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0 Introduction

Let S — B be a hyperelliptic surface over a smooth elliptic curve B defined over
the field of complex numbers. The aim of this paper is to give a description of the
Picard group of S in terms of hermitian forms and multiplicators, similar to Appell-
Humbert for complex tori. The main tool used here is the cohomology of the groups
and the ideas are similar to those used in [3], [9].

In the first section we recall some fundamental facts on hyperelliptic surfaces,
such as the classification theorem and their fundamental groups.

In section 2, we get a description of the group of line bundles whose first Chern
* classes are torsion elements in the Neron-Severi group, which is usually denoted by
Pic7(S) and in the third section, which plays an important role for our purpose, we
obtain a description of Num(S) in terms of hermitian forms. :

The fourth section is devoted to the Appell-Humbert theorem and the final sec-
tion present some direct applications of it such as computing tors H?*(S,7Z), finding
a basis in Num(S) (see, also [10]) and computing the space of global sections for the
line bundles over S numerically equivalent to a multiple of the fiber of S — B.

1 Preliminaries and notations

There are many approaches concerning the theory of hyperelliptic surfaces ([1], [2],
[6], [10], [12], [15]). Firstly, we recall the definition used by Suwa (cf. [12]):

Definition 1.1. A hyperelliptic surface is an elliptic bundle S over an elliptic curve

Theorem 1.2.(cf. [12]) Any hyperelliptic surface can be expressed as a quotient of
an abelian variety A by the group generated by an automorphism gs of A. The period
matriz of A and the automorphism gs are given as follows:
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We say that S is of first type if S is of type (al), (b1), (c1) or (d1) and S is of

second type otherwise.
For the sake of simplicity, we shall use the following notations:

e (1/2 (a2)
arbitrarily (al), (a2)
=7 Wl o= GO0 G
! (sl e2) 0 for the other cases
~1 (al),(a2) 1/2 (al),(a2)
e=l° (b1), (62) cod 13 (01),(62)
i (cl),(c2) 1/4 (cl),(e2)
—p (d1) 1/6 (d1)
= lje,

So, S is the quotient of C* by a group G of holomorphic automorphisms of
C? generated by gi, 1 = 1,5, where gi(u,2) = (u 4 1,2), g2(u,2) = (v, 2 + 1),
g3(u, z) = (u+ a, 2z + d), ga(u, z) = (u,z + B) and gs(u, z) = (u + ¢, &z).

For the next elementary result, see [14].

Lemma 1.3. The relations between generators are:
G1,92, 93 and gy commute to each other, gt = g1 and

9295 = G595 " 9295 = gs95 .
(al)  gags = gsg3 (a2)  gags = 959397
9495 = 9594 9ads = 9591

Q]



9295 = 9593 91" 9295 = 9597 ' 937"

(b1)  g3gs = gs93 (82) 9395 = 59395 "
9495 = G592 9495 = 9592
9295 = 9591 9295 = 9595 "

(cl)  gsgs = gsgs (c2) 9395 = 959397 "
9495 = 9592 9ags = J592

9295 = G50294
(dl) 9395 = g533
9495 = 9597

From the lemma above, one may see that any element ¢ € G has an unique

expresion as a product g = g2gk g2 ¢, The action of a such g on C? is given by:

g(u,z) = (u+ lsa + lse, %2 + Iy + 14B + 13d).

Another way of representing the hyperelliptic surface S is as follows. Let [ =
Z+72B,A=Za+ Zc, \y = Za+ Z and

Za+7Z = Ay 5 of first type
Ay = 2Za+ 7 S of type (a2) or (¢2)
3Za+7Z S of type (b2)

Let A = C/A; and E = C/I". Then S can be expressed as S = (A x E)/G where
G is a finite translations group of A, acting on E not by translations only, given by
the Bagnera-deFranchis table (see for example [1], [2], [10]).

Moreover, A/G = B, E/G = P! and S has two fibrations: first of themis S — B
from the definition 1.1., with fiber E, and the other one is S — P! with generic fiber
A. Since A is the lattice of B, the short exact sequence of homotopy groups of the
first fibration leads us to the following extension

0—T 253G "5 A—0

where j(v) = g2gi% and 7(g) = lsa + lsc.

Choosing as a cross-section of 7 the map s : A = G, s()) = ggl for A =
als + cls € A, we see that s is a groups morphism if S is of first type.

Next, we identify an element v € I' by j(y) € G and A € A by s(A) € G. In
other words, we make no distinctions between v = I, + 43 and g.? gu or between
A = lza + lsc and g¥g¥. So AN will mean s(A\)s(X) and A + X is the same as
s(A+ A’). This convention simplifies our formulae and produces no ambiguity.

The natural action of an element A € A on T is given by AyA™! = &y, If we
write AN = A(A, X)(A + ), then h(X, X) = (€5 — 1)l4d.

Next, let us point out the following useful lemma:

Lemma 1.4. Let v € Hom(G,C*). Then



(al) wv(gz) = %1 , (g =1 5 (62) v(g) =1 , v(gs) =1 ;
(bl) v(ga) = v(gs) 1’(02)3 =1 ; (b2) 1’(92) =1 v(gs) =1 ;
(c1) v(g2) =v(ga) , v(ga)=%1 5 (€2) w(g2)=1 ,v(ga) =1 ;
(dl) v(g2) =1 , v(gs) =1

2 The group Pic’(9)

The vanishing of the cohomology groups H'(C?, Z), H'(C?,C) , H(C?, O ), H'(C?, 0%, ),
H(C?,C") for all 1 > 1 yields to the natural isomorphisms (see [9]):

Hi(S,2) = Hi(G,Z), H(S,C) & H(G,C), H(S,C") = H{(G,C), H(S,05) =
H'(G,H), H'(S,03) = HY(G, H*), where H = H°(C?,0¢), H* = H(C?, 0% ).

The exponential sequence

erp

0 —-Z— 0Os — 05 —0
gives rise to the cohomology sequence
. = HY(S,05) = Pic(S) > H*(S,Z) - 0.
Recall that the universal coefficients theorem leads us to:
Lemma 2.1. tors H*(S,Z) = Ker (i : H*(S,Z) — H*(S,C)).

For any L € Pic(S), ci(L) is the Chern class of L and Pic’(S) = Ker(c;). The
subgroup Pic"(S) C Pic(S) (see [3]) is defined as Ker(ic;) (where 7 : H*(S,Z) —
H?*(S,C) is canonical) and this is the group of the elements L € Pic(S) so that ¢;(L)
is a torsion element in H?(S,Z) (as we saw in Lemma 2.1.).

Then Pic"(S) = ((H'(S,C")) where ( is the natural morphism H(S,C*) —
H(S,0%) (see [3]).

Let us compute next Ker({), by using the isomorphisms from the beginning of
this section. So, v € Ker(({) if and only if there is h € H* such that

(1) h(g(u, 2)) = v(g)h(u, 2), Vg € G, (u,z) € C".

By taking the logarithmic derivatives wy = hl,/h and w, = A, /h (in order to elimi-
nate v from (1)), these functions verify the following relations:

(2) wi(u,z). = wi(u+1,2),

wi(u, 2) wi(u,z + 1),

wi(u, z) wi(u, z + B),

wi(u,2) = wiluta,z+d),1=1,2
(3) wi(y,z) = wi(u+cz)
(4) wa(u,z) = Ewa(u+ ¢ éz)

for all (u,2) € C.



From (2), if we take X' C C* a compact set with K + (I’ x A) = C* and apply
the maximum principle, we deduce that w; are constants.

From (4) it follows that w, = 0, so h doesn’t depend on z. This means that there
is a holomorphic function h on C so that hlu,z) = fl(u), Yu,z € C. Moreover, since
h'/h is constant, we get h(u,z) = (@) with (a,b) € C?. Then, by denoting
v; = v(g;), we have: vy = 1, vy = 1, v3 = e2™9% y, = ¢?7%¢ where a € C.

Then we proved the following:

Lemma 2.2. Ker(¢) = {v € Hom(G,C"): v(g) = ¢*™** g =) € G,a € C}.
Next, we try to describe Pic™(S) = Hom(G, C*)/Ker(().

Let v € Hom(G,C"). If S is of first type, s is a morphism, so v(AX') = v(A + ).

Otherwise, we know that AN = A(A, X')(A+ \') where A(X, ) = (¢35 —1)l4d € T.
But, if S is of type (a2), then A(A, X") depends only on g, and, by taking into account
Lemma 1.4.,it follows that v(A(A, X)) = 1. If S is of type (b2) or (¢2), then again
from Lemma 1.4. we have v(h(}, X)) = 1.

In any case we obtained v(AN) = v(A + X').

Now, we write v(A) = ¥, Since r(A) + r(X) —r(A + X) € Z, VA, X € A,
2= Im r must be Z-linear. Then ¢ has an unique R-linear extension ¢ : C — R.
We define k : C — C, k(u) = $(iz) + 1¢(z) which is C-linear and 7 := i — k is
real-valued.

The function k being C-linear, there exists a € C so that k(u) = au, Vu € C
and we take vy € Ker({), vo(g) = €2™®*. Then ag := v/vo has the property that
ag(A) € U(1), VA € A and it is uniquely determined by this property in the class of
v in Hom(G, C*)/Ker(().

Then we have:
Pic’(S) = {ag € Hom(G,C") ,ac(A) € U(1), VA € A}
Moreover, ag(y) € U(1), Yag € Hom(G,C*), so we got:

Proposition 2.3. There is a canonical isomorphism:

U’ : Hom(G, U(1))—Pic"(S).

3 The group Num(S)

In this section we shall give a description of Num(S) in terms of hermitian forms
related to A; and T'. Tt is well-known (see, for example [10]) that Num(S) =
H?*(S,Z)/tors H*(S,Z) and, as we saw in section 2, the cohomology of .S is computed
by cohomology of groups.

The inclusion j : I' = G induces a morphism of restriction resr : H*(G,Z) —
H*(T',Z).

The map s|a, : Ay = G is a groups morphism, so it induces another morphism
of restriction resy, : H*(G,Z) — H*(A1,Z).



According to [9], Chapter I, Appendix, we have classical isomorphisms

(5) HX(T,Z)= {Hr : C* = C hermitian, Im Hr(T' x ') C Z },

(6) H*(A1,Z) = {Hy : C*° — C hermitian , Im Hy(A; x Ay) CZ }.

Let us explain the morphisms resp and resy, (cf. [9], Chapter I) passing through
the above isomorphisms.

Starting with F' € H?*(G,Z), we construct ApF : T' x I' — C , ApF(v,7) =
F(¥',v) — F(v,7') , bilinear and antisymmetric which can be extended to Er :
C? — C, R-bilinear and antisymmetric verifying Er(iz,iy) = Er(z,y), Vz,y € C.
Then Hr : C? — C defined by Hr(z,y) := Er(iz,y)+ iEr(z,y) is a hermitian form
on C? with Im Hr = Er and Hr will be resp F' modulo canonical isomorphism (5).

By applying the same argument for Aj, resp and resy, will induce a morphism

x: HYG,Z)— N,
where

Ny :={ (Hp,Hy), Hp,H, hermitian forms on C?
withIm Hp(D' x T) CZ, Im Hy(A1 X Ay) CZ }.

We denote by

{(Hr,Hp) € N1, Im Hy(AXA) CZ} S of first type

NS = {(Hr,Hpr) € N1, Hr(1,1)Im g € 2Z } S of type (a2)
) {(Hr,Hr) €N, Hr(L,)Im p €3Z } S of type (b2)

{ (Hr,Hp) € M1, Hr(1,1) € 2Z, 2Im Hy\(A X A) CZ } S of type (c2)

Now, we can state the main theorem of this section:
Theorem 3.1. y induces an isomorphism ¥ : Num(S)SNS.

Proof. Because A has no torsion it follows that tors H*(G,Z) C Ker(x). So it
remains to prove that Ker(x) C tors H*(G,Z) and x(H*(G,Z)) = N'S.

Let F' be a normalized cocycle in H*(G,Z). Then F is the Chern class of a line
bundle. If we represent this line bundle as a cocycle {e,}, € H*(G,H*) then, by
standard diagram chasing, we get:

(1) F(9,d") = fo(d' (u, 2)) = fogr(u,2) + fyr(u,2) € Z, Vu,z€C, g,4' € G,

where f, : C2 — C is a holomorphic function with e*™/s = ¢,, Vg € G (see, for
example [3], [9]).

Now, we divide the proof into two cases corresponding to the two different kinds
of hyperelliptic surfaces.

Case 1. S is of first type.

Let us notice that, in this case, s is a morphism and, by denoting resy the
corresponding map from H?(G,Z) to H*(A,Z) we have the following commutative
diagram, coming from the inclusion A; C A.
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Jq?(./\,Z) C_—’HQ(A],Z)
resA\ resa,
H*G,7)
Then it is obvious that x(H*(G,Z)) C N'S.

Step 1. Our next goal is to find f; and thus to get a nice form of (7).

Since the restriction of F' to I' and A are 2-cocycles, it follows (see [9], Chapter
I) that

) Fo(u,2) = S Hr(z,2) + (), Vo €T,
(9) Falu, 2] = %HA(U,)\) + Ba(z,A), VA € A,

where Ar( . ,7v), Ba(.,A) are holomorphic functions on C.
Next, we write = for congruence modulo Z. From (7) it follows that, if g = A,
then

(10) f’Y()‘(uaz))_fg(uaz)‘{'fz\(uaz) =0

SO
(1) fylu,2) = 5He(€82,9) + 5Ha(w )+ Br(u+ X,9) + Ba(=, ), Vg € G.

The relation (7) can be read as

fog(u, 2) = fo(g'(u, 2)) + fyr(u, 2), 9,9' € G.

By replacing £, from (7} i the above formuls, we have:
(12) Br(u+ A+ X,y +59) 4+ Ba(z, A + X) =
S H(E59,7) + 5 Ha(V, ) + Bl A4 X, 7)
+Br(u+ N, y) + Ba(€52 + 4, A) + Balz, X).

Let us denote by ep( . ,7) and ea( ., A) the derivatives of Br( . ,7) and Ba( ., A)
respectively. Then, from (12) we obtain:
(13) er(u+ A+ N, v+ €59 =er(u4+ A+ X, 7) +er(u+ N,v)
(14) ea(z, A+ X) = E%en (€52 + 7, 1) + ea(z, X')

and from these relations we can describe G and 4.
Firstly, we determine fr.



In (13), we choose A = M = 0 and we get:
(15) er(it, 7+ ) = er(w,7) +er(u,7) ¥, € T,

which means that er(u, . ) : ' = C is a morphism of groups.
In (13) we choose A = 0 and it follows:

(16) er(u+ Ay + &%) =er(u+ A7) +er(u,y).
From (15) and (16) we deduce that:
(17) er(u+ A, €%9') = er(u, 7).

We choose A € Ay in (17), so ep(u+ A,y') =er(u,v'), VA€ A, v €T, ueC

By standard arguments, ep( . ,v') must be a constant, so we may write ep(7y)
instead of ep(u,v). On the other side, if we apply (15) and (17) again, er must be
identically equal to zero and fr doesn’t depend on u. Then we write Sr(y) instead

of Br(u,7).

Next, we determine 84. We choose A = X = 0 and 4/ = 0 in (14) so ex(2,0) =
0, Vz € C. We apply these relation to (14) for A = (i and we obtain

5A(z7 )‘) = €A(z + 7”’\)7 Vi e Aa 7, el

For the same reason as above, €5 doesn’t depend on u and we write 5 () instead
of ex(z,A). With this notation, we turn back to (14) which becomes:

(18) en(A 4 X) = 55 (N) + ea (V).

An easy computation in (18) will show that ex(X) = 11—_5;5 ea(c) and fa(z,A) =

1{:%lie,x(c)z + Ba(N).

Then we get:
1
(19) fawr2) = oHe(€52,7) + gz Ha(w N) + Br(7)
_ s
+i _é ea(c)z + Pa(A) + const(g), Vg € G,

where const(g) € Z, Vg € G and (7) becomes:

ls
(20) Flo.9) = HAON)+ S HR() + Ba() + a(N) = Bal2 + X)
— fls

+50() + o) = el +€09) + T eenle

+const(g) + const(g') — const(gg'), V4,4’ € G

74

Since const(g)+const(g’) — const(gg’) is a coboundary in C*(G, Z), we can ignore
this term, without changing the cohomology class of F' in H*(G,Z).
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Let r(g) := Ba(A) + Br(7) + t=zeale)y, re(v) = (1) = Br(7) + zeale)y and
T‘A()\) = 7’(/\) = 1&\(/\).
With this notations, (20) gives rise to the final formula for F':

ls

, 1
(1) Flo.g) = g Ha(V, ) + S Hr(3,9) + (o) +(g') — rlgg') € Z.

and thus, if we replace fr by rr, we may always suppose that e5(c) = 0.

From (21), one may see that if Hp = 0 and Hy = 0, then F(g,¢') =
r(¢g') — r(gg’), which means that the cohomology class of F in H*(G,C) eq
zero. Then, by means of Lemma 2.1., F represents a torsion class in H*(G,Z). Thus
we proved that Ker(x) C tors H?(G, Z)

r(g) +

uals to

Step 2. It remains to prove that N'S C x(H*(G,Z)).

We check that for given (Hr, Hy) € NS, thereexistsrp : ' =+ Cand 7y : A = C
so that, by defining r(g) = rp(y) 4+ ra(}), for any g = A then:
1 &
22 —Hi(N A
(22) LH )+

Let us denote by:

Hr(v',v)+r(9) +r(¢") —r(99') € Z.

1
ZHr(%v), Vyer,

BA(N) = ira(A) — %HA(,\, \), YA€ A,

br(y) = 1re(y) —

One may see that (22) is equivalent to the following three relations:

(23) br(év) — br(y) € Z,

i 1. , .
(24) br(y) + br(y) —br(y +7') + §2EF(’7,7 ) €4Z, Vv,9' €T,
(25) ba(A) + Ba(X) = ba (X + N) + %z'EA()\, X) €4Z, YA N € A.

Then, the problem of finding rr and r4 so that (22) is true reduces to searching
for br and by which satisfy (23), (24) and (25).
By using (24), a straightforward computation shows that (23) is equivalent to:

(26) S of type (al) 2br(1), 2bp(p) € iZ,

S of type (b1) bp(1) — br(p) € iZ, 3br(1) — ?ﬂpa, 1) € iz,
S of type (1) 2bp(1) € 1Z, br(1) — br(z) € +Z,
(

S of type (d1) br(1) + bp(p) € iZ, bp(1).+ %/EHF(LU € iZ.

If we fix ba(c), ba(a), br(1) and br(B) € C so that (26) is verified and we set:
1.
br(y) = kbr(1) +Lbr(B) + 5illEr (L, B), Vv = I + lf,

9



1
bA(/\) = l3bA(Q) + l5bA(C) + —chgl EA(C Q) V/\ lga + 15C,
then it is obvious that br and b, are the functions we were looking for.
Case 2. S is of second type.

The proof is similar to the proof of Case I., but it needs more computations.

As in the previous case, we try to find a decent form of f,.

Since the restriction of F' to I' and A; are cocycles, then we must have, as in the
first case:

1
(27) f‘/(ua z) = Q_ZTHF(Z”Y) . ﬂf‘(uv7)a V’)/ € F,
1
(28) ulu,z) = %HA(U,/\I) + Ba(z, A1), VA1 € Ay,

where fr( . ,7), Ba( . , A1) are holomorphic functions on C. Let us denote by
er( .,7), ea( ., A1) the derivatives of Br( .,7v) and Ba( ., A1) respectively.

Step 1. We show that ep( ., . ),and ea( ., . ) are constants in their first variable
and groups morphism to C in their second variable.

For ¢ = 4\ € G with A € A, then g is also equal to Ay and we apply (7) two
times:

fg(uaz) = fv(/\(uaz)) + f,\(u,z) = fA(7(u7 Z)) + fﬂ(uaz)
to get the following:

(29) %H[‘(lgd,’y) + ﬁl“(u + /\)7) + 6A(Z»A) = ﬁF(u,")’) + IBA(Z + v )‘)) A = A1~

By taking the derivatives with respect to u and z respectively in (29) it will follow
that er(u + A7) = er(u,,7) and ea(z +7,1) = ea(z,A), VY €T, A € Ay, u,2€ C
and thus er and e, are constant in their first variable.

Then we write er(y) instead of er(u,,7) and e5()) instead of ex(z,A) and,by
denoting Br(y) = Br(0,7) and Ba(X) = Ba(0, ), we deduce that:

(30) Br(u,v) = er(y)u+ Br(7)
(31) Balz,A) = ea(N)z + Ba(N).

Next, we turn back to (7) and we choose ¢,¢' € G, g = v, ¢’ = 7'\ with
A, A € Ay. Then we obtain:

1
(32) ;Hr(lsd, V) +er(r )+ A+ N) +ea(A+ )z
1 1
+00(7 +7') + Ba(A+ X) = ZHe(v, 1) + - Ha(X, 4)

ter(Nw+ A+ X) +er(¥)u+ X)) +ea(M)(z ++ 4 ;5d)
+ea(N)z + Br(y) + Br(y') + Ba(A) + Ba(N).

10



Now, we take the derivatives with respect to u and z respectively in (32) and it
will follow that er € Hom(T', C) and €4 € Hom(A,, C).
If we apply (30) and (31) in (29) we will obtain the following relation:

1
(33) é,—iHr(ladﬁ) —eaAA)y+er(1)A=0, VA€ Ay, yeT.

Step 2. We prove that 8, can be extended to B4 : C x A — C, also holomorphic
in the first variable so that:

1
filw, 2) = ZHA(U,/\) + Ba(z,A), VA € A.

In fact, by taking into account (7) and (28), it is sufficient to prove this only for
& =,

el 9
Letn,\—-a{j,ﬂ :af;andu,\ 88,

By using induction on m, one may apply (7) several times to prove that:

(34) frne = TZV‘; folu + ke, €2), ¥m € N,

which implies

m—1
(35) Nme = Z 176(u + kc,ka),
k=0
m—1
(36) Kme = Z Nc(u + kcasz), Vm e N,

In particular, for me = n € N, we get

(37) Ti\ (u + ke, 52) = Q—I{HA(I,n),
(38) Z pie(u + ke, €52) = 0.

Our next goal is to prove that 7. is a constant and then, from (37), we deduce
that this constant must be equal to 5:Hr(1,¢) and this step will be finished.

We apply (7) for lsa, ls¢c and then, for A = lz3a + lsc, we have:

(39) f/\(uv Z) = flaa(u -+ lSCa 6152) T flsc(uvz)
= fro(u+ Lo,z + 3d) + fi,a(u, 2).

But l3a € A; and, by meaning of (28) and (39) the following two formulae holds:

(40) 77158( ) ) = 7715c(u + lBQ’ z+ l3d)
(41) ‘ Mlsc( ) ﬂl5c(u + lsa, z + l3d), Vlg, ls € Z.

11



We apply again (7) for [sc and mc, where we choose m such that mec =n € Z C
Ay. A similar argument as in (39) leads us to:

(42) Ulsc(lhz) = 7]15c(u +n,z),
(43) piye(u, 2) = p,e(u+n,2), Vis,n € Z.

From (7), applied for v, A and ¢ = 4\, we obtain:
1 \
(49)  f(w2) = g Hr(€2 4 lsd7) + er(n)(ut )+ Bey) + il 2).

Again in (7), we take g = v\, ¢ = 4'X with I = 0 (and this implies that
R(A, X)) =0) and ({5 + {§)c € Z C Ay and use (44) and (28):

1 _ 1 , /
(45)  Hr(z+bd,v+ &59') + SHA(w, A+ ) +er(y + 5y ) (w+ A+ N)

+Br(y +€57) + Baz, A + V) = - Hr(2 + €°9,7) + 5 Hr(€52,7)

+er(Y)(u+ A+ X) +er(y)(w+N) + Br(v) + Br(v) + farlu, 2)
+ A+ N, 52+ ).

Then,
1
(46) er(y+&5%9) + EHA(L A+ X)) =er(y)
+€F(7,) + 77/\(u o )‘I) 6122 - 7,) = 77,\/(’&, Z)
and
(47) pa(u+ X, €52 4 74') = —p(u, 2).

In particular, Vu,z € C, V' € T, Vs, I, € Z so that (Is + I{)c € Z we have:
(48) ﬂlgC(ua Z) = —,ulsc(u + 1,567 élgz + 7,)'

From this relation, one may imediatelly obtain that:
(49) puo(u,z) = pre(u+n,z+7), Vyel, n€Z.

We apply (43) and (49) for I = 1 to deduce that p.(u,z) doesn’t depend on
z and we write po(u) = p.(u,z). Now, we take into account (41) and (43) which
show us that p.(u + A) = pc(u), YA € A;. But this means nothing else than p. is
a constant. From (38), this constant must be zero, so 7. depends only on z, say
1:(2) = no(u, ). In fact, it is easy to see that 7, depends only on 2z, VA € A,

Then vy will depend only on z for any A € A and, from (46), we have:

(50) n(f8z+9) = —vn(2), V2€C, 7 €T,
as soon as Iy = 0 and ({5 +1;)c € Z.
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In particular, Vz € C, Vy' € T, Vis, [5 € Z so that (Is + l)c € Z we have:
v(2) = —vie(€52 + 7).

As we have already done for p., we get that v. must be a constant and, by means
of (40), n. must be a constant too.

Step 3. Next, we try to find B4 and thus to get the finest form of F.

If we apply (46) for Iy = —lf = 1 and I3 = 0, then we get er(y + &) =
er(y) 4+ er(y'), V7,7 € . Since er is a morphism, it must be identically zero.
So, we find the following relation for f:

1) fylus) = mHe(E + sds) + 5 Ha(w, ) + Br(2) + Ba(s, )

<

Let ep(z, ) = 88'3;‘ (z,)). We turn again to (7) to replace f, obtained in (51) and
then, by taking the derivatives with respect to z, we get:

(52) He(1, h(0, V) + en(z, A + V) = Eoea(€52 + 9" + 13d, A) + a2, V).

?
By using the same computations as before, one may see that €4 doesn’t depend
on z, so we write ep(X) = ea(z, A) and

(53) € (/\)——1-H (1 1d)+1”5lse ()
A - % r\t,43 1‘6 A )
515 __¢ls
(54) Balz ) = G Hr(2,lsd) + 77 ea(c)z + Ba(N),

where Ba(A) := Ba(0, A).
In particular, for A € Ay, we have ex(A) = L Hr(1,l5d) and, by applying (33),
we get the following extra-condition for Hr:

1 1
5 H[‘(lg;d,")/) == ZH[‘(’)’,Z::,d) S Z, \VI’)/ € F, l3 € Z,

1

(55)
which is equivalent to:

(56) (a2)  Hp(1,1)Im B € 2Z,
(62)  Hr(1,1)Im p € 3Z,
(2)  Hr(1,1) € 2Z.
Next, we turn back to (7).
Firstly, let us notice that (51) is read here:
%
% H[‘(Z, ng)

(57) fg(u> Z) = %Hf(é.lsz + Z3d’7) + ﬂr(’)’) + %HA(I% )‘) + —Z—
1 - ¢

1Z¢

4+ ea(c)z + Ba(A) + const(g),
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where const(g) € Z. As in the proof of Case 1, we may suppose that const(g) = 0,
without changing the cohomology class of F in H*(G,Z).

Let us denote by r(g) := Ba(A) + Br(7) + T%Ee,\(c)(y + I3d) and 7A(N) == 1(A) =
Ba(A) 1—156A(c)13d, re(y) i=r(y) = Be(v)+ T%Ee,\(c)’y. Then, we may suppose that
ea(c) = 0 and we find the following final formula for F:

1 ts _— 1
(58)  Flg:g) = FHaX, M)+ 5 He (v + lsd, 7) + 57 Hr(lsd, )
1 / 1 / 5./ /
+'2';Hr(lgd7’7) - ZHF((ZS+13)d77+£l Y+ h(Aa/\))

ls
+§27Hr(7' 1 Ihd Isd) +r(9) +r(g') —rgg) € Z.

From (58), one may see that if Hy = 0 and Hr = 0, then F has the cohomology
class in H?(G, C) equal to zero, so the cohomology class of F in H*(G,Z)is a torsion
clement. This fact shows that Ker(x) C tors H*(G,Z).

Step 4. We show next that NS = x(H*(G,Z)).

"7 Let (Hr, Hp) = x(F) where F € H?(G,Z). We have already seen in Step
2 that (56) must be true. It remains to prove that 2Im Hy(A X A) CZ x Zif S'is
of type (c2). In fact, we have some more relations which lead us to the conclusion
and which are also useful for the Appell-Humbert Theorem.

Let bp(q) = irr(y) — 3Hr(7,7) and ba()) = ira(A) — HA(X, ). As in the case
when S is of first type, we have the following relations:

(59) S of type (a2) 2br(1), 2br(B) € iZ,
S of type (b2) br(1) —br(p) € iZ, 3bp(1) — E—4\/§Hp(l, 1) €1Z,
S of type (c2) 2br(1) € Z, bp(1) — br(2) € iZ.

We start from the relation F(N,A\)—F(A\X) € Z, YA, M € A, we replace F' from
the formula (58) for vy = =0, Il = I3 = 0 and we use (55) to get:

. ! 1 ~ . !
(60) i Ex(lsc, l5a) + br(h(lsc, lyar)) + ZHp(l, D)2|d (6 — £°) € 1Z, Vis, 13 € L.

This condition is equivalent to:

(61) S of type (a2) br(1) +iEx(c, @) € 12,
S of type (b2) br(1) + iEx(c.a) — él—fin(l,l) €17,
S of type (¢2) —br(1) + 1Ea(c, @) — ;;Hp(l, 1) €14Z
and, because of (56) and (59), if S is of type (c2) then 2Ex(c, @) € Z.

14



Moreover, from (55), (58) and (60), we have the following relation for ba:

1 _ ,
(62) ba(A) + ba(X) = ba(A + N) + 5iEa(l5e, aa) + 1 Eallse, lyo)
1
+ 5 Hr(lad, Iyd) € i, V), X € A.

»c”. To prove this inclusion, we have to prove that if (Hr, Ha) € NS, then
there exist rr and rp so that

(63) Lo+ &
20 M

2

! it \ 1
Hr(v' +3d,v) + gﬂr(lad,v)
1 ] / 1 A ] !
oz He(led, 7)) = - He((ls + )dy v + oy + (X, X))
ls
+%—Z.—Hr(7’ +14d, 1) + ra(A) + ra(X) = ra(A + X)
tre(y) + () = ro(y + €59+ (X, X)) € Z.

We start with bp(1) and bp(B) so that (59) and (61) are satisfied. We set, as in

the first case,

(64) be(y) = labr(1) + Lebr(8) + %uzwpa, 8)

and this br will satisfy:

(65) be(x) + br() — bely +7) + 5iEr(1,7) € 82,
(66) br(&y) — br(y) € iZ.

We define
(67) rr(v) = —ibr(y) — iHr(%v)-

Next, we start with 75() and r4(c) in C and we take:

(I — 1)l (15 — 1)ls (Is — 1)l

(68) rA(A) = L Hp(o, o) + THA(C, c) + TH[‘(CZ, d)
1
+§ZTHA(ZSC, lza) + lsra(a) + Isra(c)

A straightforward computation, by usiné the relations (55), (60), (64), (65), (66),
(67) and (68) leads us to the conclusion [.

We denote by ¥” : N'S=Num(S) the isomorphism obtained in Theorem 2.2.
4 Appell-Humbert theorem

Keeping the notations from the previous sections, we define ar(y) = e?mr() and
ap(N) 1= €27, Recall that, since br(§y)—br(v) € ¢Z, br must be purely imaginary.
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If S is of first type, then ar and ax will verify

(69) ar(A+A) = ozA()\)a,\(/\')e""EA(’\"\I)
(70) or(y+17') = ar(”,f)ap(“/')e”EF(W’I)
(71) ar(§y) = ar(y),

where (Hr, Hy) € N'S.

If S is of second type, then ar and o will verify

(72) an (X + V) = an (A)ay (V) emiBalliedsc)+riBalselial e (b iz
(73) ar(y +7) = ar(y)ar(y)em 0
(74) ar(éy) = ar(v)
and
gty feie) S of type (a2)
(75) ar(l) = e-2miBa(e@)+n Y2 He (L) G of type (62)

e—2m'EA(c,a)—7r%Hr(1»1) S of type (62),
where (Hr, Hy) € N'S.

Let Py = { Group of data (Hr, Ha,ar,as) } with natural group operation and
P = Py/~ where (Hr, Hp,ar,ap) ~ (Hp, Hy,of, o)) if and only if Hp = Hp,
Hy = Hi, ar = ok and there exists a € C so that ax(}) = oy (M)e¥ A YA € A.
For simplicity, we shall denote by (Hr, Ha, ar, @) instead of (Hr, H/A,\ap, ap) and
ay ~ o) for the equivalence.

Remark 4.1. By using a classical argument that have been already used in section 2
(cf. [9], Chapter I), one may see that if .S is of second type and Hr = 0 or if S is of
first type, then there exists an unique o/y so that ay ~ o} and &y (A) € U(1), VA€
A.

This argument allows us many times to suppose that the multiplicators appearing
in theorems of Appell-Humbert kind are U(1)-valued (see [9] for tori and [3] for
primary Kodaira surfaces).

Lemma 4.2. We have an ezact short sequence
0 — Hom(G,U(1)) 2P 5 NS — 0
where 1 s the canonical projection and p(ag) = (0,0, ac|r; aGla)-

Proof. The morphism 7 is surjective from the proof of the Theorem 3.1. By the
above remark, p is injective. Since nu = 0 it remains to check that Ker(n) C
p(Hom(G, U(1)).

Indeed, let (0,0, ar, &) € P. Since the corresponding hermitian forms are equal
to zero, it follows that ap € Hom(T',U(1)) and as € Hom(A,C*). From Remark
4.1., & has a representative that is U(1)-valued, say oj.
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Then we define ag(g) := ar(y)ay (A) € U(1), Vg = vA € G, which is an element
of Hom(G, U(1)) and verifies p(ag) = (0,0,ar,ax) O.

Theorem 4.3. There is the following isomorphism of exact sequences

0 — Hom(G,U(1)) Sl o4 NS 0
) ! ) V] ! WV
0 — Pic"(5) Pic(5) Num(S) 0

where W' is the isomorphism from section 2, U" is the isomorphism from section
3 and U maps an element (Hp, Ha,ar, &) € P to the cocycle {eg}, € HY(G,H")
gwen by
o1, 2) = (s Jon (A)eT N4 1s8) () T,

Proof.  All we have to check is that ¥ is well-defined, so let us suppose that
(Hp, Hp, ar, &) maps by U to {eg}, € H'(G, H*) and we change the representative
of ap by o). Ife] = —gf%)l " o/()), then is is easy to see that {ej} is a coboundary
in CY(G, H").

Indeed, there exists a € C so that a{(A) = e?meX and we choose h(u, z) = €2,
Then, €’ = h(g(u,2))h ™ (y,2), Yu,z€ C, g € G 0.

g

Definition 4.4. For any (Hr, Hy,ar, &) € P, the line bundle over S associ-
ated to the cocycle {e,}, = U(Hr, Hx,ar,a3) € H'(G,H*) will be denoted by
L(HF7HA7GP7&?X)'

Remark 4.5. L(Hp,Hy,or, &) is the quotient of C? x C given by the equivalence
relation ((u,z),w) ~ (g(u, z), eg(u, 2)w), Vg € G.

5 Applications

The first application of Appell-Humbert theorem 1s a description of tors H*(G,Z)
and its generators in terms of the groups cohomology (see, also [10], [12] for precised
characterisation).

By taking into account that torsion cocycles F are given by the vanishing of their
corresponding hermitian forms Hr and Hj, one may obtain very easy the following
table (see, also [5] for a similar result on primary Kodaira surfaces):

ﬁype | tors H*(G,Z) | Action of generators of tors H*(G,Z)on (g9,9) |

(al) Zig X Lo (1 = (—=1)")5/2 and (1 — (=1)")/2
(a2) Zs (1—(=D")1/2

(b1) Zs - | (Re((1—p")y) +v3Im((1 - p*)7))/3
(62) 0 0

(c1) Lg (Re((1 = %)) + Im((1 —1*)7"))/2
(c2) 0 0

(d1) 0 0
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Next, we may apply Appell-Humbert theorem to compute a basis in Num(S5)
(see, also [10], Theorem 1.4.).

Let us denote by ¢ the cardinal of .
deg deg

If we fix isomorphisms H*(I',Z) & H*(E,Z) = Z and H*(A2,Z) = H*(AZ) = Z,
then the inclusions NS C N; C Ny = Z & Z will become:

Type M NS q | basis in N'S
€1 [ €2
(al) | Z®Z | Z®2Z |2 (1,0) | (0,2)
(a2) |Z02Z | 222927 | 4| (2,0) | (0,2)
b)) | ZoZ | Z®3Z |3 |(1,0)|(0,3)
(62) |Z®3Z |3Za3Z |9 (3,0)](0,3)
(cl) | Z®Z | Z®4Z |4 (1,0) | (0,4)
(2) |Z@®2Z |2Za4Z | 8| (2,0) | (0,4)
d) | ZeZ | Z&6Z |6 (1,0) | (0,6)

Tt is easy to determine the numerical classes of Og(E) and Og(A) in N'S. In-
deed, according to [10], since the iniersection number E.A is equal to ¢, then via
isomorphism N; = Z @ Z, we have ¢;(E) = (0,¢) and ¢;(A) = (g,0)-

Then, by using the previous table, we get the following (compare also with
[10],Theorem 1.4.):

| Type | Basis of Num(S) |

(al) | 1/2A E
(a2) | 1/2A 1/2F
(b1) | 1/3A E
®2) | 138 1/3E
(1) | 146 E
(2) | 1/4A 1/2E
(d1) | 1/6A E

The next application of Appell-Humbert theorem is computing the space of
global sections of some line bundles over 5.

As we saw, any element L € Pic(S) can be written as L = L(Hr, Ha,ar,az),
where (Hr, Hp,ar, @) € P.

From [10], Theorem 1.4., the numerical type of L is of form cai(L) = aA + bE,
where a,b € Q, or ¢;(L) = aje; + biey with aq,b € Z. According to [10], Lemma
1.3.,if H(L) # 0, then a,b > 0, which is equivalent to the inequalities Hr(1,1) >0,
Ha(1,1) > 0. If a,b> 0, then L is ample (cf. [10], Lemma 1.3.) and h°(L) = abg =
a1b; > 0, so it remains to study the cases a =0, b> 0 and a >0, b= 0.

Here we shall compute H°(L) for a = 0, b > 0. Before stating our result, let us
introduce the following notion:
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Definition 5.1. Let (Hr, Ha,ar,as) € P. Any holomorphic function §:C* - C
so that:

(76) 0(g(u,2)) = eglu, 2)0(u, 2), Vg € G, 1,2 € C
is called a §—function for the data (Hr, Ha,or,as).

It is easy to see that there is a natural one-to-one correspondence between 6-
functions for (Hr, Hy,ar,@a) and sections of L(Hr, Hp,ar,an).

Proposition 5.2. If ¢ (L) = bE, b > 0 then h°(L) # 0 if and only if ar is
identically equal to 1.

In this case, b € Z and there is a natural isomorphism: HO(L) = H°(L(Hx, o)),
where L(Hp,ap) is the line bundle over C/A associated to the hermitian form Hp
and the multiplicator an.

Proof. The equality a = 0 is equivalent to Hr = 0 and then ar : I' = U(l) is a
morphism of groups with ar(£y) = ar(y), Vy € I'. On the other hand, from Remark
4.1. and Remark 4.2., we may suppose that a, is U(1)-valued. Moreover, since

Hr = 0 then:
()‘)efHA(u»)\)'i'%HA(/\»)\)

eg{t, 2) = ar(7)aa
for both types of hyperelliptic surfaces.
Claim 1. If ar is identically equal to 1 then Ep(A x A) C Z and
ar(A+ X)) = aA()\)aA()\')e”iEA(’\”\').

Proof of Claim 1. For the case when S is of first type , this is nothing else than the
definition. If S is of second type, then Hr = 0 implies that 1 = ap(1) = 2B (00)
so Ex(c,a) € Z ie. Ex(A x A) C Z. Because Ej(c,@) € Z, we apply (72) to get
aa(X 4+ X) = aa(V)ap (X)emBa),

Claim 2. The condition b € Z is equivalent to Ex(A x A) C Z.
Now, we turn back to the proof of Proposition 3.2.

"—". If h%(L) > 0, then there exists a f-function for (0, Hp,ar, @3 ),say 0, non-
identically zero. Then, Yu,z € C, vy € T, X € A,  must satisfy:

(1) Bt A€+ 4 bod) = an(y)ar(\e D HEIRONg(y, 2)
If we take A = 0 in (77), it follows that:
(78) 0(u,z +7) = ar(7)8(y, 2), Yu,z € C, vy € L.

Since ar is U(1)-valued, then we can apply maximum priciple in (78) to conclude
that @ does not depend on z i.e. 8(u, z) = 0(u), Yu, z € C. The condition (78) implies
also that ar must be identically equal to 1. Moreover, (77) becomes

(79) O(u+ ) = ap(A)emHaA+EHARN) (),

19



From (79) and Claim 1. we deduce that 6 is in fact a 6-function for the data
(Hp, cp) with respect to the lattice A.

"«=". We apply again Claim 1. and then we can choose 8 € HO(Hyp,ap). It is
easy to see that if we define 0(u, z) = 0(u), then 8 is also a f~function for the data
(Oa [{Av 1 a/\)‘

For the final part of proposition, we apply Claim 2. and [9], Chapter I 0.
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