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Completely J-Positive Linear Systems of Finite Order*

Aurelian Gheondea Raimund J. Ober

Abstract. Completely J-positive linear systems of finite order are introduced as
a generalization of completely symmetric linear spaces. To any completely J-positive
linear system of finite order there is associated a defining measure with respect to
which the transfer function has a certain integral represention. It is proved that these
systems are asymptotically stable. The observability and reachability operators obey
a certain duality rule and the number of negative squares of the Hankel operator is
estimated. The Hankel operator is bounded if and only if a certain measure associated
with the defining measure is of Carleson type.

We prove that a real symmetric operator valued function which is analytic outside
the unit disk has a realization with a completely J-symmetric linear space which is
reachable, observable and parbalanced. Uniqueness and spectral minimality of the
completely J-symmetric realizations are discussed.

1. Introduction

Infinite dimensional systems have proved to be of interest for some time and they have
been studied from different points of view, cf. [10], [11], [15], and [13], to quote only a few
of the main papers in the field. They proved to be useful not only in the system theory
but also in operator theory, e.g. see [31], [33], [36], [37].

Balanced realizations have been formally introduced by Moore [29] to provide a method
for the model reduction of finite dimensional systems. They have since also played an
important role in areas such as H* control theory (see e.g. [14]), system identification (see
e.g. [24]) and the parametrization of linear systems [34]. The parametrization approach
to linear systems using balanced realizations provided a powerful method to solve the
inverse spectral problem for Hankel operators (see [31], [33], [28]). In the case of infinite
dimensional systems, it is the larger class of parbalanced system, introduced by N.J. Young
[40], which plays an important role.

A linear system (A, B, C, D) with finite dimensional state space is called sign-symmetric
if there exists a sign matrix S, i.e. a diagonal matrix whose diagonal entries are £1, such
that

A=S8A*S, B=S5C*, (C=B"S.

Clearly, a necessary condition for a system to have a sign-symmetric realization is that the
transfer function is symmetric with respect to the real axis. Such realizations play a role
in finite dimensional system theory since the trace of S specifies the Cauchy-index of the
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transfer function ([2]). The Cauchy-index itself plays a role in the study of the topology
of rational functions of a fixed Mc-Millan degree (see e.g. [3]), since it characterizes the
connected components of the manifold of these functions. Kumar and Wilson [23] showed
that each stable continuous-time finite dimensional linear system has a sign-symmetric
balanced realization. This was generalized to the case of multivariable symmetric systems
in [30] and to infinite-dimensional systems whose Hankel operator is compact with discrete
spectrum in [32]. The sign-symmetry matrix S has the additional significance that the
diagonal entries are the signs of the eigenvalues of the corresponding Hankel operator ([34],
32]).

The aim of this paper is to investigate (discrete time, time invariant, infinite dimen-
sional) linear systems with sign symmetric transfer functions, and hence with the corre-
sponding Hankel operator selfadjoint. We show that under sufficiently general assumptions,
cf. Theorem 6.2, these systems are realized in such a way that the main operator is selfad-
joint on a Krein space. It is known for some time that the most tractable class of selfadjoint
operators on Krein spaces are the definitizable ones, which fortunately covers the class of
selfadjoint operators on Pontryagin spaces. The spectral theory of definitizable operators,
developed by Heinz Langer [25], [26], shows that some singularities show up, the so-called
critical points. In order to study these operators, a useful approach is to ”"localize” the
critical points. Thus, operators for which a certain power becomes positive, and hence 0
1s the only possible critical point, represent the first relevant class to be studied. In this
paper we will confine to this class of linear systems which we call of completely J-positive
systems of finite order.

From yet another point of view, transfer functions associated with completely symmet-
ric linear systems in Pontrayagin spaces were intensively investigated by M.G. Krein and
H. Langer in a series of papers [18], [19], [20], [21]. In these papers various problems related:
to the generalized resolvent formula in Pontryagin spaces are discussed and applications to
interpolation problems and Hamburger-Stieltjes type moment problems are treated. In that
case, the transfer function is the so-called Q-function and the properties of this function
are carefully studied.

Our study is strictly concentrated on system theoretic problems related to completely J-
symmetric infinite dimensional linear systems, as generalizations of the results obtained by
the second named author in [35]. Thus, the asymptotic stability of these sytems is obtained
in Proposition 3.1. The integral representation of the transfer function, in terms of a
unbounded measure associated to this kind of systems, is obtained in Theorem 3.2. It turns
out that the observability operator and the reachability operator are related by a certain
duality property, in a sufficiently general case, see Theorem 4.1. This gives the possibility
to characterize the boundedness of the Hankel operator. Yet another characterization of
the boundedness of the Hankel operator is obtained in Theorem 5.3, in terms of a Carleson
type property of the defining measure, by means of a theorem of H. Widom [39]. Also, in
case the input/output space is finite dimensional, the number of negative squares of the
Hankel matrix is finite, cf. Theorem 5.1.

The last section is devoted to realization of transfer functions with a certain symmetry
property. In Theorem 6.2, a general result of realization of this kind of transfer functions is



obtained. We follow the approach of M.G. Krein and H. Langer combined with some techni-
calities, e.g. Krein-Reid-Lax-Dieudonné Lemma and some ideas from a paper of N.J. Young
[40], to obtain a realization which is minimal and parbalanced. Spectral minimality and
uniqueness of these realizations are also discussed.

We recall in Section 2 the basics of the spectral theory of J-positive operators of finite
order that we use here.

2. J-Positive Operators of Finite Order

2.1. The Spectral Function. Let H be a Hilbert space with the scalar product denoted
by (-,-) and let J be a fixed symmetry on H, that is J* = J = J~!. Then on H one can
introduce an indefinite inner product denoted [-, -]

[z,y] = (Jz,y), z,y€ H.

The Hilbert space H endowed with such an indefinite inner product [, -] is called & Krein
space. Most often one does not fix the positive definite inner product (there are infinity
many and all of them produce the same strong topology) of a Krein space, but even though
this point of view is the most natural, we will not follow this way since it needs to introduce
too much Krein space terminology.

A bounded operator A € L(H) is called J-selfadjoint if JA = A*J. [' is clear that the
operator A is J-selfadjoint if and only if the operator JA is selfadjoint in the Hilbert space
H. A J-selfadjoint operator A on H is called J-positive of order n if JA™ > 0. Similarly one
defines J-negative operators of order n. A J-positive operator of order 1 is called simply a
J-positive operator.

REMARK 2.1 A J-positive operator of order 0 is simply a selfadjoint operator on the
Hilbert space H. Indeed, by definition, if A is a J-positive operator of order 0 then JA =
A*J and J > 0. But the only positive symmetry is the identity operator and hence J = I.
Thus, the notion of J-positive operator of finite order is a generalization of selfadjoint
operator on a Hilbert space. 1

In the following we denote by R, the Boole algebra generated by intervals A in R such
that its boundary A does not contain the point 0. We recall now a particular case of a
celebrated theorem of H. Langer and some of its consequences, cf. [25], [26].

THEOREM 2.2 Let A € L(H) be a J-positive operator of order n. Then o(A) C R and
there exists a mapping E: Ro — L(H), uniquely determined with the following properties:
(1) E(A) is J-selfadjoint for all A € Ry. _
(2) E is a Boole algebra morphism, that is, it is additive and multiplicative.
(3) £E(R) =
(4) For all A € Ry such that the polynomial t™ is positive (negative) on A, the operator
E(A) is J-positive (J-negative).



(5) For all A € Rqo the operator E(A) is in {A}" (the bicommutant of the algebra
generated by the operator A).

(6) For all A € Ry we have o(A|E(A)H) C A.

The mapping F uniquely associated to the J-positive operator A of some finite order n
is called the spectral function of A. As a consequence of Theorem 2.2, the spectral function
has also the following properties.

COROLLARY 2.3 With the notation as in Theorem 2.2 let A € Rq be closed and such that
0¢ A. Then:

(a) The function E4 defined by
Ea(A)=E(ANA), AE€TR,,

can be extended uniquely to a bounded measure with supp Ea C A.

(b) The operator AE(A) is similar with a selfadjoint operator on a Hilbert space, in
particular it has spectral measure.

(c) Ea is the spectral measure of the operator AE(A), in particular

AE(A) = /td E(t).
A
Corollary 2.3 shows that the spectral function E of a J-positive operator of some finite

order n can be regarded as a spectral measure, in general unbounded, on R\ {0}. We now
recall the integral representations associated with J-positive operators of finite order.

COROLLARY 2.4 With the notation as in Theorem 2.2, there exists an operator N € L(H)
with the following properties:

(1) JN > 0;
(2) NE(A) =0, for all A € Ro such that 0 ¢ A;
(3) AN =0;
and such that the following integral representations hold:
AN - A = / )\t td E(t) + %N, A€ p(A), (2.1)
rR\{0}
An = / "d E(t) + N, (22)
R\{0}

where the integrals are improper at 0 and converge in the strong operator topology.



Let us also record that, as a consequence of Corollary 2.4, apart of the integral repre-
sentation (2.2), for all £ > n we also have

AF = / t*"d E(t), (2.3)
R\{0}
where the integral converges in the strong operator topology.

2.2 Functional Calculus. Let A be a J-positive operator of order n and let E denote
its spectral function. In the following, for ¢ a compact subset of R we denote by C(o) the
C™-algebra of continuous complex valued functions onto o and let || - |l. denote its uniform
norm.

REMARK 2.5 As a consequence of Corollary 2.4 one can prove (e.g. see [12]) that for all
f € C(c(A)), the integral

/ f(t)t"d E(¢) (2.4)
o(A)\{o}
converges in the strong operator topology as an improper integral and, in addition, the
mapping
C(o(A) 5 f / F(B)d E(t) € LK) (2.5)
a(A)\{0}
1s uniformly continuous. In particular, this shows that the operator valued measure t*d E(t)
can be extended to a finite measure onto the whole real line R such that t*d E)({0})=0

and the improper integral in (2.4) can be equivalently considered as an integral of the
function f with respect to this finite measure. i

In the following we define a certain Banach algebra of continuous functions and using
this and the previous results we will recall a natural functional calculus associated to the
operator A. Let o C R be a compact subset such that {0} is an accumulation point of o.
By C"(0;0) we denote the class of functions f € C(o) with the property that there exists
hy € C(o) and a complex polynomial p; of degree at most n — 1 such that

f@) =1"hs(t) + ps(t), te€o (2.6)

It is easy to verify that the representation in (2.6) is unique and that C™(0;0) is an algebra.
On C"(0;0) we consider the following norm: if f € C*(07;0) is represented as in (2.6) then

IF1 = max{|[Aslu, llps]lu}- (2.7)

Then (C*(c;0),] ||} is a complete normed algebra, with continuous product and isometric
involution. Multiplication of the norm in (2.7) with a certain constant turns C*(c;0) into
an involutive Banach algebra.

We now recall the functional calculus with continuous functions obtained by P. Jonas
[16] (here we follow the form as in [12]) which is a refinement of the functional calculus
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obtained by H. Langer [25]. In the next theorem, the algebra £(H) is considered with the
isometric involution f

T = JT"J, T € L(H).

THEOREM 2.6 With the notation as before, there exists a unique uniformly continuous
mapping

C(030) 3 f — B(f) € L(H),
such that for any polynomial q we have E(q) = q(A). In addition, the mapping E is a
homomorphism of Banach algebras with involution and it is given by the formula

BU) = [ h(©rdBE)+ h(ON +ps(4), [ EC(o30).

e

As a consequence of Theorem 2.6, the spectral function £ can be considered as a spectral
distribution, in the sense of C. Foiag [5], which is of measure type everywhere on R except
at 0 where it is the derivative of order n of some measure, in the sense of Radon-Nikodym.

For a compact subset o of the real line we denote by B(c) the C*-algebra of bounded
borelian functions on o, endowed with the essential supremum norm || - ||e. In the following
we will assume that o is a compact subset of R such that o(A) C ¢ and 0 is a point of
accumulation of 0. Also, we will denote by B"(c) the invclutive Banach algebra consisting
of those functions f € B(o) such that the represenation {2.6) holds with p; polynomial of
order at most n —1 and h; € B(o) continuous in 0. The strong toplogy on B"(¢) is defined
by the norm

1£1l = max{|[Aslloo; llPsllo}-
Clearly, C™(o) is a closed subalgebra of B"(¢).

THEOREM 2.7 Assume that o is a tompact subset of R such that 0 2 o(A) and 0 is an
accumulation point of o. Then there exists a mapping

B"(0) 3 f = E(f) € L(H)

uniquely determined by the following properties:
(i) For all polynomials p we have E(p) = p(A).
(i) If fx,f € B™(0) are such that sup ||fy|| < oo and fi converges pointwise to f
k>1

componentwise (i.e. for all t € o hy,(t) — hy(t) and ps(t) — ps(t) for k — oo) then
E(fe) = E(f) for k — oo.
In addition, the mapping E is a homomorphism of involutive Banach algebras and for

all f € B™(o) we have

BUY =ps(A)+ [ B0 B + O,
o\{0}

in particular, the mapping E is an extension of the functional calculus in Theorem 2.6.
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As a consequence of Theorem 2.7 and of approximation Theorems of Baire and, respec-
tively, of Weierstral3 we have:

COROLLARY 2.8 Let A € Ro(A). Then, if 0 € A (0 &€ A) then E(A) can be approzimated
strongly with operators of type p(A)A™ + I (respectively, with operators of type p(A)A™)
where p is polynomial.

3. The Definining Measure

In this section we consider linear systems regarded as quadruples (A, B, C, D) where A €
L(H) is a contraction, B € L(U,H), C € L(H,)), and D € L(U,Y) and H, U, and
Y are Hilbert spaces. Usually the spaces U, H, and ) are called, respectively, the input
space, the state space and the output space. Also, the operators A, B, C', and D are called,
respectively, the main operator, the input operator, the output operator, and the external
operator.

With every linear system (A, B, C, D) there is associated its transfer function G: p(A) —
L(U,Y) as follows

GA)=D4+CM —-A)'B, e plA). (3.1)
Since the main operator A is assumed contractive, the transfer function is defined and
analytic for all [A] > *.

Let us assume that & = ) and that on H there is fixed a symmetry J (and hence
the associated Krein space (H,[-,-])). A linear system (A, B,C, D) is called completely
J-symmetric if the operator A is J-selfadjoint, C' = JB*, and D = D*. The completely
J-symmetric system is called completely J-positive of order n if the operator A is J-positive
of order n.

As a consequence of Remark 2.1, the notion of completely J-positive linear system of
finite order is a generalization of the notion of completely symmetric linear system as in
[35].

We consider first the question of asymptotic stability of completely J-positive liner
systems of finite order.

PROPOSITION 3.1 A completely J-positive linear system (A, B,C, D) of finite order such
that +£1 ¢ 0,(A) is asymptotically stable, that is, A¥ — 0 (k — co) in the strong operator
topology.

Proof. Let n be the order of the J-positive linear system (A, B,C, D) and E the spectral
function of the operator A. As a consequence of Corollary 2.4 for all h € H and all £ > n

we have

AFp = / tkdE(t)hzlinol / t*d E(t)h.

[-1,1\{0} [-1,1]\(—=:¢)
We consider 0 < § < 1 and taking into account of Corollary 2.3 we get
AFh = / MM E(t)h + / t*d E(t)h. (3.2)
[-6,61\{0} [-1,1]\(~e:¢)



Since {"d E(t) is a finite operator valued measure and 6* — 0 (k — oo) we have

I / t* T d E(1)h|| < / |t*d E(1)A|| 6* ™ — 0 (k — o). (3.3)
[-6,6]\{0} (-é,81\{0}
On the other hand, since by assumption +1 ¢ o,(A), using Corollary 2.3 we get d E({—1,1})

= () and hence
/ t*d E(t)h = / t*d E(t)h. (3.4)

[(-L1\(=¢) (=L1)\(~e)
Further, on the ground of Corollary 2.3, modulo a similarity we can assume that the spectral
measure E|(—1,1)\ (—¢,¢) is selfadjoint with respect to the positive definite inner product
(*;-). Therefore, using the theorem of dominated convergence of Lebesgue we obtain that

H / td E($)h|]? = / PHAEORR) — 0 (k—o0).  (3.5)

(=1,1)\(~ee) (=L1)\(~e)
From (3.3), (3.4), and (3.5) we obtain that ||A*R|| — 0 (k — o00). §

In the next theorem we consider only linear systems (A, B,C, D) whose input and
output spaces are finite dimensional, that is, ¥ = C™ and Y - CP for some nonnegative
integers m and p. This is sufficient for applications and avoids (/= complications which are
usually encountered when dealing with infinite dimensional vector measures.

THEOREM 3.2 Let (A, B,C, D) be a linear system which is completely J-positive of order
n, such that U = Y = C™, and consider its transfer function G as in (3.1). Then, there
exist a J-positive operator N € L(H), such that N> = AN = 0, and a symmetric matriz
valued Borel measure dv on [—1,1]\ {0} such that

SN S 1, 1 ¢
G(A)=D+) B JA'B+ B INB+ o / Gogdv®- ()
= [-1.1]\{0}

The measure dv has also the following two properties:

(a) t*d v(t) is a positive matriz valued finite Borel measure on [—1,1];

(b) The function
G'(2) ==(G(=) - D) = ) _ax2", (3.7)

k>0

which is analytic for |z| < 1, has its Taylor coefficients

B*JA*B, 1£8€m—1;
i = B*JNB + f t"dv(t), k=n; (3.8)
[-1,1]\{0}
f tkdz/(t), k>n+1.
(-1,1]\{0}

A




The measure d v is uniquely determined by these two properties, more precisely, if £ denotes
the spectral function of A we have dv(t) = d B*JE(t)B, and the operator N can be chosen

N=A"— / t"d E(1). (3.9)
R\{0)

If, in addition, £1 € o,(A) then dv({—1,1}) =0 and klim llek]| = 0.

Proof. Let E be the spectral function of A and the operator N defined as in (3.9). As
a consequence of Corollary 2.4 the principal value of the integral in (3.9) exists with a
singularity in 0, the operator N is J-positive and N? = AN = 0. We consider the transfer
function & as in (3.1) and then the function G* defined as in (3.7) is analytic in the open
unit disc D. Let z be a complex number in D. Taking into account that C' = JB~ and that
IIA]| <1 we have
G'(z) = B*J(z] — A)'B=)_*B"JA*B.
k>0
We now take into account the definition of the operator N and from (2.3) it follows
n—-1
G'(z) =) B*JA*B | 2"B"JNB + Zzn / t*d B*JE(t)B.

k=0 k>n [_1’1]\{0}

Further
> 2 / t*d B*JE(t)B = / > "4 B*JE(t)B
F2m -11\(o) [-11\{o} F27
g"" .
= / ———dB"JE()B.
[-111\{0}
Letting dv(t) = d B*JE(t)B we obtain that

n—1 n4n
G*(2) = Z z*B*JA*B + :"B*JNB + / 1Z t 7d v(t). (3.10)
— Z
k=0 [-1,1]\{0}

From (3.10) and A = 1/z we obtain the representation (3.6) of the transfer function G.
Clearly, d v is a symmetric M,,-valued Borel measure and taking into account of the prop-
erties of the spectral function E as in Theorem 2.2 and Remark 2.5 it follows that t"dv(t)
is a finite M,,-valued positive Borel measure on [—1,1].

We now prove that the measure d v is uniquely determined by the properties (a) and
(b). To see this, let d u be another M,,-valued symmetric Borel measure on [—1,1]\ {0}
satisfying the properties (a) and (b). According to the property (a), both measures d p and
d v can be considered as matrix valued distributions on [—1,1] of measure type everywhere
except at 0 where they are of finite order < n. By means of the polarization formula it
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follows that d x = d v if and only if the scalar measures d pz = dv, for allz € U = C™,
where d yi,(t) = (d p(t)z, z) and similarly for the measure dv. Note also that the scalar
measures d g, and dv, share all the properties that dp and, respectively, dv have. In
particular, the scalar measures d u, and d v, can be equivalently characterized as bounded
linear functionals on the Banach algebra C™([—1,1]) (see subsection 2.2). Thus, in order to
prove that they coincide, it is sufficient to prove that for all functions f € C([~1,1]) such
that f(0) = 0 and f(¢)/t* € C([-1,1]) we have

/f )d o (t) /f )du,(t), ze€C™ (3.11)

To this end, for arbitrary fixed z € C™ let f be such a function, that is f(t) = t"A(2)
for some h € C([—1,1]). By Weierstral theorem there exists a sequence of polynomials
{px}x>1 such that py — h uniformly on [—1,1]. Since both measures d u and d v have the
property (b) it follows that

/_1pk(t)t”d pg(t) = /_lpk(t)t”d v(t), k>1. (3.12)

Therefore, taking into account of (3.12) we have

|1 / F(0)d () / F(O)d v
<1l [ odnd) - / el + ] / s - [ wodnl
/m (1)]t°d ot /|h ()16 palt)

([ ram >+/_1 rav.(0)lh~ pille = 0 (k = o).

This proves that equation (3.11) holds for all z € C™ and all f € C([~1,1]) such that
f(0) =0 and f(¢)/t* € C([-1,1]), and hence dp = dv.

Assume now that +1 ¢ o,(A). Then as in 2.3 we have d E({—1,1}) = 0 and hence
dv({—1,1}) = 0. Taking into account of the theorem of dominated convergence of Lebesgue
applied to the positive finite measures t"d v,(t) we have that for all £ > n

1—¢
fuig e, 2 == / i dy, = lir% tF"t"d v, — 0, (k — o0).
=0 | 14
[—1’1] ’

We now use again the polarization formula and the fact that aj are matrices of order m
and conclude from here that ||ax|]| — 0 (kK — o). I

The matrix valued measure d v as in Theorem 3.2 is called the defining measure of the
system (A, B,C, D). Under the assumptions of Theorem 3.2 and as a consequence of the

10



representation (3.6) it follows that the transfer function G has analytic continuation onto

C \ supp(dv).
Following [35], a linear system (A, B,C, D) is called admissible if }\I{‘I} CM + A)7'B

exists in the strong operator topology.

PROPOSITION 3.3 A completely J-positive system (A, B, B*J, D) of order n, with finite
dimensional input/output space U and with defining measure v, is admissible if and only if
the integral [ t—%ﬂ s convergent.

(-1,1]\{0}
Moreover, in this case we have

—

n—

% t
lim B*J(\M + A)7'B = (—l)kB*JAkB+(—1)"B*JNB+/ t dz/().
! 0 EEIVO R

(3.13)

3_
Il

Proof. Let A > 1 be arbitrary. From the integral representations (2.2), (2.3) and the
definition of the defining measure as in the proof of Theorem 3.2 we obtain

i I~ T iy -1 t"d v(t)
B*JA[+A)'B = Z Ak S By B+ BUINB+ -~ i (3.14)
k=0 [~1,1)\{0}

In particular, this shows that the linear system (A, B, B*J, D) is admissible if and only

) t"du(t . . g ; :

}\1{1} / ;) —I-(t) exists (strongly is the same with unformly since the input/output
[(-1,1\{0}

space U is supposed of finite dimension). Consequenly, if the system is admissible we use

the Fatou’s Lemma for the monotone sequence of functions {Xift} a>1 and conclude that the
integral [ %ﬁ is convergent.
[-1,1]\{0}
Conversely, if the integral S/ : f:tt is convergent then we use the Theorem of
[-1,1]\{0}

Lebesgue of dominated convergence applied to the sequence of functions {%H} a1 and
conclude that the system is admissible. In addition, in this case we can pass to the limit
in (3.14) following A \, 1 and obtain the equation (3.13) i

REMARK 3.4 Under the assumptions of Proposition 3.3 assume in addition that the inte-
gral [ #1440 ;g convergent and let 0 < ¢ < 1 be arbitrary. Then

1+t
[(-1,1\{0}
/ t"dv(t) 5 / t"dw(t) " v([-1,-1 -I-e].
14+%t — 1+¢ — €
[-1,1] [-1,-1+4¢]

Taking into account of the behaviour of the function ¢" in the neigbourhood of —1 we

obtain from here that
V([_lv -1 4 5]
sup < 00,
0<e<§ €

for some (equivalently for all) 0 < ¢ < 1.1
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4. Observability and Reachability

We consider again a completely J-positive system (A, B,J B, D) of order n, where J is a
fixed symmetry on the state space H, and let & denote the input/output space. Following
the general theory we consider O: D(0)(C 'H) — &, the observability operator defined by

D) = {h e H| Y _||B"JAh||* < oo},

k>0

Oh = (B*JA*h)is0, h € D(O).
By duality one introduces the reachability operator R D(R)(C &) —H

D(R) = {(z1)ez0 € & | ) | A" Bai|[* < oo},

k>0

R((ze)is0) = Y A*Bar,  (zi)iz0 € D(R).

k>0

Note that the domain of R is dense in £ since it contains all the sequences with finite

support.

THEOREM 4.1 If £1 ¢ o,(A) then D(O) i dense in H, O = R*J and R = JO*, n

particular both operators O and R are closed.

Proof. Let h € D(0) and z = (zx)r>0 € D(R). Taking into account that A**J = JAF for
all £ > 0 we obtain

(Oh,z) =) (B*JA*h,z) = > "(h, JA*Bay) = (h, J>  A*Bzy) = (h,JRz).  (41)

k>0 k>0 k>0

This proves that O C (JR)* = R*J.
To prove the converse inclusion, let h € D(R*), that is, there exists z € £ such that

(h,JRz) = (z,z), = € D(R). (4.2)
On the other hand

(h,JRz) = Y (h,JA*Bz)) =) (B*JA*h,z), =€ D(R),

k>0 k>0

and from here, (4.2), and the remark that the unit ball of D(R) is dense in the unit ball of
2, we get

(B TARP) S < sup Y (BTIAK)] = |lzl] < oo,

k>0 z€D(R), [l=||<1 k>0
and hence h € D(0). Thus we proved O = R*/J.
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We now prove that D(0) is dense in H. To see this, consider the linear manifold
T e U E([=1 4 1/m,1 — 1/m])H. By Theorem 2.2, its Corollary 2.3, and =1 ¢ op(A)
m>1
we have that \/ E([-141/m,1=1/m])H = J(ker(A —1) V ker(A + 1))t = H, therefore
m>2
D is dense in H. In the following we prove that D C D(0). To this end, let m > 2 and
h € E([-141/m,1 —1/m])H be fixed. Then,

1-1/m m
S A= Y[ easear < Y (f C wied Bos (03)

k>n+1 k>n+1 1+1/m hongl 1FLm

il

Since t*d E(t) is a finite measure, by means of the theorem of dominated convergence of
Lebesgue it follows that

1-1/m
lim [t|*="|t"d E(t)R|| =0

k—co J_141/m

and hence there exits N € N such that N >n and forallk > N

1-1/m
/_ [t|*~"|[t"d E(t)R]| < 1.

1+1/m
Then
1-1/m . N 1-1/m L
S e pwm) < Y [ ieapon
k>N Y -lHl/m k>N J 141 /m
1-1/m |t|N
:/m/ Lol B@Al < oo (4.4)

From (4.3) and (4.4) it follows that D C D(0) and hence D(O) is dense in H.

From (4.1) we also have that R C JO*. To prove the converse inclusion we proceed as
in the proof of the inclusion R*J C O, provided we first prove that the unit ball of D(0)
is dense in the unit ball of H. For the proof of the latter, it is sufficient to note that from
Corollary 2.3 it follows that, without loss of generality, we can assume that for all m > 2
the projections E([—14 1/m,1—1/m]) are selfadjoint with respect to the positive definite
inner product (-, ), too. Then the proof follows as in the Hilbert space case.

COROLLARY 4.2 Assume that £1 € o,(A). Then the following assertions are equivalent:
(i) the observability operator O is bounded;
(ii) the reachability operator R is bounded.

Recall that a system (A, B,C, D) is called observable if the observability operator O
is bounded and injective. The system is called reachable if the reachability operator R is
bounded and has dense range. Note that, as a consequence of Theorem 4.1, the completely
J-positive operator system (A, B, B*J, D) of order n, such that +1 ¢ o,(A), is observable
if and only if it is reachable. This also makes interesting the characterization of the kernel
of the observability operator.

13



PROPOSITION 4.3 Let E be the spectral function and let N be the nilpotent operator asso-
ciated with the main operator A of the completely J-positive system (A, B, B*J, D) of order
n. Then .
ker(0) = () ker(B*JA*) N () (B*JE(A) Nker(B"JN).
k=0 A€Ro

Proof. As a consequence of the definition of the observability operator O we have ker(O) =
N ker(B*JA*). Therefore, if z € () ker(B*J A¥) then z € ker(B*Jp(A)) for all polyno-

k>0 k>0

mials p. Using Corollary 2.8 it follows that z € ker(B*JE(A)) for all A € Ro. Taking into
account the representation (2.2) we obtain also z € ker(B*JN).
Conversely, assume

z € (n] ker(B*JA¥)n (1) (B"JE(A)) Nker(B"JN).

k=0 AER,

From (2.2) we get = € ker(B*JA™) and then from (2.3) we get z € ker(B*J A¥) for all
E>n+1.1

5. The Hankel Operator

We introduce now the operator H = OR. Note that in this definition, the domain of H
is D(H) = {z € D(R) | Rz € D(O)}. The operator H is called the Hankel operator
associated to the system (A, B, B*J, D). From the definition of the operators O and R, the
operator H has the following Hankel block matrix representation

H ~ (B*JA"B) (5.1)

520’

more precisely, forall z = >, € £, y = ) € £, with finite supports we have
>0 7>0

(He,y) =Y > (B JA™ Bxj,ys). (5.2)

320 020

This formulation allows us to use some terminology from the theory of hermitian kernels.
Thus, we can speak about the number of negative squares of the kernel H, denoted by
x~(H). To be more precise, we consider the vector space Fo(U) consisting of sequences
z € (2(U) of finite support and on Fo(U) we consider the inner product [-, -]z given as
in (5.2). Then x~(H) coincides with the negative signature of the inner product space
(Fo(U),[,-]u), more precisely, k™ (H) is the maximal algebraic dimension of subspaces
L C Fo(U) with the propery [z,z]g < 0 for all z € £\ {0}. Note that in case the Hankel
operator H is bounded, ™ (H) coincides either with the number of negative eigenvalues of
H, counted with their multiplicities, or is the symbol oo.

THEOREM 5.1 The number of negative squares of H is < ["-}l] ~dimU.

14



Proof. We recall first briefly the proof corresponding to the case n = 0. With the
notation as in Theorem 3.2, if n = 0 and taking into account Remark 2.1, the block matrix
H = [hijij>0 has the entries

1
hi; = B*JA™MB :/ tHd ().

-1

If £ = (z;)iv0 € Fo(U) we let z(t) = Y. tiz; for =1 <t < 1. Then

[z,z]y = (Hz,z) = /;1<d v(t) - z(t),z(t)) =0

which proves that = (H) = 0 in this case.
Assume now that n > 1. As before we identify the operator H with the matrix [hijlii>0
as in (5.1) and consider the infinite hermitian kernel Hy with the representation

0| 0

Hy = (5.3)

: ' LANRES
Note that for z,7 > [ﬁ;—l] we have 7 + j > n and
1 B*JNB+ (' t"dv(i), i+Jj=n,
t”dz/():{ Jtrd )

hi; = B'JN B+ / _ o
=1 [ pretnd v(t), i+ >n.

Taking into account that the operator valued measure t"d v(t) is nonnegative and that

JN > 0 we proceed as in the case n = 0 and prove that k™ (Ho) = 0.

Further, consider the matrix H; = H — Ho. Then

[hij]ggi,jg[ﬁg—l]_l . *

H, = , (5.4)
* 0
where the block matrices marked with  are of now importance here. Clearly we have
- n+1 .
57 ([hisloci g [=2)-1) < [ ] -dimi.
Applying [6], Corollary 3.2 we obtain
1
s A [”* } - dim.

Taking into account that H = Ho + H, we obtain
n+1

k= (H) < &~ (Ho) + &~ (H) < { } - dimi.

In the following we are interested in characterizing the boundedness of the Hankel
operator. As an immediate consequence of Proposition 4.1 we have
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PROPOSITION 5.2 Assume that £1 € o,(A). Then the following assertions are equivalent:
(i) the observability operator O is bounded, equivalently the reachability operator is
bounded;
(ii) the Hankel operator is everywhere defined in (7.
(iii) the Hankel operator is bounded and everywhere defined in ;.

A more interesting criterion of boundedness of the Hankel operator can be obtained in
terms of the defining measure v. Recall that a planar measure p on the open unit disk D is
called a Carleson measure if the Poisson integral induces a bounded operator from L?(9D)
into LP(u), for some p > 1. According to a celebrated theorem of L. Carleson [4], a planar
measure  is a Carleson measure if and only if sup w(R(I))/|I| < oo, where I runs through

the set of all arcs of T = 9D and R(I) denotes the set of all complex numbers z € D such
that z/|z| € I and 1 — |2] < |I]/2n.

In the following theorem the definig measure v will be considered as a vector valued
planar measure on D with support in [—1, 1].

THEOREM 5.3 Assume +1 & 0,(A) and that the input-output spaceU is finite dimensional.
The following assertions are equivalent:
(1) the Hankel block matriz H in (5.1) defines a bounded operator in &
(2) for all z € U ihe measure A [ tMdv(t)z,z), A€ B(D), is a Carleson measure.
(3) For some (e‘guivalently, forall) 0 <6 <1

(||y([_1,—1 +e])|| + v —6,1])H> < oo,

sup

0<e<é £

Proof. (1)&(2). The Hankel block matrix in (5.1) can be partitioned in the following
way':

[B*J A7 Bloci j<n l [B*J A Blogicn, j>0

[B*JA™iBlizo, o<j<n | [B*JA™ Blijzn
Note that the north-west matrix is bounded and that the north-east and south-west ma-
trices are contained in the south-east matrix. Thus, the Hankel block matrix H defines a
bounded operator in £% if and only the Hankel matrix [B*J A7 B); j>n induces a bounded
operator in 4.
Recall now that by Theorem 3.2 the entries of the Hankel block matrix can be described
as the moments of the defining measure v

1
B*JA™ B = / tHdw(t) :/ I d p(t), 4,7 > n. (5.5)

ERING -
Moreover, since U is finite dimensional, the Hankel block matrix (B*JA™B);>n in-

duces a bounded operator in £ if and only if for all z € U the Hankel block matrix

[(B*JAi+jBx, z)], 5 induces a bounded operator on £2. We now use (5.5) and a theorem
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of H. Widom [39] which characterizes those planar measures with support in [—1,1] whose
moments define a bounded Hankel operator, to conclude the equivalence of (1) and (2).

(2)<(3). We consider the U-valued Borel finite positive measure g

w(A) :/At"du(t), A € B(D).

Of course y has its support contained in [—1,1]. For arbitrary z € U we consider the scalar
Borel finite positive measure p, = (uz,z). Taking into account that suppp C [—1,1] and
of the above mentioned theorem of L. Carleson, j; is a Carleson measure if and only if
pa((—1,—1 +¢]) < Ke and po([l — e,1)) < Ke as ¢ — 0, which is equivalent with the
assertion (3) (we again take into account that U has finite dimension). §

6. Realization Theory

In this section we deal with realizations of functions G(z) of type obtained in Section 3, by
linear systems which we wish to be completely J-selfadjoint within some Krein state space
and specified fundamental symmetry J. From system theoretic consideration we would also
want that these realizations be observable, reachable and parbalanced. It turns out that
this kind of realization is possible for a class of functions which in a certain case is larger
than the class of functions obtained in Section 3, more precisely these functiqus satisfy
only a symmetry property, but in another sense it is more restrictive, namely It)he Hankel
operator is supposed to be bounded. We first recall the definition of Krein spa!ces induced
by selfadjoint operators and a lifting property.

Let us consider a Hilbert space (H,(-,-)) and let H be a bounded selfadjoint operator
on H. On H we consider the (in general, indefinite) inner product [-,-]g defined by

[fl:,y]H—_— <H1>y>, ZU,yEH

Let H = H O ker H and note that the restriction of the inner product [-, -] to H is
nondegenerate. On H we consider the norm |||[H[/?- || and let K be the completion of
(H,|||H|** - ||) to a Hilbert space. Now remark that, since the operator H is bounded, we
have

e, ylul < WH el H 2yl 2y € R,

and hence the inner product [,z can be uniquely extended to Ky. It is now easy to
see that (Kg,[-,-]u) is a Krein space, the strong topology on this Krein space is induced
by the norm ||| H|'/?||. We also note that the corresponding fundamental symmetry is the
extension of the operator Sy, where H = Sy|H| is the polar decomposition of H and Sy
denotes the corresponding selfadjoint partial isometry. v

Let now H; and H; be Hilbert spaces and A € L(Ha1), A = A%, and B € L(Hz). Also, let
T € L(H1,Ha) be given and consider the induced Kretn spaces (K, [*,]a) and (Kg, [,"]B)-
We say that the operator T' induces an operator 7 e L(K4,Kp) if Tker A C ker B and
denoting by T the corresponding factor operator in L(Hy & ker A, Hy S ker B) the operator
T is bounded with respect to the norms |||A['/?-|| and, respectively, |||B|*/?-||. The operator
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T is the extension by continuity of the operator T and hence it is uniquely determined by
T.

We recall now a result originally due to M.G. Krein [17] and obtained independently by
W.T. Reid [38], P.D. Lax [27], and J. Dieudonné [8]), whose indefinite variant was obtained
by A. Dijksma, H. Langer, and H. de Snoo [9]. For the following formulation, including the
norm estimate, we refer to [7].

LEMMA 6.1 Let H; and Hy be Hilbert spaces, H € L(H,) and G € L(H2) be selfadjoint
operators, and Ty € L(Hq, Hz) and Ty € L(H2,H1) be operators such that

[Tyz,y]e = [z, Tayln, = € Hi, y € Ha,
or equivalently, HT1 = T*G. Then
G 2Tzl < ||GI*TiSuTaSeThll " N1 H Y2l = € Ha,
and similarly
H Y2 Toy || < || HI'PToSeTiSu Tl NGl y € Ha,

and hence the operators Ty and Ty induce uniquely determined operators T, € L(Kw,Ka)
and, respectively, To € L(Kg,Kg) such that

[Tyz,yle = [z, Toylu, @ € Ku, y € Ke.

Let U be a Hilbert space and assume that G:{z € C | |z| > 1} — L(U) is an operator
valued function which is analytic everywhere on its domain of definition and at infinity.
One can define an operator valued analytic function ¢g: D — L(U) by

1
9(2) = —(G(=) = G(e0)), 2] < 1.
Then ¢ has the Taylor expansion

g(z) = szzk, |z| < 1.

k>0

Associated with the function G one can consider the block-operator Hankel matrix

(S0 Sy S» ... Sk ]
51 52‘ 53 Sk+1
Sy Ss3
H= : (6.1)
Sk

Following N.J. Young [40], we say that a system (A, B,C, D) is parbalanced if the
corresponding observability and reachability operators O and, respectively, R are bounded
and the observability gramian O*O coincide with the reachability gramian RR".
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THEOREM 6.2 Let U be a Hilbert space and let G: {z € C | |z] > 1} — L(U) be an operator
valued function which is analytic on its domain and at infinity, such that G is symmetric,
that 1s,
G(z) = G(2)*, || > L.

If the Hankel block-operator matriz in (6.1) defines a bounded operator in (f; then there
exists a Krein state space K with a specified fundamental symmetry J on K such that G
is realized by a completely J-symmetric linear system (A, B, B*J, D) which s observable,
reachable and parbalanced.

Proof. Let (-,-) and || - || denote the scalar product and the corresponding norm on
the Hilbert space 4. We consider the Hilbert space %, of square summable sequences with
entries in U, endowed with scalar product also denoted by (-,

(f,9) =D (frsgr)y [ =(fr)rzo, 9= (gr)iz0 € by

k>0

Consider the Hilbert space H = ¢7. According to our assumption, let H denote the bounded
operator defined by the Hankel block-operator H as in (6.1). We consider (Ao, Bo, Co, Do)
the right shift realization of G, that is,

G(z) = Do + Co(zI — Ao) ™' Bo, 2| > 1, (6.2)

where the operator Ag: H — H is the right shift

_ fk—-l, k 2 17
mdn—{m b o . (6.3)
the operator Bo:U — H = % is defined by

Bo=[10...0..], (6.4)

where ¢ denotes the matrix transpose, the operator Co: H — U 1s defined by
C():[SoSlSk ], (65)

and the external operator is Dy = @)(o0). Note that the operator Cg is bounded due to the
assumption on boundedness of the Hankel operator H.

Since the function G is assumed symmetric, it follows that the operators Sy € L(U) are
selfadjoint and hence, the Hankel operator H is selfadjoint on H. Therefore, on the Hilbert
space H we can define the (in general, indefinite) inner product [-, -]

[f9lw = (Hf,9) = Z(Sj+kfjvgk>> f,g € H.

JkaO

We consider the Krein space (Kg,[,-]u) with the positive inner product (|H|-,-). The
fundamental symmetry J relating the inner products [-,-]a and (|H|-,-) is the operator
induced by the partial isometry Sy on Kg.
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We now prove that Ag is H-selfadjoint. Indeed, if f = (fi)r>o and g = (gk)xzo0 are
arbitrary sequences in ‘H then ‘

[Aof, gl = > (Sivk(Af)sn08) = D _(Sianfio1,98) (6.6)
320 j>1
= Y (Siprrrfinge) = Y (fis Sivrrrge) = [f> Aol
5,k>0 7,k>0

Since A is H-symmetric we can apply Lemma 6.1 and obtain that the operator Ao
induces a uniquely determined operator A € £(Ky) which is selfadjoint with respect to the
inner product [-,-]x. In addition,

IHI? Aozl < || HIM? AoSrAoSuAd Y | HY 22l = € M. (6.7)

Since the shift A is clearly a contraction, as well as the selfadjoint partial isometries S,
and by assumption H is bounded and hence, by spectral theory, the sameis |H|'/2, it follows
that the operator norm of A, calcutated with respect to the norm IH2, is < ||| H]M2.

We prove now that the induced operator A is contractive with respect to the norm
||H[/?||. To see this, let us first note that an equivalent formulation of this claim is that

the opertor T: R(|H|'/?) — H & ker H defined by,
Ty = [H|'* Ao H| ™y, ye ROH'),

which, by (6.7), is bounded, is contractive. It is easy to see that the bounded adjoint
operator B* is defined by

T*z = |H|"V2A%|H|Y %z, =€ HOkerH. 6.8)
0

Let us note that, an equivalent formulation of (6.6) is HAo = AgH. Then taking into
account that AgAf < 1 it follows

H? — AZH?Ao = H? — A;HAGH = H? — HAGAGH = H(1 — AcAG)H 2 0.
Since H? = |H|?, from here we get that there exists a contraction Z € L£(H) such that
|H|Ao = Z*|H]|. (6.9)
From (6.8) and (6.9) we get
T*T = |H[\2 AL\ H| Ao H? = |H|'?Z Ao H| 7M. (6.10)

Let F denote the spectral measure of the positive selfadjoint operator |H| and for n > 1
denote P, = F(1/n,+o0). Taking into acount that for bounded operators X,Y we have
o(XY)\ {0} = o(YX)\ {0}, from (6.10) we get

o(P.T*TP,) \ {0} = o(Pu|H|/*Z Aol H|7/*P.) \ {0}

20



= o(Z Ao H| YR H|'?Po)\ {0} = 0(ZAoP:) \ {0} € D,

where we take into account that all the operators Z, Ao, and P, are contractions and hence
the same is ZAoP,. Therefore, the operator TP, is contractive and hence

ITz|| < ||zfl, @€ |]F(1/n,+oo)H.

n>1

This implies that the operator T' is contractive on H © ker H and the claim is proved.
Further, let us note that

[Boz, hlg = (z,Coh), z €U, h€H. (6.11)

Indeed, taking into account of (6.4) and (6.5), for all z € U and h € H we have

[Boz, hlg = Y _(Skz, hi) = (=, 3" Sihi) = {2, Coh).

k>0 k>0

Again by Lemma 6.1, it follows that the operators By and (o induce uniquely determined
operators B € L(U,Ky) and, respectively, C' € L(Kg,U) such that

[Bz,hlg = (z.C'h), z €U, heXy. (6.12)

Letting D = Do = G(o0), it follows that the linear system (A, B,C,D) is completely J-
selfadjoint. In order to show that this is also a realization of the analytic function G, we note
that for all complex z with |z| > 1, since A is contractive the operator (2I—A)™' € L(KH)
exists and an application of Lemma 6.1 shows that it is the uniquely determined operator

induced by (zI — A¢)~!. Thus, from (6.2) we obtain that
G(z) =D+ C(=I - A)7'B, |z| > 1,

that is, the completely J-symmetric linear system (A, B, C, D) is a realization of the func-

tion G.
Taking into account the definition of the shift realization as in (6.3), (6.4), and (6.5)
‘t follows that the observability operator Op of the system (Ao, Bo, Co, Do) has the matrix

representation

SO 51 52 i Sk
51 Sz 53 e Sk—l—l
Sz Sg 5w
Oo = [Co C()Ao C()Ag ] = . = H (613)
Sk '
L ]

Since clearly the operator H is H-hermitian and taking into account of the uniqueness
part in Lemma 6.1 it follows that the observability operator O of the system (A, B,C, D)
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coincides with the operator induced by H on Ky and valued in #%, in particular the operator
O is bounded.

Similarly, let Ry be the reachability operator of the linear system (Ao, Bo, Co, Do). From
(6.3), (6.4), and (6.5) it follows that the matrix of Rp 1s

100 ...0
0710 ..0
001 ...0
Ro=[Bo AcBo AiBy ...|=| . : (6.14)
000 ... 1
L - |

Therefore, the reachability operator coincides with the operator of identification of £ with
H. We again invoke the uniqueness part of Lemma 6.1 and conclude that the reachability
operator R of the linear system (A, B,C, D) coincides with the operator induced by Ro,
that is, the operator Preker: £ — Kp, or even more precisely, the composition of the
embedding of H into Ky with the orthogonal projection of H onto H © ker H. In par-
ticular, this implies that the reachability operator R:}, — Ky is bounded. Since by the
construction of the Krein space K, the space H © ker H is dense in Ky it follows that the
reachability operator R has dense range and hence the system (4, B,C, D) is reachable.
We now remark that |

(Ooh, f) = (Hh, ) = [h, flu = [, Roflu, h €M, [ €Ly
This implies that the induced operators O: H — &, and R: £} — H satisty the relation
(Ohaf>:[h7Rh]Ha hEICvaEEZ%h

equivalently, that the observability operator O is the "adjoint” of the reachability operator
R. Since, as proved before, R has dense range, this implies that the observability operator
O is injective and hence the system (A4, B, C, D) is also observable.

Finally we prove that the system (A, B, C, D) is parbalanced, that is, the observability
gramian O*O coincides with the reachability gramian RR*. To see this, recall (6.13) and
note that

<Oh7f>:<H7f>:<lthaSHf>a hEH@kerH, fGEZ{

Taking into account that the scalar product on Kp is (|H|-,-) it follows that O* = SH,
or more precisely, the operator induced by Sy:f?* — Ky, and hence 0*0 = SyH = |H|.
From (6.14) we get

(|H|Rof,h) = (|H|f, k) = (f,|HIh), fE€L, heHSkerH.

This shows that B* = |H|: Ky — £ and hence RR* = |H|. Thus the system (A, B,C, D)

is parbalanced. il ‘
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COROLLARY 6.3 Assume, in addition to the assumptions of Theorem 6.2, that for some
n >0 and all |\| > 1 the function G has the representation

"1 1 1 {m
k=1 (-1,1\{0}

where {Sk}iZ} is a family of bounded selfadjoint operators on U, D e LU), D=D,
e L), T >0, and v is a hermitian L(U)-valued measure on [~1,1] \ {0} such that
t"dv(t) is a finite and positive measure. Then the realization (A, B,C, D) constructed as
in Theorem 6.2 is completely J-positive of order n.

Proof. With the notation as in the proof of Theorem 6.2 we first note that as in
Theorem 5.1 we have that the Hankel block-matrix [Sjyk+n]jk>0 18 nonnegative on 4. On
the other hand, from the definition of the operator Ag as in (6.3) we have

[Agfvg]H = <anagn> + Z<Sj+k+nfj7gk>’ fag € EZ(

k>0

Therefore
[Agf’f]H:U—‘fnafn)_!' Z<Sj+k+nfjvfk> >0, fEEZ{
3,k20
It is easy to see that the operator induced by A? is exactly A™ and hence A is J-positive
of order n.

For an analytic £({)-valued function G, let us denote by (@) the complement in C of
the largest possible domain of analytic continuation of G. If (A,B,C, D) is a realization
of G then clearly 0(G) C o(A). If the converse inclusion holds, o(A) C o(G), then the
realization is called minimal spectral. We are interested now in this property for completely
J-positive realizations of finite order, as in Corollary 6.3. The following proposition gives a
partial answer. The approach we follow is closely related to the positive definite case, see

).

PROPOSITION 6.4 Let (A, B, B*J, D) be a completely J-positive realization of finite order
of the transfer function G such that the reachability operator R has dense range. Then
a(A)\ {0} € o(G)

Proof. Let A be a compact real interval which does not contain 0. Then either
A C (—00,0) or A C (0,+00). To make a choice, assume that A C (0, 4+00).

From the construction of the spectral function A of a J-positive operator of finite order
as in [26] we have

E(A) =limlim 1 (z1 — A)"'d =, (6.15)

e—06—0 27Ti [ol)
Ae

where A, = [a — ¢,b+ €], assuming that A = [a,b], C4, is a rectangle symmetric with
respect to the real axis constructed around the interval A, from which we remove two
segments of length 2§ around the points of coordinates (—¢ + a,0) and (b+¢,0).
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Let us assume now that G has analytic continuation in a neighbourhood of A. Then,
from (6.15) and taking into account that the system (A, B, B*J, D) is a realization of G,
applying the Cauchy formula we get

1
B*JE(A)B =limlim=— [ (G(z) - D)dz=0.

e—06—0 271 o
Ae

Taking into account of Theorem 2.2 it follows that E(A)H is a uniformly positive subspace
of H and hence, for arbitrary u in the input/output space U we have

0 = (B*JE(A)Bu,u) = [E(A)Bu, E(A)Bu] > o E(A)Bul,

for some o > 0. Then E(A)B = 0 follows and since the spectral function E commutes
with the main operator A we obtain

0= A*E(A)B = E(A)A*B, k>0.

From here we obtain that E(A)|R(R) = 0 and since it is assumed that the reachability
operator R has dense range, it follows that E(A) =0 and hence Anc(A)=0. §

Finally, we are interested to determine to which extent the realizations of symmetric
transfer functions is unique. The appropriate notion to be used is that of unitary operators
in Krein spaces. Given two Krein spaces H; and H, with specified fundamental symmetries
Jy and, respectively, Jo, a bounded operator U: Hy — H, is called (Jy, Jo)-unitary if U=
JLU* .

THEOREM 6.5 Let G be a symmetric L(U)-valued function, for some Hilbert space U,
analytic outside the closed unit disk and at infinity, and such that the Hankel operator
H is bounded. We assume, in addition, that there exists some € > 0 such that either
(—£,0) C p(H) or (0,e) C p(H). If (A, B, C;, D;) are completely Ji-selfadjoint systems,
; = 1,2, which are observable, equivalently, reachable, realizations of G, then there exists
a uniquely determined (J1, Jz2)-unitary operator U € L(Hy,H;) such that Ay = UAU?,
B, = UBy, Cy = C1U™Y, (and, of course, D1 = Dy = G(0)).

Proof. We consider the reachability operators R;: 0}, — H; and the observability oper-
ators O;: H; — {%, corresponding to the system (A;, B, Ci, D;), i = 1,2 Clearly, since the
systems are completely Ji-selfadjoint, we have O; = R!J; and hence

R:J:R; = O:R; = H. (6.16)

'To make a choice, assume that for some ¢ > 0 we have (—¢,0) C p(H). Taking into
account of the construction of the induced Krein space Ky (see the beginning of Section
6) this implies that the spectral subspace corresponding to H and the interval (—o0,0) is
a maximal uniformly negative subspace in Ky. Taking into account that the reachability
operators R; have dense range, we can apply Lemma 2.3 in [7] and get that R; induces
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uniquely determined (Sg, J;)-unitary operators ®;: Ky — H;. Let then U = 007" Hy —
H,. Then U is (Ji, Jz)-unitary and Ry = UR,; and hence

R2 = [Bg AQRQ] = UR1 = U[Bl AlRl]. (617)

Identifying the first components n (6.17) we get By = UBy and hence C; = B3J> =
BiU*J, = BjhU™! = C,U~!. Finally, identifying the second components in (6.17) we get

A2R2 = UAlRl = UAlU_lRQ,

whence, since R, has dense range, we get that A, = UA, UL,
In case (0,e) C p(H), a similar argument applies. i

REMARK 6.6 If the Hankel operator H associated with some symmetric transfer function
G is bounded and «(H) = min{x~(H),x*(H)} < oo then the assumption on the topology
of the spectrum of H as in Theorem 6.5 holds. For example, this is true if the function G has
the representation as in Corrolary 6.3 and the input/output space U is finite dimensional
(the argument is as in the proof of Theorem 5.1). 1
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