

INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 02503638

OPEN SETS WITH STEIN HYPERSURFACE SECTION

IN STEIN SPACES

bу

M. COLTOIU

and

K. DIEDERICH

Preprint No. 5/95

OPEN SETS WITH STEIN HYPERSURFACE SECTION IN STEIN SPACES

by
M. COLTOIU*) and K. DIEDERICH**)

- *) Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, RO-70700 Bucharest, Romania.
- **) Mathematics, University of Wuppertal, Gausstr. 20, D-42097 Wuppertal, Germany.

Open sets with Stein hypersurface sections in Stein spaces

M. Coltoiu and K. Diederich

1 Introduction

Let $D \subset \mathbb{C}^n$, $n \geq 3$, be an open set such that for any linear hyperplane $H \subset \mathbb{C}^n$ the intersection $H \cap D$ is Stein. According to a theorem of Lelong [13] it follows in this case, that D is itself Stein. Using the solution of the Levi problem by Docquier-Grauert [7], this result can easily be generalized to open subsets in Stein manifolds. Therefore, it is natural to raise the following question (see [4]):

Problem of hypersurface sections: Let X be a Stein space of dimension $n \geq 3$ and $D \subset X$ an open subset such that $H \cap D$ is Stein for every hypersurface $H \subset X$. Does it follow that D is Stein?

This question is closely related to the following classical form of the Levi problem (for a survey see [18]):

Local Steiness problem: Is a locally Stein open subset D of a Stein space X necessarily Stein? A complete answer to this problem is not known. There are only partial results (see [4] for a discussion of this subject). In particular, for dim X = 2 the answer is known to be positive [1].

It is immediate, that, therefore, a positive answer to the "Problem of hypersurface sections" would, by induction over the dimension, also provide a positive answer to the "Local Steiness problem".

Concerning the "Problem of hypersurface sections" it is known (see [2]), that D as above is indeed Stein, if one knows in addition, that $H^1(D, \mathcal{O}) = 0$ (in this case the hypothesis $\dim X \geq 3$ is not necessary; a weaker statement was already proved in [9]).

In this note we, now, produce a counter-example to the "Problem of hypersurface sections". This shows, that, in order to get the Steiness of D some additional hypothesis (like $H^1(D,\mathcal{O})=0$ as above) is necessary, if X is singular. More precisely, our main result can be stated as follows:

Theorem 1.1 There is a normal Stein space X of pure dimension 3 with only one singular point, and a closed connected analytic subset $A \subset X$ of pure dimension 2, such that $D := X \setminus A$ has the following properties:

- a) D is not Stein;
- b) For every hypersurface $H \subset X$ (i. e. closed analytic subset of X of pure codimension 1) the intersection $H \cap D$ is Stein.

This shows again, that in the case of singular Stein spaces the situation may be drastically different from the smooth case (see also [8], [9], [11], [12], [19] for other examples concerning the Levi problem on singular Stein spaces).

2 Tools and Lemmas

For the construction of an example proving Theorem 1.1 some properties of weakly 1-complete manifolds will play an essential role. In order to fix the terminology we state

Definition 2.1 A complex manifold X is called weakly 1-complete if there exists a C^{∞} plurisubharmonic exhaustion function $\varphi: X \to \mathbb{R}$.

Notice, that even for complex manifolds with smooth boundary the requirement of being weakly 1-complete is much stronger than Levi-pseudoconvexity of the boundary (see [6]).

Nakano [15] proved the following generalization of the Kodaira vanishing theorem to weakly 1-complete manifolds:

Theorem 2.2 (Nakano) Let X be a weakly 1-complete manifold, K_X the canonical line bundle of X and E a positive line bundle on X. Then

$$H^{i}(X, K_{X} \otimes E) = 0 \text{ if } i \ge 1$$

 $H^{i}_{c}(X, E^{*}) = 0 \text{ if } 0 \le i < \dim X$ (2.1)

where E^* denotes the dual bundle of E.

Next we want to consider a special class of weakly 1-complete manifolds. For this we start from an arbitrary complex manifold S and a holomorphic line bundle $\pi: L \to S$. Then we denote by $\overline{\pi}: \overline{L} \to S$ the bundle obtained from $\pi: L \to S$ by adding the point at infinity to each fiber (i.e. $\overline{L} = \mathbb{P}(\mathcal{O}_S \oplus \mathcal{L})$ is the projective bundle associated to $\mathcal{O}_S \oplus \mathcal{L}$ where \mathcal{L} is the invertible sheaf corresponding to L). We write L_0 for the zero section of L and put $L_{\infty} := \overline{L} \setminus L$.

In the case where S is compact 1-dimensional, which is of particular interest to us, \overline{L} is a ruled surface and hence algebraic [3]. We show

Lemma 2.3 Assume that the complex manifold S is compact, 1-dimensional and let L be a topologically trivial line bundle on S. Then the surfaces L, $\overline{L} \setminus L_0$ and $\overline{L} \setminus (L_0 \cup L_\infty)$ are weakly 1-complete.

Proof: Since dim S = 1, S is Kähler and, therefore, the map $H^1(S, \mathbb{R}) \to H^1(S, \mathcal{O}_S)$ is surjective. Together with the fact, that L is topologically trivial, it follows that with respect to a suitable open covering of S the bundle L can be given by constant transition functions $\{g_{ij}\}$ with $|g_{ij}| = 1$ for all i, j. Hence, the function $\varphi := |w|^2$, where w is the coordinate along the fibers, is well-defined on L. Clearly, φ is a plurisubharmonic exhaustion function

on L. (Notice, that this function φ may depend on the chosen local trivializations of L.) Similarly, the functions $\frac{1}{|w|^2}$, $|w|^2 + \frac{1}{|w|^2}$ are well-defined, exhaustive and plurisubharmonic on $\overline{L} \setminus L_0$, $\overline{L} \setminus (L_0 \cup L_\infty)$ respectively.

This Lemma has as immediate consequence

Corollary 2.4 Under the assumptions of Lemma 2.3 we have: If F is any negative line bundle over \overline{L} and s a section of F defined on an open connected neighbourhood of L_0 (resp. L_{∞}), then s vanishes identically.

Proof: Indeed, from the Theorem of Nakano (Theorem 2.2) we get the vanishing $H_c^1(\overline{L} \setminus L_0, F) = 0$ (resp. $H_c^1(L, F) = 0$). Therefore, the given section s can be extended to a global section $\overline{s} \in H^0(\overline{L}, F)$. But $H^0(\overline{L}, F) = 0$ by Kodaira's vanishing theorem, since F is negative on \overline{L} .

The following Lemma will be crucial for the construction of our example:

Lemma 2.5 Let X be a compact, connected complex manifold of dimension k, $\pi: L \to X$ a holomorphic line bundle, and assume that there exists a compact analytic subset $A \subset L$ of pure dimension k such that $A \cap L_0 = \emptyset$. Then there is a positive integer λ such that the bundle L^{λ} is analytically trivial.

Proof: We define λ to be the sheet number of the ramified analytic covering $p:=\pi|A:A\to X$. Let $\{U_i\}$ be an open covering of X such that $L|U_i\simeq U_i\times\mathbb{C}$ and let $\{g_{ij}\}$ be the corresponding transition functions for L. For $x\in U_i$ the fiber $p^{-1}(x)$ can be written in the trivialization $L|U_i\simeq U_i\times\mathbb{C}$ as $p^{-1}(x)=\{s_1^{(i)}(x),\ldots,s_\lambda^{(i)}(x)\}\subset\mathbb{C}^\lambda$ if counted with multiplicities. Then the product $h_i(x):=s_1^{(i)}(x)\cdot\ldots\cdot s_\lambda^{(i)}(x)$ defines a holomorphic function on U_i . From the hypothesis $A\cap L_0=\emptyset$ it follows, that $h_i(x)\neq 0$ for $x\in U_i$. Moreover, $h_i(x)=g_{ij}^\lambda(x)h_j(x)$ when $x\in U_i\cap U_j$. Therefore, the collection $\{h_i\}$ defines a non-vanishing holomorphic section in L^λ showing that L^λ is analytically trivial.

The following Lemma is a special case of a more general result of Matsushima and Morimoto (see [14], Théorème 5):

Lemma 2.6 Let X be a complex manifold, $\pi: L \to X$ a holomorphic line bundle and assume that $L \setminus L_0$ is Stein. Then X is itself Stein.

For the convenience of the reader we give here a simple proof of this special case:

Proof: If $U \subset X$ is an open set such that L|U is trivial, then any holomorphic function G on $\pi^{-1}(U) \setminus L_0 \simeq U \times \mathbb{C}^*$ has a Laurent expansion along the fibers. The constant term of it is a holomorphic function g on U which does not depend on the choice of the trivialization. In this way we associate to any holomorphic function G on $L \setminus L_0$ a holomorphic function G on G

 $g \in \mathcal{O}(X)$ satisfies $g(x_{\nu}) = c_{\nu}$ and so X is holomorphically convex. Similarly, for any two points $x_1 \neq x_2$ in X there is a $g \in \mathcal{O}(X)$ with $g(x_1) \neq g(x_2)$. Consequently X is Stein. \square

Remark: The converse of this Lemma also holds in the sense, that the Steiness of X implies L and $L \setminus L_0$ being Stein.

For the convenience of the reader we recall the following result of Simha [17]:

Lemma 2.7 Let X be a normal Stein space of dimension 2 and $A \subset X$ a closed analytic subset without isolated points. Then $X \setminus A$ is Stein.

Remark: A more general result is proved in [5]: If X is a normal Stein space of dimension n and $A \subset X$ is a closed analytic subset without isolated points, then $X \setminus A$ is a union of (n-1) Stein open subsets. In particular, $X \setminus A$ is (n-1)-complete.

An immediate consequence of Lemma 2.7 is:

Corollary 2.8 Let X be a Stein space of dimension 2 and $A \subset X$ a closed analytic subset. Assume that for any point $x \in A$ and for any local irreducible component $X_{x,i}$ of X at x the point x is not isolated in $A \cap X_{x,i}$. Then $X \setminus A$ is Stein.

Proof: This follows immediately from Lemma 2.7 and the invariance of the Stein property under normalization (see [16]).

3 Construction of the example proving Theorem 1.1

In this section we, now, want to construct a normal Stein space of pure dimension 3 with only one singular point and a closed connected analytic subset $A \subset X$ of pure dimension 2 having the properties stated in Theorem 1.1.

We start with a 1-dimensional torus S and choose $\pi:L\to S$ to be a topologically trivial holomorphic line bundle on S such that no power L^k , $k=1,2,3,\ldots$, is analytically trivial. Let $\overline{\pi}:\overline{L}\to S$, L_0 , L_∞ be defined as in Section 2 and let $q:F\to \overline{L}$ be a negative line bundle on \overline{L} . We shall identify the zero section F_0 of F over \overline{L} with \overline{L} . By the results of Grauert [10] we can blow down F_0 to a point x_0 by a contraction map $p:F\to X$ such that $p(F_0)=\{x_0\}$ and X is a normal Stein space (X is, in fact, affine algebraic), p is proper, holomorphic and induces a biholomorphism $F\setminus F_0\simeq X\setminus \{x_0\}$.

We define $A := p(q^{-1}(L_0 \cup L_\infty)) \subset X$. Then A is a closed connected analytic subset of X of pure dimension 2, and we put $D := X \setminus A$. We show at first:

Claim 1: D is not Stein.

Clearly D is biholomorphic to $q^{-1}(\overline{L}\setminus (L_0\cup L_\infty))\setminus F_0$. If D would be Stein, then, by Lemma 2.6, the manifold $\overline{L}\setminus (L_0\cup L_\infty)$ also would be Stein. And, therefore, again by Lemma 2.6, also S would be Stein. This is obviously not possible. Consequently D is not Stein.

- [11] Grauert, H.: Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963), 377–391.
- [12] Grauert, H., Remmert, R.: Konvexität in der komplexen Analysis, Comm. Math. Helv. 31 (1956), 152–183.
- [13] Lelong, P.: Domaines convexes par rapport aux fonctions plurisousharmoniques, J. An. Math. 2 (1952), 178-208.
- [14] Matsushima, Y., Morimoto, A.: Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155.
- [15] Nakano, S.: Vanishing theorems for weakly 1-complete manifolds, Number Theory, Algebraic Geometry and Commutative Algebra (Kinokuniya, Tokyo), pp. 169–179.
- [16] Narasimhan, R.: A note on Stein spaces and their normalizations, Ann. Scuola Norm. Sup. Pisa 16 (1962), 327-333.
- [17] Simha, R. R.: On the complement of a curve on a Stein space of dimension two, Math. Z. 82 (1963), 63-66.
- [18] Siu, Y. T.: Pseudoconvexity and the problem of Levi, Bull. AMS 84 (1978), 481-511.
- [19] Ueda, T.: Domains of holomorphy in Segre cones, Publ. RIMS, Kyoto Univ. 22 (1986), 561–569.

Mihnea Coltoiu Institute of Mathematics Romanian Academy P.O.Box 1-764 Ro-70700 Bucharest ROMANIA Klas Diederich
Mathematics
University of Wuppertal
Gausstr. 20
D-42097 Wuppertal
GERMANY