —ekglﬁ.[:av(t)dt—v

and Proposition 4.1. is proved.

The next statement gives another characterizitations of the set Fy (t,2(t)),t €
I, defined in (4.4.)

Proposition 4.2. If Hypothesis 3.5. is satisfied and Fy (t,z(t)) is the
set in (4.4.) then there ezists a null subset J C I such that:

F(t,2(t)) C Cl(Fy (t,2(t))), YVt € I\J (4.7)
Proof. Since z(-) € AC(I, R") there exists a null subset J; C I such
that |2’(1)| < ooVt € I\J,

For each m € N consider the set-valued map:

Fu(t,2(t)) = F(t,2(t)) N B(Z(t),m), t € I\J;
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Fn(:) is measurable and by the Castaing-Valadier representation theorem
(Theorem 3.7 in [3]) it follows that there exists f2,(t) € Fin(t), f2 () measur-
able for all j, m such that:

Fa(t)=CH{f(t);5 € N} (4.8)
Moreover |f2(t)] < m + |2(t)]. Thus fZ € L'(I,R"), ¥j,m € N. If we

denote L(f2) the set of Lebesgue points of the integrable mapping f7(-),
then u(L(f2) = T; also if Jm = I\ Nj»1 L(f2), Jo = Umen Jm then p(Jn) =
#(Jo) = 0.Furter on, if we denote F2(t) = {fi(t);7 € N} then one has:
F(t) = CI(F2(t))and F2(t) C Fy (t,z(t)) Vt € I\Jm

Let us put G(t) = {f2(t) j,m € N}. Hence if t € I\Jy, then

G(t) C 5 (¢,2()) (4.9)

It remains to prove that F(t,z(t)) C CI(G(t))Vt € I\J,J = JoUJ, lft € I\J
and v € F(t,z(t)) then there exists m € N such that m > |v| + |2'(2)| >
lv — 2'(t)| thus v € Fiu(t) C CI(G(t)).

The main result of this section is the following:

Theorem 4.3. Let z(-) : I — R" be a solution of (2.1), let F be sat-
isfying Hypothesis 3.5. and for any common Lebesgue point 7 € J(2(-)) =
L(L(-))NL(2'(-)) let Fy (,2(7)) be the set of tangent directions in (4.4) and
let Mo(7),Co(T) be the sets defined by:

Mo(7) := F5 (1,2(7)) = 2'(7), Co(7) := cco(My), T € J(2(-)) (4.10)
Then for any 7 € J(z), My(7) is a derived set, hence Co(7) is a derived
cone, to the reachable set Rp(7,0, Xo) at z(7).
Proof. Let us consider

T € J(2(-)), {w1y...,wm} C Mo(7)and{vy,...,vm} C F5 (7,2(7))

such that w; = v, —2'(7),7=1,2,...,m From Proposition 4.1 it follows that
there existfy € (0, =)andy; € L'([r — mbo, 7], R"*), 1 = 1,2,...,m such that

5i(t) € F(t,2(t)) a.e.in[r — mby, 7]

ik 4 :
91_1.1315 T_a'u,-(t)dt-v, b= 1,2 ..., (4.11)
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We consider now the separable metric space S = [0, 6o)™ endowed with the
distance induced by the norm |s| = 2= 8 if 8 =(81,...,8m) € S and we
define the mappings ¢,(-), yi(-),y(-) as follows:

to(S) = 0, tl(s) =T is,-, t,-(s) = ti—l(s) + 8, tm+1(8) =T,

yo(s)(t) = 2(t)

(s\(1) = | vi-1(8)() if ¢t € [0,2,(s)]
bi(s)(t) —{ Vet ()(t:(9)) + [y Tilwdu ift € [t(s),r]  (412)
y(s)(t) = ym(s)(t), s € S, t € [0,7]
Since the mapping s — y(s)(7) may alternatively defined by:
y(s)(7) = 2(ta(s)) + z L 0 S, o (4.13)
from (4.11) it follows that
%9(0)(7) =w;,t=12,...,m (4.14)

and moreover, the mapping s — y(s)(7) is conically differentiable at s = 0 €
S as one may write successively:

ly(s)(7) = y(0)(7) — S5, sawil _ |2(ta(s)) — 2(7) — sl (r)]
Is| Tk |s|

tipa(s)

ti(s)

E isll Biu)du - s < |42 'TB =21 _ )+

=l (3 1 S s Y
+ :_Zl |3| -r - t'.(s) ./t.{.}(v'(u) .)d‘ul-{-
tt+1(3 1 r . i
+ g |5 1- — tini(s) tm{‘}(v.(u) v;)du|

which converges to 0 as |s| — 0.
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We shall prove next that 6, > 0 may be chosen sufficiently small such
that the mapping y defined in (4.12) satisfies the hypothesis of Theorem 3.6.
We note first that from (4.12) it follows y(0)(t)=z2(t) and

tig1(s)

O -1 <Y [ m(e) - (0)ldt =
=1 “{’j
= [y(s)(") = 2(-)|ac
hence from the continuity of the functions ¢;(-) and the absolute continuity

of the Lebesgue integral it follows that if ¢¢ > 0 is the positive number in
Hypothesis 3.5 then there exists 8y > 0 such that y(s)(t) € B(z(t),€/2),Vs €

51 (lSl < mBO)
To prove the fact that y(-) : S — AC(I, R") is continuous we note that
if for 5,8’ € S,1=1,2,...,m we denote:

ai(s,s’) = min{ty(s),t;(s")}, bi(s,s") = maz{ti(s),t:(s")}

alt) = [2(0] + S I0(0)), ¢ € [r — mbo, 7] (4.14)

=1

then from (4.12) it follows:

) - ¥ < 35 [

(s,8)
S Jaite

a(t)dt

and, now, the continuity of the mapping y(-) follows from the absolute con-
tinuity of the Lebesgue integral and from the fact that the functions a;, b; in
(4.14) satisfy:

bi(s,s') — aifs, ') S |si —si| S |s = &, Vs,5' € S,i = 1,2,...,m
Further on, we define the mapping p(-) : [0,7] — L'([0, 7], R4) as follows:

(o if ¢ € [0, t1(s)]
pla)t) = { LOl()(®) - )] it € [t(s),]

and note that p(-) is continuous since y(-) is continuous, and moreover, since
the derivative is given by:

(4.15)

2'(t) ift € [0,t(s))

v = { % it (t(s), tn(s)) i
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from (4.16) it follows that if ¢ € [0,¢,(s)] then d(y’(s)(t),F(t,y(s)(t)) =0, and
if t € [ti(8),tis1(8)] then from (4.16) and from the lipschitzianity of F(t,-) it
follows:

d(y'(s)(t), F(t,y(s)(1))) = d(:(t), F(t,y(s)(t))) < d(F(t,2(t)), F(t,y(s)(t))) <
< L(t)]2(t) — y(s) (1)l

Hence the mapping p in (4.15) satisfies the condition:
d(y'(s)(1), F(t,y(s)(2))) < p(s)(2), a.e.in[0,7]Vs € S (4.17)

and therefore if we define a(s)=z(0) for all s € S, sp = 0 € S then the
mapping y(-) in (4.12) satisfies the hypothesis of Theorem 3.6.

It follows that there exists a continuous mapping s — z(s)(-) € AC([0, 7], R"*)
as in Theorem 3.6. In particular such that s — ¢(s) = z(s)(7) € Rp(7,0, Xo)
is continuous and ¢(0) = z(7).

To end the proof of Theorem 4.3. we need to show that ¢(-) is differen-
tiable at s = 0 € S and the derivative is given by D¢(0)s = Y%, siw; In
view of the inequality (3.14), the last equality is implied by the following
property:

o D
Jim o /o p(s)(t)dt = 0 (4.18)

which follows from the definition in (4.15) of the mapping p(-), from the
continuity of y(-) and from the fact that 7 is Lebesgue point for L(-): for any
€ > 0 there exists §, such that |y(s)(t) —2(t)| < eVt € [0, 7], |I_:i J7-1o L(t)dt -
L(7)| < €V|s| < §, and therefore from (4.15) it follows that for |s| < &, we
have:

1 R
sl [P(S)(t)dt = l-m L(t)|y(s)(@) — 2(t)|dt <

1 T
< ei—;-l i L(t)dt < e(L(7) + €)

and the theorem is proved.
Remark 4.4. According to Proposition 4.2. the derived cones Cyp(7) in
(4.10) satisfy the condition:

CUF(r,2(1)) C Co(t) a.e.inl (4.19)
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Moreover if F is ,in addition, continuously parametrized in the sense that:
F(t,z) = f(t,z,U)V(t,z) € D (4.20)

then the relation in (4.19) may be sharpened as follows ([13]):
Co(t) = cco(F(7,2(7)) — 2'(1)) a.e.in 1 (4.21)

5 Derived cones generated by variational inclusions

In this section we shall prove the main result of this paper which provide
larger derived cones obtained by the "transport” of the intrinsic ones in the
previous section, by certain "variational inclusions” that generalize the vari-
ational equations in the classical theory of Ordinary Differential Equations

We recall that a set-valued map, A(-) : R* — P(R") is said to be a
convez(respectively, closed convex) process if GraphA(-) C R* x R" is a
convex(respectively, closed convex)cone.

For the basic properties of convex processes we refer to [10], but we shall
use here only the above definition.

As main examples, we have in view the set-valued directional derivatives

AQ}G(z;-), AK} G(z;-),ClG(x;-)

in (2.13)of a set-valued mapping, G(-) : X C R* — P(R"), that correspond
to the assymptotic quasitangent cone, to the assymptotic contingent cone
and to Clarke’s tangent cone in (2.9)-(2.10).

Everywhere in this section we assume the following:

Hypothesis 5.1. z(:) is solution of (2.1), the multifunction F(-,-) :
D C R x R* — P(R") is assumed to satisfy Hypothesis 8.5., and a family
A(t,:) : R* — P(R")t € I of conver processes satisfying the condition

A(t,v) C Q}(yF(t,-)(2(t),v) Vv € domA(t,") CR"t € I (5.1)
s assumed to be given and defines the variational inclusion:
v € A(t,v) (5.2)

Remark 5.2. We note that for any orientor field F(-,-) one may find an
infinite number of families of convex process A(t,-),t € I, satisfying condition
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(5.1): in fact any family, A(t) C Q?; 0.2 )9TaPh F(t,-)
t € I, of closed convex subcones of the quasitangent cones
Q{(0).'(t)97aph F(t,-) defines the family of closed convex process:

A(t,v)={v € R* : (v,v') € A(t)}ve R tel

that satisfy condition (5.1)
One is tempted, of course, to take an "intrinsic” family of such closed
convex process such as one of the convex-valued directional derivatives

Pt )(=(8);) C AKLWF(t,)(=(2); ) C AQhF(t,)(=(t);-)  (5.3)

but simple examples show that we may choose families of closed convex pro-
cess satisfying (5.1) and strictly containing the intrinsic ones in (5.3):F(t,z) =
[—|z|,|z|] for (t,z) € R x R then z(t)=0 Vt € I is a solution of (2.1) and one
has:

Q{tu).z'm}nghF(t, ) = Qo9raphF(t,) == {(z,y) : z € R, y € [~|z|,|z|]}

AQ(0.9TaPhE (t,°) = AKG ) i) == Cllo,mepgraphF(t,-) = {(0,0)}

On the other hand, for any 4 € [—1,1] the family of closed convex process
A,(t,-) defined by
A(t,0) = (s ve R te 1)

satisfies (5.1) and strictly containes any of the intrinsic ones in (5.3)

It is important also the fact that if f(-,-) is a local selection of F(-,-)
in a tubular neighbourhood of {(t,z(t))t € I} in the sense that there exists
€0 > 0 such that:

f(t,z) € F(t,z)Vz € B(z(t),e0) t € 1
then any family of closed convex process, A(t,-), satisfying:
A(t,v) C Q* f(t,-)(2(t),v) Vv € domA(t,-)t € I (5.1)

will satisfy also (5.1)
In particular, if £'(+,+) is continuously parametrized by f(:,-) in the sense
of (2.3) and if f(¢,-,u) is differentiable for any t,u, then we may take:
At = L0 0mve B, 20 = f6:0,50)  (64)
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and therefore the variational inclusion (5.2) becames the usual variational
equation:
of

V' = (b 2(1), ©(D) (5.5)

We recall ([10],(20]) that since F(t,-) is assumed to be locally- lipschitz
at z(t) a.e. on I, the quasitangent directional derivative in (2.13) is given by:

QryF(t,-)(2(t);v) = {v' € R“;&r& -l-d(z’(t) + 6v', F(t,2(t) + 60v)) = 0}

0
(5.6)
Lemma 4.3. Let z(-),F(-,-) and A(-,') satisfy Hypothesis 5.1.,let 0 <
t, <ty < T and let C; C R™ be a derived cone of Rp(ty,0, Xo) at z(t,). Then
the reachable set of (5.2), Ra(t2,1,,C}), is a derived cone of Rp(t2,0, X,) at

z(t2).

Proof. In view of Definition 2.1., we consider {vi,...,vm}
C Ra(ts, t1,C1) hence such that there exist the solutions u;(-),...,um(:) of
the variational inclusion (5.2) such that:

uj(t2) = v;, ui(t,) € Ch,3=1,2,...,m (5.7)

Since C, C R" is a derived cone of Rp(t,,0, Xo) at 2(t,), there exists a
continuous mapping, ao : S = [0,6o)™ — Rp(t1,0, Xo) such that:

ao(0) = z(t;), Dag(0)s = is,u,-(:l)w € R} (5.8)

y=1

Further on, for any s = (sy,...,8,) € S we denote:

y(s)(t) = 2(t) +u(t,s), u(t,s) = )_ sju;(t)
3=1
p(s)(t) = d(y'(s)(t), F(t,y(s)(2)), t € [ts,ta] (5.9)
and prove that y(-),p(-) satisfy the hypothesis of Theorem 3.6. at sp =
(0,...0)€ S
We take 8 > 0 small enough such that y(s)(t) € B(2(t),e/2) a.e.in]

and use the local-lipschitzianity of F(t,-) to prove that for any s € S, the
measurable function p(s)(-) in (5.9) it is also integrable:

p(s)(t) = d(2'(t) + u'(t, 5)), F(t, 2(t) + u(t, 8)) < [u'(t, s)|+
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+d(F(t,2(1)), F(t,2(t) + u(t,s)) < [u'(2, s)| + L(t)|u(t, s)| <
< sl Z[lu )|+ L(t)]u;(t)l]

Moreover, the mapping s — p(s)(-) € L'([t;, %3], Ry) is continuous (in
fact Lipschitzean) since for any s,s’ € S one may write succesively:

p(s)) = PO < [ 1)) — pls)Oldt <
< [Tt 9) = (8,8 + AP V)0, Pt () )] <
<ls= o135 [0 + OO

1=1

Taking 6y > 0 such that {(s,t) defined in (3.10) satisfies condition (3.11) ,
from Theorem 3.6. it follows the existence of a continuous mapping z(-) :
S — AC([t1, 2], R*) with the properties (3.12)-(3.15).

Since I(.S)(f.]) = GQ(S) € RF(thU,XQ) and RF(CQ,f],RF(tl,O,Xo)) =
Rg(t2,0, Xo) the mapping a(-) defined by

a'(s) o I(S)(tQ) € RF'(tm 01X0)1 s € S (510)

is continuous and satisfies the condition a(0) = z(t,).
To end the proof we need to show that a(-) is differentiable at so =0 € S
and its derivative is given by:

Da(0)(s) = 3 s;03¥s € R}
i=1
which is equivalent with the fact that:
iy 1 (la(s) — a(0) - g;s,-v,n =0 (5.11)
Using (5.10) and the property in (3.14) of 2(-) we obtain:
olals) = a(0) = syl < la(e)(ta) = w(s)(ta) <

Is| jui
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< |1_| (s,t) =T|s| + ﬁ'ao(s —-z(t) - ZSJuJ(t )l(exp(m(ta)) + 1)+

t

+ / g )exp(m(tg) — m(u))du
t) |3|

and therefore in view of (5.8), relation (5.11) is implied by the following

property of the mapping p(-) in (5.9)

o B(s)(t)

s—0 | |

=0a.e.in [tl,tg] (512)

In order to prove the last property we note since A(t,-) is a convex process
and u(-) is the mapping defined in (5.9), for any s € S\{O} one has:

,;j))co,:mF( )(z(t); ult,

hence from (5.6) it follows that:

u'(t,s) € A(t,u(t )) a.ein [ty ta)

1, ), F(t, 2(t) + hu(t, —=))) = 0 (5.13)

|| Is|
In order to prove that (5.13) implies (5.12) we consider the compact metric
space ST™! = {0 € R} : |o| = 1} and the real function ¢(:,-) : (0,80] x
S7=1 — R, defined by

Jim hd( 2'(t) + hu'(

8060,0) = 3d((1) + 0u'(1,0), Flt,2(t) + 0u(t,0))  (5.14)
which according to (5.13) has the property
eﬁror‘l'_ ¢(0,0) =00 € ST ' a.e.inl (5.15)

Using the fact that ¢,(@,-) is lipschitzean and the fact that S7~! is a
compact metric space from (5.15) and from Proposition 5.4 bellow it follows
easily that

LR

which implies the fact that

Ilrn o(]sl, = ) = 0a.e.in[ty, 1,
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and our statement is proved.

Proposition 5.4. Let (M,d) be a compact metric space and let ¢(-,-) :
(0,00 x M — Ry be a real function such that ¢(0,) is L-lipschitzean and
has the property:

sl_l.ra #(0,0) =0Vo e M (5.16)
Then ¢ has also the following property:
Jim max ¢(0,0) =0 (5.17)

Proof. Let us assume by contrary that (5.17) is not satisfied; hence there
exists € > 0,tm — 04,0, € M such that ¢(tm,om) = €¥m € N. Since (M,d)
is a compact metric space, without loss of generality, we may assume that
om — 0o € S; hence using the lipschitzianity of the function ¢(f,-) we may
write succesively

0<e< ¢(tmaam) < |¢(tm,0'm) i ¢(t'ﬂia“)|+

+@(tm,00) < Ld(0m,00) + #(tm,00) = 0asm — oo

a contradiction.

Remark 5.5. Since {0} C R" is a derived cone to any set X C R"
at any point z € X, from Lemma 5.3. it follows in particular that for any
0 <t <ty S T, R,q(tz, t, {0}) is a derived cone to RF(tQ,O,Xo) at z(tg).

The next preliminary result shows that the derived cone R4(t2,t1,C)) in
Lemma 5.3. may be enlarged by adding the intrinsic one, Co(t2) in (4.10), if
t, is a common Lebesgue point of 2(-)’ and L(-) in Hypothesis 3.5

In what follows we shall use the notation:

J = (£(z'(-)) N £(L(-))) U {0} (5.18)

for the set of all common Lebesgue points in (0,T) of 2(-) and L(-) to which
we add the left-end point 0.

Lemma 5.6. Let z(-), F(-,-)and A(-,-) satisfy Hypothesis 5.1., let 0 <
t, <t < T be such that t, € J,let Cy C R™ be a derived cone of Rp(t;,0, X,)
at z(t,), let Co(ty) be the intrinsic derived cone in (4.10) and let M;,Cy C R®
be defined by:

M, = Co(t2) U Ra(ta, 11, C1), Ca = cco(M,) (5.19)
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Then M, is a derived set, hence Cz is a derived cone, to Rp(t,,0,Xo) at
Z(tg).

Proof. We note first that if Mo(tg) = Fo_(tg,i’.’(tg)) — Z'(tg),Co(tg) =
cco( Mo(t)) and since Cy = cco(Mp(t2) U R4(ta, t1,Ch)) it is enough to prove
that Mo(t2) U Ra(t2,t,Ch) is a derived set of Rr(t2,0, Xo) at z(t3)

We consider

{v1,...,u} C Ra(tz, t1,Ch), {vig1, .. - vm} C Mo(t2)

the solutions u1, . . . ,u of (5.2) and the integrable selections 7;(t) € F(t,2(t)),t €
(t2 — Bo,12] such that:

u_,'(ig) = vj, 'Uj(tl) €Cijyi=1,... N

iy
1 _- r—- 1 - ’ y --— e
sl_lg:{_ 3 ;(t)dt = v; + 2'(t2) l+1,...,m

Combining the proofs of Lemma 5.3. and Theorem 4.3. we define reccur-
rently the mappings y;(),y() : S = [0,00]™ — AC([t1,t2), R*),p(8)(:) : S —
L'([t1,t2), R")
as follows:

l
w(s)(t) = 2(t) + 3_s;u;(t)
j=1

i-1(8)(t) if t € [t1, t;(s))
O = { W0+ £ st Tt e lahad I =L

m
tipa(s) =ta— O sitipa(s) = ti(s) +s5,0 = %1,...,.m
j=l+1

t(8) = 13 = 3m» tmsa(8) = 13 (5.20)
y(s)(t) = ym(s)(2)

p(s)(t) = { pr(s)(t) = d(yi(s)(2), F(t,3i(s)(t)) if t € [t1, ti4a(s)]
L(t)ly(s)(t) — z(t)] if t € [tisa(s), ta)

Using the same arguments as in the proofs of Theorem 4.3. and Lemma 5.3.
it follows that we may choose 8 > 0 sufficiently small that the mappings
s — y(s)(-),s = p(s)(-) are continuous and satisfy the hypothesis of Theorem
3.6, hence there exists a continuous mapping z(*) : 5 — AC([t1,12), R*) with
the properties in (3.12)-(3.15).
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Moreover the mapping s — p(s)(-) has the property in (5.12) and since
s — y(s)(t,) is differentiable at s = sy = 0, its partial derivatives being given
by :

a :
ggy({])(t'z) = Vi=12,...,.m

From (3.14) it follows that the mapping s — a(s) = z(s)(t2) € Rr(t2,0, Xo)
is continuous and has the properties:

a(0) = 2(t;), Da(0)s = is_,—v,-

g1

which proves Lemma 5.6. )
Remark 5.7. In what follows we extend the family of the intrinsic
derived cones Cy(t),t € J in (4.10) to all the points ¢ € [0,T] as follows

Co if t=0
Co(t) = { cco( Fy (t,2(t)) — 2'(t)) ift € J\{0} (5.21)
{0} ift € [0,T]\J

and we shall use the convention R4(t,t,C) =C foranyt€ I,C C R™.

Using Lemmas 5.3, 5.6 and Theorem 4.3 we obtain larger derived cones
as follows:

Proposition 5.8. Let z(-), F(-,) and A(-,-) satisfy Hypothesis 5.1. and
for any t € I let Cy(t) be the intrinsic derived cone in (5.21).

Then for any 7 € (0,T] the set Cy(7) C R™ defined by:

Cy(7) = ceo( |J l1'2,‘(1-,3,6‘(,@))) (5.22)
te[o,r

is a derived cones to Rp(7,0, Xyo) at z(1).
Proof. In view of a basic property of a derived set it is enough to prove

that M,(7), defined by:
Mi(r) = | Ra(r,t,Co(t)) (5.23)

tefo,7)

is a derived set of Rp(7,0, Xy) at z(7)
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To prove this statement we consider {vy,...,vm} C M,(7) and we note
that from the definition in (5.23) it follows that there exist 0 < ¢, < t; <
... € to41 = 7 such that m; > 1,{:,‘-’:11 m; = m and:

q+1

{08, .o V) = U{Tf:,j‘ =1,...,m;}

=1

Ug (3 RA(T,l‘.,',Co(t;))i= 1,...,q,j= ) RPN .

'-’é+1 €Co(7), ) =1,...,mgpx

We consider now the mappings u!(-) : [ti,7] = R™ that are solutions of the
variational inclusion in (5.2) such that:

uf(‘r) = ‘Uf-., uf(ti) € Cg(t.‘),‘l: =1,... 14, J = la ERRRLLY (524)

We note first that from Theorem 4.3 and Lemmas 5.3,5.6 it follows that the
set K(ti,ti_y,...,t;) C R*,1=2,3,...q, defined reccurently as follows:

K (ta,t,) = Col(t2) U Ra(ta, ty, Co(th)

.K(t,‘,t"_l, LangBL) = Co(i.‘) U Ra(t;, tiza, K(t,‘_l, ceogty))y81=3,...,9+1
(5.25)
is a derived set of Rp(t;,0,Xo) at z(%;) and in particular K(t,,...,%;) is a
derived set of Rp(7,0, X) at z(7) :
On the other hand, from the basic properties of the solution u] follow
inductively the following inclusions:

{W(t) :p=1,2,j =1,2,...m;} C K(ta, t1)

{ui(t) :p=1,...,5 i =1,...my} C Kty .o ta), $=2,3,...,9+1

which proves that the set {v,...,v,} is contained into the derived set
K(tq+1 gesay tl) c Ml(f).

Remark 5.9. From Lemma 5.6. and Proposition 5.8. it follows that
if 0 <t <ty <T and Cy(ty),C:(t;) are the derived cones in (5.22) then
cco[Co(t2) U Ra(t2,t1,Ci(th))] is also a derived cone to Rp(t2,0, Xo) at z(t2)
that may not be contained into C,(%z); this fact suggests the possibility of
obtaining derived cones that are larger than those in (5.22).Using an ideea
similar to that in the proof of Lemma 7.5.5. in [10] we prove now the main
result of this paper:
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Theorem 5.10 Let z(-), F(-,) and A(-,-) satisfy Hypothesis 5.1., let
Co(t) be the cones in (5.21) and for any j > 1 and any finite set of points
0<t <..<t; <T let the cones Kj(t;,...,t1), D;(t;,-..,t:) be defined
recurrently as follows:

}{1(11) = RA(t],O,Cg), D](tl) = CCO[Co(tl) UKl(tl)]
.Kj(tj, ke ,tl) == R,q(ij, ti-1, Dj_l(t:‘._h o il))j >2 (526)
Dy(t;,- . .t1) = ceo[Co(t;) U K;(t;, ... 1))
Then for any T € I, the convez cone 6‘(1‘) C R" defined by:

C(ry=ceollJ U Kjtj,.+.,t:1) UCo(7)] (5.27)

J210<t <.ty =7

is a derived cone to Rp(7,0,X,) at z(7) and moreover, it has the following
properties:

Ra(r,t,Ct) c C(r)V0O<t<T<T (5.28)
C(r) = ceco| |J Ra(r,t,C(t))UCo(r))Vr €1 (5.29)
te[o,r}

Proof. We note first that from Lemmas 5.3 and 5.6 it follows by induction
that for any sequence 0 < t; < ... < t; < T and for any 7 > 1, the sets
K;(t;y...,t1), Dj(tj,...,t;) in (5.26) are derived cones to Rp(t;,0, Xo) at
Z(tj).

Next we prove that if 0 < ¢; < ... <t;=7<Tand0< 8, <...8p =T
are such that {t;,...t;} C {s1,...,8m},m > j then one has:

‘Kj(tj'l O tl) C Km(-’m; vee 331)! DJ(tJi siee tl) - Dm(sma <o :31) (5'30)

In turn, (5.30) follows from the inclusions;

K ilhy, e valislicayss ) € Kj+1(tj,.. st Rilasye o Bi)

Dj(tj, o ,tl) C Dj+1(tj, MU 10| /ot R, tg) (531)

Using the obvious properties:
Ra(7,8,Ra(s,t,C)) = Ru(7,t,C)VC C R”
Kty 1) € B8 vh) (5.32)
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we obtain the following inclusions:
Kl(tl) s RA(tlsol CO) = RA(tlss! RA(S, 0; CO)) —

= Ra(t1,s, Ki(s)) C Ka(ts, s)
Dy (t;) = ceo[Co(t1) U Ky ()] C eco[Co(t1) U Ky(t1,8)] = Da(ty,s)

for any 0 < s < t; < T and (5.31) is verified for j=1
Assuming by induction, that (5.31) is true for j > 1 we consider 0 < ¢; <
..t; < tj41 and s € (t;,1;41);using (5.32) we may write succesively:

Ki1(tisrs-- - t) = Raltjsr, s, Ra(s,tj, Dj(t5,... 1)) C
C RA("'}‘+1131 Dj+1(3!tj1' uis tl)) = Kj-;-?(tj-l-hs:tj:- . 'tl)l
Djs1(tjsr, ... t1) = cco[Co(tjs1 U Kjsa(tjp,. .. 1)) C
C cco[Co(tj+1) U Kjsa(tisn, 8,5 .. . 1) = Djsaltjsr, 8,5, .. 1)
hence (5.31) holds for j+1 and s € (t;,t;4,); moreover if i € {1,2...7} and
8 € (t;,t;41) then from the induction hypothesis it follows:
Kjs1(tj4r,. .- 1) = Ra(tjsn, t5, Di(t; ... 1)) C
C Ra(tjs1st5, Djsa(tss - - - iy 8y tizy - - - 1)) = Kjga(tjsn, . . Gy 8y ticy .. . 41)
Djsi(tjr, - - - 1) = cco[Co(tj41) U Kjsa(tjgr, ... 11)] C
C CCO[Co(tjq.l)UKj...g(tjq.l, S t.-,s, t"_l, ‘o tl)] = Dj+2(tj+1, v t.‘, 8, t;'_l, o f])

and (5.31) hence (5.30) are completely proved.
In order to prove that the set M(7) defined by:

H(T) = U U Kj(tj,...tl)UCo(T) (533)

J210<t<..<ty=7
is a derived set to Rp(7,0, Xo) at z(7), we consider {vy,...vn} C H(T) and
note that it follows that there exist ji,...j¢41 2 1,0 < t} <<t} = 7,0 =
1,...q9+ 1 such that:
[yl =dolii=1 .00 L= k.2 5)
{visl=1,...5} C K;(t,...8}),i=1,...q (5.34)
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{Vjil = 1,...Jos1} C Co(T)
We consider now the increasing sequence o0 < sy < ... < 8, = 7 such that
{s1,--.sm} = {t§, : 7 =1,...¢,1 = 1,...5} and note that according to
(5.30) we have: '

K4, .. .4}) € Kalti . s81)

and therefore from (5.31) and (5.33) we infer that:
{U},. . .'Um} & Dm(Sm,.. .8[)

Since Dy (8m,-..51) is a derived cone to Rp(7,0,Xo) at 2(7) there exists a
continuous mapping a() : [0,60] — Rp(7,0, Xo) that has the properties in
(5.10)-(5.11) and therefore M(7) is a derived set hence the first statement of
Theorem 5.10 is proved. &

In view of the definition in (5.10) of the cones C(t) the equalities in
(5.28)-(5.29) follow from the inclusions:

Rr,0,C0)c U U  Kn(tm,-..t1)V8 € [0,7) (5.35)

m>210<t1<...<lm=T

If v € Ra(r,0,C(0) then there exists w(-) € Sa(r,0,C(8)) such that
w(7) = v,w(f) € C(0) hence there exist

¢; > 0, vg € Co(0), v; € K,,.,(O, 9::;-1,...0:“’)

such that

w(f) = i CjV;

1=0
further on from the properties in (5.30) it follows that if 0 < s, < ...s,, =0
is such that:

{sla“‘sm} = {61’;11 p= ]-s'“mjaj: I:Q}

then

q
‘UJ(E) = CoVo + chvj € CCO[Co(g) U Km(ai Sm—1y--- 31)] = Dm(oi Sm—-1y-- '31)

=1
and therefore

w(T) e RA(T,Q, Dm(ﬂ,sm_l,. % .81)) = Km+1(7,9,8m_1,...81)
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and Theorem 5.10 is completely proved.

Taking into account Proposition 4.2 the result in Theorem 5.10 may be
reformulated as follows:

Corollary 5.11. If z(-), F(-,-) and A(-,-) satisfy Hypothesis 5.1. and
Co C R™ is a derived cone to X, at z(0) € X, then for any T € (0,T) there
ezxists a derived cone C(r) to Rp(7,0,Xo) at 2(7) such the relations (5.28)
and the following ones are satisfied:

Cl[F; (r,2(7)) — 2'(7)] € C(7) a.e.in] (5.36)

6 Derived cones to reachable sets of standard control systems

In this section we consider shortly the case of standard control systems of
the form (2.3) to show that the Hypothesis 3.5 may be considerably weakened
and the proofs of Theorems 4.3 and 5.10 may be simplified.

We shall use the well known Peano’s existence theorem and the following
result proved in Mirica [15].

Lemma 6.1.([15] Lemma 3) Let D C R x R" be open and let f(-,-) :
D — R™ be a continuous vector field defining the differential equations:

= fit;2) (6.1)

Then, for any (to,zo) € D there ezists a,r > 0 such that for any s € Iy =
[to — a,to + a] and y € B.(zo) there ezists a solution Z(-,s,y) : Io = R™ of
(6.1) such that:

Z(s +0,;,y) i SR TR (6.2)

BESWIRW i B

We obtain first a sharpened version of Theorem 4.3 for control systems
of the form (2.3) under the following hypothesis:

Hypothesis 6.2. The subset D C R x R" is open, U is a Hausdorff
topological space, f,(t,) = f(t,-,u) is locally Lipschitz at each point in D
(with a Lipschitz constant deppending possibly on u and on t); u(-) : I =
[0,7) — U is measurable and 2(-) : I — R"™ is an absolutely continuous
solution of the problem:

2’ = f(t,z), 2(0) € Xo C R", f(t,2) = f(t,2,(t)) (6.3)
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Moreover we suppose f is locally integrably bounded and locally-Lipschitz at
each point (1o, 2(ty)) € I in the sense that there exist

€>0, m(-),L(-) € L'([to — €,to + €], R})

such that:

[£(t,2)| < m(t) V(t,z) € B((to, 2(t0)), €)

If(f,I) ik f(tly)l < L(t)[l’ i ylV(t,.‘L‘), (tvy) € B((thz(tO))’c)

We note that under this hypothesis, the continuously parametrized ori-
entor field F(-,-) defined by:

F(t,z) = f(t,z,U) ¥(t,z) € D (6.4)

need not be even Hausdorff continuous (if U is not a compact topologocal
space).

From Cauchy-Lipschitz existence and uniqueness theorem it follows that
the set of tangent directions in (4.1) as well as the set defined in (4.4) are
given by:

Tr(t,2(t)) = Fg (¢, 2(t)) = f(t,2(t),U) ¥t € (0,T) (6.5)
since for any u € U, the vector field f,(-,-) : D — R™ defined by
fult,z) = f(t,z,u)VY(t,z) € D (6.6)

is continuous and locally-Lipschitz with respect to the second variable and
therefore has a unique classical (continuously differentiable) solution through
each point (s,y) € D.

Lemma 6.3. Let z(-) be a solution of (6.2) and let f be satisfying Hy-
pothesis 6.2.

Then for any Lebesgue point v € L(2'(-)) the set My(t) defined by:

My(7) = f(7,2(7),U) = 2'(7)

is a derived set at z(7) to the reachable set Rp(7,0,X,) and therefore the
convez cone Co(7) defined by:

Co(7) = cco(Mo(7)) T € L(2'(")) (6.8)

is a derived cone at 2(7) to Rp(7,0, Xo)
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Proof. We consider
T € L(2'(:)), {v1,...vm} C Mo(7), {t1,..-,um} CU
such that
wj = f(7,2(7),u;), v; =w; — 2'(1) € Mp(7),7 =1,...m (6.9)

and use the classical results in the theory of Ordinary Differential Equa-
tions for the Peano-Lipschitz vector fields f;(-,:) = f(:, ,u,),j = 1,.

to obtain the existence and uniqueness of the maximal flows Z;(-,,) : D C
R x R* — R"™ which are locally-Lipschitz mappings and ax:cordlng t.o Lemma.
5.1. have the property:

Zi(s,8,y) =y, (9"‘;')2%‘7':(7)) 7 =w;j=1,...m (6.10)

Further on, we consider §p > 0 small enough, § = [0,60,]™ and for any
s = (81,...8m) € S we define:

- is;, ti(s)=1- is,—

i=1 =1

ti(s) = tj-1(8) + 85, tm(8) = T — 8y tms1(8) = T
ao(s) = z(t1(s)) (6.11)
a;(s) = Z;(t;41(s),t5(s), a5-1(8)) 7 = 1,.
a(s) = am(s) = Zm(7,tm(8), @m-1(s))

We note first that since Z; are locally-Lipschitz the mappings a;(:) : S —
R",j =1,...m are continuous, a;(0) = z(7) and moreover a,,(s) = a(s) €
Rp(7,0,2(0)) C Rp(7,0,Xo) since for any s € S may define the admisible
pair (us(-), z,(-) as follows:

_ [ at) ifteo,t(s))
us(t) i { u; ) i Al [tj(8)|tj+l(3))

_f 2(t) if t € [0,¢(s))
z4(t) —{ Z;(t,t5(s),aj-1(8)) if t € [t;(s),t;41(s)]
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which obviously satisfies a,,(s) = z,(7).
We shall prove by induction that the mappings a;(-) in (6.11) are differ-
entiable at s=0, their derivatives being given by:

Da;(0)s = is;w.- - |s|Z'(7), Vs € S (6.12)

We note first that since z(-) is differentiable at 7 the mapping ao(-) in
(6.11) is differentiable at s=0, its derivatives being given by:

Daq(s) = —|s|'() (6.13)
To prove (6.12) for j=1, we note that using (6.10) and (6.13) we may write
succesively:
i a(s) — a,(0) + (7, 8:)2'(7) ¥
3 o
. Z1(ta(s) + 81, t1(s), a0(8)) — ao(s) — 1wy 81 | ag(s) — ag(0) + |s|Z(7)
=i . BN o

since i € (0,1]Vs # 0
Assuming that (6.12) is verified for j = 1,...m — 1 we use again (6.10)
and (6.13) to obtain:

Litn a;41(8) — a541(0) — TIH siwi + |s|'(7)
g o

[fm(t:'n (8) + sj+2,t41(8), a;(8)) — a;(8) — Sj41Wj41 Sj42

= lim
e Sj+2 ls|
: L e ] S
+a1(3) a;(0) %|=1 Siw; + |s[z’(7')] =0

Since for j=m the relation (6.12) may be written as Da(0)s = Y7, s;v;,
Lemma 6.3. is completely proved.

Remark 6.4. If, in addition to Hypothesis 6.2., the parametrized mul-
tifunction F(.,.) in (6.4) is L(t)-locally Lipschitz on B(z(t),€) (in particular
if {(t,.,u) is L(t)-locally Lipschitz for any u in U) then Theorem 4.3. remains
valid using the derived cones Co(7) in (6.8) instead of those in (4.4) that
satisfy only the weaker condition (4.6).
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However, the lipschitzianity property in Hypothesis 3.5. being quite re-
strictive (particulary for orientor fields with unbounded values) alternative
assumptions avoiding this condition may significantly extend the applicabil-
ity area of this type of results.

In view of the fact that for any r > 0 the quasitangent derivatives at
(2,2’) of the multifunction F(t,-) and F,(t,z) = F(t,z) N B(z',r) coincide,
Hypothesis 3.5. may be replaced by the following weaker one:

Hypothesis 6.5. The mapping z(.) is a solution of (2.1) and there ezist
€>0,L(-) € L'(I, Ry),r(t) > 0Vt € I such that the truncated multifunction:

Fi(t,z) = F(t,z) N B(Z'(t),r(t))t € I z € B(2(t),e) (6.14)

has the following property: F(t,-) is L(t)-Lipschitz on B(2(t),¢) a.e. in I.

An alternative assumption to Hypothesis 6.5 that may also allow a much
easier proof (that may avoid the use of the imbedding Theorem 3.6) is the
following:

Hypothesis 6.6. The mapping f(-,-,-) : DxU — R™ satisfies Hypothesis
6.2., z(.) is a solution of (6.2), there ezists ¢ > 0 such that f(t,-,u(t))
is of class C' on B(z(t),€) a.e. in I and there ezists integrable mappings
m(-),M(-) € L'(I,R,) such that:

~ af )
[f(t,z)| < m(t), a—z-(t,x)l < M(t)Vz € B(z(t),€)a.e.in] (6.15)

We note that, as in the case of Hypothesis 6.2, the multifunction F(.,.)
in (6.4) need not be locally Lipschitz as in Hypothesis 3.5.

We recall that according to well known results in the general theory of
O.D. E. under Hypothesis 6.6., the vector field f(-,-) in (6.2.) has a contin-
uous maximal flow Z(-,-,-) : D C R x R* x R® — R™ which is differentiable
with respect to the last variable, and for any t € (0,T),zo € B(z(t),€) the
mapping t — D3Z(t, 1o, zo) is the unique absolutely continuous matrix-valued
solution of the variational equation

& -of .

E = gﬁ(t,z(f,tu, :.:o))Z, Z(to) = In (616)
On the other hand according to the Scorza-Dragoni property, there exists
a subset of full measure J C I such that any solution y of the differential

equation in (6.1) is differentiable at any ¢ € J and satisfies the relation:

y(t) = f(t,y(t)) Vte J (6.17)
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Moreover, according to Proposition 3.1 in Mirica [13], the mapping Z(t, -, )
is differentiable at s € J, its derivative being given by:

sz(tssiy) = —Dai(t,s,y)f(s,y) (618)

In order to unify the notations we note that the family of linear mappings

A(t,-),t € J, defined by:

A(t,v) = g—i(t, z(t))v,ve R" (6.19)

is a family of closed convex processes satisfying condition (5.1) for the mul-
tifunction F(.,.) in (6.4) :

Moreover, according to the above mentioned diferentiability theorem, the
reachable set of the inclusion (5.2) may be expressed as follows:

Rg(tg,tl, Cl) = 035(32, L, Z(tl))cl 0<t < t.<T (620)

In this case the analogues of Lemmas 5.3 and 5.6 allow very simple proofs
based on the differentiability of the flow Z(.,.,.).

Lemma 6.7. If Hypothesis 6.6. is verified, 0 < t;, < t, < T and C,
is a derived cone to Rp(t),0, Xo) at z(t,) then Ry(ty,ty,C,) in (6.20) is a
derived cone to Rp(t3,0,Xo) at 2(t5).

Proof We consider

{vi,...vm} C Ru(t2,41,C1) {wy ... wn} C G

such that:
v; = D3£(tg,tl,3(tl))wj,j = l,...m (6.21)

Since C; C R" is a derived cone to Rp(t;,0,X,) there exists a continuous
mapping ao(-) : [0,680]™ — Rp(ty,0, Xo) such that:

ao(0) = 2(t,), Dag(0)s = f:s,-w.-

=1
We define a(-) : S — Rp(t3,0, Xp) as follows:
a(s) = Z(ty,t1,a0(8)), s€ S (6.22)
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and note that from the properties of the flow Z(.,.,.), a(.) is continuous,
a(0) = z(t;) and

Da(0)o = D3Z(ts, t1, 2(t1)) Dao(0)o = D3Z(ta, t, z(tl))(iaiwi) - ia;v;

=] =1

and Lemma 6.7 is proved.

Lemma 6.8. Let z(.) and f(.,.,.) satisfy Hypothesis 6.6., let J C (0,T)
the subset of full measure for which (6.17) is satisfied, let 0 < t;, < t, < T
such that t; € J, let Cy, C R™ be a derived cone of Rp(t1,0, Xo) at 2(t,), and
let Co(ta) be the derived cone in (6.8) and let A(t,-) be defined in (6.19).

Then the set My C R™ defined by:

Mz == Co(tg) U RA(!?, tl, C‘l) (623)

is a derived set of Rp(t3,0,X,) at z(t,).
Proof. We consider

{v1,...vm} C Ra(tz,4,,C1) {vigr, ... vm} C Co(ts), uj € U, w; € Cy

such that:
v; = Daf(tz,tg,cl)wj, J = 1,. ol

v; = w; — 2’(32), w; = f(t;, Z(tg), 'u_,‘), J = a'+ 1, S [ [ ] (624)

Since C is a derived cone to Rr(t,,0, Xo) at z(t,) there exists ao(-) : [0, 8] —
Rp(t1,0, Xo) continuous and such that:

l
ao(0) = 2(t,), Dag(0)o = Za.-w.- VYo = (0y,...01) € R‘+
i=1
We take 8y > 0 sufficiently small, S = [0, o)™ and for any s € S we define:

m m
ls] = D sitiaa(s) =ta— D 85,t5(s) = tj-1(s) + 85, tmaa(s) = 2
=1 J'—‘l'i-l

01(8) = E(tH.l(.S)., f], 00(81, iy 31)) (6-25)
a;(s) = Z;(tj+1(s), t(s),ai-1(s)) s =14+ 1...m

s
a(3) = am(s) = Z(t2,t2 — Sm,am-1(8))
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where Z(.,.,.) is the maximal flow of the vector field f(.,.) in (6.3) and
z;(.,.,.) is the maximal flow of JGuomg)s 4 =100

As in the proof of Lemma 6.3 and of Lemma 6.6 it follows that the map-
ping a;(.), 7 = I,...m are continuous, a(s) € Rr(t3,0, Xo),a(0) = 2(t,) and
a standard computation shows that a(.) is differentiable at 0, its derivative
being given by Da(0)o = ¥, oyv;.

Using now the cones Co(7) in (6.8) and R,(7,t,Co(t)) in Lemma 6.7,
Proposition 5.8 may be formulated as follows:

Theorem 6.9. If z(.) and f(.,.,.) satisfy Hypothesis 6.2., J C I is the
set for which (6.17) is satisfied, Co C R" is a derived cone of X, at z(0), and
z(.,.,.) is the mazimal flow of the vector field f(,) in (6.8) then for any
7 € J the convez cone C(7) defined by:

C(r)=cco |J Ra(r,t,Co(t)) =
teJnfo,r]

ccol{ Ds3(r t, 2(1))(f(t, 2(t), U) = J(t, 2(t))), ¢ € JN(0, 7]}UDsE(r, 0, (0))Co)

is a derived cone to Rp(7,0,X,) at 2(7).

Remark 6.10. We note that due to the fact that A(t,-) in (6.19) are
linear mappings the cones C(t) in (6.26) satisfy (5.29) and, in fact, coincide
with the cones C(t) in (5.27).

Theorem 6.9 was proved in a more direct way in [13] Lemmas 3.1,3.2;
Lemmas 5.3, 5.7,5.8 may be interpreted as giving another proof of this the-
orem which, in turn is technically related to Lemmas 7.4.(ii)-(iv) in Cesari
([5]), where certain "cones of variations” are identified.

We note that if in addition to Hypothesis 6.2 the parametrized orientor
field F(.,.) in (6.4) verifies also Hypothesis 3.5 then one may use Theorem
5.8 to obtain derived cones generated by the variational inclusion (5.2) with
the following choice for the family A(t,-) of closed convex processes:

A(t,v) = g—i(t,z(t),ﬁ(t)) + AQ::“)f(t,Z(t), U)! veER"teJ (627)
Particularly interesting are the cases in which one may find explicit de-
scription of the assymptotic quasitangent cones

AQZf(t,2(t),U); such a case is that of the convex-valued multifunction F
for which one has([20], etc):

AQJF(t,2) =ceo(F(t,2) — 2'), V' € F(t,z) (6.28)
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In the case only Hypothesis 6.2 is satisfied we may choose for any t € I
a closed convex cone

A(t) C Qi wpgraphfit, ) (6.29)

that is maximal with respect to set-inclusion among the closed convex cones
with this property and note that the corresponding family of closed convex
processes defined by

At,v) = {v' € R™; (v,v') € A(t)} v € domA(t,-) = prA(t)t € I  (6.30)

satisfy condition (5.1); consequently, the results in Section 5 remain valid
provided the parametrized vector field f(.,.,.) in (6.3)-(6.4) satisfies the fol-
lowing:
Hypothesis 6.11. The sets D C R™, U and the mappings f(.,.,.) ,z(.), @
satisfy Hypothesis 6.2 and, in addition, one of the following properties hold:
(1) There ezist e,r > 0 and L(-) € L'(I,R,) such that the truncated
multifunction F,(t,-), defined by:

Fi(t,z) = f(t,z,U)N B(Z(t),r)t€ I, z € B(z(t),e)  (6.31)

is L(t)-Lipschitzean on B(z(t),e),
(it) There ezist € > 0,L(-) € L'(I,Ry) and Uy C U such that the multi-
function Fy(t,-) defined by:

Fo(t,z) = f(t,z,Up), = € B(z(t),¢), t € I (6.32)

is L(t)-Lipschitzean on B(z(t),€) and i(t) € Uy for all t in I.

However, as we shall see in what follows, the result in Section 5 for the
standard control system (2.3) may be obtained without the additional Hy-
pothesis 5.11 with direct proofs that avoid the use of the imbedding Theorem
3.6.

We note first that if g(-) : X € R® — R™ is locally Lipschitz then at any
point z € X the qusitangent set-valued directional derivative Q*g(z,-) in
(2.9).(2.13) is single-valued and globally Lipschitz on its domain, being given
by:

; el i . . 9(z + Ou) — g(z)
Q79(z,v) = {93 (2,v)} 9g(z,v) = {s.u)-(ol].l:)l.z%aex 0
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v € dom(gdg(z,")) = pr1Q(, yzy97aPh 9(-) (6.33)

We note that if v € R™ is contained in the cone of "feasible direction”
FIX={veR":30,>0: z+6ve XVe(0,6))
then the quasitangent derivative in (6.33), if it exists, is given by:

+ 9(z + 6v) — g(z)
go(z,v) = 11r51+ 2

v € Ff X Ndomg}(z,-) (6.34)

In particular, if g(.) is locally-Lipschitz at z € Int(X) then (6.34)
holds for any v € domg{(z,-). Moreover, for any convex subcone, A, C

Q(m(x))graph () (in particular for A, = AQ(M(x)graph g(+)) the restriction
to A, = priA, of 95(z,-) is positively linear in the sense that it satisfies:

95(2, 8101 + s3v5) = 193 (2,v1) + 8298 (2,v2) Yo1,v5 € A, 51,5, > 0 (6.35)

On the other hand, as it is well known, the quasitangent derivative in
(6.33)- (6 34) is a proper generalization of t.he classical derivative in the sense
that g is differentiable at z € Int(X) iff domg}(z,-) = R™ and the mapping
94(z,) : R* — R™ is linear; in this case the two derivatives coincide, i.e.
one has:

g(z + k) — g(z) — g (=, o
||

93(z,v) = Dg(z)v, lim veER" (6.36)

The last property may be extended to a type of "conical differentiability”
property as follows:

Proposition 6.12. Let g(-) : X C R* — R™ be locally- Lipschitz at
z € Int(X) and let {v,,...vn} C dom(g3)(z,-) be such that:

cco{(vi, 94(2,0)); i = 1,...m} C Qf ymygraphg()  (6.37)

Then for any mapping ao(-) : § = [0,30)™ — X that is differentiable at
s =(0,...,0) € S and has the properties:

ao(0) = z, Day(0)s = is,vv,- Vse § (6.38)

i=1
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the mapping a(-) : S — R™ defined by:

a(s) = g(ao(s)), s € S (6.39)
is differentiable at s = (0,...0) and its derivative is given by:
m
Da(0)s = ) sigd(z,v;)Vs€ S (6.40)
=1
Proof. For any s = (s1,...,5,) € S we denote:

0o(s) = ag(s) — z — is;v;, |s| = is.-
=1

o(s) = a(s) — a(0) — isiga(:c,v.-] (6.41)

=1
m m
or(s) = g(z + 3_sivi) — g(z) - 3 sigd(z,v;)
i=1 i=1
and note that according to (6.38) we have: lim,_q esﬁlﬂ =0
On the other hand, from the lipschitzianity of g(.) at x we infer that:

lo(s) = o1(s)] = lg(ao(s)) — 9z + 3" s:03)] < Lioo(s)|

1=]

hence for (6.40) it is enough to prove:

oi(s) _
Jim -——-M =0 (6.42)
Further on, for any
o =(01,...,0m) € ST = {(01,...,0m) € RT : |o| =1}
we denote:
50,0) = HEHOTE ow) = 9(2) ~ 0T cighed] oo

6
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and note that from the definition in (6.41) of 0,(-) it follows:

OT
Sl = #llsh 1) Vs € 5\(0) (6.44)

On the other hand, from (6.34) and (6.35) it follows that:
: L -1
al_l.la'l+ ¢(0,0) =0Vo € ST

and therefore from Proposition 5.4 it follows that:

-] I l( )] o
Gy 2R00 —) =
lim is| llmé(]sl,l [) 0

and (6.40) is proved.

The above statements hold, in particular, for the Caratheodory-Lipschitz
vector-field, f(-,+) in (6.3) and its corresponding maximal flow, Z(yey)

The next auxiliary result, allowing the extension of Lemma 6.7 and The-
orem 6.9 to the nonsmooth control system satisfying Hypothesis 6.2, may
be interpreted as refinements of the existing generalizations of the classical
Bendixson-Picard theorem on differentiability of solutions with respect to
initial data (e.g. Mirica [12]).

Theorem 6.13. Let f(-,-) be the Caratheodory- Lipschitz vector field
in (6.8) satisfying (6.3)-(6.4), let Z(-,-,-) its mazimal flow and let 2(t) =
z(t,0,z0), t € I be a reference trajectory.

(i) An absolutely continuous mapping w(-) : [t;,t;] C [0,T] - R* is a-
solution of the variational equation:

w' = fE(t,)(2(t), w) (6.45)
if and only if: "
w(t) € dom fg(t,-)(2(t), ) (6.46)
w(ty) € domzy(t,ty,-)(2(t1, ) Vt in[ty, 1, (6.47)
and in this case one has:
w(t) = 25(t, 11, )(2(tr), 5, w(th)) (6.48)
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(1) Let wi(-) : [ty,ty] — R™, i = 1,...m, be solutions of the variational
equations (6.45) such that for any cy,...,c,n > 0 the mapping w(-,c) defined
by:

w(t,c) = ) ciwi, c= (c1,...,6m) € RT, L € [ta, 8] (6.49)
i=1
is also a solution of (6.45)

Further on, let so > 0, S = [0,s0]™ and let ag : S — R™ be a mapping
that is differentiable at s = (0,...,0) € S and satisfies the conditions:

ao(0) = 2(t), Dag(0)s = > siwi(t)Vs € § (6.50)
i=1
Then for any t € [ty,15] the mapping ay(-) .S — R defined by:
ai(s) = Z(t,t1,a0(s)), s € S (6.51)
is differentiable at s = (0,...,0) and its derivative is given by:
Da,(0)s = w(t,s)Vs € S (6.52)

Proof. We note first that from Hypothesis 6.2 it follows that there exist
€ > 0 and m(-),L(:) € L'(1, Ry) such that (6.3)-(6.4) hold for any z,y €
B(z(t), €) a.e.in I'; moreover, from the integral equation:

B 00 = 21 j‘: J(0,5(0,ts, 2, )do (6.53)

and using Gronwall’s Lemma it follows that if L = exp| JT L(t)dt| then
Z(t,t,) is L-Lipschitz on B(z(t;),€;) where ¢ = ek

(1) We assume that w(-) : [t;,2,) — R™ is an absolutely continuous solu-
tion of (6.45) and note that, in this case, (6.46) is automatically satisfied ;
we shall prove now that (6.48) which implies (6.47).

For t € [t,1,], 6 € (0,6,) we denote:

£(t,0) = z(t, by, (1)) + Gw(eh)) — z(t) — bw(t)

ot,0) = L CN ZJOAD 2000 ) = [ g, b1
; (6.54)
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rj)(t,ﬂ) = f(t,f(f,tl, Z(tl) -+ Gw(tgl)) = f(t,z(t) -4 ﬂw(t))

and note that from (6.4) and (6.53) it follows that:
(¢, 0)| < L(¢)I¢(¢,0)]

t
(,0) = [ 9(c,0)do + [ " ¥(0,0)do
and therefore, the functions |£(-,8)| satisfy the inequality:

66,001 < a(t,0) + [ Liw)le(w, 0)ldu

From Gronwall’s Lemma (e.g. Aubin-Cellina [1‘], etc) it follows:

I€(4,6)] < a(t,0) [a(u,e) axcpil f L(r)dr)du V8 € (0,0), € [t1,ts] (6.55)

On the other hand, from (6.34) and (6.45) it follows that
limg_o4 #(¢,0) = 0 on [t;, ;] and since

(. 0)] < L(t)|w(t)] + [w'(t)] on [t1, 2]

from Lebesgue dominated convergence theorem it follows that
i
Jim a(t,6) = lim [ |6(u,0)|du = 0Vt € [t,,,)

therefore, from (6.55) it follows that limg_o4 £(,0) = 0, Vt € [t;,1,] which
in view of (6.54) is equivalent with (6.48).

Conversely, let w(.,.) be given by (6.48) and satisfying (6.46). Since w(_,.)
is obviously measurable and satisfies the inequality

lw(t)] < Llw(ty)| t € [ts, o]

it is integrable.
Using the definition in (6.34) of the quasitangent derivative, the integral
equation in (6.53) and the notations in (6.54) we obtain:

w(t) = w(ty) + Jim [ [ " (u,0)du + / syt 9"’(;‘” o {LILIL) ¥
’ ' (6.56)
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On the other hand, since according to (6.48)

Z(t, b, 2(t) + Ow(ty)) — 2(1)
0

w(t) = eﬁﬂﬂ Vt € [ty,13)
from (6.54) we obtain:

, . Z2(tt, 2(t) + Qw(ty)) — 2(t) — Ow(t)
Jim, 9(2,60)] < L(t) Jigy |2+ full =0

and since [(-,0)| is integrably-bounded, we get:

m [ " P(u, 0)du = 0 Vi € [ty, 1]

li
6—0+
Further on, from (6.46) it follows that:

al_i.l";1+ f(O', 2(0') + ﬂw(;')) = f(O', 2(0')) o= fs(a,-)(z(a); w(a)) a.e.on[tl, t2]

Hence using again the Lipschitzianity of f(o,-) from (6.56) we obtain:

w(®) = w(t) + [ T35, )(a(s)sw(s))ds V € [t, 1

and the fact that w(.,.) is a solution of (6.45) is proved.

(ii) This statement is an immediate consequence of statement (i) and
of Proposition 6.12 applied to the locally Lipschitz mappings Z(t,t;,-),t €
[th,t2): if wy(-),...,wn(-) are solutions of (6.45) such that for any ¢ =
(c1,...¢m) € R? w(-,¢) = %, caw;(-) is also a solution of (6.45), then from
(6.48) it follows that:

iqf(t, t, -)(z(t, wi(th)) = Z§(t, ta, -)(2(t1), ic.-w.-(h))

t=1 i=1

hence Z(t,1,, -) satisfies hypothesis (6.37) in Proposition 6.12 and (6.52) fol-
lows from (6.40).

Theorem 6.13 allows the straigtforward extensions of Lemmas 6.7, 6.8 and
Theorem 6.9 to nonsmooth control systems for which the classical variational
equation (6.16) is replaced by a quasitangent variational equation of the form:

o € A(tv), Altv) = ()W) veprAlt)  (657)
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defined by an arbitrary family of convex cones E(t) CR*xR',teJ,that
satisfy the condition:

At) C Q{t(t)_,,(mgraphf(t,-), teJ (6.58)

In fact the family A(t) of convex cones satisfying (6.58) define a family
of single-valued convex processes A(t,-) satisfying (5.1).

Practically the same proofs as those of Lemmas 6.7, 6.8 and Proposition
5.8 lead to the following result extending Theorem 6.9:

Theorem 6.14. Let 2(-) and f(.,.,.) satisfy Hypothesis 6.2 ,let Co C R"
be a derived cone to X, at z(0) and for any t € [0,T) let Co(t) C R" be the
cone defined in (6.8) and (3.10). :

Then for any family of convez cones, A(t), t € J, satisfying (6.58) and
for any 7 € (0,T), the convez cone Cx(7) defined by:

Ca(r) =cco |J Ra(r,t,Co(t)) = cco U z5(7,t,-)(2(t),Co()) (6.59)

teJnlo,r] tefo,7]

s a derived cone to Rp(7,0,X,) at z(7) and moreover, these cones satisfy
the conditions:

Ra(7,8,C(38)) CC(r)V0<s<7<T (6.60)
Co(t) = cco(f(t,2(t),U) — 2'(t)) C C(t) a.e.on[0,T) (6.61)
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