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Open sets with Stein hypersurface sections in Stein
spaces

M. Coltoiu and K. Diederich

1 Introduction

Let D C C", n > 3, be an open set such that for any linear hyperplane H C C" the
intersection H N D is Stein. According to a theorem of Lelong [13] it follows in this case,
that D is itself Stein. Using the solution of the Levi problem by Docquier-Grauert [7], this
result can easily be generalized to open subsets in Stein manifolds. Therefore, it is natural
to raise the following question (see [4]):

Problem of hypersurface sections: Let X be a Stein space of dimension n > 3 and D C X
an open subset such that H N D is Stein for every hypersurface H C X. Does it follow that
D is Stein? .

This question is closely related to the following classical form of the Levi problem (for a
survey see [18]):

Local Steiness problem: Is a locally Stein open subset D of a Stein space X necessarily Stein?

A complete answer to this problem is not known. There are only partial results (see [4] for a
discussion of this subject). In particular, for dim X = 2 the answer is known to be positive
[1].

It is immediate, that, therefore, a positive answer to the ”"Problem of hypersurface sections”
would, by induction over the dimension, also provide a positive answer to the ”Local Steiness
problem”.

Concerning the "Problem of hypersurface sections” it is known (see [2]), that D as above
is indeed Stein, if one knows in addition, that H*(D,O) = 0 (in this case the hypothesis
dim X > 3 is not necessary; a weaker statement was already proved in [9]).

In this note we, now, produce a counter-example to the "Problem of hypersurface sec-
tions”. This shows, that, in order to get the Steiness of D some additional hypothesis (like
H'(D,0) = 0 as above) is necessary, if X is singular. More precisely, our main result can
be stated as follows:

Theorem 1.1 There is a normal Stein space X of pure dimension 3 with only one singular
point, and a closed connected analytic subset A C X of pure dimension 2, such that D :=
X \ A has the following properties:

a) D is not Stein;

b) For every hypersurface H C X (i. e. closed analytic subset of X of pure codimension
1) the intersection H N D is Stein.



This shows again, that in the case of singular Stein spaces the situation may be drastically
different from the smooth case (see also [8], [9], [11], [12], [19] for other examples concerning
the Levi problem on singular Stein spaces).

2 Tools and Lemmas

For the construction of an example proving Theorem 1.1 some properties of weakly 1-com-
plete manifolds will play an essential role. In order to fix the terminology we state

Definition 2.1 A complex manifold X is called weakly 1-complete if there exists a C*®
plurisubharmonic exhaustion function ¢ : X — IR.

Notice, that even for complex manifolds with smooth boundary the requirement of being
weakly 1-complete is much stronger than Levi-pseudoconvexity of the boundary (see [6]).

Nakano [15] proved the following generalization of the Kodaira vanishing theorem to weakly
1-complete manifolds:

Theorem 2.2 (Nakano) Let X be a weakly 1-complete manifold, Kx the canonical line
bundle of X and E a positive line bundle on X. Then

H(X,Kx @ E)=0if i > 1

. ezl (2.1)
H(X,E*)=0if 0 <: < dimX

where E* denotes the dual bundle of E.

Next we want to consider a special class of weakly 1-complete manifolds. For this we start
from an arbitrary complex manifold S and a holomorphic line bundle 7 : L — S. Then we
denote by 7 : L — S the bundle obtained from 7 : L — S by adding the point at infinity
to each fiber (i.e. L = IP(Os® L) is the projective bundle associated to Og @ L where £
is the invertible sheaf corresponding to L). We write Lo for the zero section of L and put

Lo:=L\L.

In the case where S is compact 1-dimensional, which is of particular interest to us, L is a
ruled surface and hence algebraic [3]. We show

Lemma 2.3 Assume that the complex manifold S is compact, 1-dimensional and let L be
a topologically trivial line bundle on S. Then the surfaces L, L\ Lo and L \ (Lo U L,,) are
weakly 1-complete.

Proof: Since dimS = 1, S is Kahler and, therefore, the map H(S,IR) — H(S,Os) is
surjective. Together with the fact, that L is topologically trivial, it follows that with respect
to a suitable open covering of S the bundle L can be given by constant transition functions
{g:;} with |g;;] = 1 for all ,j. Hence, the function ¢ := |w|?, where w is the coordinate
along the fibers, is well-defined on L. Clearly, ¢ is a plurisubharmonic exhaustion function




on L. (Notice, that this function ¢ may depend on the chosen local trivializations of L.)

Similarly, the functions W, lw|? + l——|—2— are well-defined, exhaustive and plurisubharmonic
w w

on L\ Lo, L\ (LoU L) respectively. O
This Lemma has as immediate consequence

Corollary 2.4 Under the assumptions of Lemma 2.3 we have: If F is any negative line
bundle over L and s a section of F' defined on an open connected neighbourhood of L, (resp.
L), then s vanishes identically.

Proof: Indeed, from the Theorem of Nakano (Theorem 2.2) we get the vanishing H}(T \
Lo, F) = 0 (resp. H}(L, F) = 0). Therefore, the given section s can be extended to a global
section s € H °(L,F). But H°(L, F) = 0 by Kodaira’s vanishing theorem, since F is negative
on L. O

The following Lemma will be crucial for the construction of our example:

Lemma 2.5 Let X be a compact, connected complex manifold of dimension k, 7 : L — X
a holomorphic line bundle, and assume that there exists a compact analytic subset A C L
of pure dimension k such that AN Ly = (). Then there is a positive integer A such that the
bundle L* is analytically trivial.

Proof: We define A to be the sheet number of the ramified analytic covering p := 7|A :
A — X. Let {U;} be an open covering of X such that L|U; ~ U; x C and let {g;;} be
the corresponding transition functions for L. For z € U; the fiber p~!(z) can be written
in the trivialization L|U; ~ U; x C as p~1(z) = {sli)(:c), . .,sg:)(x)} C € if counted with
multiplicities. Then the product h;(z) := sgi)(x) e sf\i)(x) defines a holomorphic function
on U;. From the hypothesis AN Ly = @ it follows, that h;(z) # 0 for = € U;. Moreover,
hi(z) = g};(x)h;(z) when & € U;NU;. Therefore, the collection {h;} defines a non-vanishing
holomorphic section in L* showing that L* is analytically trivial. O

The following Lemma is a special case of a more general result of Matsushima and Morimoto
(see [14], Théoréme 5):

Lemma 2.6 Let X be a complex manifold, = : L — X a holomorphic line bundle and
assume that L \ L is Stein. Then X is itself Stein.

For the convenience of the reader we give here a simple proof of this special case:

Proof: If U C X is an open set such that L|U is trivial, then any holomorphic function G
on 7 Y(U)\ Lo ~ U x C* has a Laurent expansion along the fibers. The constant term of it
is a holomorphic function g on U which does not depend on the choice of the trivialization.
In this way we associate to any holomorphic function G on L \ Lo a holomorphic function
g on X. Let now {z,} be an infinite discrete sequence of points in X and ¢, € C arbitrary
complex numbers. Since L\ Ly is Stein, there is a holomorphic function G on L\ Ly such that
G|r(z,) \ {0} = ¢, for every v € IN. Therefore the corresponding holomorphic function




g € O(X) satisfies g(z,) = ¢, and so X is holomorphically convex. Similarly, for any two
points ; # z, in X there is a g € O(X) with g(z;) # g(z;). Consequently X is Stein. O

Remark: The converse of this Lemma also holds in the sense, that the Steiness of X implies

L and L\ Lo being Stein.

For the convenience of the reader we recall the following result of Simha [17]:

Lemma 2.7 Let X be a normal Stein space of dimension 2 and A C X a closed analytic
subset without isolated points. Then X \ A is Stein.

Remark: A more general result is proved in [5]: If X is a normal Stein space of dimension
n and A C X is a closed analytic subset without isolated points, then X \ A is a union of
(n — 1) Stein open subsets. In particular, X \ A is (n — 1)-complete.

An immediate consequence of Lemma, 2.7 is:

Corollary 2.8 Let X be a Stein space of dimension 2 and A C X a closed analytic subset.
Assume that for any point € A and for any local irreducible component X, ; of X at x the
point x is not isolated in AN X, ;. Then X \ A is Stein.

Proof: This follows immediately from Lemma 2.7 and the invariance of the Stein property
under normalization (see [16]). -0

3 Construction of the example proving Theorem 1.1

In this section we, now, want to construct a normal Stein space of pure dimension 3 with
only one singular point and a closed connected analytic subset A C X of pure dimension 2
having the properties stated in Theorem 1.1.

We start with a 1-dimensional torus S and choose 7 : L — S to be a topologically trivial
holomorphic line bundle on S such that no power L*, k = 1,2,3,..., is analytically trivial.
Let ¥ : L — S, Lo, Lo, be defined as in Section 2 and let ¢ : F — L be a negative line
bundle on L. We shall identify the zero section Fy of F' over L with L. By the results of
Grauert [10] we can blow down Fj to a point z by a contraction map p : F' — X such that
p(Fo) = {zo} and X is a normal Stein space (X is, in fact, affine algebraic), p is proper,
holomorphic and induces a biholomorphism F'\ Fy ~ X \ {zo}.

We define A := p(¢™!(LoU L)) C X. Then A is a closed connected analytic subset of X of
pure dimension 2, and we put D := X \ A.
We show at first:

Claim 1: D is not Stein.

Clearly D is biholomorphic to ¢™}(L\ (LoU L)) \ Fo. If D would be Stein, then, by Lemma
2.6, the manifold L \ (Lo U Lo,) also would be Stein. And, therefore, again by Lemma 2.6,
also S would be Stein. This is obviously not possible. Consequently D is not Stein.
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