

INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

AN APPELL-HUMBERT THEOREM FOR HYPERELLIPTIC SURFACES

bУ

MARIAN APRODU

Preprint No. 28/1996

AN APPELL-HUMBERT THEOREM FOR HYPERELLIPTIC SURFACES

bv

MARIAN APRODU*

October, 1996

An Appell-Humbert theorem for hyperelliptic surfaces

Marian Aprodu

Institute of Mathematics of the Romanian Academy, P.O.BOX 1–764, RO-70700 Bucharest, Romania

0 Introduction

Let $S \to B$ be a hyperelliptic surface over a smooth elliptic curve B defined over the field of complex numbers. The aim of this paper is to give a description of the Picard group of S in terms of hermitian forms and multiplicators, similar to Appell-Humbert for complex tori. The main tool used here is the cohomology of the groups and the ideas are similar to those used in [3], [9].

In the first section we recall some fundamental facts on hyperelliptic surfaces,

such as the classification theorem and their fundamental groups.

In section 2, we get a description of the group of line bundles whose first Chern classes are torsion elements in the Neron-Severi group, which is usually denoted by $\operatorname{Pic}^{\tau}(S)$ and in the third section, which plays an important role for our purpose, we obtain a description of $\operatorname{Num}(S)$ in terms of hermitian forms.

The fourth section is devoted to the Appell-Humbert theorem and the final section present some direct applications of it such as computing tors $H^2(S, \mathbb{Z})$, finding a basis in Num(S) (see, also [10]) and computing the space of global sections for the line bundles over S numerically equivalent to a multiple of the fiber of $S \to B$.

1 Preliminaries and notations

There are many approaches concerning the theory of hyperelliptic surfaces ([1], [2], [6], [10], [12], [15]). Firstly, we recall the definition used by Suwa (cf. [12]):

Definition 1.1. A hyperelliptic surface is an elliptic bundle S over an elliptic curve B with $b_1(S) = 2$.

Theorem 1.2.(cf. [12]) Any hyperelliptic surface can be expressed as a quotient of an abelian variety A by the group generated by an automorphism g_5 of A. The period matrix of A and the automorphism g_5 are given as follows:

$$(a1) \quad \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & \beta \end{pmatrix} \qquad (a2) \quad \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & \frac{1}{2} & \beta \end{pmatrix}$$

$$g_5(u,z) = (u + \frac{1}{2}, -z)$$

$$(b1) \quad \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & \rho \end{pmatrix} \qquad (b2) \quad \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & \frac{1-\rho}{3} & \rho \end{pmatrix}$$

$$g_5(u,z) = (u + \frac{1}{3}, \rho z), \text{ where } \rho = e^{\frac{2\pi i}{3}}$$

$$(c1) \quad \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & i \end{pmatrix} \qquad (c2) \quad \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & \frac{1+i}{2} & i \end{pmatrix}$$

$$g_5(u,z) = \left(u + \frac{1}{4}, iz\right)$$

$$(d1) \quad \left(\begin{array}{cccc} 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & \rho \end{array}\right)$$

$$g_5(u,z) = (u + \frac{1}{6}, -\rho z).$$

We say that S is of first type if S is of type (a1), (b1), (c1) or (d1) and S is of second type otherwise.

For the sake of simplicity, we shall use the following notations:

$$\beta = \begin{cases} \text{arbitrarily } (a1), (a2) \\ \rho & (b1), (b2), (d1) \\ i & (c1), (c2) \end{cases} \qquad d = \begin{cases} 1/2 & (a2) \\ (1-\rho)/3 & (b2) \\ (1+i)/2 & (c2) \\ 0 & \text{for the other cases} \end{cases}$$

$$\xi = \begin{cases} -1 & (a1), (a2) \\ \rho & (b1), (b2) \\ i & (c1), (c2) \\ -\rho & (d1) \end{cases} \qquad c = \begin{cases} 1/2 & (a1), (a2) \\ 1/3 & (b1), (b2) \\ 1/4 & (c1), (c2) \\ 1/6 & (d1) \end{cases}$$

$$\ell = 1/c$$
.

So, S is the quotient of \mathbb{C}^2 by a group G of holomorphic automorphisms of \mathbb{C}^2 generated by g_i , $i = \overline{1,5}$, where $g_1(u,z) = (u+1,z)$, $g_2(u,z) = (u,z+1)$, $g_3(u,z) = (u+\alpha,z+d)$, $g_4(u,z) = (u,z+\beta)$ and $g_5(u,z) = (u+c,\xi z)$.

For the next elementary result, see [14].

Lemma 1.3. The relations between generators are: g_1, g_2, g_3 and g_4 commute to each other, $g_5^{\ell} = g_1$ and

$$g_2g_5 = g_5g_2^{-1}
(a1) g_3g_5 = g_5g_3
 g_4g_5 = g_5g_4^{-1}
 (a2) g_3g_5 = g_5g_3g_2^{-1}
 g_4g_5 = g_5g_4^{-1}
 g_4g_5 = g_5g_4^{-1}$$

$$g_2g_5 = g_5g_2^{-1}g_4^{-1}$$

$$(b1) g_3g_5 = g_5g_3$$

$$g_4g_5 = g_5g_2$$

$$(b2) g_3g_5 = g_5g_3g_2^{-1}$$

$$g_4g_5 = g_5g_2$$

$$g_4g_5 = g_5g_2$$

$$g_4g_5 = g_5g_2$$

$$g_2g_5 = g_5g_4^{-1} g_2g_5 = g_5g_4^{-1}$$

$$(c1) g_3g_5 = g_5g_3 (c2) g_3g_5 = g_5g_3g_4^{-1}$$

$$g_4g_5 = g_5g_2 g_4g_5 = g_5g_2$$

$$(d1) \quad \begin{array}{l} g_2g_5 = g_5g_2g_4 \\ g_3g_5 = g_5g_3 \\ g_4g_5 = g_5g_2^{-1}. \end{array}$$

From the lemma above, one may see that any element $g \in G$ has an unique expresion as a product $g = g_2^{l_2} g_4^{l_4} g_3^{l_3} g_5^{l_5}$. The action of a such g on \mathbb{C}^2 is given by:

$$g(u,z) = (u + l_3\alpha + l_5c, \xi^{l_5}z + l_2 + l_4\beta + l_3d).$$

Another way of representing the hyperelliptic surface S is as follows. Let $\Gamma = \mathbb{Z} + \mathbb{Z}\beta$, $\Lambda = \mathbb{Z}\alpha + \mathbb{Z}c$, $\Lambda_1 = \mathbb{Z}\alpha + \mathbb{Z}$ and

$$\Lambda_2 = \begin{cases} \mathbb{Z}\alpha + \mathbb{Z} = \Lambda_1 & S \text{ of first type} \\ 2\mathbb{Z}\alpha + \mathbb{Z} & S \text{ of type } (a2) \text{ or } (c2) \\ 3\mathbb{Z}\alpha + \mathbb{Z} & S \text{ of type } (b2) \end{cases}$$

Let $\Delta = \mathbb{C}/\Lambda_2$ and $E = \mathbb{C}/\Gamma$. Then S can be expressed as $S = (\Delta \times E)/\mathcal{G}$ where \mathcal{G} is a finite translations group of Δ , acting on E not by translations only, given by the Bagnera-deFranchis table (see for example [1], [2], [10]).

Moreover, $\Delta/\mathcal{G} \cong B$, $E/\mathcal{G} \cong \mathbb{P}^1$ and S has two fibrations: first of them is $S \to B$ from the definition 1.1., with fiber E, and the other one is $S \to \mathbb{P}^1$ with generic fiber Δ . Since Λ is the lattice of B, the short exact sequence of homotopy groups of the first fibration leads us to the following extension

$$0 \longrightarrow \Gamma \xrightarrow{j} G \xrightarrow{\pi} \Lambda \longrightarrow 0$$

where $j(\gamma) = g_2^{l_2} g_4^{l_4}$ and $\pi(g) = l_3 \alpha + l_5 c$.

Choosing as a cross-section of π the map $s: \Lambda \to G$, $s(\lambda) = g_3^{l_3} g_5^{l_5}$ for $\lambda = \alpha l_3 + c l_5 \in \Lambda$, we see that s is a groups morphism if S is of first type.

Next, we identify an element $\gamma \in \Gamma$ by $j(\gamma) \in G$ and $\lambda \in \Lambda$ by $s(\lambda) \in G$. In other words, we make no distinctions between $\gamma = l_2 + l_4\beta$ and $g_2^{l_2}g_4^{l_4}$ or between $\lambda = l_3\alpha + l_5c$ and $g_3^{l_3}g_5^{l_5}$. So $\lambda\lambda'$ will mean $s(\lambda)s(\lambda')$ and $\lambda + \lambda'$ is the same as $s(\lambda + \lambda')$. This convention simplifies our formulae and produces no ambiguity.

The natural action of an element $\lambda \in \Lambda$ on Γ is given by $\lambda \gamma \lambda^{-1} = \xi^{l_5} \gamma$. If we write $\lambda \lambda' = h(\lambda, \lambda')(\lambda + \lambda')$, then $h(\lambda, \lambda') = (\xi^{l_5} - 1)l_3'd$.

Next, let us point out the following useful lemma:

Lemma 1.4. Let $v \in \text{Hom}(G, \mathbb{C}^*)$. Then

(a1)
$$v(g_2) = \pm 1$$
 , $v(g_4) = \pm 1$; (a2) $v(g_2) = 1$, $v(g_4) = \pm 1$; (b1) $v(g_2) = v(g_4)$, $v(g_2)^3 = 1$; (b2) $v(g_2) = 1$, $v(g_4) = 1$; (c1) $v(g_2) = v(g_4)$, $v(g_2) = \pm 1$; (c2) $v(g_2) = 1$, $v(g_4) = 1$; (d1) $v(g_2) = 1$, $v(g_4) = 1$

2 The group $Pic^{\tau}(S)$

The vanishing of the cohomology groups $H^i(\mathbb{C}^2, \mathbb{Z})$, $H^i(\mathbb{C}^2, \mathbb{C})$, $H^i(\mathbb{C}^2, \mathcal{O}_{\mathbb{C}^2})$, $H^i(\mathbb{C}^2, \mathcal{O}_{\mathbb{C}^2})$, $H^i(\mathbb{C}^2, \mathcal{O}_{\mathbb{C}^2})$, $H^i(\mathbb{C}^2, \mathcal{O}_{\mathbb{C}^2})$, for all $i \geq 1$ yields to the natural isomorphisms (see [9]): $H^i(S, \mathbb{Z}) \cong H^i(G, \mathbb{Z})$, $H^i(S, \mathbb{C}) \cong H^i(G, \mathbb{C})$, $H^i(S, \mathbb{C}^*) \cong H^i(G, \mathbb{C}^*)$, $H^i(S, \mathcal{O}_S) \cong H^i(G, H^*)$, where $H = H^0(\mathbb{C}^2, \mathcal{O}_{\mathbb{C}^2})$, $H^* = H^0(\mathbb{C}^2, \mathcal{O}_{\mathbb{C}^2})$.

The exponential sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_S \xrightarrow{exp} \mathcal{O}_S^* \longrightarrow 0$$

gives rise to the cohomology sequence

$$\dots \to H^1(S, \mathcal{O}_S) \to \operatorname{Pic}(S) \stackrel{c_1}{\to} H^2(S, \mathbb{Z}) \to 0.$$

Recall that the universal coefficients theorem leads us to:

Lemma 2.1. tors
$$H^2(S,\mathbb{Z}) \cong \text{Ker } (i: H^2(S,\mathbb{Z}) \to H^2(S,\mathbb{C})).$$

For any $L \in \text{Pic}(S)$, $c_1(L)$ is the Chern class of L and $\text{Pic}^0(S) = \text{Ker}(c_1)$. The subgroup $\text{Pic}^{\tau}(S) \subset \text{Pic}(S)$ (see [3]) is defined as $\text{Ker}(ic_1)$ (where $i : H^2(S, \mathbb{Z}) \to H^2(S, \mathbb{C})$ is canonical) and this is the group of the elements $L \in \text{Pic}(S)$ so that $c_1(L)$ is a torsion element in $H^2(S, \mathbb{Z})$ (as we saw in Lemma 2.1.).

Then $\operatorname{Pic}^{\tau}(S) = \zeta(H^1(S, \mathbb{C}^*))$ where ζ is the natural morphism $H^1(S, \mathbb{C}^*) \to H^1(S, \mathcal{O}_S^*)$ (see [3]).

Let us compute next $Ker(\zeta)$, by using the isomorphisms from the beginning of this section. So, $v \in Ker(\zeta)$ if and only if there is $h \in H^*$ such that

(1)
$$h(g(u,z)) = v(g)h(u,z), \forall g \in G, (u,z) \in \mathbb{C}^2.$$

By taking the logarithmic derivatives $\omega_1 = h'_u/h$ and $\omega_2 = h'_z/h$ (in order to eliminate v from (1)), these functions verify the following relations:

(2)
$$\omega_{i}(u,z) = \omega_{i}(u+1,z),$$

$$\omega_{i}(u,z) = \omega_{i}(u,z+1),$$

$$\omega_{i}(u,z) = \omega_{i}(u,z+\beta),$$

$$\omega_{i}(u,z) = \omega_{i}(u+\alpha,z+d), i = 1,2$$
(3)
$$\omega_{1}(u,z) = \omega_{1}(u+c,\xi z)$$
(4)
$$\omega_{2}(u,z) = \xi \omega_{2}(u+c,\xi z)$$

for all $(u, z) \in \mathbb{C}^2$.

From (2), if we take $K \subset \mathbb{C}^2$ a compact set with $K + (\Gamma \times \Lambda) = \mathbb{C}^2$ and apply the maximum principle, we deduce that ω_i are constants.

From (4) it follows that $\omega_2 = 0$, so h doesn't depend on z. This means that there is a holomorphic function \tilde{h} on \mathbb{C} so that $h(u,z) = \tilde{h}(u)$, $\forall u,z \in \mathbb{C}$. Moreover, since \tilde{h}'/\tilde{h} is constant, we get $h(u,z) = e^{2\pi i(au+b)}$ with $(a,b) \in \mathbb{C}^2$. Then, by denoting $v_i = v(g_i)$, we have: $v_2 = 1$, $v_4 = 1$, $v_3 = e^{2\pi i a\alpha}$, $v_5 = e^{2\pi i ac}$, where $a \in \mathbb{C}$.

Then we proved the following:

Lemma 2.2.
$$\operatorname{Ker}(\zeta) = \{ v \in \operatorname{Hom}(G, \mathbb{C}^*) : v(g) = e^{2\pi i a \lambda}, g = \gamma \lambda \in G, a \in \mathbb{C} \}.$$

Next, we try to describe $\operatorname{Pic}^{\tau}(S) \cong \operatorname{Hom}(G, \mathbb{C}^*)/\operatorname{Ker}(\zeta)$.

Let $v \in \text{Hom}(G, \mathbb{C}^*)$. If S is of first type, s is a morphism, so $v(\lambda \lambda') = v(\lambda + \lambda')$. Otherwise, we know that $\lambda \lambda' = h(\lambda, \lambda')(\lambda + \lambda')$ where $h(\lambda, \lambda') = (\xi^{l_5} - 1)l_3'd \in \Gamma$. But, if S is of type (a2), then $h(\lambda, \lambda')$ depends only on g_2 and, by taking into account Lemma 1.4., it follows that $v(h(\lambda, \lambda')) = 1$. If S is of type (b2) or (c2), then again from Lemma 1.4. we have $v(h(\lambda, \lambda')) = 1$.

In any case we obtained $v(\lambda \lambda') = v(\lambda + \lambda')$.

Now, we write $v(\lambda) = e^{2\pi i r(\lambda)}$. Since $r(\lambda) + r(\lambda') - r(\lambda + \lambda') \in \mathbb{Z}$, $\forall \lambda, \lambda' \in \Lambda$, $\varphi := \text{Im } r \text{ must be } \mathbb{Z}\text{-linear}$. Then φ has an unique \mathbb{R} -linear extension $\tilde{\varphi} : \mathbb{C} \to \mathbb{R}$. We define $k : \mathbb{C} \to \mathbb{C}$, $k(u) = \tilde{\varphi}(iz) + i\tilde{\varphi}(z)$ which is \mathbb{C} -linear and $\tilde{r} := i\tilde{\varphi} - k$ is real-valued.

The function k being \mathbb{C} -linear, there exists $a \in \mathbb{C}$ so that k(u) = au, $\forall u \in \mathbb{C}$ and we take $v_0 \in \text{Ker}(\zeta)$, $v_0(g) = e^{2\pi i a \lambda}$. Then $\alpha_G := v/v_0$ has the property that $\alpha_G(\lambda) \in U(1)$, $\forall \lambda \in \Lambda$ and it is uniquely determined by this property in the class of v in $\text{Hom}(G, \mathbb{C}^*)/\text{Ker}(\zeta)$.

Then we have:

$$\operatorname{Pic}^{\tau}(S) \cong \{ \alpha_G \in \operatorname{Hom}(G, \mathbb{C}^*), \alpha_G(\lambda) \in U(1), \ \forall \lambda \in \Lambda \}.$$

Moreover, $\alpha_G(\gamma) \in U(1)$, $\forall \alpha_G \in \text{Hom}(G, \mathbb{C}^*)$, so we got:

Proposition 2.3. There is a canonical isomorphism:

$$\Psi': \operatorname{Hom}(G, U(1)) \widetilde{\longrightarrow} \operatorname{Pic}^{\tau}(S).$$

3 The group Num(S)

In this section we shall give a description of Num(S) in terms of hermitian forms related to Λ_1 and Γ . It is well-known (see, for example [10]) that Num(S) $\cong H^2(S,\mathbb{Z})/\text{tors } H^2(S,\mathbb{Z})$ and, as we saw in section 2, the cohomology of S is computed by cohomology of groups.

The inclusion $j:\Gamma\to G$ induces a morphism of restriction $\operatorname{res}_{\Gamma}:H^2(G,\mathbb{Z})\to H^2(\Gamma,\mathbb{Z})$.

The map $s|_{\Lambda_1}: \Lambda_1 \to G$ is a groups morphism, so it induces another morphism of restriction $\operatorname{res}_{\Lambda_1}: H^2(G,\mathbb{Z}) \to H^2(\Lambda_1,\mathbb{Z})$.

According to [9], Chapter I, Appendix, we have classical isomorphisms

(5)
$$H^2(\Gamma, \mathbb{Z}) \cong \{ H_{\Gamma} : \mathbb{C}^2 \to \mathbb{C} \text{ hermitian, Im } H_{\Gamma}(\Gamma \times \Gamma) \subset \mathbb{Z} \},$$

(6)
$$H^2(\Lambda_1, \mathbb{Z}) \cong \{ H_{\Lambda} : \mathbb{C}^2 \to \mathbb{C} \text{ hermitian }, \text{ Im } H_{\Lambda}(\Lambda_1 \times \Lambda_1) \subset \mathbb{Z} \}.$$

Let us explain the morphisms $\operatorname{res}_{\Gamma}$ and $\operatorname{res}_{\Lambda_1}$ (cf. [9], Chapter I) passing through the above isomorphisms.

Starting with $F \in H^2(G,\mathbb{Z})$, we construct $A_{\Gamma}F : \Gamma \times \Gamma \to \mathbb{C}$, $A_{\Gamma}F(\gamma,\gamma') = F(\gamma',\gamma) - F(\gamma,\gamma')$, bilinear and antisymmetric which can be extended to $E_{\Gamma} : \mathbb{C}^2 \to \mathbb{C}$, \mathbb{R} -bilinear and antisymmetric verifying $E_{\Gamma}(ix,iy) = E_{\Gamma}(x,y)$, $\forall x,y \in \mathbb{C}$. Then $H_{\Gamma} : \mathbb{C}^2 \to \mathbb{C}$ defined by $H_{\Gamma}(x,y) := E_{\Gamma}(ix,y) + iE_{\Gamma}(x,y)$ is a hermitian form on \mathbb{C}^2 with Im $H_{\Gamma} = E_{\Gamma}$ and H_{Γ} will be res_{\(\Gamma\)} F modulo canonical isomorphism (5).

By applying the same argument for Λ_1 , res_{\Gamma} and res_{\Lambda_1} will induce a morphism

$$\chi: H^2(G,\mathbb{Z}) \to \mathcal{N}_1$$

where

$$\mathcal{N}_1 := \{ (H_{\Gamma}, H_{\Lambda}), H_{\Gamma}, H_{\Lambda} \text{ hermitian forms on } \mathbb{C}^2$$

with Im $H_{\Gamma}(\Gamma \times \Gamma) \subset \mathbb{Z}$, Im $H_{\Lambda}(\Lambda_1 \times \Lambda_1) \subset \mathbb{Z} \}.$

We denote by

$$\mathcal{N}S := \left\{ \begin{array}{ll} \left\{ \; (H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}_{1} \; , \; \operatorname{Im} H_{\Lambda}(\Lambda \times \Lambda) \subset \mathbb{Z} \; \right\} & S \; \text{of first type} \\ \left\{ \; (H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}_{1} \; , \; H_{\Gamma}(1, 1) \operatorname{Im} \; \beta \in 2\mathbb{Z} \; \right\} & S \; \text{of type } (a2) \\ \left\{ \; (H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}_{1} \; , \; H_{\Gamma}(1, 1) \operatorname{Im} \; \rho \in 3\mathbb{Z} \; \right\} & S \; \text{of type } (b2) \\ \left\{ \; (H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}_{1} \; , \; H_{\Gamma}(1, 1) \in 2\mathbb{Z} \; , \; 2\operatorname{Im} H_{\Lambda}(\Lambda \times \Lambda) \subset \mathbb{Z} \; \right\} & S \; \text{of type } (c2) \end{array} \right.$$

Now, we can state the main theorem of this section:

Theorem 3.1. χ induces an isomorphism $\tilde{\chi} : \text{Num}(S) \rightarrow \mathcal{N}S$.

Proof. Because \mathcal{N}_1 has no torsion it follows that tors $H^2(G,\mathbb{Z}) \subset \operatorname{Ker}(\chi)$. So it remains to prove that $\operatorname{Ker}(\chi) \subset \operatorname{tors} H^2(G,\mathbb{Z})$ and $\chi(H^2(G,\mathbb{Z})) = \mathcal{N}S$.

Let F be a normalized cocycle in $H^2(G,\mathbb{Z})$. Then F is the Chern class of a line bundle. If we represent this line bundle as a cocycle $\{e_g\}_g \in H^1(G,H^*)$ then, by standard diagram chasing, we get:

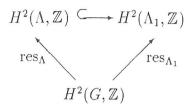
(7)
$$F(g,g') = f_g(g'(u,z)) - f_{gg'}(u,z) + f_{g'}(u,z) \in \mathbb{Z}, \forall u,z \in \mathbb{C}, g,g' \in G,$$

where $f_g: \mathbb{C}^2 \to \mathbb{C}$ is a holomorphic function with $e^{2\pi i f_g} = e_g, \forall g \in G$ (see, for example [3], [9]).

Now, we divide the proof into two cases corresponding to the two different kinds of hyperelliptic surfaces.

Case 1. S is of first type.

Let us notice that, in this case, s is a morphism and, by denoting res_{\Lambda} the corresponding map from $H^2(G,\mathbb{Z})$ to $H^2(\Lambda,\mathbb{Z})$ we have the following commutative diagram, coming from the inclusion $\Lambda_1 \subset \Lambda$.



Then it is obvious that $\chi(H^2(G,\mathbb{Z})) \subset \mathcal{N}S$.

Step 1. Our next goal is to find f_g and thus to get a nice form of (7).

Since the restriction of F to Γ and Λ are 2-cocycles, it follows (see [9], Chapter I) that

(8)
$$f_{\gamma}(u,z) = \frac{1}{2i}H_{\Gamma}(z,\gamma) + \beta_{\Gamma}(u,\gamma), \ \forall \gamma \in \Gamma,$$

(9)
$$f_{\lambda}(u,z) = \frac{1}{2i} H_{\Lambda}(u,\lambda) + \beta_{\Lambda}(z,\lambda), \ \forall \lambda \in \Lambda,$$

where $\beta_{\Gamma}(.,\gamma)$, $\beta_{\Lambda}(.,\lambda)$ are holomorphic functions on \mathbb{C} .

Next, we write \equiv for congruence modulo \mathbb{Z} . From (7) it follows that, if $g = \gamma \lambda$, then

(10)
$$f_{\gamma}(\lambda(u,z)) - f_{g}(u,z) + f_{\lambda}(u,z) \equiv 0$$

SO

(11)
$$f_g(u,z) \equiv \frac{1}{2i} H_{\Gamma}(\xi^{l_5}z,\gamma) + \frac{1}{2i} H_{\Lambda}(u,\lambda) + \beta_{\Gamma}(u+\lambda,\gamma) + \beta_{\Lambda}(z,\lambda), \ \forall g \in G.$$

The relation (7) can be read as

$$f_{gg'}(u,z) \equiv f_g(g'(u,z)) + f_{g'}(u,z), \ g,g' \in G.$$

By replacing f_g from (7) in the above formula, we have:

(12)
$$\beta_{\Gamma}(u+\lambda+\lambda',\gamma+\xi^{l_5}\gamma')+\beta_{\Lambda}(z,\lambda+\lambda') \equiv \frac{1}{2i}H_{\Gamma}(\xi^{l_5}\gamma',\gamma)+\frac{1}{2i}H_{\Lambda}(\lambda',\lambda)+\beta_{\Gamma}(u+\lambda+\lambda',\gamma) +\beta_{\Gamma}(u+\lambda',\gamma')+\beta_{\Lambda}(\xi^{l_5'}z+\gamma',\lambda)+\beta_{\Lambda}(z,\lambda').$$

Let us denote by $\varepsilon_{\Gamma}(.,\gamma)$ and $\varepsilon_{\Lambda}(.,\lambda)$ the derivatives of $\beta_{\Gamma}(.,\gamma)$ and $\beta_{\Lambda}(.,\lambda)$ respectively. Then, from (12) we obtain:

(13)
$$\varepsilon_{\Gamma}(u+\lambda+\lambda',\gamma+\xi^{l_5}\gamma') = \varepsilon_{\Gamma}(u+\lambda+\lambda',\gamma) + \varepsilon_{\Gamma}(u+\lambda',\gamma')$$

(14)
$$\varepsilon_{\Lambda}(z,\lambda+\lambda') = \xi^{l_5'}\varepsilon_{\Lambda}(\xi^{l_5'}z+\gamma',\lambda) + \varepsilon_{\Lambda}(z,\lambda')$$

and from these relations we can describe β_{Γ} and β_{Λ} .

Firstly, we determine β_{Γ} .

In (13), we choose $\lambda = \lambda' = 0$ and we get:

(15)
$$\varepsilon_{\Gamma}(u, \gamma + \gamma') = \varepsilon_{\Gamma}(u, \gamma) + \varepsilon_{\Gamma}(u, \gamma') \,\forall \gamma, \gamma' \in \Gamma,$$

which means that $\varepsilon_{\Gamma}(u, ...) : \Gamma \to \mathbb{C}$ is a morphism of groups.

In (13) we choose $\lambda' = 0$ and it follows:

(16)
$$\varepsilon_{\Gamma}(u+\lambda,\gamma+\xi^{l_5}\gamma')=\varepsilon_{\Gamma}(u+\lambda,\gamma)+\varepsilon_{\Gamma}(u,\gamma').$$

From (15) and (16) we deduce that:

(17)
$$\varepsilon_{\Gamma}(u+\lambda,\xi^{l_5}\gamma')=\varepsilon_{\Gamma}(u,\gamma').$$

We choose $\lambda \in \Lambda_1$ in (17), so $\varepsilon_{\Gamma}(u + \lambda, \gamma') = \varepsilon_{\Gamma}(u, \gamma')$, $\forall \lambda \in \Lambda_1, \ \gamma' \in \Gamma, \ u \in \mathbb{C}$.

By standard arguments, $\varepsilon_{\Gamma}(\cdot, \gamma')$ must be a constant, so we may write $\varepsilon_{\Gamma}(\gamma)$ instead of $\varepsilon_{\Gamma}(u, \gamma)$. On the other side, if we apply (15) and (17) again, ε_{Γ} must be identically equal to zero and β_{Γ} doesn't depend on u. Then we write $\beta_{\Gamma}(\gamma)$ instead of $\beta_{\Gamma}(u, \gamma)$.

Next, we determine β_{Λ} . We choose $\lambda = \lambda' = 0$ and $\gamma' = 0$ in (14) so $\varepsilon_{\Lambda}(z,0) = 0$, $\forall z \in \mathbb{C}$. We apply these relation to (14) for $\lambda' = 0$ and we obtain

$$\varepsilon_{\Lambda}(z,\lambda) = \varepsilon_{\Lambda}(z+\gamma',\lambda), \ \forall \lambda \in \Lambda, \ \gamma' \in \Gamma.$$

For the same reason as above, ε_{Λ} doesn't depend on u and we write $\varepsilon_{\Lambda}(\lambda)$ instead of $\varepsilon_{\Lambda}(z,\lambda)$. With this notation, we turn back to (14) which becomes:

(18)
$$\varepsilon_{\Lambda}(\lambda + \lambda') = \xi^{l_5'} \varepsilon_{\Lambda}(\lambda) + \varepsilon_{\Lambda}(\lambda').$$

An easy computation in (18) will show that $\varepsilon_{\Lambda}(\lambda) = \frac{1-\xi^{l_5}}{1-\xi}\varepsilon_{\Lambda}(c)$ and $\beta_{\Lambda}(z,\lambda) = \frac{1-\xi^{l_5}}{1-\xi}\varepsilon_{\Lambda}(c)z + \beta_{\Lambda}(\lambda)$.

Then we get:

(19)
$$f_{g}(u,z) = \frac{1}{2i} H_{\Gamma}(\xi^{l_{5}}z,\gamma) + \frac{1}{2i} H_{\Lambda}(u,\lambda) + \beta_{\Gamma}(\gamma) + \frac{1-\xi^{l_{5}}}{1-\xi} \varepsilon_{\Lambda}(c)z + \beta_{\Lambda}(\lambda) + \operatorname{const}(g), \ \forall g \in G,$$

where $\operatorname{const}(g) \in \mathbb{Z}, \forall g \in G \text{ and (7) becomes:}$

$$(20) \quad F(g,g') = \frac{1}{2i} H_{\Lambda}(\lambda',\lambda) + \frac{\xi^{l_5}}{2i} H_{\Gamma}(\gamma',\gamma) + \beta_{\Lambda}(\lambda) + \beta_{\Lambda}(\lambda') - \beta_{\Lambda}(\lambda + \lambda')$$

$$+ \beta_{\Gamma}(\gamma) + \beta_{\Gamma}(\gamma') - \beta_{\Gamma}(\gamma + \xi^{l_5}\gamma') + \frac{1 - \xi^{l_5}}{1 - \xi} \varepsilon_{\Lambda}(c) \gamma'$$

$$+ \operatorname{const}(g) + \operatorname{const}(g') - \operatorname{const}(gg'), \ \forall g, g' \in G$$

Since const(g) + const(g') - const(gg') is a coboundary in $C^2(G, \mathbb{Z})$, we can ignore this term, without changing the cohomology class of F in $H^2(G, \mathbb{Z})$.

Let $r(g) := \beta_{\Lambda}(\lambda) + \beta_{\Gamma}(\gamma) + \frac{1}{1-\xi}\varepsilon_{\Lambda}(c)\gamma$, $r_{\Gamma}(\gamma) := r(\gamma) = \beta_{\Gamma}(\gamma) + \frac{1}{1-\xi}\varepsilon_{\Lambda}(c)\gamma$ and $r_{\Lambda}(\lambda) := r(\lambda) = \beta_{\Lambda}(\lambda)$.

With this notations, (20) gives rise to the final formula for F:

(21)
$$F(g,g') = \frac{1}{2i} H_{\Lambda}(\lambda',\lambda) + \frac{\xi^{l_5}}{2i} H_{\Gamma}(\gamma',\gamma) + r(g) + r(g') - r(gg') \in \mathbb{Z}.$$

and thus, if we replace β_{Γ} by r_{Γ} , we may always suppose that $\varepsilon_{\Lambda}(c) = 0$.

From (21), one may see that if $H_{\Gamma} = 0$ and $H_{\Lambda} = 0$, then F(g, g') = r(g) + r(g') - r(gg'), which means that the cohomology class of F in $H^2(G, \mathbb{C})$ equals to zero. Then, by means of Lemma 2.1., F represents a torsion class in $H^2(G, \mathbb{Z})$. Thus we proved that $Ker(\chi) \subset tors H^2(G, \mathbb{Z})$.

Step 2. It remains to prove that $\mathcal{N}S \subset \chi(H^2(G,\mathbb{Z}))$.

We check that for given $(H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}S$, there exists $r_{\Gamma} : \Gamma \to \mathbb{C}$ and $r_{\Lambda} : \Lambda \to \mathbb{C}$ so that, by defining $r(g) = r_{\Gamma}(\gamma) + r_{\Lambda}(\lambda)$, for any $g = \gamma \lambda$ then:

(22)
$$\frac{1}{2i}H_{\Lambda}(\lambda',\lambda) + \frac{\xi^{l_5}}{2i}H_{\Gamma}(\gamma',\gamma) + r(g) + r(g') - r(gg') \in \mathbb{Z}.$$

Let us denote by:

$$egin{aligned} b_{\Gamma}(\gamma) &= ir_{\Gamma}(\gamma) - rac{1}{4} H_{\Gamma}(\gamma,\gamma), \ orall \gamma \in \Gamma, \ b_{\Lambda}(\lambda) &= ir_{\Lambda}(\lambda) - rac{1}{4} H_{\Lambda}(\lambda,\lambda), \ orall \lambda \in \Lambda. \end{aligned}$$

One may see that (22) is equivalent to the following three relations:

(23)
$$b_{\Gamma}(\xi\gamma) - b_{\Gamma}(\gamma) \in i\mathbb{Z},$$

(24)
$$b_{\Gamma}(\gamma) + b_{\Gamma}(\gamma') - b_{\Gamma}(\gamma + \gamma') + \frac{1}{2}iE_{\Gamma}(\gamma, \gamma') \in i\mathbb{Z}, \ \forall \gamma, \gamma' \in \Gamma,$$

(25)
$$b_{\Lambda}(\lambda) + b_{\Lambda}(\lambda') - b_{\Lambda}(\lambda + \lambda') + \frac{1}{2}iE_{\Lambda}(\lambda, \lambda') \in i\mathbb{Z}, \ \forall \lambda, \lambda' \in \Lambda.$$

Then, the problem of finding r_{Γ} and r_{Λ} so that (22) is true reduces to searching for b_{Γ} and b_{Λ} which satisfy (23), (24) and (25).

By using (24), a straightforward computation shows that (23) is equivalent to:

(26)
$$S ext{ of type } (a1) ext{ } 2b_{\Gamma}(1), ext{ } 2b_{\Gamma}(\beta) \in i\mathbb{Z},$$

 $S ext{ of type } (b1) ext{ } b_{\Gamma}(1) - b_{\Gamma}(\rho) \in i\mathbb{Z}, ext{ } 3b_{\Gamma}(1) - \frac{i\sqrt{3}}{4}H_{\Gamma}(1,1) \in i\mathbb{Z},$
 $S ext{ of type } (c1) ext{ } 2b_{\Gamma}(1) \in i\mathbb{Z}, ext{ } b_{\Gamma}(1) - b_{\Gamma}(i) \in i\mathbb{Z},$
 $S ext{ of type } (d1) ext{ } b_{\Gamma}(1) + b_{\Gamma}(\rho) \in i\mathbb{Z}, ext{ } b_{\Gamma}(1) + \frac{i\sqrt{3}}{4}H_{\Gamma}(1,1) \in i\mathbb{Z}.$

If we fix $b_{\Lambda}(c)$, $b_{\Lambda}(\alpha)$, $b_{\Gamma}(1)$ and $b_{\Gamma}(\beta) \in \mathbb{C}$ so that (26) is verified and we set:

$$b_{\Gamma}(\gamma) := l_2 b_{\Gamma}(1) + l_4 b_{\Gamma}(\beta) + \frac{1}{2} i l_2 l_4 E_{\Gamma}(1, \beta), \ \forall \gamma = l_2 + l_4 \beta,$$

$$b_{\Lambda}(\lambda) := l_3 b_{\Lambda}(\alpha) + l_5 b_{\Lambda}(c) + \frac{1}{2} i l_3 l_5 E_{\Lambda}(c, \alpha), \ \forall \lambda = l_3 \alpha + l_5 c,$$

then it is obvious that b_{Γ} and b_{Λ} are the functions we were looking for.

Case 2. S is of second type.

The proof is similar to the proof of Case 1., but it needs more computations.

As in the previous case, we try to find a decent form of f_g .

Since the restriction of F to Γ and Λ_1 are cocycles, then we must have, as in the first case:

(27)
$$f_{\gamma}(u,z) = \frac{1}{2i} H_{\Gamma}(z,\gamma) + \beta_{\Gamma}(u,\gamma), \ \forall \gamma \in \Gamma,$$

(28)
$$f_{\lambda_1}(u,z) = \frac{1}{2i} H_{\Lambda}(u,\lambda_1) + \beta_{\Lambda}(z,\lambda_1), \ \forall \lambda_1 \in \Lambda_1,$$

where $\beta_{\Gamma}(.,\gamma)$, $\beta_{\Lambda}(.,\lambda_1)$ are holomorphic functions on \mathbb{C} . Let us denote by $\varepsilon_{\Gamma}(.,\gamma)$, $\varepsilon_{\Lambda}(.,\lambda_1)$ the derivatives of $\beta_{\Gamma}(.,\gamma)$ and $\beta_{\Lambda}(.,\lambda_1)$ respectively.

Step 1. We show that $\varepsilon_{\Gamma}(.,.)$, and $\varepsilon_{\Lambda}(.,.)$ are constants in their first variable and groups morphism to \mathbb{C} in their second variable.

For $g = \gamma \lambda \in G$ with $\lambda \in \Lambda_1$, then g is also equal to $\lambda \gamma$ and we apply (7) two times:

$$f_g(u,z) \equiv f_{\gamma}(\lambda(u,z)) + f_{\lambda}(u,z) \equiv f_{\lambda}(\gamma(u,z)) + f_{\gamma}(u,z)$$

to get the following:

(29)
$$\frac{1}{2i}H_{\Gamma}(l_3d,\gamma) + \beta_{\Gamma}(u+\lambda,\gamma) + \beta_{\Lambda}(z,\lambda) \equiv \beta_{\Gamma}(u,\gamma) + \beta_{\Lambda}(z+\gamma,\lambda), \ \lambda \in \Lambda_1.$$

By taking the derivatives with respect to u and z respectively in (29) it will follow that $\varepsilon_{\Gamma}(u+\lambda,\gamma) = \varepsilon_{\Gamma}(u,\gamma)$ and $\varepsilon_{\Lambda}(z+\gamma,\lambda) = \varepsilon_{\Lambda}(z,\lambda)$, $\forall \gamma \in \Gamma$, $\lambda \in \Lambda_1$, $u,z \in \mathbb{C}$ and thus ε_{Γ} and ε_{Λ} are constant in their first variable.

Then we write $\varepsilon_{\Gamma}(\gamma)$ instead of $\varepsilon_{\Gamma}(u, \gamma)$ and $\varepsilon_{\Lambda}(\lambda)$ instead of $\varepsilon_{\Lambda}(z, \lambda)$ and, by denoting $\beta_{\Gamma}(\gamma) = \beta_{\Gamma}(0, \gamma)$ and $\beta_{\Lambda}(\lambda) = \beta_{\Lambda}(0, \lambda)$, we deduce that:

(30)
$$\beta_{\Gamma}(u,\gamma) = \varepsilon_{\Gamma}(\gamma)u + \beta_{\Gamma}(\gamma)$$

(31)
$$\beta_{\Lambda}(z,\lambda) = \varepsilon_{\Lambda}(\lambda)z + \beta_{\Lambda}(\lambda).$$

Next, we turn back to (7) and we choose $g, g' \in G$, $g = \gamma \lambda$, $g' = \gamma' \lambda'$ with $\lambda, \lambda' \in \Lambda_1$. Then we obtain:

(32)
$$\frac{1}{2i}H_{\Gamma}(l_{3}d,\gamma') + \varepsilon_{\Gamma}(\gamma + \gamma')(u + \lambda + \lambda') + \varepsilon_{\Lambda}(\lambda + \lambda')z$$
$$+\beta_{\Gamma}(\gamma + \gamma') + \beta_{\Lambda}(\lambda + \lambda') \equiv \frac{1}{2i}H_{\Gamma}(\gamma',\gamma) + \frac{1}{2i}H_{\Lambda}(\lambda',\lambda)$$
$$+\varepsilon_{\Gamma}(\gamma)(u + \lambda + \lambda') + \varepsilon_{\Gamma}(\gamma')(u + \lambda') + \varepsilon_{\Lambda}(\lambda)(z + \gamma' + l_{3}'d)$$
$$+\varepsilon_{\Lambda}(\lambda')z + \beta_{\Gamma}(\gamma) + \beta_{\Gamma}(\gamma') + \beta_{\Lambda}(\lambda) + \beta_{\Lambda}(\lambda').$$

Now, we take the derivatives with respect to u and z respectively in (32) and it will follow that $\varepsilon_{\Gamma} \in \text{Hom}(\Gamma, \mathbb{C})$ and $\varepsilon_{\Lambda} \in \text{Hom}(\Lambda_1, \mathbb{C})$.

If we apply (30) and (31) in (29) we will obtain the following relation:

(33)
$$\frac{1}{2i}H_{\Gamma}(l_3d,\gamma) - \varepsilon_{\Lambda}(\lambda)\gamma + \varepsilon_{\Gamma}(\gamma)\lambda \equiv 0, \ \forall \lambda \in \Lambda_1, \ \gamma \in \Gamma.$$

Step 2. We prove that β_{Λ} can be extended to $\beta_{\Lambda} : \mathbb{C} \times \Lambda \to \mathbb{C}$, also holomorphic in the first variable so that:

$$f_{\lambda}(u,z) = \frac{1}{2i} H_{\Lambda}(u,\lambda) + \beta_{\Lambda}(z,\lambda), \ \forall \lambda \in \Lambda.$$

In fact, by taking into account (7) and (28), it is sufficient to prove this only for $\lambda = c$.

Let
$$\eta_{\lambda} = \frac{\partial f_{\lambda}}{\partial u}$$
, $\mu_{\lambda} = \frac{\partial^{2} f_{\lambda}}{\partial u^{2}}$ and $\nu_{\lambda} = \frac{\partial^{2} f_{\lambda}}{\partial u \partial z}$, $\forall \lambda \in \Lambda$.

By using induction on m, one may apply (7) several times to prove that:

(34)
$$f_{mc} \equiv \sum_{k=0}^{m-1} f_c(u + kc, \xi^k z), \ \forall m \in \mathbb{N},$$

which implies

(35)
$$\eta_{mc} = \sum_{k=0}^{m-1} \eta_c(u + kc, \xi^k z),$$

(36)
$$\mu_{mc} = \sum_{k=0}^{m-1} \mu_c(u + kc, \xi^k z), \ \forall m \in \mathbb{N}.$$

In particular, for $mc = n \in \mathbb{N}$, we get

(37)
$$\sum_{k=0}^{m-1} \eta_c(u+kc,\xi^k z) = \frac{1}{2i} H_{\Lambda}(1,n),$$

(38)
$$\sum_{k=0}^{m-1} \mu_c(u+kc,\xi^k z) = 0.$$

Our next goal is to prove that η_c is a constant and then, from (37), we deduce that this constant must be equal to $\frac{1}{2i}H_{\Gamma}(1,c)$ and this step will be finished.

We apply (7) for $l_3\alpha$, l_5c and then, for $\lambda = l_3\alpha + l_5c$, we have:

(39)
$$f_{\lambda}(u,z) \equiv f_{l_{3}\alpha}(u+l_{5}c,\xi^{l_{5}}z) + f_{l_{5}c}(u,z)$$
$$\equiv f_{l_{5}c}(u+l_{3}\alpha,z+l_{3}d) + f_{l_{3}\alpha}(u,z).$$

But $l_3\alpha \in \Lambda_1$ and, by meaning of (28) and (39) the following two formulae holds:

(40)
$$\eta_{l_5c}(u,z) = \eta_{l_5c}(u + l_3\alpha, z + l_3d),$$

(41)
$$\mu_{l_5c}(u,z) = \mu_{l_5c}(u+l_3\alpha,z+l_3d), \ \forall l_3,l_5 \in \mathbb{Z}.$$

We apply again (7) for l_5c and mc, where we choose m such that $mc = n \in \mathbb{Z} \subset \Lambda_1$. A similar argument as in (39) leads us to:

(42)
$$\eta_{l_5c}(u,z) = \eta_{l_5c}(u+n,z),$$

(43)
$$\mu_{l_5c}(u,z) = \mu_{l_5c}(u+n,z), \ \forall l_5, n \in \mathbb{Z}.$$

From (7), applied for γ , λ and $g = \gamma \lambda$, we obtain:

$$(44) f_g(u,z) \equiv \frac{1}{2i} H_{\Gamma}(\xi^{l_5} z + l_3 d, \gamma) + \varepsilon_{\Gamma}(\gamma)(u+\lambda) + \beta_{\Gamma}(\gamma) + f_{\lambda}(u,z).$$

Again in (7), we take $g = \gamma \lambda$, $g' = \gamma' \lambda'$ with $l_3' = 0$ (and this implies that $h(\lambda, \lambda') = 0$) and $(l_5 + l_5')c \in \mathbb{Z} \subset \Lambda_1$ and use (44) and (28):

$$(45) \qquad \frac{1}{2i}H_{\Gamma}(z+l_{3}d,\gamma+\xi^{l_{5}}\gamma') + \frac{1}{2i}H_{\Lambda}(u,\lambda+\lambda') + \varepsilon_{\Gamma}(\gamma+\xi^{l_{5}}\gamma')(u+\lambda+\lambda')$$

$$+\beta_{\Gamma}(\gamma+\xi^{l_{5}}\gamma') + \beta_{\Lambda}(z,\lambda+\lambda') \equiv \frac{1}{2i}H_{\Gamma}(z+\xi^{l_{5}}\gamma',\gamma) + \frac{1}{2i}H_{\Gamma}(\xi^{l_{5}'}z,\gamma')$$

$$+\varepsilon_{\Gamma}(\gamma)(u+\lambda+\lambda') + \varepsilon_{\Gamma}(\gamma')(u+\lambda') + \beta_{\Gamma}(\gamma) + \beta_{\Gamma}(\gamma') + f_{\lambda'}(u,z)$$

$$+f_{\lambda}(u+\lambda',\xi^{l_{5}'}z+\gamma').$$

Then,

(46)
$$\varepsilon_{\Gamma}(\gamma + \xi^{l_5} \gamma') + \frac{1}{2i} H_{\Lambda}(1, \lambda + \lambda') = \varepsilon_{\Gamma}(\gamma) + \varepsilon_{\Gamma}(\gamma') + \eta_{\lambda}(u + \lambda', \xi^{l_5'} z + \gamma') + \eta_{\lambda'}(u, z)$$

and

(47)
$$\mu_{\lambda}(u+\lambda',\xi^{l_5'}z+\gamma')=-\mu_{\lambda'}(u,z).$$

In particular, $\forall u, z \in \mathbb{C}$, $\forall \gamma' \in \Gamma$, $\forall l_5, l_5' \in \mathbb{Z}$ so that $(l_5 + l_5')c \in \mathbb{Z}$ we have:

(48)
$$\mu_{l_5'c}(u,z) = -\mu_{l_5c}(u + l_5'c, \xi^{l_5'}z + \gamma').$$

From this relation, one may imediately obtain that:

(49)
$$\mu_{l'_{5}c}(u,z) = \mu_{l'_{5}c}(u+n,z+\gamma), \ \forall \gamma \in \Gamma, \ n \in \mathbb{Z}.$$

We apply (43) and (49) for $l_5' = 1$ to deduce that $\mu_c(u,z)$ doesn't depend on z and we write $\mu_c(u) = \mu_c(u,z)$. Now, we take into account (41) and (43) which show us that $\mu_c(u+\lambda) = \mu_c(u)$, $\forall \lambda \in \Lambda_1$. But this means nothing else than μ_c is a constant. From (38), this constant must be zero, so η_c depends only on z, say $\eta_c(z) = \eta_c(u,z)$. In fact, it is easy to see that η_λ depends only on z, $\forall \lambda \in \Lambda$.

Then ν_{λ} will depend only on z for any $\lambda \in \Lambda$ and, from (46), we have:

(50)
$$\nu_{\lambda}(\xi^{l_5'}z + \gamma') = -\nu_{\lambda'}(z), \ \forall z \in \mathbb{C}, \ \gamma' \in \Gamma,$$

as soon as $l_3' = 0$ and $(l_5 + l_5')c \in \mathbb{Z}$.

In particular, $\forall z \in \mathbb{C}$, $\forall \gamma' \in \Gamma$, $\forall l_5, l_5' \in \mathbb{Z}$ so that $(l_5 + l_5')c \in \mathbb{Z}$ we have:

$$\nu_{l_5'c}(z) = -\nu_{l_5c}(\xi^{l_5'}z + \gamma').$$

As we have already done for μ_c , we get that ν_c must be a constant and, by means of (40), η_c must be a constant too.

Step 3. Next, we try to find β_{Λ} and thus to get the finest form of F.

If we apply (46) for $l_5 = -l'_5 = 1$ and $l_3 = 0$, then we get $\varepsilon_{\Gamma}(\gamma + \xi \gamma') = \varepsilon_{\Gamma}(\gamma) + \varepsilon_{\Gamma}(\gamma')$, $\forall \gamma, \gamma' \in \Gamma$. Since ε_{Γ} is a morphism, it must be identically zero. So, we find the following relation for f_g :

(51)
$$f_g(u,z) \equiv \frac{1}{2i} H_{\Gamma}(\xi^{l_5} z + l_3 d, \gamma) + \frac{1}{2i} H_{\Lambda}(u,\lambda) + \beta_{\Gamma}(\gamma) + \beta_{\Lambda}(z,\lambda).$$

Let $\varepsilon_{\Lambda}(z,\lambda) = \frac{\partial \beta_{\Lambda}}{\partial z}(z,\lambda)$. We turn again to (7) to replace f_g obtained in (51) and then, by taking the derivatives with respect to z, we get:

(52)
$$\frac{\xi^{l_5+l_5'}}{2i}H_{\Gamma}(1,h(\lambda,\lambda')) + \varepsilon_{\Lambda}(z,\lambda+\lambda') = \xi^{l_5'}\varepsilon_{\Lambda}(\xi^{l_5'}z + \gamma' + l_3'd,\lambda) + \varepsilon_{\Lambda}(z,\lambda').$$

By using the same computations as before, one may see that ε_{Λ} doesn't depend on z, so we write $\varepsilon_{\Lambda}(\lambda) = \varepsilon_{\Lambda}(z,\lambda)$ and

(53)
$$\varepsilon_{\Lambda}(\lambda) = \frac{1}{2i} H_{\Gamma}(1, l_3 d) + \frac{1 - \xi^{l_5}}{1 - \xi} \varepsilon_{\Lambda}(c),$$

(54)
$$\beta_{\Lambda}(z,\lambda) = \frac{\xi^{l_5}}{2i} H_{\Gamma}(z,l_3d) + \frac{1-\xi^{l_5}}{1-\xi} \varepsilon_{\Lambda}(c) z + \beta_{\Lambda}(\lambda),$$

where $\beta_{\Lambda}(\lambda) := \beta_{\Lambda}(0, \lambda)$.

In particular, for $\lambda \in \Lambda_1$, we have $\varepsilon_{\Lambda}(\lambda) = \frac{1}{2i}H_{\Gamma}(1, l_3 d)$ and, by applying (33), we get the following extra-condition for H_{Γ} :

(55)
$$\frac{1}{2i}H_{\Gamma}(l_3d,\gamma) - \frac{1}{2i}H_{\Gamma}(\gamma,l_3d) \in \mathbb{Z}, \ \forall \gamma \in \Gamma, \ l_3 \in \mathbb{Z},$$

which is equivalent to:

(56)
$$(a2) H_{\Gamma}(1,1)\operatorname{Im} \beta \in 2\mathbb{Z},$$

(b2)
$$H_{\Gamma}(1,1)\operatorname{Im} \rho \in 3\mathbb{Z},$$

(c2)
$$H_{\Gamma}(1,1) \in 2\mathbb{Z}$$
.

Next, we turn back to (7).

Firstly, let us notice that (51) is read here:

$$(57) f_g(u,z) = \frac{1}{2i} H_{\Gamma}(\xi^{l_5}z + l_3d,\gamma) + \beta_{\Gamma}(\gamma) + \frac{1}{2i} H_{\Lambda}(u,\lambda) + \frac{\xi^{l_5}}{2i} H_{\Gamma}(z,l_3d) + \frac{1-\xi^{l_5}}{1-\xi} \varepsilon_{\Lambda}(c)z + \beta_{\Lambda}(\lambda) + \operatorname{const}(g),$$

where $const(g) \in \mathbb{Z}$. As in the proof of Case 1, we may suppose that const(g) = 0, without changing the cohomology class of F in $H^2(G,\mathbb{Z})$.

Let us denote by $r(g) := \beta_{\Lambda}(\lambda) + \beta_{\Gamma}(\gamma) + \frac{1}{1-\xi}\varepsilon_{\Lambda}(c)(\gamma + l_3d)$ and $r_{\Lambda}(\lambda) := r(\lambda) = \beta_{\Lambda}(\lambda) + \frac{1}{1-\xi}\varepsilon_{\Lambda}(c)l_3d$, $r_{\Gamma}(\gamma) := r(\gamma) = \beta_{\Gamma}(\gamma) + \frac{1}{1-\xi}\varepsilon_{\Lambda}(c)\gamma$. Then, we may suppose that $\varepsilon_{\Lambda}(c) = 0$ and we find the following final formula for F:

(58)
$$F(g,g') = \frac{1}{2i} H_{\Lambda}(\lambda',\lambda) + \frac{\xi^{l_5}}{2i} H_{\Gamma}(\gamma' + l_3'd,\gamma) + \frac{1}{2i} H_{\Gamma}(l_3d,\gamma) + \frac{1}{2i} H_{\Gamma}(l_3'd,\gamma') - \frac{1}{2i} H_{\Gamma}((l_3 + l_3')d,\gamma + \xi^{l_5}\gamma' + h(\lambda,\lambda')) + \frac{\xi^{l_5}}{2i} H_{\Gamma}(\gamma' + l_3'd,l_3d) + r(g) + r(g') - r(gg') \in \mathbb{Z}.$$

From (58), one may see that if $H_{\Lambda} = 0$ and $H_{\Gamma} = 0$, then F has the cohomology class in $H^2(G, \mathbb{C})$ equal to zero, so the cohomology class of F in $H^2(G, \mathbb{Z})$ is a torsion element. This fact shows that $\text{Ker}(\chi) \subset \text{tors } H^2(G, \mathbb{Z})$.

Step 4. We show next that $\mathcal{N}S = \chi(H^2(G,\mathbb{Z}))$.

"\(\)". Let $(H_{\Gamma}, H_{\Lambda}) = \chi(F)$ where $F \in H^2(G, \mathbb{Z})$. We have already seen in Step 3 that (56) must be true. It remains to prove that $2 \text{Im } H_{\Lambda}(\Lambda \times \Lambda) \subset \mathbb{Z} \times \mathbb{Z}$ if S is of type (c2). In fact, we have some more relations which lead us to the conclusion and which are also useful for the Appell-Humbert Theorem.

Let $b_{\Gamma}(\gamma) = ir_{\Gamma}(\gamma) - \frac{1}{4}H_{\Gamma}(\gamma,\gamma)$ and $b_{\Lambda}(\lambda) = ir_{\Lambda}(\lambda) - \frac{1}{4}H_{\Lambda}(\lambda,\lambda)$. As in the case when S is of first type, we have the following relations:

(59)
$$S ext{ of type } (a2) ext{ } 2b_{\Gamma}(1), ext{ } 2b_{\Gamma}(\beta) \in i\mathbb{Z},$$

 $S ext{ of type } (b2) ext{ } b_{\Gamma}(1) - b_{\Gamma}(\rho) \in i\mathbb{Z}, ext{ } 3b_{\Gamma}(1) - \frac{i\sqrt{3}}{4}H_{\Gamma}(1,1) \in i\mathbb{Z},$
 $S ext{ of type } (c2) ext{ } 2b_{\Gamma}(1) \in i\mathbb{Z}, ext{ } b_{\Gamma}(1) - b_{\Gamma}(i) \in i\mathbb{Z}.$

We start from the relation $F(\lambda', \lambda) - F(\lambda, \lambda') \in \mathbb{Z}$, $\forall \lambda, \lambda' \in \Lambda$, we replace F from the formula (58) for $\gamma = \gamma' = 0$, $l_5' = l_3 = 0$ and we use (55) to get:

(60)
$$iE_{\Lambda}(l_5c, l_3'\alpha) + b_{\Gamma}(h(l_5c, l_3'\alpha)) + \frac{1}{4}H_{\Gamma}(1, 1)l_3'^2|d|^2(\bar{\xi}^{l_5} - \xi^{l_5}) \in i\mathbb{Z}, \forall l_5, l_3' \in \mathbb{Z}.$$

This condition is equivalent to:

(61)
$$S \text{ of type } (a2) \quad b_{\Gamma}(1) + iE_{\Lambda}(c,\alpha) \in i\mathbb{Z},$$

$$S \text{ of type } (b2) \quad b_{\Gamma}(1) + iE_{\Lambda}(c,\alpha) - \frac{i\sqrt{3}}{12}H_{\Gamma}(1,1) \in i\mathbb{Z},$$

$$S \text{ of type } (c2) \quad -b_{\Gamma}(1) + iE_{\Lambda}(c,\alpha) - \frac{i}{4}H_{\Gamma}(1,1) \in i\mathbb{Z}$$

and, because of (56) and (59), if S is of type (c2) then $2E_{\Lambda}(c,\alpha) \in \mathbb{Z}$.

Moreover, from (55), (58) and (60), we have the following relation for b_{Λ} :

(62)
$$b_{\Lambda}(\lambda) + b_{\Lambda}(\lambda') - b_{\Lambda}(\lambda + \lambda') + \frac{1}{2}iE_{\Lambda}(l_{5}'c, l_{3}\alpha) + iE_{\Lambda}(l_{5}c, l_{3}'\alpha) + \frac{1}{2}H_{\Gamma}(l_{3}d, l_{3}'d) \in i\mathbb{Z}, \ \forall \lambda, \lambda' \in \Lambda.$$

"C". To prove this inclusion, we have to prove that if $(H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}S$, then there exist r_{Γ} and r_{Λ} so that

(63)
$$\frac{1}{2i}H_{\Lambda}(\lambda',\lambda) + \frac{\xi^{l_5}}{2i}H_{\Gamma}(\gamma' + l_3'd,\gamma) + \frac{1}{2i}H_{\Gamma}(l_3d,\gamma) \\
+ \frac{1}{2i}H_{\Gamma}(l_3'd,\gamma') - \frac{1}{2i}H_{\Gamma}((l_3 + l_3')d,\gamma + \xi^{l_5}\gamma' + h(\lambda,\lambda')) \\
+ \frac{\xi^{l_5}}{2i}H_{\Gamma}(\gamma' + l_3'd,l_3d) + r_{\Lambda}(\lambda) + r_{\Lambda}(\lambda') - r_{\Lambda}(\lambda + \lambda') \\
+ r_{\Gamma}(\gamma) + r_{\Gamma}(\gamma') - r_{\Gamma}(\gamma + \xi^{l_5}\gamma' + h(\lambda,\lambda')) \in \mathbb{Z}.$$

We start with $b_{\Gamma}(1)$ and $b_{\Gamma}(\beta)$ so that (59) and (61) are satisfied. We set, as in the first case,

(64)
$$b_{\Gamma}(\gamma) = l_2 b_{\Gamma}(1) + l_4 b_{\Gamma}(\beta) + \frac{1}{2} i l_2 l_4 E_{\Gamma}(1, \beta)$$

and this b_{Γ} will satisfy:

(65)
$$b_{\Gamma}(\gamma) + b_{\Gamma}(\gamma') - b_{\Gamma}(\gamma + \gamma') + \frac{1}{2}iE_{\Gamma}(\gamma, \gamma') \in i\mathbb{Z},$$

(66)
$$b_{\Gamma}(\xi\gamma) - b_{\Gamma}(\gamma) \in i\mathbb{Z}.$$

We define

(67)
$$r_{\Gamma}(\gamma) = -ib_{\Gamma}(\gamma) - \frac{i}{4}H_{\Gamma}(\gamma, \gamma).$$

Next, we start with $r_{\Lambda}(\alpha)$ and $r_{\Lambda}(c)$ in \mathbb{C} and we take:

(68)
$$r_{\Lambda}(\lambda) = \frac{(l_3 - 1)l_3}{4i} H_{\Lambda}(\alpha, \alpha) + \frac{(l_5 - 1)l_5}{4i} H_{\Lambda}(c, c) + \frac{(l_3 - 1)l_3}{4i} H_{\Gamma}(d, d) + \frac{1}{2i} H_{\Lambda}(l_5 c, l_3 \alpha) + l_3 r_{\Lambda}(\alpha) + l_5 r_{\Lambda}(c)$$

A straightforward computation, by using the relations (55), (60), (64), (65), (66), (67) and (68) leads us to the conclusion \Box .

We denote by $\Psi'': \mathcal{N}S \tilde{\to} \text{Num}(S)$ the isomorphism obtained in Theorem 2.2.

4 Appell-Humbert theorem

Keeping the notations from the previous sections, we define $\alpha_{\Gamma}(\gamma) := e^{2\pi b_{\Gamma}(\gamma)}$ and $\alpha_{\Lambda}(\lambda) := e^{2\pi b_{\Lambda}(\lambda)}$. Recall that, since $b_{\Gamma}(\xi\gamma) - b_{\Gamma}(\gamma) \in i\mathbb{Z}$, b_{Γ} must be purely imaginary.

If S is of first type, then α_{Γ} and α_{Λ} will verify

(69)
$$\alpha_{\Lambda}(\lambda + \lambda') = \alpha_{\Lambda}(\lambda)\alpha_{\Lambda}(\lambda')e^{\pi i E_{\Lambda}(\lambda, \lambda')}$$

(70)
$$\alpha_{\Gamma}(\gamma + \gamma') = \alpha_{\Gamma}(\gamma)\alpha_{\Gamma}(\gamma')e^{\pi i E_{\Gamma}(\gamma, \gamma')}$$

(71)
$$\alpha_{\Gamma}(\xi\gamma) = \alpha_{\Gamma}(\gamma),$$

where $(H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}S$.

If S is of second type, then α_{Γ} and α_{Λ} will verify

(72)
$$\alpha_{\Lambda}(\lambda + \lambda') = \alpha_{\Lambda}(\lambda)\alpha_{\Lambda}(\lambda')e^{\pi iE_{\Lambda}(l'_{5}c, l_{3}\alpha) + \pi iE_{\Lambda}(l_{5}c, l'_{3}\alpha) + \pi H_{\Gamma}(l_{3}d, l'_{3}d)}$$

(73)
$$\alpha_{\Gamma}(\gamma + \gamma') = \alpha_{\Gamma}(\gamma)\alpha_{\Gamma}(\gamma')e^{\pi i E_{\Gamma}(\gamma, \gamma')}$$

(74)
$$\alpha_{\Gamma}(\xi\gamma) = \alpha_{\Gamma}(\gamma)$$

and

(75)
$$\alpha_{\Gamma}(1) = \begin{cases} e^{-2\pi i E_{\Lambda}(c,\alpha)} & S \text{ of type } (a2) \\ e^{-2\pi i E_{\Lambda}(c,\alpha) + \pi \frac{i\sqrt{3}}{6} H_{\Gamma}(1,1)} & S \text{ of type } (b2) \\ e^{-2\pi i E_{\Lambda}(c,\alpha) - \pi \frac{i}{2} H_{\Gamma}(1,1)} & S \text{ of type } (c2), \end{cases}$$

where $(H_{\Gamma}, H_{\Lambda}) \in \mathcal{N}S$.

Let $\mathcal{P}_1 = \{$ Group of data $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \alpha_{\Lambda}) \}$ with natural group operation and $\mathcal{P} = \mathcal{P}_1/\sim$ where $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \alpha_{\Lambda}) \sim (H'_{\Gamma}, H'_{\Lambda}, \alpha'_{\Gamma}, \alpha'_{\Lambda})$ if and only if $H_{\Gamma} = H'_{\Gamma}$, $H_{\Lambda} = H'_{\Lambda}$, $\alpha_{\Gamma} = \alpha'_{\Gamma}$ and there exists $a \in \mathbb{C}$ so that $\alpha_{\Lambda}(\lambda) = \alpha'_{\Lambda}(\lambda)e^{2\pi i a \lambda}$, $\forall \lambda \in \Lambda$. For simplicity, we shall denote by $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$ instead of $(H_{\Gamma}, \widehat{H_{\Lambda}}, \alpha_{\Gamma}, \alpha_{\Lambda})$ and $\alpha_{\Lambda} \sim \alpha'_{\Lambda}$ for the equivalence.

Remark 4.1. By using a classical argument that have been already used in section 2 (cf. [9], Chapter I), one may see that if S is of second type and $H_{\Gamma} = 0$ or if S is of first type, then there exists an unique α'_{Λ} so that $\alpha_{\Lambda} \sim \alpha'_{\Lambda}$ and $\alpha'_{\Lambda}(\lambda) \in U(1)$, $\forall \lambda \in \Lambda$.

This argument allows us many times to suppose that the multiplicators appearing in theorems of Appell-Humbert kind are U(1)-valued (see [9] for tori and [3] for primary Kodaira surfaces).

Lemma 4.2. We have an exact short sequence

$$0 \longrightarrow \operatorname{Hom}(G, U(1)) \xrightarrow{\mu} \mathcal{P} \xrightarrow{\eta} \mathcal{N}S \longrightarrow 0$$

where η is the canonical projection and $\mu(\alpha_G) = (0, 0, \alpha_G|_{\Gamma}, \alpha_G|_{\Lambda})$.

Proof. The morphism η is surjective from the proof of the Theorem 3.1. By the above remark, μ is injective. Since $\eta \mu = 0$ it remains to check that $\operatorname{Ker}(\eta) \subset \mu(\operatorname{Hom}(G, U(1)))$.

Indeed, let $(0,0,\alpha_{\Gamma},\widehat{\alpha_{\Lambda}}) \in \mathcal{P}$. Since the corresponding hermitian forms are equal to zero, it follows that $\alpha_{\Gamma} \in \operatorname{Hom}(\Gamma,U(1))$ and $\alpha_{\Lambda} \in \operatorname{Hom}(\Lambda,\mathbb{C}^*)$. From Remark 4.1., $\widehat{\alpha_{\Lambda}}$ has a representative that is U(1)-valued, say α'_{Λ} .

Then we define $\alpha_G(g) := \alpha_{\Gamma}(\gamma)\alpha'_{\Lambda}(\lambda) \in U(1), \forall g = \gamma \lambda \in G$, which is an element of Hom(G, U(1)) and verifies $\mu(\alpha_G) = (0, 0, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}}) \square$.

Theorem 4.3. There is the following isomorphism of exact sequences

$$0 \longrightarrow \operatorname{Hom}(G, U(1)) \longrightarrow \mathcal{P} \longrightarrow \mathcal{NS} \longrightarrow 0$$

$$\downarrow \Psi' \qquad \qquad \downarrow \Psi' \qquad \qquad \downarrow \Psi''$$

$$0 \longrightarrow \operatorname{Pic}^{\tau}(S) \longrightarrow \operatorname{Pic}(S) \longrightarrow \operatorname{Num}(S) \longrightarrow 0$$

where Ψ' is the isomorphism from section 2, Ψ'' is the isomorphism from section 3 and Ψ maps an element $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}}) \in \mathcal{P}$ to the cocycle $\{e_g\}_g \in H^1(G, H^*)$ given by

$$e_g(u,z) = \alpha_{\Gamma}(\gamma)\alpha_{\Lambda}(\lambda)e^{\pi H_{\Lambda}(u,\lambda) + \pi H_{\Gamma}(\xi^{l_5}z + \gamma, \gamma + l_3d) - \frac{\pi}{2}H_{\Gamma}(\gamma,\gamma) + \frac{\pi}{2}H_{\Lambda}(\lambda,\lambda)}.$$

Proof. All we have to check is that Ψ is well-defined, so let us suppose that $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$ maps by Ψ to $\{e_g\}_g \in H^1(G, H^*)$ and we change the representative of α_{Λ} by α'_{Λ} . If $e''_g = \frac{\alpha_{\Lambda}(\lambda)}{\alpha'_{\Lambda}(\lambda)} \stackrel{not}{=} \alpha''_{\Lambda}(\lambda)$, then is is easy to see that $\{e''_g\}_g$ is a coboundary in $C^1(G, H^*)$.

Indeed, there exists $a \in \mathbb{C}$ so that $\alpha''_{\Lambda}(\lambda) = e^{2\pi i a \lambda}$ and we choose $h(u, z) = e^{2\pi i a u}$. Then, $e''_g = h(g(u, z))h^{-1}(u, z)$, $\forall u, z \in \mathbb{C}$, $g \in G \square$.

Definition 4.4. For any $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}}) \in \mathcal{P}$, the line bundle over S associated to the cocycle $\{e_g\}_g = \Psi(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}}) \in H^1(G, H^*)$ will be denoted by $L(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$.

Remark 4.5. $L(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$ is the quotient of $\mathbb{C}^2 \times \mathbb{C}$ given by the equivalence relation $((u, z), w) \sim (g(u, z), e_g(u, z)w), \forall g \in G$.

5 Applications

The first application of Appell-Humbert theorem is a description of tors $H^2(G,\mathbb{Z})$ and its generators in terms of the groups cohomology (see, also [10], [12] for precised characterisation).

By taking into account that torsion cocycles F are given by the vanishing of their corresponding hermitian forms H_{Γ} and H_{Λ} , one may obtain very easy the following table (see, also [5] for a similar result on primary Kodaira surfaces):

Type	tors $H^2(G,\mathbb{Z})$	Action of generators of tors $H^2(G,\mathbb{Z})$ on (g,g')
(a1)	$\mathbb{Z}_2 imes \mathbb{Z}_2$	$(1-(-1)^{l_5})l_2'/2$ and $(1-(-1)^{l_5})l_4'/2$
(a2)	\mathbb{Z}_2	$(1-(-1)^{l_5})l_4'/2$
(b1)	\mathbb{Z}_3	$(\text{Re}((1-\rho^{l_5})\gamma') + \sqrt{3}\text{Im}((1-\rho^{l_5})\gamma'))/3$
(b2)	0	0
(c1)	\mathbb{Z}_2	$(\text{Re}((1-i^{l_5})\gamma') + \text{Im}((1-i^{l_5})\gamma'))/2$
(c2)	0	0
(d1)	0	0

Next, we may apply Appell-Humbert theorem to compute a basis in Num(S) (see, also [10], Theorem 1.4.).

Let us denote by q the cardinal of \mathcal{G} .

If we fix isomorphisms $H^2(\Gamma, \mathbb{Z}) \cong H^2(E, \mathbb{Z}) \stackrel{deg}{\cong} \mathbb{Z}$ and $H^2(\Lambda_2, \mathbb{Z}) \cong H^2(\Delta, \mathbb{Z}) \stackrel{deg}{\cong} \mathbb{Z}$, then the inclusions $\mathcal{NS} \subset \mathcal{N}_1 \subset \mathcal{N}_2 = \mathbb{Z} \oplus \mathbb{Z}$ will become:

Type	\mathcal{N}_1	NS	q	basis i	n $\mathcal{N}S$
				e_1	e_2
(a1)	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z} \oplus 2\mathbb{Z}$	2	(1,0)	(0, 2)
(a2)	$\mathbb{Z}\oplus 2\mathbb{Z}$	$2\mathbb{Z} \oplus 2\mathbb{Z}$	4	(2,0)	(0, 2)
(b1)	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z} \oplus 3\mathbb{Z}$	3	(1,0)	(0, 3)
(b2)	$\mathbb{Z} \oplus 3\mathbb{Z}$	$3\mathbb{Z} \oplus 3\mathbb{Z}$	9	(3,0)	(0,3)
(c1)	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z} \oplus 4\mathbb{Z}$	4	(1,0)	(0,4)
(c2)	$\mathbb{Z} \oplus 2\mathbb{Z}$	$2\mathbb{Z} \oplus 4\mathbb{Z}$	8	(2,0)	(0,4)
(d1)	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z} \oplus 6\mathbb{Z}$	6	(1,0)	(0,6)

It is easy to determine the numerical classes of $\mathcal{O}_S(E)$ and $\mathcal{O}_S(\Delta)$ in $\mathcal{N}S$. Indeed, according to [10], since the intersection number $E.\Delta$ is equal to q, then via isomorphism $\mathcal{N}_2 \cong \mathbb{Z} \oplus \mathbb{Z}$, we have $c_1(E) = (0,q)$ and $c_1(\Delta) = (q,0)$.

Then, by using the previous table, we get the following (compare also with [10], Theorem 1.4.):

Type	Basis of	$\operatorname{Num}(S)$
(a1)	$1/2\Delta$	E
(a2)	$1/2\Delta$	1/2E
(b1)	$1/3\Delta$	E
(b2)	$1/3\Delta$	1/3E
(c1)	$1/4\Delta$	E
(c2)	$1/4\Delta$	1/2E
(d1)	$1/6\Delta$	E

The next application of Appell–Humbert theorem is computing the space of global sections of some line bundles over S.

As we saw, any element $L \in \text{Pic}(S)$ can be written as $L = L(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$, where $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}}) \in \mathcal{P}$.

From [10], Theorem 1.4., the numerical type of L is of form $c_1(L) = a\Delta + bE$, where $a, b \in \mathbb{Q}$, or $c_1(L) = a_1e_1 + b_1e_2$ with $a_1, b_1 \in \mathbb{Z}$. According to [10], Lemma 1.3., if $H^0(L) \neq 0$, then $a, b \geq 0$, which is equivalent to the inequalities $H_{\Gamma}(1,1) \geq 0$, $H_{\Lambda}(1,1) \geq 0$. If a, b > 0, then L is ample (cf. [10], Lemma 1.3.) and $h^0(L) = abq = a_1b_1 > 0$, so it remains to study the cases a = 0, b > 0 and a > 0, b = 0.

Here we shall compute $H^0(L)$ for $a=0,\ b>0$. Before stating our result, let us introduce the following notion:

Definition 5.1. Let $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}}) \in \mathcal{P}$. Any holomorphic function $\theta : \mathbb{C}^2 \to \mathbb{C}$ so that:

(76)
$$\theta(g(u,z)) = e_g(u,z)\theta(u,z), \forall g \in G, u,z \in \mathbb{C}$$

is called a θ -function for the data $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$.

It is easy to see that there is a natural one-to-one correspondence between θ -functions for $(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$ and sections of $L(H_{\Gamma}, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$.

Proposition 5.2. If $c_1(L) = bE$, b > 0 then $h^0(L) \neq 0$ if and only if α_{Γ} is identically equal to 1.

In this case, $b \in \mathbb{Z}$ and there is a natural isomorphism: $H^0(L) \cong H^0(L(H_{\Lambda}, \alpha_{\Lambda}))$, where $L(H_{\Lambda}, \alpha_{\Lambda})$ is the line bundle over \mathbb{C}/Λ associated to the hermitian form H_{Λ} and the multiplicator α_{Λ} .

Proof. The equality a=0 is equivalent to $H_{\Gamma}=0$ and then $\alpha_{\Gamma}:\Gamma\to U(1)$ is a morphism of groups with $\alpha_{\Gamma}(\xi\gamma)=\alpha_{\Gamma}(\gamma), \forall \gamma\in\Gamma$. On the other hand, from Remark 4.1. and Remark 4.2., we may suppose that α_{Λ} is U(1)-valued. Moreover, since $H_{\Gamma}=0$ then:

 $e_g(u,z) = \alpha_{\Gamma}(\gamma)\alpha_{\Lambda}(\lambda)e^{\pi H_{\Lambda}(u,\lambda) + \frac{\pi}{2}H_{\Lambda}(\lambda,\lambda)}$

for both types of hyperelliptic surfaces.

Claim 1. If α_{Γ} is identically equal to 1 then $E_{\Lambda}(\Lambda \times \Lambda) \subset \mathbb{Z}$ and

$$\alpha_{\Lambda}(\lambda + \lambda') = \alpha_{\Lambda}(\lambda)\alpha_{\Lambda}(\lambda')e^{\pi i E_{\Lambda}(\lambda,\lambda')}.$$

Proof of Claim 1. For the case when S is of first type, this is nothing else than the definition. If S is of second type, then $H_{\Gamma} = 0$ implies that $1 = \alpha_{\Gamma}(1) = e^{-2\pi i E_{\Lambda}(c,\alpha)}$ so $E_{\Lambda}(c,\alpha) \in \mathbb{Z}$ i.e. $E_{\Lambda}(\Lambda \times \Lambda) \subset \mathbb{Z}$. Because $E_{\Lambda}(c,\alpha) \in \mathbb{Z}$, we apply (72) to get $\alpha_{\Lambda}(\lambda + \lambda') = \alpha_{\Lambda}(\lambda)\alpha_{\Lambda}(\lambda')e^{\pi i E_{\Lambda}(\lambda,\lambda')}$.

Claim 2. The condition $b \in \mathbb{Z}$ is equivalent to $E_{\Lambda}(\Lambda \times \Lambda) \subset \mathbb{Z}$.

Now, we turn back to the proof of Proposition 5.2.

"\improx". If $h^0(L) > 0$, then there exists a θ -function for $(0, H_{\Lambda}, \alpha_{\Gamma}, \widehat{\alpha_{\Lambda}})$, say θ , non-identically zero. Then, $\forall u, z \in \mathbb{C}, \ \gamma \in \Gamma, \ \lambda \in \Lambda, \ \theta$ must satisfy:

(77)
$$\theta(u+\lambda,\xi^{l_5}z+\gamma+l_3d)=\alpha_{\Gamma}(\gamma)\alpha_{\Lambda}(\lambda)e^{\pi H_{\Lambda}(u,\lambda)+\frac{\pi}{2}H_{\Lambda}(\lambda,\lambda)}\theta(u,z).$$

If we take $\lambda = 0$ in (77), it follows that:

(78)
$$\theta(u, z + \gamma) = \alpha_{\Gamma}(\gamma)\theta(u, z), \ \forall u, z \in \mathbb{C}, \ \gamma \in \Gamma.$$

Since α_{Γ} is U(1)-valued, then we can apply maximum priciple in (78) to conclude that θ does not depend on z i.e. $\theta(u,z) = \theta(u), \forall u,z \in \mathbb{C}$. The condition (78) implies also that α_{Γ} must be identically equal to 1. Moreover, (77) becomes

(79)
$$\theta(u+\lambda) = \alpha_{\Lambda}(\lambda)e^{\pi H_{\Lambda}(u,\lambda) + \frac{\pi}{2}H_{\Lambda}(\lambda,\lambda)}\theta(u).$$

From (79) and Claim 1. we deduce that θ is in fact a θ -function for the data $(H_{\Lambda}, \alpha_{\Lambda})$ with respect to the lattice Λ .

"\(\iff \)". We apply again Claim 1. and then we can choose $\theta \in H^0(H_\Lambda, \alpha_\Lambda)$. It is easy to see that if we define $\theta(u, z) = \theta(u)$, then θ is also a θ -function for the data $(0, H_\Lambda, 1, \alpha_\Lambda)$.

For the final part of proposition, we apply $Claim\ 2$. and [9], Chapter I \square .

Aknowledgements. I would like to express my deepest gratitude to my adviser, Prof. V. Brînzănescu for introducing me into this subject and for his very helpful suggestions during the preparation of this paper.

References

- [1] Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces, Berlin-Heidelberg-New York, Springer (1984)
- [2] Beauville, A.: Surfaces algébrique complexes, Asterisque 54 (1978)
- [3] Brînzănescu, V.: The Picard group of a primary Kodaira surface, Math. Ann. 296 (1993), 725-738
- [4] Brînzănescu, V.: Neron-Severi group for nonalgebraic elliptic surfaces I. Elliptic bundle case, Manuscripta Math. 79 (1993), 187-195
- [5] Brînzănescu, V.: Torsion of the Neron-Severi group for primary Kodaira surfaces, Rev. Roumaine Math. Pures Appl. 10 (1994), 927-931
- [6] Brînzănescu, V.: Holomorphic vector bundle over compact complex surfaces, Lect. Notes in Math. **1624** (1996)
- [7] Griffiths, Ph., Harris, J.: Principles of Algebraic Geometry, New York, Wiley (1978)
- [8] Hilton, P.J., Stammbach, U.: A Course in Homological Algebra, Grad. Texts in Math. 4 (1970)
- [9] Mumford, D.: Abelian Varieties, Oxford University Press (1970)
- [10] Serrano, F.: Divisors on bielliptic surfaces and embeddings in P⁴, Math. Z. 203 (1990), 527-533
- [11] Serrano, F.: The Picard group of a quasi-bundle, Manuscripta Math. 73 (1991), 63-82
- [12] Suwa, T.: On hyperelliptic surfaces, J. Fac. Sci. Univ. Tokyo 16 (1969-1970), 469-476
- [13] Ueno, K.: Classification theory of algebraic varieties and compact complex surfaces, Lect. Notes in Math.439 (1975)
- [14] Umemura, H.: Stable vector bundles with numerically trivial Chern classes over a hyperelliptic surface, Nagoya Math.J. vol. 59 (1975), 107-134