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Introduction

From the cohomological viewpoint, maximal Cohen-Macaulay modules
over a local ring have many similarities with finitely generated modules over
an Artinian ring. Therefore, the representation theory of maximal Cohen—
Macaulay modules has been developed by pursuing a fruitful analogy with
the representation theory of modules of finite type over an Artinian ring.
Besides giving motivation, hints and inspiration, the work done in the ar-
tinian case can be useful in a more direct manner. Specifically, one may try
to reduce the questions about maximal Cohen-Macaulay modules to simi-
lar problems stated for modules over suitable Artinian rings. This simply
conceived strategy cannot be carried out in a straightforward way. Such an
approach is feasible as soon as one has a vehicle to descend the significant
properties of the objects we are interested in. Moreover, the transfer tech-
nique must allow to recover in the original framework the information about
the transformed objects.

By some work done by E.Dieterich [3] , Y.Yoshino [6] , D. Popescu [5]
we know a large class of Cohen-Macaulay isolated singularities (R, M, K') for



L

which there exists an M-primary ideal I such that the assignment L +— L/IL
defines an embedding of the set of isomorphism classes of indecomposable
maximal Cohen-Macaulay R—modules into the set of isomorphism classes of
indecomposable finitely generated R//-modules. This embedding could be
more appropiately mastered if one could describe its image in more concrete
terms. Recently Popescu [4] found out an answer to this problem in the case
I is generated by a system of parameters for the given ring.

Theorem. ( [4] ) Let I be an ideal generated by a system of parame-
ters z1,...,z, of an excellent,Henselian Cohen-Macaulay local ring (R, M,
K ) and let N be a finitely generated R/IR - module . Suppose that R is
an 1solated singularity containing a field and [K : K?] < co , where p:=
charK . Then there exists a mazimal Cohen-Macaulay R - module L such
that L/IL ~ N if and only if there exists an R/(z%,...,22)R - module E
such that E/IE ~ N and

(%) ((z1,--,2)E : 2i1)E = (21, ., 2e1)E  forallt=0,...,n—1.

To characterize the R/I-modules of finite type which have the form L/IL
for a certain maximal Cohen-Macaulay R-module L amounts to find out the
R/I-modules which are liftable to R in the sense of M.Auslander, S.Ding and
@.Solberg [1] . This remark explains the name dubbed for elements fulfilling
condition (*) - lifting sequences shortly I-sequences.

It is natural to study /-sequences not only in their original context but
also in much more general circumstancies than would be required by the
representation theory. We believe that such an explicit study of I-sequences
illuminates their nature, significance and limits. This study appears to us to
be justified also by the expectation that I-sequences would have applications
beyond the situation that motivated to consider condition (*) .

The aim of this paper is to report some of the consequences that condi-
tion (*) has. Most results are valid in a quite general framework-arbitrary
modules over a commutative ring. A posteriori, it turns out that we do not
gain any simplicity by commiting ourselves to local or Noetherian rings.

In order to point out some of the results proved in the sequel, we shall
introduce now some notations. For some elements x := zy,...,z, of a com-
mutative ring R with unity we shall denote by I the ideal xR . For any




positive integer ¢t , ¢ < n , I, will denote the ideal generated by z;,...,z, .
For the sake of uniformity, we denote by I, the null ideal.

The first section is entirely devoted to clarify the definition of I-sequences.
On the one hand, we obtain several conditions that are equivalent to (*). On
the other hand, there are given some examples showing that these charac-
terizations can not be improved. The main result of this section is stated
below:

Theorem 1.11 The following statements are equivalent :

(i) x is an l-sequence on E

(i) (0O:zy-- 2z )g=LE forall t,1<t<n

(i) 21z EN0:z)g =2z, -z, E  forall t,1<t<n
(iv) (0: I)g=x,- -z, F forall t,1<t<n. -

In the second section we point out some properties of I-sequences. Our
main concern here is to answer the question: if given elements form I-
sequence on a module, under what circumstancies do they form [-sequence
on other modules appearing in a short exact sequence along with the given
module ? The statements of the principal results refer to a short exact se-
quence of modules

0 — E-SE-5SE"— 0.

Theorem 2.5 Suppose x is |-sequence on E” . Then:
1) If x is I-sequence on E, then x is [-sequence on E' .
2) If x is l-sequence on E’' and also on R, then x is I-sequence on E .

Theorem 2.8 If x is [-sequence on E, then the following statements are
equivalent:

(i) x is I-sequence on E’

(i1) x is I-sequence on E"

(ii) LE Nu(E') = Lu(E') for all t,1 <t < n.

Apart from their intrinsic interest, such results are useful in examining
I-sequences on the graded module associated to a decreasing filtration ( cf.
(2.11) ) .

In the theory of various kind of sequences (e.g. regular, relative regular,
proper, filter, standard ) one encounters a result to the effect that under
certain assumptions, the powers of elements form a sequence of the same
kind. One of the basic properties of an I-sequence on E is
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w?tE:O,forall t,1 <t<n.

From this relation it is obvious that one can never obtain an I-sequence

on E of the type z3,...,2% | if z,,..., 2, is already an [-sequence on E .

) n
Another theme of common interest is to see to what extent a given prop-
erty of sequences is preserved by all permutations of the given elements. As

it turns out, the permutability of an /[-sequence is easily recognized.

Theorem 3.3 For an l-sequence x on E, the following statements are
equivalent:

(i)z?E =0 forall t,1<t<n

(ii) any permutation of x is an [-sequence on E .

Section 3 is devoted to the study of strong [-sequences , i.e. those I-
sequences satisfying condition () of the theorem quoted above. Besides sev-
eral results - for whose statements the reader is reffered to (3.5), (3.7), (3.8)
- the outcome of the study is the feeling that strong I-sequences have many
similarities with regular sequences. This is admitedly an ihtriguing point -
nilpotent elements behave much alike regular ones ! We draw the reader’s at-
tention to Popescu’s theorem: in their native context, [-sequences are strong
and moreover they are obtained by a natural construction from regular se-
quences. Should we look for another explanation?

One of the properties shared by regular and strong I-sequences is their
independence in Lech’s sense. In other words, if I is an ideal generated by
a strong l-sequence on R, then I/I? is a free R/I - module (cf. Theorem
3.9 ) . This result is a key ingredient needed to obtain a free resolution for
the ideal generated by a strong [-sequence. The last section of this paper is
devoted to the proof of the following theorem:

Theorem 4.1 The R-module R/I has a free resolution (Fu(x),pe(x))
such that for allt > 0 , Fy(x) is the free R-module of rank by(n) := ("“'1),

t

e1(x)=(z1 zo ... z,)and fort>2
"Pt—l(:rla_xb"-"—xn) ‘ 0
(,Qt(X) = ’
0 .'ElUs ’ L,Dt(.TQ,IL‘;;,.. . ,:Z-n)

where Uy is the unit matriz of order s := ("f_‘;s) = s(n,t).

4




We emphasize that the matrices of the homomorphisms ¢;(x) are highly
structured: in each row, the only non-zero entries are the terms of the given
strong [-sequence, perhaps with a changed sign. Actually, the block structure
is essentially used in the proof of the theorem.

Acknowledgements. Most of the work reported in this paper was car-
ried out at Mathematisches Institut der Universitat zu Kéln, while the author
had a NATO Post-doctoral fellowship offered through DAAD(Germany).
The support of these institutions is gratefully acknowledged.

1 Characterizations

Fix a commutative ring R with unity, an R-module F and some elements of
the ring x = z1,...,%, . In the sequel we shall denote by Iy the null ideal,
and, for each positive integer t , ¢ < n , I; will denote the ideal generated by
Ti1yeoey Tt - »

Definition 1.1 We say that x is an [-sequence on E if
([t-1F - z)g = LE for all t,1 <t <n.

We call x an l-sequence if it is [-sequence on R.

Basic Example 1.2 Let a,...,a, be a regular sequence in a ring A
and z; be the image of a; in the ring R := A/(a?,d%,...,a2) . Then x is
[-sequence on R .

Though obvious, the next remarks are very useful, as we shall convince
ourselves later on.

Remark 1.3 If z,,...,z, is [-sequence on E, then z,, ...,z is [-sequence
on F for all ¢t,1 <t < n.

Remark 1.4 Let t be a positive integer less than n. Some elements
zi,...,Z, form l-sequence on F if and only if z,,...,z; is [-sequence on F
and Z441,...,%, is [-sequence on E/LE .

Our first aim is to rephrase the condition stated in the Definition 1.1 .

Lemma 1.5 x is [-sequence on E if and only if

(1.5.1) (0:zy---z¢)g = LE forall t,1 <t <n.
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Proof. Suppose that the given elements form an /-sequence on E. We
show the thesis by induction.

Since (1.5.1) holds for t = 1 , we assume that ¢t > 1 and that (1.5.1) is
true for any positive integer less than ¢t. Then we have

(0 Ty "-Tt)E = ((0 Iy "mt-—l)E : xt)E = (It—lE : xt)E

and, since x is [-sequence on F, this last submodule of E coincides with I, E,
as asserted.

Conversely, let us assume that condition (1.5.1) is fulfilled. Then, for all
t,1 <t <n, we get

(LB z)g=(0:21- z41)g2)g=0:2y - 24)p = LE.

Remark 1.6 One cannot characterize the property of being /-sequence
by asking (1.5.1) to hold only for ¢ = n , as an instance of example (1.2)
shows :

Example 1.7 Let X be an indeterminate over a field K and z be its
image in the ring R := K[X]/(X*) . Take z; := z,z5 := 2? . Then x :=
z1,Z, is not l-sequence since (0 : z;) = 2°R # zR = z; R , but (0 : z,z,) =
(0: 2% = zR = (z1,22)R.

Now we examine the condition obtained by changing the roles of zy - - - z,
and (z1,...,z,) in (1.5.1) .

Lemma 1.8 The following statements are equivalent :

(1.81) (0: g =21 - zF forall 1,1 <t<n

(1.82)zy -z 1 EN(0:2)g =2y -2, F forall t,1<t<n.

Remark 1.9 In the case t =1, the statement (1.8.2) should be read up

(0:z1)g = z;E . This interpretation is consistent with the usual convention
that a product indexed over an empty set is one.

Proof of (1.8) . If (1.8.1) holds, then
Iy - ’CEtE = (0 . It)E = (O . It—l)E n (O . :Et)E =T - '(L't_.lE N (0 : l‘t)E-

The converse implication is proved by induction. For ¢t =1, (1.8.1) and
(1.8.2) coincide. So let us consider the case t > 1.
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(O : ]g)E‘ = (0 : ]t—l)E N (O . Z't)E
=zy---z41EN(0:z;)p by the inductive hypothesis

=z, -, F according to (1.8.2) .

As it turns out, x is an /-sequence on E as soon as it fulfils one of the
equivalent conditions stated in the above lemma.

Lemma 1.10 Condition (1.8.1) implies (1.5.1) .

Proof. For all integers j and ¢ such that 1
(1.8.1) z;z;---z,£ = 0, whence it follows z;F
LEC(0:zy - -z;)p for all ¢,1 <t<n.

The other inclusion is proved by induction on t. It is clear that (1.5.1)
stated for ¢ = 1 is (0 : z;)g = 2, F , and the same thing is stated by (1.8.1)
for t = 1. So we may suppose that n > ¢ > 1 and (1.5.1) holds for all
positive integers less than ¢ . For any e € (0: z; --- z;)g we have by (1.8)

<7<
C0:zy--z,)g . Thus

ery Ty €z EN(0:z)g =2 - 2,E.

Therefore , ez; -+ 2,1 = fz;-- -z, for a suitable f € F and so e— fz, € (0:
Ty---T41)g = I;_1E by the inductive hypothesis. Thus e € I,_F + z,E =
I,E and hence it results LE D (0:z;---z)g . ]

Now we are ready to prove our main characterization for /-sequences.

Theorem 1.11 Let x=z;,...,z, be some elements of a commutative
ring R and E be an R-module. Then the following statements are equivalent:

(i) x is [-sequence on E

() (0:zy--z)p=LE forall t,1<t<n

(i) zy- e EN(0:z)g =21 2,F forall t,1<t<n

(iv) (0:L)g=21---zE  forall t,1<t<n.

Proof. The equivalence of the first two conditions is given by Lemma
1.5, while Lemma 1.8 gives that (iii) and (iv) are equivalent. Having in view
(1.10) , we are through as soon as we show the implication (ii)= (iii) .

As already remarked, (ii) and (iii) stated for ¢ = 1 do coincide. We
may consider ¢ > 1 . Since (ii) gives 2, C (0 : z;---z,)g , we have
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-z EC(0:z)pNay--z,E . Take f := ez, -7, € (0: 24)g, so
that e € (0: zy---2,)g = I,E acoording to (ii) . Then there exist suitable
€1,...,e € F such that e = e;jz; + - - + e;x;, . Therefore

2 2 2
f= €1T1Ty ... Ty—1 T €221%5 " Ty—1 + - + € 1T1T2* "~ T;_| + €T1T2 " - - Ty.

In this sum,all but the last term are zero because by (ii) (0 : z1z2- - z,-1)g =

I;_FE . Thus f = e;z12,- - -z, and
-z EN0:2)g C zy20 - 3, E

]
Remark 1.12 As Example 1.7 shows, in general condition (0 : I,)g =

Ty ---z,F alone does not imply z;---2,.1E£N(0: z,)g = 2, -2,E , nor
the fact that x is an [-sequence on F .

2 Properties

The basic property is obvious and apparently innocuous, so much surprising
are its consequences.

Lemma 2.1 Ifx is an l-sequence on E, then xf‘E =0 forall t,1<t<
n.

Corollary 2.2 Every element of an [-sequence is nilpotent, therefore the
tdeal they generate is proper.

Proposition 2.3 Any two elements of an l-sequence generate distinct
ideals.

Proof. Suppose, by way of contradiction, that the thesis does not hold.
Then, by (1.4), we may assume that z; R = z;R for some 1 < ¢t < n . Since
T, = az; and z, = bz, for suitable a,b € R ,onegets 1 —abe€ (0: z;) =z, R.
So 1 — ab is nilpotent, whence it follows that ab =1 — (1 — ab) is invertible.
This in turn implies (I;—; : z;) = R . On the other hand, (I;-; : z;) = I,
and we get a contradiction with (2.2) . u

Consider a short exact sequence of R-modules

(%) 0— E'-S5ESE" — 0.




We shall examine how are related the properties of being /-sequence on
the modules appearing in (*) .

Lemma 2.4 If x is an l-sequence on E” and z?E C I,_E for all
t,1 <t < n, then the induced sequence

0 — E'/xE' — E/xE — E"[xE" — 0

1S exact.

Proof. It is sufficient to obtain the property in the case n =1,z = z;

For any m’ € E',m € E such that u(m’) = zm one has v(m) € (0 :
z)pr = zE" . Since v is onto, there exists n € E such that v(m) = zv(n) ,
whence it follows m — zn = u(n’) for a certain n’ € E’ . Therefore u(m’) =
zm = z(m — zn) = u(zn’) , whence m’ = zn’ . Thus the homomorphism
E'/xE' — E/xFE induced by u is one-to-one . n

Proposition 2.5 Ifx isl-sequence on E” , then the following statements
hold:

1) If x is l-sequence on E | then x is l-sequence on E' .

2) If x is [-sequence on E’ and also on R , then x is I-sequence on E .

Proof. From (1.4) and (2.4) it results that we may assume w.l.o.g. n =
l,z =z, . .

If x is I-sequence on E and m' € (0: z)g , then u(m’) € (0: z)g = zF,
say , u(m') = zm . The same reasoning as in the proof of the previous lemma
gives m' € zE' . Thus (0: z)g C zE’ . Since z?u(m') = 0 for all m’ € E'
and since u is injective, one has z?E’ = 0 , whence zE' C (0: z)p .

Let us prove now 2). For any m € (0 : z)g one gets v(m) € (0 : z)gn =
zE" . Therefore one may find n € E and m’ € E’ such that m —zn = u(m’).
Then zu(m’) = em —z’n = 0 because 22 = 0 by the hypothesis of 2) . Hence
m’ € (0: z)g and so m € zE . The other inclusion zE C (0 : z)g is a direct
consequence of the fact that 22 =0 . n

Remark 2.6 In the second part of the previous result , the hypothesis
that the given elements form an [-sequence on R is not needed if the exact
sequence (*) splits. However, in general it is not superfluous.

Example 2.7 Let X and Y be indeterminates over a field K and denote
by z and y their images in the ring R := K[X,Y]/(X* Y*) . Consider the
canonical injection u of E' := z?R into E := R . Then E" := E/E' ~




K[X,Y]/(X? Y*) and it is easily seen that z is I-sequence on E’ and also
on E” | though it is not [-sequence on F .

Theorem 2.8 If x is [-sequence on E , then the following statements
are equivalent:

(i) x ts [-sequence on E"

(ii) x us [-sequence on E’

(1) LENu(E) = Lu(E') forall t,1 <t<n

Proof. We already know that (i) implies (ii) .

Suppose now that (ii) holds. For ¢ between 1 and n and m’ € E’ such that
u(m') € LE , weget by (1.5) z;--- zyu(m’) = 0. Hencem' € (0: z; -+ z,)p.
Therefore ,E Nu(E’) C Liu(E') . As the other inclusion is always true, we
have obtained condition (iii) .

Next we show that (ii) is a consequence of (iii) . Fix a positive integer
t,1 <t <n If m"e€ (Li-1E' : z¢)p, then u(m') € (L1, F : z,)g = LE.
From (ii1) it follows u(m') € Iu(E’) . Since u is injective, one gets m’ € LLE'
and thus (I;_1E’ : z;)gr C ,E' . On the other hand, for m’ € E’ one has

u(z?m’) = z2u(m’) € [,_,ENu(E') since x is l-sequence on E

= I,_1u(E) by (iii)

Using again the injectivity of u , it results z?m’ € I,_;E’ . Therefore
(It._lEl : xt)E’ = ItE, .

Finally, let us prove the implication (iii) = (i) . For m” € (0 : z;)g~
consider m € E and m' € E' for which m” = v(m) , zym = z,u(m’) . Then
m —u(m') € (0 : z1)g = ©;E , so that m = u(m’) + zyn withn € E .
Passing to E" we get m" = z,v(n) € z;E"” . Therefore (0 : z1)gr C z,E".
The opposite inclusion follows from the surjectivity of v and the relation
2}E=0.

Actually, for any ¢,1 <t < n, the relation z?E C I,_, F and the fact that
v is onto imply z?E” C I, 1E" , or in other words LE" C (I,_E" : z,)gn.
Ift > 1 and my,...,m; € E are such that z,v(m;) = z;v(my) +--- +
z;_1v(my_q), then

My — T1My — - — Ty_1My_1 = u(ml)
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for a suitable m’ € E' . Since x is [-sequence on E, z?m, € I,_,E , whence
it results zu(m') € L,;E Nu(E’) = L,_1u(E') . As u is injective, one
gets zy;m’ € I,_1E' . We already know that x is l~sequence on E' , and
therefore m’ € (I,_1 £’ : z;)gr = I,E'. Choose some n},...,n, € E' for which
m' = zn} + --- + z;n; . Then it follows m, — u(n}) € (I[;-1F : z:)g = LE.
Hence v(m;) € I,LE” . As m, was a preimage of an arbitrary element of
(I;_1E" : z,)gn , one has obtained (I;_E" : z;) C LE" . =

Remark 2.9 If x is not [-sequence on E, then the statements (i) and (ii)
are not anymore equivalent. The example below shows also that in general
(1) does not imply condition (iii) .

Example 2.10 Suppose that z is a non-zero divisor in the ring R , so
that there exists an exact sequence 0 — R—R — R/z?R — 0 , where
u is multiplication by 2% . Clearly z is I-sequence on E” := R/z*R , it is not
l-sequence on E':= R and RN z?R = 2’R # z°R = zu(F') .

As an application of these transfer properties we examine I-sequences on
the graded module associated to a decreasing filtration of submodules.

Proposition 2.11 Let F := (F'E);»o be a decreasing filiration of sub-
modules of a module E and G := @,;50F'E/F'™ E be the associated graded
module. An element z € R such that z?F°FE = 0 is l-sequence on G if and
only if z is |-sequence on F°E/F'E for allt >1 .

Proof. Clearly, z is I-sequence on G if and only if it is /~sequence on
F*E/F*t'E for allt > 0. Stated in the given module E , this last condition
is rewritten as

(*)  (FE:z2)pgp =zF'E+ F'YE forallt>0.

Similarly, z is {~sequence on FPE/F'E for all t > 1 precisely when it
satisfies

(**)  (F'E:z)pogp =zF°E+ F'E forallt>1.

We have to show the equivalence of (*) and (**).
We argue by induction on ¢ that z is I-sequence on F°E/F'E , provided
z is l-sequence on G. By (*), this is true for ¢ = 1 . So let us consider
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e € (F'E : 2)pop C (F'"'E : z)pog for some value of ¢ greater than one. By
(**) written for t —1 we get e = z fo+ f;_; , for some fy € F°FE |, f,_; € F*"1E.
From F'E > ze = z%fy + zfi_, = zf,_1 it follows f,_; € (F'E : z)pi-1g .
Then (*) yields f;—; = zg + f; for some f, € F'E , g € F'"'E . Therefore
e =2zfo+xg+ fi € zF°E + F'E . Since always one has zF°E + F'E C
(F'E : z)pog , we have checked condition (**) for t.

Conversely, suppose that (**) is fulfilled for all t > 1. Then (2.5) applied
to the canonical exact sequence of modules

0 — F"'E/F'E — F°E/F'E —s F°E/F*'E — 0

gives that z is [-sequence on F*'E/F'E for allt > 1 . (]

3 Strong [-sequences

We shall keep the same notations as in the previous section.

Definition 3.1 The given elements x := z,,...,z, form a strong [-
sequence on E if x is an [-sequence on E and z2E =0 for all ¢,1 <t < n.

Examples 3.2 1. Obviously an [-sequence of length one is strong.

2. The construction given in Example 1.2 gives strong l-sequences which
may have arbitrary length.

3. To see that not every l-sequence is strong we invoke once again the
ring R := K[X]/(X*) introduced in Example 1.7 . In this ring z; := z? ,
z; := ¢ form an l[-sequence having the property z? = 0 # z2 .

4. Let x be a strong [-sequence on R and let E be a module such that x
is I-sequence on F. Then x is a strong [-sequence on FE .

5.The first element of an I-sequence satisfies 2F = 0 . Hence it follows
that x i1s strong, provided that any permutation of it is an /-sequence. Actu-
ally, this sufficient condition is also necessary in order that a given I-sequence
be strong.

Theorem 3.3 Let x=z1,...,2, be an l-sequence on E. Then the follow-
ing statements are equivalent:

(i) x is a strong l-sequence on E

(i1) any permutation of x is an l-sequence on E .
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Proof. Since the symmetric group is generated by the transpositions
(1,2),(2,3), ... , (n-1,n) , it is sufficient to show that, forallt =1,...,n— 1,
Tiy...,Ti1, Te41, Tty Te42,- - -, Tn 1S an [-sequence along with z,,...,z,. Hav-
ing in view (1.3) and (1.4) , everything boils down to the case where t =1,
n=2.

As 2iF = 0, certainly z,E C (0 : z,)g .

Take e € E such that ez = 0. Then e € (0: z2)g C (21F : z9)p =
(z1,22)F | say , e = e;x; + eyzy for some €;,eo € E . Since 0 = ezy =
e1Z1T2 + €322 = €171z, (where the last equality holds because x is a strong
[-sequence on E ) , we get by (1.5) e; € (0 : z122)g = (21,22)E . Thus
ey = fizy + frz, , with f, f; € E and therefore ‘

e =e1Ty + ey = (fiz1 + fozo)z1 + €22 = (fozy + €3)z9 € 7, F.

As e was an arbitrary element of (0 : z;)g , we have obtained altogether
(0:z9)g =z2F .

Now consider e € (zoF : z,)g , i.e. ez; = fz, for some f € E . Then
it follows f € (z1F : z3)p = (z1,22)E , let us say f = fiz, + foz, .
The relation ex; = fz, is rewritten in the form er; = fiz;z, , whence
one gets e — fiz, € (0 : 21)g = z:F |, that is e € (21,22)E . Therefore
(.’IIQE . Cl?l)E‘ g (CC],.’IZQ)E .

For the other inclusion we use again the granted condition z}E=0. =

Remark 3.4 It may happen that some permutations of an /-sequence
give again an [-sequence, while other permutations of the original I-sequence
do not have anymore this property.

For instance, let us examine in the Example 2.7 the [-sequence z; :=
22,19 = z,23 := Y%, x4 := y . Asis easily seen, z3, 2y, T4, 2, is an [-sequence
too, while z4, z1, T, T3 is not [-sequence.

One way to phrase the difference between an [-sequence and a strong
one is the following: for a strong l-sequence we know exactly the order of
nilpotency for each of its elements. Correspondingly, we can get the order of
nilpotency of the ideal generated by a strong [-sequence.

Proposition 3.5 Let z,,...,z, be a strong l-sequence on E and denote

by I the ideal generated by these elements. Then I"E # 0 = I"T'E .

Proof. Each monomial in z, ..., z, generating I™*! is a multiple of the
second power of some z, , for a suitable ¢,1 <t < n ( by the pigeonhole
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principle). Therefore I"*'E = 0 , because z?E = 0 by hypothesis. For the
same reason one has I"E = zyz,...2,E . Were I"E = 0 , then would follow
from (1.5) £ = (0 : zy25...2,)g = IE ,whence E=IE=...=]"E =0,

contradiction. ]

Remark 3.6 One may prove that the ideal I generated by an arbitrary
l-sequence on E verifies relations I"F # 0 = I*E for u := 2" , where n is the
length of the given l-sequence on E. As Example (3.2.3) shows, the value of
u can not be diminished in general.

The result we are going to prove now shows another property specific to
strong [-sequences and which is not shared by all I-sequences. It is reminis-
cent of the theory of regular sequences. ‘

Proposition 3.7 For any strong l-sequence on E one has

ﬂt g, E=z,--2,F foralt, 1<t<n.

=1
Proof. Indeed, for ¢t and x as above we get

gy B =(0:L)g =N (0: zi)g = Ni_,z;E.

The first equality holds for any /-sequence on E by (1.11) , while the latest

invokes the hypothesis that the given [-sequence is strong. =

The transfer of the property of being /[-sequence between modules ap-
pearing in a short exact sequence is also satisfactory. A reasoning similar to

that used to obtain (2.5) and (2.8) gives

Theorem 3.8 For a short exact sequence of modules (*) , the following
statements hold:
1) Suppose that x is a strong l-sequence on E”. Then:
a) If x is a strong [-sequence on E , then x is a strong |-sequence
on E' .
b) x is a strong l-sequence on E , provided that one of the addi-
tional conditions is fulfilled:
a) X is a strong l-sequence on E' and an |-sequence on R
B) x is l-sequence on E' and a strong |-sequence on R.
2) Assume that X is a strong |-sequence on E. Then x is strong |-sequence
on E" if and only if x is a strong |-sequence on E' .
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Theorem 3.9 If x is a strong [-sequence , then the coefficients of any
syzygy of x belong to the ideal I := xR .

Proof. Induct on the length n.

For n = 1 , the thesis is a direct consequence of the defining relation
tR=(0:1).

Suppose that n > 2 and a4, ..., a, € R aresuch that ayz;+- - -+a,z, = 0.
Then a, € (In-1 : z,) = I, , which yields a, = bz + - -+ + b,z, for some
b; € R . Using this relation in the previous equality one obtains (a; +
bizp)zy + -+ + (an-1 + bu1Zn)Taoy = 0, because z2 = 0 . By inductive

hypothesis, the coefficients of this syzygy of the I-sequence zy,...,z,_; are
elements of the ideal (z1,...,2,-1)R = I,_; , so that a; € I, + 2, R = I,,
forall:=1,...,n. : n

4 Free resolution for the ideal generated by
a strong [—sequence

In this section we shall construct a free resolution for the ideal generated by
a strong [-sequence.The main tool to achieve the aim is the freeness of the
R/I - module I/I? .

Obviously, changing the sign of some elements of a (strong) I-sequence
does not destroy the property. Therefore, the description given below for the
map (%) is licit.

Theorem 4.1 The R-module R/I has a free resolution (Fy(x),p.(x))
such that for allt > 0, Fy(x) is the free R—-module of rank by(n) := ("+:_1) ,

e1(x)=(z1 z2 ... z,)and fort>2
W¢_1($1,—$2,...,—$n) 0
Pu(x) = )
0 z,U, l W?(xzaxs,---,xn)

where Us ts the unit matriz of order s := ("j’_t;s) = s(n,t) .
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For the sake of convenience, we need one more piece of notation. If
X=ZIy,...,T, is the given strong [-sequence, one denotes z := z;, and y:=z,,
ey Ty '

Let us proceed to prove by double induction: on the length n and on ¢ .

In the case where n =1 , it is clear that all F,’s coincide with R and all
maps @;(z;) are given by multiplication by z; . This is exactly the conclusion
of the theorem , up to usual conventions.

Forn = 2, let us examine a first syzygy az; + bz, = 0 for the given strong
l-sequence z,,z, . Theorem 3.9 yields b = cz, +dz, for some ¢,d € R . Then
(a + cz9)r; = 0 and therefore there exists e € R for which a = ez, — cz,. In
other words the vector “"(a, b) belongs to the image of the matrix

(1 —z2 O
= (5002
Conversely, it is easily checked that the first syzygy module of x contains the
image of the homomorphism R® — R? given by the matrix ¢(x) .
So let us suppose that ¢ > 2 and ¢;_;(z;,2;) is a t — 1 by ¢ matrix of the
form

1-2(T1, —12) l 0

pi-1(T1,22) =
0 e 0 Ty | To
For any (aq,...,a;) in the kernel of ¢;_;(z;,z;) one has
(1) “(ary ..., ai1) € ker@y_o(zq, — )
and
(2) ay-171 + a3y = 0.

From (1) and the inductive hypothesis on ¢ it results

a bl ( ) b.l
. —olzy,
=90t—1(1'1,°‘172) : = | 2T T2 b
t—1
¢i-1 by bi_1z1 + bz,
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for suitable b;,...,b; € R . This is equivalent to

by
(3) tr(al,...,at_z) :SDt—2($1,-T2) ; ) ,
bi—1

and

(4) a1 = b_1z1 + byzo.
Using (4) in (2) , one obtains
(5) a; = —bxy + b1z,

for some b;; € R . Rewrite (3), (4) and (5) in the equivalent forms

@t—z(ﬂfl, 272) 0 bl
ay
: = b1
a; 0 I -z, 0 —b,
0 0 T, To bt+l
b
301—1(731, —1‘2) 0 .
= b,
—-b
0 T T t
1 2 bt+1

At this point we have checked that ker ¢, 1(z;,z;) C Im (2, 25),
where ¢,(z1,z5) is the t by ¢t 4+ 1 matrix appearing in the last equality.
The converse inclusion follows from the computation of the product P :=
0i1—1(z1, 2)pe(z1,22) . In the first ¢t — 2 rows and t columns one obtains
Yi—2(T1, —Z2)ps-1(1, —22) , which is zero by induction on ¢t . The last col-
umn of P contains in the first t — 2 rows only zeroes, while the last row of P
is easily seen to be the product of the row vector (z,,z,) with the 2 by ¢ +1
matrix (0 ¢2(z1,z2)) . By the inductive hypothesis, the entries in the last
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row of P are all zero, and so P is the zero matrix, as desired. This concludes
the case n = 2 .

Now let n be greater than 2 and ¢t = 2 . Take any ay,...,a, € R such
that a;z; + -+ + apz, = 0, and use again Theorem 3.9 to obtain

(6) ar=bzy+ - + bz,

and

(a2 + byz1)zo + -+ 4 (an + bpzy)zn =0
By induction on n , there exist ¢;,...,c,, € R, m := (’2‘) such that

az + bz o1
: =pa(y) | :
an + bnl'l Cm
or
as bg (5]
(7) = | ey
an b, Cm

With the aid of relations (6) and (7) express the column vector

“(a,...,a,)
as the product of the matrix
Ty —ZTy ...—ZI, 0
pa(x) :=
0 z1Un l e2(y)
with the column vector (b, —bs,...,—bn,c1,...,cm) . Note that y(x) has

1 2
as stated in the conclusion of Theorem 4.1 .

Denoting b;(n) = n and ¢,(x) : R* — R the homomorphism whose
matrix with respect to canonical basis is (z; ... z,), one has obtained
ker ¢;(x) C Im (%) . On the other hand, invoking once again the inductive
hypothesis on n , one gets

n rows and n + m = (") + (") = ("?;1) = by(n) columns, precisely as many
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y —T2 —I3 ... —ZIg 0

T 0 ... 0
©01(x)p2(x) :( T, T, ... ) 0 T | ©2(y)
:(O o 0 (2o ... xn)c,og(xg,...,zn))) =0 .

Thus we have established the starting step in the induction on ¢ .
Suppose then that the conclusion of the theorem is true for t — 1 . Let us
denote

_[n+t-=3 _[n+t=2 —— n+t—4 . nt+t—4
PPl e—2 )97 o1 )" T Uiz )70 ins )

so that ¢, 1(x) is a p by ¢ matrix, ¢;_o(x) is 7 by p , while wi-1(y) is v by

q—p . For "(ay,...,a,) € ker p;_1(x) one writes
a;
Wt—?(l', —}’) ’ 0 .
0 = ap, | =
0 U, ‘Pt—l(}’) E
Qq
(8) a;
(fot—Z(xa "}’) :
ap
Ar41 ‘ Ap41
z : +oi1(y)
a, a,

From the first r rows it follows ( by induction on t) that there exist
by, ...,by € R such that
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a, bl ngt——2($7 y) 0 bl
P =ealz,—y) = :
i b, 0 21U, | @i-1(—Yy) by
by
(9) @t—2($7y) :
b, /
br+1 bp+1
T : +oi-1(—y) :
b, b,
Then the last p — r equations of (8) become
ar41 Ap+1 bpt1
0 =1z : + pi1(y) : = T10,1(—Y) :
ap aq by
Qpt1 Ap41 — xlbp+1
+pi-1(y) : = pi-1(Y) :
a, ag — T1b,
Therefore one has for suitable w := ("+:'2) elements ¢;,...,c, € R

Op+1 b1 c1
(10) (2):m(s)+%m(s)
aq bq Cyw

Putting (9) and (10) together , one gets
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a;
: pr1(z,—y)|
a, _ b
ap-+1 bp+] c
(; T : +¢4(y)
g
(11) v o
by
"Pt—l(za ’—Y) 0
_ b,
= N
0 21Uy | wu(y)
Cy

Denoting by ¢;(x) the matrix appearing in the last relation, it is clear that
it has the structure predicted by the statement of Theorem 4.1 . Moreover,

n+t—3
q—p"< t—1 )—S(Tl,t),

It remains to show that the image of the matrix ¢;(x) is contained in the
kernel of ¢;_;(x) . Keeping the same notations, we get

P1-2(,~Y) l 0 ei-1(z, —Y) l 0

pr1(X)pe(x) =

0 .’ElUu

wi-1(y) 0 21Ug—p | @:(¥)

In the upper left r by ¢ block of this product matrix one gets
‘Pt—-2(x7 '_y)s‘;t—l(ma "‘}’) )
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which is zero by induction on ¢t . The other entries in the first r rows are
obviously zero. To express in a convenient way the others p — r rows, we use
the block form of the matrix ¢,_;(z, —y). Since v = p — r, we get

0 fIIlUv

pr-1(—y) ‘ 0

(mlUv I er-1(y) )

0 I 0 .Tqu_p I s@t(}’)

Clearly, the first r columns of the product matrix are all zero, while the
others coincide with the following product

Z'l(jv Sot—l(y) l 0

( z,U, I ¢i-1(Y) )

0 e:(y)

Since z2 = 0 , the first v columns are zero . The others are given by

z1Uq—p

(101 (-y) + ?1@:-1(}’) | o (¥)ee(y) ).

The former block is zero because ¢,_;(—y) = —¢,_1(y) , the latter is zero
by induction on n . |

Corollary 4.2 If the ring is local, the free resolution given by (4.1) is
minimal.
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