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Completely -I-Positive Linear Systems of Finite Order*

Aurelian Gheondea Raimund J. Ober

Abstract. Completely "/-positive linear systems of finite order are introduced as
a generalization of completely symmetric linear spaces. To any completely ./-positive
linear system of finite order there is associated a defining measure with respect to
which the transfer function has a certain integral represention. It is proved that these
systems are asymptoticaliy stable. The observability and reachability operators obey
a certain duality rule and the number of negative squares of the Hankel operator is
estimated. The Hankel operator is bounded if and only if a certain measure associated
with the defining measure is of Carleson type.

We prove that a real symmetric operator valued function which is analytic outside
the unit disk has a realization with a completely "/-symmetric linear space which is
reachable, ob,servable and parbalanced. Uniqueness and spectral minimality of the
completely "/-symmetric realizations a e discussed.

1. Introduction

Infinite dimensional systems have proved to be of interest for some time and they have
been studiedfromdifferent points of view, cf. [10], [11], [15], and [13], to quote only afew

of the main papers in the field. They proved to be useful not only in the system theory
but also in operator theory, e.g. see [31], [33], [36], [37].

Balanced realizations have been formally intro,luced by Moore [29] to provide a method

for the model reduction of finite dimensional systems. They have since also played an

important role in areas such as fl- control theory (see e.g. [14]), system identification (see

e.g. l2a]) and the parametrization of linear systems [34]. The parametrization approach

to linear systems using balanced realizations provided a powerful method to solve the

inverse spectral problem for Hankel operators (see [31], [33], [28]). In the case of infinite
dimensional systems, it is the larger class of parbalanced system, introduced by N.J. Young

[40], which plays an important role.
A linear system (A, B ., C, D) with finite dimensional state space is called sign-symmetric

if there exists a sign matrix ^9, i.e. a diagonal matrix whose diagonal entries are *1, such

that
A:  SA*5 ,  B :  SC* ,  C :  B*5 .

Clearly, a necessary condition for a system to have a sign-symmetric realization is that the

transfer function is symmetric with respect to the real axis. Such realizations play a role

in finite dimensional system theory since the trace of ,9 specifies the Cauchy-index of the

*This research was supported by NSF grants: DMS 9304696, DMS-9501223.



transfer function ([z]). The Cauchy-index itself plays a role in the study of the topology
of rational functions of a fixed Mc-Millan degree (see e.g. [3]), since it characterizes the
connected cornponents of the rnanifold of these functions. Kumar and Wilson [23] showed
that each stable continuous-time finite dimensional linear system has a sign-symmetric
balanced realization. This was generalized to the case of rnultivariable symmetric systems
in [30] and to infinite-dimensional systems whose Hankel operator is compact with discrete
spectrum in [32]' The sign-symmetry matrix S has the additional significance that the
diagonal entries are the signs of the eigenvalues of the corresponding H.nk"l operator ([34],
[32] ) .

The aim of this paper is to investigate (discrete time, time invariant, infinite dimen-
sional) linear systems with sign symmetric transfer functions, and hence with the corre-
sponding Hankel operator selfadjoint. We show that under sufficiently general assumptions,
cf' Theorem6.2, these systems are realized in such a way that the -uin op".ator is selfad-
joint on a Krein space. It is known for some time that the most tractable ciass of selfadjoint
operators on Krein spaces are the definitizable ones, which fortunately covers the class of
selfadjoint operators on Pontryagin spaces. The spectral theory of definitizable operators,
developed by Heinz Langer [25], [26], shows that some singularities show up, the so-called
critical points' In order to study these operators, a useful approach is to "localize" the
critical points. Thus, operators for which a certain power becomes positive, and hence 0
is the only possible critical point, represent the first relevant class t,n be studied. In this
paper we will confine to this class of linear systems which we call cf completely J-positive
systems of finite order.

From yet another point of view, transfer functions associated with completely symmet-
ric linear systems in Pontrayagin spaces were intensively investigated by M.G. Krein and
H. Langer in a series of papers [18], [19], [20],l2ll.In these papers various problems related,
to the generalized resolvent formula in Pontryagin spaces are discussed and applications to
interpolation problems and Hamburger-Stieltjes type moment problems are treated. In that
case, the transfer function is the so-called Q-function and the properties of this function
are carefully studied.

Our study is strictly concentrated on system theoretic problems related to complet ely J-
symmetric infinite dimensional linear systems, as generalizations of the results obtained by
the second named author in [35]. Thus, the asymptotic stability of these sytems is obtained
in Proposition 3.1. The integral representation of the transfer function, in terms of a
unbounded measure associated to this kind of systems, is obtained in Theorem J.2. It turns
out that the observability operator and the reachability operator are related by a certain
duality property, in a sufficiently general case, see Theorem 4.1. This gives the possibility
to characterize the boundedness of the Hankel operator. Yet another characterization of
the boundedness of the Hankel operator is obtained in Theorem 5.3, in terms of a Carleson
type property of the defining measure, by means of a theorem of H. Widom [39]. Also, in
case the input/output space is finite dimensional, the number of negative squares of the
Hankel matrix is finite, cf. Theorem 5.1.

The last section is devoted to realization of transfer functions with a certain symmetry
property. In Theorem 6.2, a general result of realization of this kind of transfer functions is



obtained. We follow the approach of M.G. Krein and H. Langer combined with some techni-
calities, e.g. Krei*Reid-Lax-Dieudonn6 Lemma and some ideas from a paper of N.J. Young

[40], to obtain a realization which is minimal and parbalanced. Spectral minimality and
uniqueness of these realizations are also discussed.

We recall in Section 2 the basics of the spectral theory of ./-positive operators of finite
order that we use here.

2. . /-Posit ive Operators of Finite Order

2.1. The Spectral Function. Let ' l1be a Hilbert space with the scalar product denoted
by (., .) and let J be a f ixed symmetry on?7, that is J* : J : J-r. Then onH one can
introduce an indefinite inner product denoted [.,.]

lr., y) : (J ,, y) ,, r, y € 
'11.

The Hilbert space 7/ endowed with such an indefinite inner product [,,.] is called a Krein
space. Most often one does not fix the positive definite inner product (there are infinity
many and all of them produce the same strong topology) of a Krein space, but even though
this point of view is the most natural, we will not follow this way since it needs to introduce
too much Krein space terminology.

A bounded operator Ae L(11) is cal led J-selfadjointi f  JA: A*J" f i .  is ciear that the
operator A is .I-selfadjoint if and oniy if the operator JA is selfadjoint in the Hilbert space
11. A J-selfadjoint operator .4 on 7l is called J -positiue of order n if J A" > 0. Simil;irly one
defines J-negative operators of order n. A J-positive operator of order 1 is called simply a
.I-positive operator.

Rnuanx 2.1 A .I-positive operator of order 0 is simply a selfadjoint operator on the
Hilbert space ?1. Indeed, by definition, if A is a ./-positive operator of order 0 then J A =
A* J and J > 0. But the only positive symmetry is the identity operator and hence J : I.
Thus, the notion of J-positive operator of finite order is a generalization of selfadjoint
operator on a Hilbert space. I

In the following we denote by Ro the Boole algebra generated by intervals 4 in R such
that its boundary 0/ does not contain the point 0. We recall now a particular case of a
ceiebrated theorem of H. Langer and some of its consequences) cf. 1251, [26].

TuBonevr 2.2 Let A e L(17) be a J-positiue operator of ord,er n. Then o(A) C R and
there erists a mapping E:Ro--+ L(11), uniquely determined with the following properties:

(I) E(A) is J-selfadjoint for all A e Ro.

(2) E is a Boole algebra morphi,sm, that is, it is additiae and multiplicatiue.

(3 )  E (R)  :  1 .

(l For all A e Rs such that the polynomial t" is positiue (negatiue) on A, the operator
E(A) is J-positiue (J-negatiae).



(5) For al l  A Q Ro the operator E(A) is i ,n {A}" (the bicommutant of the algebra

generated by the operator A).

(6)  For  a l l  A e Ro we haue o(AlE(A) ] l )  9A.

The mapping E uniquely associated to the J-positive operator A of some finite order n

is called the spectral function of A. As a consequence of Theorem 2.2, the spectral function

has also the following properties.

Conor,lnny 2.3 With the notation as in Theorem 2.2 let A €R6 be closed and such that

0 ( A. Then:

(a) The function Ea def,ned by

E a ( A ) :  E ( A o A ) ,  A € R o ,

can be er,tended uni.quely to a bounded measure with supp Ea e 4.

(b) The operator AE(A) is similar with a selfadjoint operator on a Hilbert spact:, in

particular it has spectral measure.

(r) E" is the spectral n'Le(61re of the operator AE(A), in particular

AE(a) :  I ranAl .
T

Corollary 2.3 shows that the spectral function E of aJ-positive operator of some finite

order n can be regarded as a spectral measure, in general unbounded, on R \ {0} We now

recall the integral representations associated with -I-positive operators of finite order.

Conolr,any 2.4 Wi,th the notation as i,n Theorem 2.2, there erists o,n operetor N € L(11)

with the following propert'ies:

( l )  /1 /  >  0 ;
(2) NE(A) :0, for all A e Ro such that 0 / A;
(3) A.n/ : o;

and such that the following integral representations hold:

A " ( ^ I - A ) - ' :  [  { = o r ( r )  + + N ,  ^ € p ( A ) ,  ( 2 . 1 )
J  A - t  A

R\{0}

A , :  [  , " O E ( t ) + t , t ,
*r{or 

' Q'2)

where the integrals are improper at 0 and conuerge in the strong operator topology.



Let us also record that, as a consequence of Corollary 2.4, apart of the integral repre-
sentation (2.2), for al l  k > n we also have

A k :  [ * a u r n .
I ' "

mtiol

where the integral converges in the strong operator topology.

2.2 F\rnctional Calculus. Let A be a ./-positive operator of order
its spectral function. In the following, for o a compact subset of Fl we
c.-algebra of continuous complex valued functions onto a and let ll . ll,
norm.

(2-3)

n and let E denote
denote by C(cr) the
denote its uniform

REuanx 2.5 As a consequence of Corollary 2.4 one can prove (e.g. see [12]) that for all
f  e C(o(A)), the integral

t  J( t) t"d E(t)  (2.4)
J

a( .4 ) \ {o }

converges in the strong operator topology as an improper integral and, in addition, the
mapping

c (o (A) ) r . f  *  |  f $ ) t "o l ( t )  €  L (11 )
J

a(A) \ {o }

(2 .5 )

is uniformly continuous. In particular, this shows that the operator valued measure t"d E(t),
can be extended to a f inite measure onto the whole real l ine Fl such that I 'dE(l)({0}) :0
and the improper integral in (2.a) can be equivalently considered as an integral of the
function / with respect to this finite measure. I

In the following we define a certain Banach algebra of continuous functions and using
this and the previous results we will recall a natural functional calculus associated to the
operator A. Let a C R be a compact subset such that {0} is an accumulation point of o.
By C"(o;O) we denote the class of functions f e C(o) with the property that there exists
h1 e c(o) and a compiex polynomial py of degree at most n - l such that

f  ( t)  :  t"  hr(t)  + pt(t) ,  t  € o. (2 .6)

It is easy to verify that the representation in (2.6) is unique and that C"(o;0) is an algebra.
OnC" (o ;0 )  wecons ide r the fo l l ow ingnorm:  i f  / €  C" (o ;0 )  i s rep resen tedas in (2 .6 )  t hen

l l / l l  :  max{ l lhy l l " ,  l lp i l l " } . (2.7)

Then (C"(o;0), ll ll) is a complete normed algebra, with continuous product and isometric
involution. Multiplication of the norm in(2.7) with a certain constant turns C"(o;0) into
an involutive Banach algebra.

We now recall the functional calculus with continuous functions obtained by P. Jonas
[16] (here we follow the form as in [12]) which is a refinement of the functiona] calculus



obtairred by H. Langer [25]. In the
isometric involution fi

yn

next theorem, the algebra L(7{) is considered with the

: JT* J, f e t.(11).

as before, there erists a unique uniformly continuo'usTHaonnlt 2.6 With the notation
ma,pping

C"(o;0) )  /  * ,  E(f)  € L(11),

such that for any polynomial q we haae E(q) : q(A). In addition, the rnapping E i,s a
homomorphism of Banach algebras with inuolution and it is giuen by the formula

E(f) = hr (0 )A i  *p t (A ) ,  f  eC" (o ;0 ) .

As a consequence of Theorem 2.6, the spectral function E can be considered as a spectral

distribution, in the sense of C. Foiaq [5], which is of measure type everywhere on R except

at 0 where it is the derivative of order n of some measure, in the sense of Radon-Nikodym.

For a compact subset o of the real line we denote by B(o) the C*-algebra of bounded

borelian functions on o, endowed with the essential supremum norm ll'11.". In the following

we will assume that o is a compact subset of R such that o(A) e o and 0 is a point of

accumulation of o. Also, we will denote fu B"(o) the invr;lutive Banach algebra consisting

of those functions f e B(o) such that the represenation (2.6) holds with p1 polynomial of

order at most n - 1 and hy e B(o) continuous in 0. The strong toplogy on B"(o) is defined

by the norm

l l / l l  : rnax{ll h l l*, l lp. ' l l*}.
Clearly, C"(") is a closed subalgebra of B"(o).

Tuponnu 2.7 Assume that o is a bompo,ct subset of R such that o ) 
"(A) 

and 0 i's an

accumulati,on point of o. Then there eri'sts a mapping

B " ( " ) > f * + n U ) e L ( 7 1 )

uniquely determined by the following properti,es:

(i) For aII polynomials p we haae E(p) : p(A),

(ii) # f*,f e B"(o) are such tnat supllfrll ( oo and fp conaerges pointwi'se to f

componentwi,se (i.e. for all t € o htr(t) --+ hJ(t) and p1o(t) --+ p1(t) for k --+ n) then

E(fr) -- E(f) for k --+ x.
In addition, the mappi,ng E is a homomorphi,sm of i,nuolutiae Banach algebras and for

all f e B"(o) we haae

E( f ) :  p r@) h r (t)t" d E (t) + hr(0)A/,

I

I  h t ( t ) t "d  E( t )  +
J

+ l
"\{o}

in parti,cular, the mappi,ng E i,s an ertension of the functional calculus in Theorem 2.6.



As a consequence of Theorem 2.7 arrd of approximation Theorems of Baire and, respec-
tively, of Weierstraf3 we have:

CoRoi . r .q .RY 2.8 Let  A€Ro(A) .  Then,  i l0  €  A (0 /  A)  then E(A)  canbe appror imated
strongly with operators of type p(A)A + I (respectiuely, with operators of type p(A)A)
where p i.s polynomi,al.

3. The Definining Measure

In this section we consider linear systems regarded as quadruples (A, B,C,D) where A €
L(11) is a contraction, B e L(U,11), C € L('11,J/), and D e L(U,)) and 11, U, and

) are Hilbert spaces. Usually the spaces U, H, and J/ are called, respectively, the input
sp&cq the state space and the output sp&ce. Also, the operators A, B, C , and D are called,
respectively, the main operator, the i,nput operator, the output operator, and the erternal
operator.

With every linear system (4, B,C, D) there is associated its transfer function G: p(A) --

L(U,Y) as foilows
G ( . \ )  : D + c ( ^ I - A ) - ' 8 ,  ) e p ( A ) .  ( 3 . 1 )

Since the main operator A is assumed contractive, the transfer function is defined and
analytic for ali l,\l > 1.

Let us assume y,fat U : ) and that on '17 therc is fixed a symmetry .I (and hence
the associated Krefr,\  space (17,1.,.))).  A l inear system (A,B,C,D) is cal led completely
J-symmetricif the operator A is J-selfadjoint, C : JB*, and D : D*. The completely
./-symmetric system is called completely J-positiae of order n if the operator A is J-positive
of order n.

As a consequence of Remark 2.1, the notion of completely J-positive linear system of
finite order is a generalization of the notion of completely symmetric linear system as in

[35].
We consider first the question of asymptotic stability of completely J-positive liner

systems of finite order.

PnopostrloN 3.L A completely J-posit iue l inear system (A,B,C,D) of f inite order such
that 17 / or(A) is asymptotically stable, that is, Ak --r 0 (k -+ x) in the strong operator
topology.

Proof. Let n be the order of the ,./-positive linear system (A,B,C,D) and E the spectral
function of the operator A. As a consequence of Corollary 2.4 f.or all h e 11 and all k > n
we have

t k d E l t l h : l im
e+O

W e c o n s i d e r 0 < 6 into account of

tkd E( t )h.

2.3 we get

tkd E( t )h.

A k h :  t
J

[ *1,1] \ {o}

( 1 and taking

: l
[-6,6]\{o}

f
I

J
[ - 1 , r ] \ ( - e ,e )

Corollary

f -ny6 E(t)h + |
J

[ -  r , r ] \ ( -e ,e )

Akh (3.2)
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Since t"d E(t) is a finite operator valued measure and dft -- 0 (k --+ oo) we have

(3 .3  )

On the other  hand,  s ince by assumpt ion * I  (  or (A) ,  us ing Coro l lary  2.3 we get  d  E({ -1,  1} )
: 0 and hence

f , f
l l  I  t*-"t"d E(L)hll  < I t t t"d E(t) l i l l6*-" -, 0 (& -., *).

I I
v J

[ -6 ,6] \ io ]  [_6,6] \ {0}

I I

I  t ra  EU)h :  I  t ra  E( t )h .
J J

[ - r , r ] \ ( - e , e )  ( - 1 , r ) \ ( - e , e )

, - : {

(3 .4 )

Further, on the ground of Corollary 2.3, modulo a similarity we can assume that the spectral
measure  E I ( - I , 1 ) \ ( - t , e )  i sse l fad jo in tw i th respec t to thepos i t i vede f i n i t e inne rp roduc t
(','). Therefore, using the theorem of dominated convergence of Lebesgue we obtain that

l l  [ *a o1t7h112 : t *kG E(t)h,h) - 0 (fr -- m).
J " J

( - 1 , 1 ) \ ( * € , € )  ( - r , r ) \ ( - e , e )

(3.5)

From (3.3), (3.4), and (3.5) we obtain that l lAkhll - 0 (k + m). I

In the next theorem we consider only linear systems (A,B,C,D) whose input and
output spaces are finite dirnensional, that is,l,{ : C- and } . Cp for some nonnegative
integers rn and p. This is sufficient for applications and avoids i,ir., complications which are
usually encountered when dealing with infinite dimensional veofbr measures.

TuBoneu 3.2 Let (A,B,C,D) be a l inear system which is co,hpletely J-posit iue of order
n, such thatU : ! : C^, and consider 1ts transfer function G as in (3.1). Then, there
edst a J-posi,ti,ue operator N e L('ll), such that N2 : AN :0, and a syrnrnetric matrir
aa lued Bore l  n leasure du on [ -1 ,1]  \ {0}  such that

:- r 1 I I t"G() )  :  , *L  *B .JAk- 'B+ )#B"JNB +  ) ,  I  1 t  _ . f r@.  (3 .6 )
[ _ t , 1 ] \ { 0 i

The measure du has also the following tuo properties:

(a) /'d u(t) is a positiue matrix aalued f,ni,te Borel rneasure on [-t,l];
(b) The function

1 1

G'(r )  :  !G( : l  -  n l  -  
T  o1""k ,

z z 
ic>o

I, has its Taylor coefficients

B * J A V B ,  r < k < n - r ;

B.JNB + t  t "du( t ) ,  lc :  n i
[ -1 ,1 ] \ {o }

I  t k d u ( t ) , ,  k 2 n * 1 .
[ - 1 , 1 ] \ { 0 }

(3 .7 )

which is analytic for lzl <

l
I

(3 .8 )



The measure d.u is uniquely d.etermined by these two properties, tnore precisely, if E d,enotes

t h e s p e c t r a l f u n c t i o n o f  A w e h a o e d , u ( t ) : d B . J E ( t ) B , a n d t h e o p e r a t o r N  c a n b e c h o s e n

I , { :An-  t  fd ,E( t ) .
otJtot

I f ,  in  add, i t ion ,  *1  /  " r (A)  
then dr ( { -L ,1 } )  :  0  and" , l im l l c6 l l  :0 '

(3 .e  )

(3 .10)

Proof. Let E be the spectral function of A and the operator 1{ defined as in (3.9). As

a consequence of Corollary 2.4 the principal value of the integral in (3.9) exists with a

singularity in 0, the operator 1/ is .I-positive and N2 : AN :0. We consider the transfer

function G as in (3.1) and then the function Ga defined as in (3.7) is analytic in the open

unit disc D. Let z be acomplex number in D. Taking into account that C : J B* and that

l l A l l  < l w e h a v e
ct ( " )  - -  B.J(z I  -  A)- tB:  t  ,kB*JAkB.

[>0

We now take into account the definition of the operator If and from (2.3) it follows

Further

Let t ing du( t )

| "ktnd, 
B. J E(t)B

k)n

n - I

c t ( " ) :  t  " k B * J A k B  I  z * B * J N B  I  t , " " ' " , d r 1 r 1 .
*=o r- r , / *or  

, -zt

From (3.10) and ) :7lz we obtain the representation (3.6) of the transfer function G.

Clearly, d z is a symmetric M*-valtted Borel measure and taking into account of the prop-

erties of the spectral function B as in Theorem 2.2 and Remark 2.5it follows thatt"du(t)

is a finite M^-valued positive Borel measure on [-1,1].

We now prove that the measure d z is uniquely determined by the properties (a) and

(b). To r"" ihir, let dpr be another M^-valued, symmetric Borel measure on [-1,1] \ {0}

satisfying the properties (a) and (b). According to the property (a), both measures d pr and

d.u canbe considered as matrix valued distributions on [-1,1] of measure type everywhere

except at 0 where they are of finite order S n. By means of the polarization formula it

n- l  f

c t ( r ) :  t  rkB*JAkB,  znB*JNB + lz "  I  
f cLB.JE( t )n .

f t=o k)n t_r, i l t {o}

D'r  
|  

*d.B.rE(t)B: I
[-1,1]\{o} [-1,1]\{o}

'n ' "  
d .  B-  J  E( t \8 .

l - z t

that

k)n

t: l

[-1,1]\{o}

:  d B" J E(l)B we obtain



follows that d F : dru if and only if the scalar measures dp' : du, for all r € U : C*,

where d p"(t) :  (d p(t)n, z) and similarly for the measure d v. Note also that the scalar

measures d pl" and' d z" share all the properties that d pl and, respectively, d z have' In

particular, the scalar measures dp" and du, can be equivalently characterized as bounded

linear functionals on the Banach algebra C"(l-1,1]) (see subsection 2.2). Thus, in order to

prove that they coincide, i t  is suff icient to prove that for al l  functions / e C([-1'1]) such

tha t  / (0 )  :  0  and  f  ( t ) l t r  €  C ( [ -1 ,1 ] )  we  have

/ ( l ) d u , ( t ) , ,  r Q C ^ ( 3 . 1 1 )f  ( t )d p,( t )

To this end, for arbitrary fixed r e. C^ let / be such a function, that is f (t) : t"h(t)

for some h e C([-1,1]). By Weierstraf3 theorem there exists a sequence of polynomials

{p*}r>, such that pt, --+ h uniformly on [-1,1]. Since both measures d p' and dv have the

property (b) it follows that

nr(t) t"d p,(t1 pk( t ) t "du( t ) ,  k  >  1 . (3 .12)

Therefore, taking into account of (3.12) we have

f ( t)d p"(t) /( t)d r,( t) l l

<tl

This proves that equation (3.11) holds for all r e C^ and ail f e C(l-t,1]) such that

/ (0 )  :  0  and  f (q l *  €  c ( [ -1 ,1 ] ) ,  and  hence  dP  :  d , '

Assume now that *I # "r(A). 
Then as in 2.3 we have dE({-1'1}) :  0 and hence

d u({-I,l}) : 0. Taking into account of the theorem of dominated convergence of Lebesgue

applied to the positive finite measures t"du,(t) we have that for alI k ) n

( a p r ,  x ) t k - n t n d u r : 7k-n7n6u, ---+ 0, (k --+ oo).

We now use again the polarization formula and the fact that 47, are matrices of order rn

and conclude from here that llo*ll -- 0 (k -' -). f

The matrix valued measure dy as in Theorem 3.2 is called the d,efining measure of the

system (A,B,C,D).Under the assumptions of Theorem 3.2 and as a consequence of the

t"

: l"t,

: l"t_,
r 1- l_,l l

t"/(r)d t ,(t) - l ',or{r)o t "(t)ll * ll l_',/(r)d 
u,(t) - 

l ',on{r)o,,(t)ll

, l ' , lh(t) 
- pp(t)lt 'd, !,,(t) + 

l_', loUl 
- pk(t)lt"d tt.(t)

( 
l' ,* 

u !,,(t) + 
l_' ,* 

o ,,(t))llh - prll' --+ 0 (k -- oo).

t
J

[ - 1 , 1 ]

tn l',."
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representation (3.6) it follows that the transfe.r function G has analytic continuation onto

C \ supp(d rz).
Following [35], a l inear system (A,,B,C,D) is cal led

exists in the strong operator topology.

PRopostuoN 3.3 A completely J-po.sit iue system (A,B,B*J,D) of order n, with Jinite
dimensional input/output space U and with dertning measure u, is adrnissible iJ and only iJ
the integral f 

f# is conuergent.
[ -1 , r ] \ {o}

Moreouer, in this case we haae

n- l

l imB.-/()  I  + A)-tr :  f t -  r)kB-JAkB+ (-1) '8.  JNB + [  ++. (3.13)
r \ r  

- \  
k = o  J t - 1 , 1 1 \ { o }  l + t

Proof. Let .\ ) 1 be arbitrary. From the integral representations (2.2), (2.3) and the
definition of the defining measure as in the proof of Theorem 3.2 we obtain

n - 7  r  r  r k  ,  ( - l  ) "  r - l  ) '  f  t " d u ( t )  / o  a , \B.r(^I + A)-'B : I!fr.; AkB +ftfta"LNB +#- J tr (3.14)
a=o 1-r, i1q1o1

In part icular, this shows that the l inear s.,51.t)rn (A,B,B*J,D) is admissible i f  and only

f  t "d  u( t \
lim I -,-.+ exists (strongly is the same with unformly since the input/output
) \ 1  J  A + t

[-  1,1]\{o}

space Z,/ is supposed of finite dimension). Consequenly, if the system is admissible we use

the Fatou's Lemma for the monotone sequence of functions {fr}.1>t and conclude that the

integral I +# is convergent.
[ -1 ,1 ] \ {0 }

Conversely, if the integral t 
{# is convergent then we use the Theorem of

[ -1 ,1 ] \ {0 }

Lebesgue of dominated convergence applied to the sequence of functions {;f}r;r and

conclude that the system is admissible. In addition, in this case we can pass to the limit

in (3.1a) following ,\ \ i and obtain the equation (3.13) I

RnttnRx 3.4 Under the assumptions of Proposition 3.3 assume in addition that the inte-
gral t t# is convergent and let 0 < e ( 1 be arbitrary. Then

[ -1 ,1 ] \ {o }

,(l-1, -i + ol

r-1,,r
Taking into account of
obtain from here that

t "d u(t \  f  t "d u(t \\ / \ r . r >
1 + r  J  r + t

[ -  1 , -1+e]

the behaviour of the function

adnt issible i f  l im C(AI + A)- 'B
) \ 1

€

l" in the neigbourhood of -1 we

, ( l -1,-1 * el
sup

0 (e (6

1 1

for some (equivalently for a l l )  0 < 6 < 1 .  I

( € ,



4. Observability and Reachability

we consider again a completely J-positive system (A, B, J 8., D) of order n, where J is a

fixed symrnetry on the state space 11, and.letl,l d,enote the input/output space. Following

the general theory we consider OtO(O)(g11) - 4.t, the obseraabi ' l i ty operator defined by

D(O) : {h e ?t lLl lB. J Akhll '  .  *},
lc>o

oh:  (B.JAkh)n lo ,  h  e  D(o)-

By duality one introduces the reachability operator R:D(R)(9lL) "+ 7{

D(R): {(rr)*>o e ! .?, l l , ,Wqu s* l l '  < *} ,
&>0

f i (("*)*>o) :  t  AkBrp, (*r)r>o €D(R).
a>0

Note that the domain of r? is dense in Py since it contains all the sequences with finite

support.

Tnnonnu 4. I  I f  +1 (  oo(A)  thenD(O) i : . ,  dense in '11,  o  :  R*J and R:  JO*,  in

parti,cular both operators O and R are closed'

proof. Let h €D(O)and z : (26)12o €D(R). Taking into account that A*kJ : J Ak for

a l l k > 0 w e o b t a i n

(oh , r ) : l {a " lAkh, r ) :  f {n ,  JAkBr l , ) :  \h , lY  '+knrx )  - -  \h ,JRr ) '
li>O fr>O /c>0

This proves that O I (J R). -- R* J.
To prove the converse inclusion, let h e D(R.), that is, there exists z € lll such that

( h , J R r ) - ( r , r l ,  r e D ( R ) '  ( 4 ' 2 )

On the other hand

( h , J R r ) :  f { n ,  J A k B r l " ) : \ { n . l A k h , r ) ,  x  e D ( R ) ,

(4 .1 )

fr>o /c>0

and from here, (4.2), and the remark that the unit ball of.D(R) is dense in the unit ball of

Pr, we get

(I l ls.-/an61121u2 3 - ryq l t(B*JAkh,k)l :  l l " l l  (  o" '
k>0 c€D(R)'  l lc l l l i  F-o

and hence h e D(O). Thus we proved O : R* J '

12



We now prove that D(O) is dense in'11. To see

D :  U B( [ -1  +\ lm,r  -  l lm])11.  By Theorern2.2,
m ) I

we have tha t  !  AEt  +  l lm, l  -  I lm) )11 :  J (ker (A
m ) 2

2 is dense in'11. In the following we prove that D C

h e E(I-I  +I lm,I -1, lml)Tlbe f ixed. Then,

& ) n * 1

Since t"d E(t) is a

Lebesgue it follows

and hence there exits I/

Then

this, consider the linear manifold

its Corol lary 2.3, and *1 / "o@)

- 1) V ker(A + 1))t :  ?1, therefore

D(O). To this end, let m ) 2 atd

\-
/-)

k)_n* l

finite
that

I ilJ Akhll2 :
l t - r l m

l l  /  t kd  E( t )h l l '  <
J  -1+ l lm

t  (  [ t -1tn lr l f r- ' l l r ,d E(t)hl l ) '?. (4.3)
* j -n+r  J  - tqr lm

measure. bv means of the theorem of dominated convergence of

- 0

k > A /  t
I

1
l .

11 -7  /m

,t im I Vf-" l lr"d E(t)hll
K-e J -7+1 lm

€ N such that 1f ) n and for all

f - r lm
I ltl*-"llt"d E(t)hll <

J -7*7/m

\-
,/-/
&>N

. 1 - r l r n

(  t  l t l r - ' l l t *dE( t )h l l ) '<  L  [ '  
' :1 t ; * - "1 ; t 'd  

E( t )h l l
J -r+tl* f-rN J -r+r 1*

: 
l":;-,$ ttdt*E(t)hll < *' (4.4)

From (a.3) and (4.4) i t  fol lows thatD gD(O) and hence D(o) is dense in77'

From (4.1) we also have that ,R I JO..To prove the converse inclusion we proceed as

in the proof of the inclusion R-J e O, provided we first prove that the unit ball of D(O)

is dense in the unit ball of.'11. For the proof of the latter, it is sufficient to note that from

Corollary 2.3it foilows that, without loss of generality, we can assume that for all m) 2

the projections E([-1*I lm.,t -t lm]) are selfadjoint with respect to the posit ive definite

inner product (.,.), too. Then the proof follows as in the Hilbert space case' I

CoRor,r,RRy 4.2 Assume that 11 / oo(A). Then the following assertions are equi'aalent:

(i) the obseruability operator O is bounded;

(\r) the reachability operator R is bounded.

Recall that a system (A,B,C,D) is called obseruable if the observability operator O

is bounded and injective. The system is called reachable if the reachability operator .R is

bounded and has dense range. Note that, as a consequence of Theorem 4'1, the completely

,./-posit ive operator system (A,B,B*J,D) of order n, such that t1 E or(A), is observable

if and only if it is reachable. This also makes interesting the characterization of the kernel

of the observability oPerator.
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pRopostrroN 4.3 Let E be the spectral function and let N be the ni ' lpotent operator asso-

ciated with the ma,in operator A of the comTtletely J -posttiue system (A, B , B" J, D) of order

n.  Then rL

ker(O) : f-l ker(B.J Ak). ) @. t n(^) n ker(,8.J/{).
,b=0 A€Ro

proof. As a colsequence of the deflnition of the observability operator O we have ker(O) :

fl klr(B./Afr). Tilerefore, \f r e (^l ker(B..rAft) then r e ker(B"Jp(A)) for all polvno-

a>o ft>o
;irfr p. Using Corollary 2.8 it follows that r € ker(B-"/ E(A)) for all A e Ro. Taking into

account the representation (2.2) we obtain also z e ker(B.-rN)'

Conversely) assume

(8" J E(A)) n ker(8.-Uf).

From (2.2) we get r € ker(B.JA") and then from (2'3) we get

k ) _ n + 1 .  I

x € ke{B. J Ak) for all

5. The Hankel Operator

We introduce now the operat or LI : OR. Note that in this definition, the domain of fI

is D(H) : {r € D(R) | Rr e D(O)}. The operator H is called the Hankel operator

associated to the system (A,B,B"J,D). From the definition of the operators O and 'R, the

operator 1/ has the following Hankel block matrix representation

H - (B- J Ai+i B) i,j>_,,

more precisely, for all 
" 

: I € li'r, y: t € l?u with finite supports we have
t>o j>o

,  (Hr,y): t l i ,n.t l '* 'Br,,a,).
(5.2)

j>o t>0

This formulation allows us to use some terminology from the theory of hermitian kernels'

Thus, we can speak about the number of negatiue squares of the kernel Il, denoted by

o-(H). To be more precise, we consider the vector space fo(U) consisting of sequences

r e lt(U) of finite support and on Fo(U) we consider the inner product [',']r git"o u'

in (5.2j. Then u (H) coincides with the negative signature of the inner product space

VrV);,[.,.]"), *or" precisely, o-(H) is the maximal algebraic dimension of subspaces

L g ro@) with the propery lr,rln ( 0 for all z € r \ i0). Note that in case the Hankel

operator fI is bounded, rc-(11) coincides either with the number of negative eigenvalues of

11, counted with their multiplicities, or is the symbol m'

THnonnnn 5.1 The number of negatiue squares of H is < l+] 
'dimU'

. € ) k e r ( B . J A k ) a n
k:o AeRo

( o . r  i

1 / l
a a



I f . x : ( z ; ) ; > o e

Proof. We recall first briefly the proof corresponding to the case rz : 0' With the

notation as in Theorem 3.2, i f  n :0 and taking into account R.emark 2.1, the block matrix

1"1 : lh;l;,j>o has the entries

t i+  
j  
d  u ( t ) .

S t <  1 .  T h e n

l r , r ln  - -  \Hr , r )  : (d  z ( t )  '  * ( t ) , r ( t ) )  2  0

which proves that rc-(//) : 0 in this case'

Assume now that n 2 L As before we identify the operator 11 with the matrix lh;il;,i>o

as in (5.1) and consider the infinite hermitian kernel ,Ho with the representation

(5 .3  )

Note that for i,j > t$t] we have ; + j >n and

r r  (  n . l N n + l : r t ' d u ( , : 1 ,  i + j : 7 1 ,
h r i : B * J N ; + i - " B *  

J _ r t " d u ( t ) : t  1 1  7 i + i - n . f d , u ( t ) ,  i +  j > n .

Taking into account that the operator valued measure t"du(t) is nonnegative and that

JN >0 we proceed as in the case n:0 and prove that rc-(I/o): O.

Further, consider the matrix Ht - H - Ho' Then

(5.4)

1 t
h ; ; : B - J A ' * t U =  

J - ,

fo(U) we let x(t) : 
Foro 

ro for - I

[,

where the block matrices marked with + are of now importance here. Clearly we have

*- ([h,i]o<ni<[.#t-,) = |- +l 
.dimt/.

: 1  2  J  - '  
L  z  J

Applying [6], Corollaty 3'2 we obtain

*-(H,, = l#] u'*,
Taking into account that H : Ho * flr we obtain

o-(H) < K-(Ho)+ rc-(l1r) = f +l 'dimt/'r'  L - z  I

In the following we are interested in characterizing the boundedness of the Hankel

operator. As an immediate consequence of Proposition 4.1 we have

l o l  o

Llt,t,r-

1 5



pRoposr'oN 5 .2 Assume that *] / oo(A). Then the following assertions are cquiaale'nt:

(i) the obseruability operator o is bou,nd,ed,, equiualently the reacho'bility operator is

bounded;
(t\) the Hankel oPerator is

(ii1) the Han,kel oPerator is
euerywhere defined in (2u '

bound.ed and eaeryuhere defined in ('zu '

A more interesting criterion of boundedness of the Hankel operator can be obtained in

terms of the d,efining L"urrrr" z. Recall that a planar measure pl on the open unit disk D is

called a Carleson measure if the Poisson integral induces a bounded operator from 'Le(aD)

into Le(p,), for some p > L According to a celebrated theorem of L. carleson [4], a planar

-"ur.rr" 1t is a carleson measure if and only if sup p(E(/)) llll < oo, where 1 runs through

the set of a1l arcs of T : 0D and ,R(/) denotes fhe set of all complex numbers z € D such

t h a |  z l l z l  € . I  a n d  1 - l " l  ! l l l l 2 r .
In the following theorem the definig measute z will be considered as a vector valued

planar measure on D with support in [-1' 1]'

THnoRrlr 5.3 Assume Ll / or(A) and, that the input-output spacell is f'nite dimensional'

The following assertions &re equiualent:

(I) the Hankel block matrir H 1n (5.1) d,ef.nes a bounded operator in (it;

iZj yo, al l  r e ?.1 ih,e nleasrlre A* [ot"(d,t '( t)r,u], A € 6(D), is a Carleson rneasure'

(3) Por some (eguiaalently, for all) 0 < 6 < 1

sup
0 ( e ( 6

Proof. (1)e(2). The Hankel block matrix in (5.1) can be partitioned in the following

way:
lB- J Ai+i Bfos;3n, i2o

lB"J Ai+r Bl;,i2"

Note that the north-west matrix is bounded

trices are contained in the south-east matrix'

< oo.

and that the north-east and south-west ma-

Thus, the Hankel block matrix 11 defines a

bounded operator in (i/ if' and only the Hankel matrix lB*J Ai+i B];,i>,, induces a bounded

operator i" llu.
Recall now that by Theore m 3.2the entries of the Hankel block matrix can be described

as the moments of the defining measure /

I

B.JA;+ jB_ |  t i+ id r1 t1
I

[ -1 ,1] \ {o i

|.c.c,)

Moreover, since l,l is finite dimensional, the Hankel block matrix (8. J A;+i g);,r>' in-

duces a bounded operator in !3u if and only if for all r € l'l the Hankel block matrix

U;;"J;';;;*, *llo,i, trrurr"", u"bo,rrrded operator on 12 ' We now use (5'5) and a theorem

= 
l : : i+ i -nrdu(t ) '  

i ' i  2n '
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of H. widom [39] which characterizes those planar measures with support in [-1,1] whose

moments define a bounded Hankel operator, to conclude the equivalence of (i) and (2)'

(z)e(s). we consider the z-valued Borel finite positive measure p

p(a) =

of course pr has its support contained in [-1,1]. For arbitrary r Ql,l we consider the scalar

Borel f inite posit ive measure lt ,  
-- 

\pr,r) '  Taking into account that suppp g [-1'1] and

of the above mentioned theorem of L. Carl QSorl1 l.Ir is a Carleson measure if and only if

p , ( ( -^ , - l  +6] )  < . I {e  and p," (11 -e,1))  s  Ke as 6 + 0r  which is  equiva lent  wi th  the

urs"rtion (3) (we again take into account that l./ has finite dimension)' I

6. Realization TheorY

In this section we deal with realizations of function s G(z) of type obtained_in Section 3, by

iinear systems which we wish to be compretery .I-selfadjoint within some Krein state space

and specifi.ed fundamental symme try J .-Fro* system theoretic consideration we would also

want that these realizations be observable, reachable and parbalanced' It turns out that

this kind of realization is possible for a class of functions which in a certain case is larger

than the class of functions obtained in section 3, more precise'ly these funcl '1'rs 
-Y'i:f{

only a symmetry property, but in another sense it is more restrictive, namely 
|tn",till:j

operator is supposed 1o be bounded. We first recall the definition of Krein spabes tnduced

by selfadjoint operators and a lifting property' 1.
Let us consider a Hilbert space (11,(',')) and let H be a bounded selfadjoint operator

on 71. On ll we consider the (in g"n"rul, indefinite) inner product [',']s definpd by

l * , y ) ,  :  ( H r , y ) ,  r , Y  € ' 1 7 .

kerl1 and note that the restriction of the inner product [ ' , ' ]s to'fr is
-O"A*".orriaer 

the norm ll lHl' l ' . l l  and let Ka be the completion of

to a Hilbert space. Now remark that, since the operator Il is bounded, we

l l ' , v l r l  S l l lH l ' t " l l  l l lH l ' i  ' s l l ,  r ,v  € '11 '

lora,{r) ,  
A e B(D).

L e t f r : ' l l O
nondegenerate.

(fr.,lll+rt' 'll)
have

and hence the inner product [',']n "un 
be uniquely extendedto Ku' It is now easy to

see that (Ku,|.,.]a) i. a Krein space, the strong topoiogy on this KreYn space is induced

l, tf." ,r"r- itlntlir,tt. We also note that the corresponding fundamental symmetry is the

extension of the operator .9s, where H : SalHl is the polar d'ecomposition of /1 and Ss

denotes the corresponding selfadjoint partial isometry'

Let now Jlr and.ll2beHilbert rpu"", and A e L('llr), A: A*,and B e L(112)' Also' let

T € L(Ht, ' . t lr) b.given and consider the induced K;ein spaces (Ko,l ' , ' ]a) and (Kr' [ ' ' '1r) '

We say that the olerator ? ind"uces an operato, fr e L(K',K")f i  7,kerA C kerB and

denoting by 7 the 
"o.r"rporrding 

factor operator in L(T|Oker A,llrOkerB) the operator

f is bounded with respect to the norms l l lAlt/ ' '  l l  and, respectively, l l lAlt/ ' ' l l '  The operator

t 7



f i, th" extension by continuity of the operato, i attd hence it is uniquely detennined by

T.
We recall now a result originally due to M.G. Krein [17] and obtained independently by

w.T. Reid [38], P.D. Lax [27], and J. Dieudonn6 [s]), whose indefinite variant was obtained

by A. Dijksma, H. Langer, and H. de Snoo [9]. For the fol lowing formulation, including the

norm estimate, we refer to 17].

Lnune 6.L Let' l l r  and,'112 be Hilbert spaces, H e L(111) and G e L(712) be selfadjoint

operators, and, T1 € L(|lr,7{2) and' Tz e L(Tlz,}1) be operators such that

fTp,ylc : lx,TzYln, r € 71t, U € Jlz,

or equiualentlY, HT1: T*G. Then

l l lGl,trTrrl l  < l l IGl ' / ,TtsnTzscTrl l ' t '  l l | f l l ' l" l l  ,  x €'111,

and si,milarly

l l lHl't 'Trvll < l l  lHl'/ 'TzscT,saT'l l ' t '  l l lGl'/ 'vl l '  v e'l1z'

and, hence the operatorsTl and,Tz i,nd,uce uni,quely d,etermi'ned' operatorsft e L(Kn'Kc)

and,, respectiaely, Tz € L(Kc,Ks) such that

l f l r , y lc  : l r , f rzYfa ,  n  €  Ku,  a  €  Kc '

Let l, lbe a Hilbert space and assume that G: {z €A I lr l > 1} -- L(u) is an operator

valued function which is analytic everywhere on its domain of definition and at infinity'

one can define an operator valued analytic function 9: D --+ L(U) by

1 1
g( " )  :  : (G( ; )  

-  G( * ) ) ,  l z l ' :  t '

Then g has the TaYlor exPansion

se)  : f  Sr r r ,  l " l  <  t .
&>0

Associated with the function G one can consider the block-operator Hankel matrix

H -

So 51 Sz S*
,Si Sz' Sg ,S*+r
Sz ^9s

Sr

( 6 . 1 )

F o l l o w i n g N . J . Y o u n g [ 4 0 ] , w e s a y t h a t a s y s t e m ( A , B , C , D ) i s p ' a r b a l a n c e d i f . t h e
corresponding observability and ,eachubility operators O and' respectively' -R are bounded

and the observability gramian o*o coincide with the reachability gramian R'R*'

1 8



T u n o R u v t  6 . 2  L e t l , { b e a H i l b e r t s p a c e a n d l e t G : { z € A l l r l  > i } - -  L ( U ) b e a n o p e r a t o r

ualued, function uhi,ch is analyti,c on i,ts d'omai,n and, at inf'nity, such that G is symmetric'

th,at is,
G(z)  :  G( r ) * ,  l r l  >  l .

If the Hankel block-operator ntatrir in (6.1) d,ef,nes a bounded operator in l2u then there

erists a lirein state space K with a specif,etd, Juntlamental symmetry J on' K such that G

is realized, by a completely J-symmetii,c l inear system (A,B,B.J,D) which is obseruable,

reachable and parbalanced.

Proof. Let (.,.) and ll . ll denote the scalar product and the corresponding norm on

the Hilbert space tl. Weconsider the Hilbert space [2u,of. square sumrnable sequences with

entries in /,/, endowed with scalar product also denoted bV (''')

( f  ,g )  :L , ( f r , s r ) ,  f  :  ( f r ) r>o t  s :  k t ) t2o  e  (2u '

/c>0

consider the Hilbert space '11 : tTt.According to our assumption, let 11 denote the bounded

operator defined by the Hankel block-operator 11 as in (6.1). We consider (As, Bs,Cs,Ds)

the rieht shift realization of G, that is,

G(t) -- Do * Co(zI - As)-r Bs, l, l  > r,

where the operator As:'|{--'ll is the right shift

(6.3)

the operator Bs: tl -+'11: (1, is defined by

B o : 1 1 0 . . . 0 . . . ] ' ,

where I denotes the matrix transpose, the operator co: 7-l -- u is defined by

go : lSo ,Sr . . .  S* .  .  . ] , (6.5)

and the external operator is D6 : Q (- ) . Note that the operat or Co is bounded due to the

assumption on boundedness of the Hankel operator 11'

Since the function G is assumed symmetiic, it follows that the operators St e L(U) arc

selfadjoint and hence, the Hankel operator fI is seifadjoint on ?1. Therefore. on the Hilbert

space H we can define the (in general, indefinite) inner product ['' ']a

[ f ,g)u :  \H f ,s )  :  t  (s i+ t ' f i ,gP) ,  f 'g  e '11 '
i,k>0

we consider the KreYn space (Kr,|.,.]s) with the positive inner product (l}/ l ' , ') '  The

fundamental symmetry J relating the inner products [',']a and (l/11''') is the operator

induced by the partial isometry Str on Kn'

,  A  . \  f  f r - t ,  k 2 l ,
\ a o l  ) x :  

I  0 ,  k  : 0 .

(6.2)

(6.4)
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We now prove that,4s is //-selfadjoint. Indeed, if f : (/t),'>o and g - (gl')*>o ut"

arbitrary sequences in ?l then

lAof  ,  g)a :  t  6 i+r (Af ) i ,  er , )  : f (S i* . / i  ; ,s r )
j ,k>o i>_1

:  t  (S i+n+r f i ,sn)  :  !  { / r ,  S i+*rs t )  :  [ f  ,Ao)a '
j ,k>o i ,k>o

Since As is F/-symmetric we can apply Lemma 6.1 and obtain that the operator As

induces a uniquely determined operator A e L(Ku) which is selfadjoint with respect to the

inner product [ ' , ' ]17. In addit ion,

lllH l1 t 2 Asxll < ll I l/ l'/' Aos s Aos a Aoll' t' lllr I' t' "ll, 
t € v{' (6 .7 )

Since the shift 46 is clearly a contraction, as well as the selfadjoint partial isornetries ,5s,

and by assumption ,F1 is bounded and hence, by spectral theory, the same is lHlllz, it follows

that the operator normof A, calcutated with respect to the norm l l l f / l t / ' l l ,  is S l l l l l l t / ' l l

We prove now that the induced operator A is contractive with respect to the norm

lllf/ltlrl[. To see this, let us first note that an equivalent formulation of this claim is that

the opertor T:Tt(lHl'l') --+'Jle ker fI defined by,

Ty  :  lH l t / ' h ln l - 'Py ,  y  €R( lH l r / z ) ,

which, by (6.7), is bounded, is contractive. It is easy to see that the bounded adjoint

operator B* is defined bY

T*r  :  lH l - ' l '  A6 lHl t l ' r ,  r  e  Ho ker11. (6.8)

Let us note that, an equivalent formulation of (6.6) is HAo: A6H.Then taking into

account that ,4eAfi < 1 it follows

H2 - A;H2Ao : H2 - AtHAtH : H2 - HA|A;H : H(\ - AoAt)H > 0'

Since H2 :11y'12, from here we get that there exists a contraction Z e L(11) such that

lU lAo:  Z . lH l '

From (6.8) and (6.9) we get

T* T : I n It t 
r,q6lu 

lAol u 7 I 
z : lH l1 t 

2 7 Aol H l-t t 
2 .

Let F denote the spectral measure of the positive selfadjoint operator l//l

denote Pn -- F(71n,+oo). Taking into acount that for bounded operators

o (XY)  \  {0 } :  o (YX)  \  {0 } ,  f r om (6 .10 )  we  ge t

(6.e)

o(P*T*TPn) \  {0}  :  o(P, lHlr l2ZAolHl- t l 'P")  \  {0}

(6 .6  )

(6. 1o)

a n d f o r n > - 1
X, Y we have
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:  o(Z AolHl - ' t 'P , ln lPp*)  \  {0}  :  o(Z AsP,)  \  {0}  g  D,

where we take into account that all the operators Z , Ao, and P' are contractions and hence

the same \s ZAsP,. Therefore, the operator TP,, is contractive and hence

l l ? r l l  l l l r l l ,  " € U  F ( r l n , + * ) 1 1 .
n ) l

This implies that the operator ? is contractive on 71O ker 1{ and the clairn is proved'

Further, let us note that

fBsr ,h ) r r :  \ r ,Coh) ,  t  e  U,  h  e  11 '

Indeed, taking into account of (6.4) and (6.5), for all r €l,l and h € tl we have

( 6 . 1 1 )

fBs r ,h )a :  ! { s * r ,h * l :  ( t , I  S thn ) :  ( r ,Coh) '
ft>0 &>0

Again by Lemma 6.1, it follows that the operators Bo and Co induce uniquely determined

op"r.to.s B e L(t/,Ks) and, respectively, C € L(Kr',L/) such that

f B r , h ] n :  \ r " C h ) ,  r € U ,  h e  K n ' (6 .12)

Lett ing D : Do: G(-), i t  fol lows that the l inear system (A,B,C,D) is completely J-

selfadjoint. In order to show that this is also a realization of the analytic function G' we note

that for all complex z with lrl > 1,, since A is contractive the operator (rI - A)-t e L(rcru)

exists and an application of Lemma 6.1 shows that it is the uniquely determined operator

induced by (zI - Ao)-t. Thus, from (6.2) we obtain t;hat

G ( z ) :  D  + C ( z I  -  A ) - ' B '  l " l >  7 '

that is, the completely .I-symmetric linear system (A, B,C, D) is a realization of the func-

tion G.
Taking into account the definition of the shift realization as in (6.3), (6'4), and (6'5)

it follows that the observability operator Os of the system (Ar,Bo,Co,Do) has the matrix

representation

Sr Sz Sr
Sz ^9a ^9r+r
,9e -  H.  (6 .13)go:  lCo CoAo CvAZ . . . ]  :

since clearly the operat or H is .[/-hermitian and taking into account of the uniqueness

part in Lemma o.ilt follows that the observability operator O of the system (A,B,C,D)

^90

,9r
Sz

;
v K

:
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coincides with ihe operator induced by ,FI on Ks and valued in l2u, in particular the operator

O is  bounded.

Similarly, let ,Bo be the reachability operator of the linear system (Ao, Bo,Cs' Ds)' From

(6.3), (6.4), and (6.5) i t  fol lows that the matrix of 'Ro is

0  . .
0  . .
0  . .

I  . .

(6 .14)Rs: lBs ArBo A?oBo . . . ]  :

I  0  0  . . .
0  I  0  . . .
0  0  I  . . .

; ; ;

:

Therefore, the reachability operator coincides with the operator of identification of (3r, with

'11. we again invoke the uniqueness part of Lemma 6.1 and conclude that the reachability

operator .R of the linear system (A,B,C,D) coincides with the operator induced by fto'

that is, the operat or PyElt"rn:T2''- Kp, or even more precisely, the composition of the

embedding of.'11 into Ka with the orthogonal projection of Jl onto HekerH' In par-

ticular, this implies that the reachability operator R:Pu -- Ka is bounded. since by the

construction of the Krein space Ks, the rpu,." 'll Oket 1/ is dense in Kn it follows that the

reachability operator ,R has dense range and hence the system ('l', B, C, D) is reachable'

We now remark that 
i

\ O o h , f ) :  \ H h , f ) : [ h , f ] n : l h , R o f l n ,  h  e T 1 '  f  e  4 ' ' '

This implies that the induced operators o:'Jl --+ l?) and R:l2r '' ?l satisfy the relation

( O h , f ) : l h , R h l n ,  h € K a ,  f  e l ' u ,

equivalently, that the observability operator o is the "adjoint" of the reachability operator

-R. Since, as proved before, -R has dense range, this implies that the observability operator

o is injective and hence the system (A,B,C,D) is also observable.

Finally we prove that the system (A,B.,C,D) is parbalanced, that is, the observabiiity

gramian O*O coincides with the reachability gramian.R,B.. To see this, recall (6'13) and

note that
( O h , f l : ( H , f ) : ( l H l h , S a f ) ,  h e 7 { o k e r H ,  f  e  t u '

Taking into account that the scalar product on Ks is (l/11''') it follows that O* : SH'

or more precisely, the operator induced by ss: 12 - Ka, and hence o"o -- sHH : lHl'

From (6.14) we get

( l / { l f to/ ,  h) :  ( lHl f  ,h) :  \ f  , l r - lh} ,  f  e !?u,  h e t lokerf I '

This shows that p. : lHl :Ku t  l?u and'hence RR*: l1/ l '  Thus the system (A'B'C'D)

is oarbalanced. I
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Therefore

ConollnRy 6.3 Assume, i,n addition to the assumptions of Theorem 6.2, that for sorne

n ) 0 and al l  l) l  > 1 the function G has the representation

n 1  
1 _ I f t n

G( ) )  :  r + tns r - '  +  I ,H f  +  p  J  [ _4d r ' ( t ; 'k=7 t - l , l l \ {o}

,where isfr);l is a family of bounded, setfad,joint operators onl,l, D e L(U), D : D*,

f e f@)', i"> 0, and" u is a hermit ian L(t l)-ualued measure on l-1,1] \  {0} such that

t"du(t) is a f.nite and, posit iue rrLeasu,re. Then the realizati ,on (A,B,C,D) constructed as

in Theorem 6.2 i,s completely J-positiue of order n'

Proof. With the notation as in the proof of Theorem 6.2 we first note that as in

Theorem 5.1 we have that the Hankel block-matrix [S;a61nfiJ,r-o is nonnegative on !3u' O"

the other hand, from the definition of the operator 46 as in (6.3) we have

lAtf ,s)u: ( l f*,9^) I |  (S;*u*,f i ,s*|, f  ,g e 8u'
i ,k>o

lAt f  , f )a:  (r f , , f^)  + f  (Sin***f i , fn l)  0,  f  e t1r '
i ,k>o

It is easy to see that the operator induced bv A3 is exactly A and hence A is -/-positive

of order n. I

For an analytic L(t/)-valu,ed function G, let us denote by o(G) the complement in c of

the largest possible domain of anaiytic continuation of G. \t (A',8',C:D) is a realization

of G then clearly o(G) g 
"(A). 

If the converse inclusion holds, 
"@) 

e o(G), then the

realization is called minimal spectral. we are interested now in this property for completely

J-positive reaiizations of finite order, as in corotlary 6.3. The following proposition gives a

purtiul answer. The approach we follow is closely related to the positive definite case) see

[1 ]

PnoposruoN 6.4 Let (A', B, B* J, D) be a completely J -positiae realization of f'ni'te ord'er

of the transfer function G such that the reachabili,ty operator R has dense range' Th'en

" ( A )  
\ { 0 } ! o ( G )

proof . Let A be a compact real interval which does not contain 0. Then either

4 c (-oo,0) or a C (0, +oo). To make a choice, assume that 4 c (0, +oo).

From the construction of the spectral function A of. a,/-positive operator of finite order

as in [26] we have 
t f

E(A): l '$ IX z_i J"^.r"t 
- A)-1d2, (6'15)

where Au : lo - r,b+ e), assuming that 4 : la',b1, Cu4" is a rectangle symmetric with

respect to the real axis constructed around the interval A, from which we remove two

,"g-"ot, of lengih 26 around the points of coordinates (-e*o,0) and (b*e,0)'
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Let us assume now that G has analytic continuation in a neighbourhood of A' Then,

from (6.15) and taking into account that the system (A,B,B"J,D) is a realization of G,

applying the Cauchy formula we get

1 f

B" J E(a)B : l'$ lg z"r J"," 
(r(,) - ,)d z : 0.

! e

Taking into account of Theo rern2.2 it follows that E(A)'ll is a uniformly positive subspace

of tl and hence, for arbitrary u in the input/output space U we have

0 : (8. J E (A) B u, u) :  lE (A) B u, E (A) B 
") 2 al l  E (A) B ul l2 '

for some o ) 0. Then E(A)B : 0 follows and since the spectral function E commutes

with the main oper ator A we obtain

0  :  Ak  E (A)B  :  E (A )Ar  B ,  k  >  0 .

F r o m l r e r e w e o b t a i n t h a t E ( A ) | R ( R ) : 0 a n d s i n c e i t i s a s s u m e d t h a t t h e r e a c h a b i l i t y
operator R has dense range, i t  fol lows that B(A) : 0 and hence Ano(l) :  g' I

Finally, we are interested to determine to which extent the realizations of symmetric

transfer functions is unique. The appropriate notion to be used is that of unitary operatGrl

in Krein spaces. Given two Krein spaces '111 and'l1z with specified fundamental symmetries

fi  and, respectively, Jz,a boundedoperator u: 'Jlt  --> l lzis cal led (f i ,J2)-uni ' taryif U-r -

J1U* J2.

TunoRnu 6.5 Let G be a symmetric L(t/)-uatued, function, for sorne Hilbert spaceu,

analytic outsi,d"e the closed, unit d,isk and at infinity, and such that the Hankel operator

H i,s bound,ed,. we assume, in ad.dition, that there etists sorne e > 0 such that either

(-e,0) C p(H) or (0, €) C p(H). I f  (A;,8;,C;,D;) are cornpletely J;-selfadjoint systems,

i : I,2, wh,ich are'obseraable, equi,ualently, reachable, realizations of G, then there etists

a uniquely deterrnined, (J1,J2)-unitary opiratorIJ e L(?L,'-112) such that A2 - (JAtU-r,

Bz : (J Br, Cz : C{-1 , (and, of course, Dr : Dz : G(*))'

proof. We consider the reachability operators R;:ql '-+71; and the ob_servability oper-

.tors O; J-{; + I}y1 corresponding to the system (A,, B',C;, D), i : l'2 Clearly' since the

systems are completely.I;-selfadjoint, we have O;: RiJ; and hence

Ri JrR; : OtR;: H. (6.16)

To make a choice, assume that for some 6 ) 0 we have (-e,O) C p(11)' Taking into

account of the construction of the induced Krein space Krr (see the beginning of Section

6) this impiies that the spectral subspace corresponding to fI and the interval (-oo,0) is

a maximal uniformly neg;tive s,rbrpu." inKs. Taking into account that the reachability

operators .R; have i"rr" range, we can apply Lemma 2.3 in [7] and get that 'R; induces
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uniquely determined (s",J,)-uni tary operators (D;:Ka -+' ,J l ; .Let  then u :  Qz( l r ' "J l t '
'J12. Then t/ is (.f1, J2)-unitary and Rz: U Rt and hence

R2 :  lB2 ArRl-  U Rt :UlBr ArRt) ' (6 .1  7 )

Identifying the first components in (6.17) we get Bz : u 81 and hence cz : B;J2 :

BiLI" j2 J n;lrU-r :  CrLI-r. Finally, identifying the second components in (6'17) we get

A 2 R 2 : U A r R r = U A i l - r R z '

whence, since ,R2 has dense range) we get Lhai Az: U Ail-r '

In case (0,e) c p(H), a similar argument applies' I

RBUaRX 6.6 If the Hankel operator 1/ associated with some symmetric transfer function

G is bounded and rc(H) : * lo{o- (H), rc+(H)} < - then the assumption on the topoiogy

of the spectrum of /1 as in 'fheorem 6.5 holds. For example, this is true if the function G has

the representation as in Corrolary 6.3 and the input/output space /z/ is finite dimensional

(the argument is as in the proof of Theorem 5'1)' f
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