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ON A NEHARI TYPE PROBLEM ON
SPACES WITH INDEFINITE INNER PRODUCT

Tiberiu Constantinescu Aurelian Gheondea

Dedicated to Heinz Langer on the 60th anniversary of his birthday

We formulate a generalised Nehari type problem, in the sense of Adamyan-Arov-
Krein, on spaces with indefinite inner product. We adapt the approach of Ball-Helton
and Treil-Volberg to view it as a problem of existence of invariant maximal nonnegative
subspaces and, in a certain case, we characterise its solvability. Applications to bounds
and singular values of generalised Hankel operators, to contractive intertwining dila-
tions and to some interpolation problems of Carathéodory-Schur and Nevanlinna-Pi:k
type for matrix-valued meromorphic functions are given. A direct proof of a theoren:
of Treil-Volberg is also included.

1. Introduction

According to a celebrated theorem of Z. Nehari [28], for an arbitrary function f € L*° the
distance of f to H* coincides with the operator norm of the Hankel operator I'y = Py2 My,
where H? denotes the space L? © H? and M; € L£(L?) denotes the multiplication operator
associated to f. Moreover, this distance is actually a minimum, in the sense that there exists
a function g € H* such that dist (f, H*®) = ||f — ¢]|co-

Let S denote the forward shift on L?. An equivalent formulation of the Nehari problem
looks as follows: given a bounded linear operator I': L? — H?2 such that I'S = Py2 ST, it is
required to determine a function f € L™ such that I' = Py2 My with || flle = [|M;]| = || T]|-
Note that for any function f € L* such that I" = Py2 My we have ||f|loc > ||I']|. On the
other hand, since the class of multiplication operators on L? with functions in L* coincides
with the class of linear bounded operators on L? commuting with the operator .S, if follows
that the problem requires actually to determine those linear operators M € £(L?) such that
SM =MS,I' = Py M, and |M|| < ||T]|. :

The latter formulation of the Nehari problem turns out to be a very general problem
encompassing many interpolation problems and it also can be put in a form dealing with
operator valued functions, in particular with matrix valued functions. For a pertinent survey
of these facts, as well as other formulations of the Nehari problem, see C. Foiag and A. Frazho

[19].



The problem of characterisation of the singular values of compact Hankel operators was
considered by V.M. Adamyan, D.Z. Arov and M.G. Krein in [2]. Noting that the above
formulation of the Nehari problem can be regarded as referring to the first singular number
so(I") = ||T']|, this can be considered as a generalisation of the Nehari problem. In the first
formulation of the Nehari problem mentioned above this corresponds to the determination of
the distance dist (f, H°) where H® denotes the class of all meromorphic functions g which
admit a multiplicative representation hp™! where h € H® and ¢ is a polynomial with at
most [ roots in the open unit disc D.

In this paper we formulate a generalised Nehari type problem, in the sense of Adamyan-
Arov-Krein, on spaces with indefinite inner product. The approach we follow is an adaptation
of the angular operator and shift invariant maximal nonnegative subspaces method initiaded
by J.A. Ball and J.W. Helton in [8]. However, in the case we are dealing with this geometric
interpretation with angular operator is lost. In addition, this forces a limitation of this
method to the case when the added space is positive definite. To make things precise from
the beginning let us fix some terminology and recall some background material from the
theory of indefinite inner product spaces.

A Krein space is by definition a complex vector space K endowed with an (indefinite)
inner product [-,-] such that there exists an operator J: K — K, J~' = J with the property
that the positive inner product (-, -},

(x,y)J:[J:c,y], x,yE)C,

turns (K;(-,-)s) into a Hilberi space. The operator J is called a fundamental symmetry.
Any fundamental symmetry J admits a Jordan decomposition J = J* — J~. The spectral
subspaces K = J*K are orthogonal with respect to the inner product [-,-], (K, [-,"]) is
positive definite and (K, [-,-]) in negative definite. The decomposition K = K*[+]K™ is
called a fundamental decomposition. The strong topology of the Krein space K is given by
an arbitrary fundamental symmetry, more precisely, by the corresponding positive definite
inner product. It does not depend on which fundamental symmetry is chosen.

If £ is a (closed) subspace of the Krein space K then we denote by L* its orthgonal.
A decomposition £ = L_[+]L°[+]L exists, where L_ is negative definite, £} is positive
definite, and £° = £LN L* is the isotropic subspace. The cardinal numbers x4 (L) = dim(L4)
are called the positive/negative signatures of £ and they do not depend on the particular
above decomposition. If these numbers are finite then they coincide with the number of
positive/negative squares of the quadratic forms £+ 3 z + [z, z].

If K;, 7 = 1,2, are Krein spaces then we denote by £(K1, K3z) the vector space of bounded
linear operators T: Ky — K. For such an operator we denote by T" € L(K2,K;) its adjoint,
more precisely,

[T:E,y] = [vaﬁy]’ z€ky, y¢€ Ka.

If fundamental symmetries J; and J; on K; and, respectively, K are fixed then T = L T* Js.

Let (K,][-,+]) be a Krein space and A € L(K) a selfadjoint operator, that is, A = Al We
consider a fundamental symmetry J in K and then the operator G = JA is selfadjoint with
respect to the Hilbert space (K;(-,-)s). If G = G4 — G_ is the Jordan decomposition of G
then we denote by x4 (A) the dimension of the spectral subspace cIG+K. For instance, if
k_(A) is finite then it coincides with the number of negative eigenvalues, counted with their
multiplicities, of G.



Let (KC,[-,-]) a Krein space and let H be a (closed) subspace of K. We fix a fundamental
symmetry J on K, let (-,:) be the corresponding positive definite inner product, and let
G' € L(H) be the Gram operator of [-,:] with respect to (-,-) on H, that is, G' is selfadjoint
with respect to the positive definite inner product (-,-) and

[z,y] = (Gz,y), x,y€H. (1.1)

Clearly we have G = PyJ|H, where Py denotes the projection on H along JH*.

Consider G = G4 — G_ the Jordan decomposition of G, let H; denote the spectral
subspace corresponding to the nonnegative semiaxis [0,400) and let H_ be the spectral
subspace corresponding to the negative semiaxis (—oo, 0). Clearly we have the decomposition

H:H_g. EBH_. (]2)

and, if z = 4 + 2_ and y = y; + y_ are the corresponding representations of arbitrary
vectors x,y € H, then
[J?,y] = <G+$+,y+> - <G—‘T~’y->'
In the following we will use the notions of positivity, negativity, neutrality, etc. with respect
to the indefinite inner product space (H;[-,]), and fix the decomposition (1.2).
Let M be a nonnegative subspace of H, that is, a closed linear manifold such that
[z,z] > 0 for all z € M. With respect to the decomposition (1.2) this means

(Gizy,z4) 2 (Gozy2), z=74+z_ €M (1.3)

As in the case of Krein spaces this enables us to introduce an angular operator. Let Py denote
the projection of Hy with respect to the decomposition (1.2). Clearly Py are orthogonal
projections in the Hilbert space H, in particular their norms are < 1. Let us define an
operator Ka: P M — H_ by

Km:Prz— Pz, z€ M. (1.4)
By (1.3) and taking into account that G_ is injective on H_, this definition is correct and
M={z+ Kmz |z € PM}. (1.5)

Since M is closed, this implies that the operator K 4 is closed. The operator K ¢ is called the
generalised angular operator of the nonnegative subspace M. Also note that in this general
setting there is no reason to conclude that Py M is a (closed) subspace. This anomaly is
remedied if an extra condition is imposed, more precisely, the condition that in the Jordan
decomposition of the Gram operator G the operator G_ has closed range or, equivalently, the
condition that the spectrum of G has a gap (—¢,0). This condition is independent on which
admissible positive definite inner product (-,-) we consider on the space H, since, by changing
it with another Gram operator, say B, we have B = C*GC for some boundedly invertible
C € L(H) (the inner products on the incoming Hilbert space H and the outgoing Hilbert
space H are different) and this transformation preserves the topology of the spectrum.

The following result established in [35] (cf. [36], see also [20]) shows the possibility of
handling generalised angular operators in a similar fashion as the angular operators in Krein
spaces.



LEMMA 1.1 With the previous notation, assume that the operator G- has closed range.
Then:

(1) M is a nonnegative subspace of H if and only if Py M is closed, Kaq is bounded and
the following inequality holds:

[(LG—A,M < PP+J\/(G+|P+M. (16)

(2) Let M and N be nonnegative subspaces. Then M C N if and only if Kpm C Ky,
that is, P, M C PN and Kpyz = Kyz for dlz € PL M. .
(3) For any szmnegative subspace M there exists a mazimal nonnegative subspace M

such that M C M.
(4) A nonnegative subspace M is mazimal if and only if PLM ="H,.

Another result that can be extended from Krein spaces to subspaces of Krein spaces
under the condition that G_ has closed range refers to the existence of maximal nonnegative
invariant subspaces for expansive operators. Starting with the work of Pontryagin [30] the
problem of existence of semi-definite invariant subspaces played a key role in the development
of the theory of operators on indefinie metric spaces. Major contributions appeared in the
work of M.G. Krein [24], H. Langer [27], and L. S. Iokhvidov [23]. Using a fixed point theorem
of Ky Fan [16] and Glicksberg [21] and following an idea of Ky Fan [17], 1.S. Iokhvidov [22]
essentially proved (cf. [36]) the following result:

THEOREM 1.2 Let H be a subspace of some Krein space such that, with the above notation,
the operator G_ has closed range. Let V € L(H) be an operator subject to the following
conditions:

(1) V is expansive, [Vz,Vz] > [z, 2] for all z € H.

(i1) The operator Py, V Py_ 1s compact.
Then there exists a mazimal nonnegative subspace M in H which is invariant under the
operator V.

A recent important application of this theorem was provided by S. Treil and A. Volberg,
[35], [36] to an abstract Nehari problem encompassing applications in the field of Hankel
operators on weighted Bergman spaces. The main idea was to use Theorem 1.2 in conjuction
with the angular operator approach used by J. A. Ball and J. W. Helton [8] to a generalised
interpolation problem. This allows for a much broader range of applications, as already
shown in [36].

In this paper we adapt the approach of Ball-Helton and Treil-Volberg to a Nehari type
problem on spaces with indefinite inner products. We consider it as a problem of exis-
tence of invariant maximal nonnegative subspaces and, in a certain case, we characterise
its solvability, cf. Theorem 2.4. Applications to bounds and singular values of generalised
Hankel operators, to contractive intertwining dilations and to some interpolation problems
of Carathéodory-Schur and Nevanlinna-Pick type for matrix-valued meromorphic functions
are given. A direct proof ofthe main theorem of Treil-Volberg in [36] is also included.



2. A Generalised Nehari Type Problem in Krein Spaces

In this section we reformulate in the framework of indefinite metric spaces an abstract Nehari
problem and we indicate a situation when necessary and sufficient conditions can be found
in order that the problem can be solved.

Let G; be a Krein space and let S; be a bounded operator in Gi. Also, let G, be another
Krefn space such that G, contains the space H, as a regular subspace (that is, a subspace
of G, which is also a Krefn space with the induced indefinite inner product and the same
strong topology).

We also consider Sy a bounded operator in G, and we assume that the subspace Gy N ’HéL
is invariant under Sy. Following the idea in [36] we introduce

DEFINITION 2.1 With the above notation, a bounded operator I':G; — Hy is called an
(S1,S2)-Hankel operatorif I'Sy = Py, 521

DEFINITION 2.2 With the above notation, let I" be an (57, S;)-Hankel operator, p > 0 and
k a cardinal number. The set N(I'; p) consists of those pairs (M; £) subject to the following
conditions:

(1) € is a subspace of G; invariant under S and of codimension at most «;

(2) M:E — G, is bounded, [Mz, Mz] < p*[z,z] for all z € £, and MS|E = SoM;

(3) I"E = Py, M.

The problem that we address here is to determine the elements of the set N ([; p). First

we notice that
. Nu(Iyp)={p"M | M e N(p7'T;1)}. (2.1)

As a conclusion, it is sufficient to determine the set N(I';1); in the following this set will
be denoted by N(I"), for simplicity.

For the beginning we obtain a necessary condition of solvability of the generalised Nehari
problem.

LEMMA 2.3 Assume that the set N(I'; p) is nonvoid. Then

k_(p*] = I'T) < 6+ k- (G N Hy).

Proof. Let (M;&) be in N(I'; p). Then for all z € £ we have
pQ[JS,,’E] - [rl"]jm] = pz[x,:c] - [PHQM:E?PHQMx]
= p2[I,I] - [MJZ, M/I:] + [ngﬁHéLM:E) ngr‘\’Hi"A{‘r]‘

Taking into account that the quadratic form p[z,z] — [Mz, Mz] is nonnegative on & and
that the codimension of & is at most &, from here we obtain the desired inequality. § )

A general method to produce elements of Ny (I’ ) in case of Hilbert spaces was applied in
[36], for k = 0, following an idea of J.A. Ball and J.W. Helton [8] based on the existence
of maximal nonnegative subspaces with some additional properties. We now adapt this
construction in this more general setting of indefinite inner product spaces.



Let
K=G6®0G (2.2)

on which we consider the indefinite inner product [-,-] defined by
(21 + 22,11 + 2] = [z, 0] — [22,02)s @1, 01 €61, 22,92 € Ga.

Then (K, [-,-]) becomes a Krein space. Fix fundamental symmetries Ji, Jy and Jj on Gy, Hy
and Gy © H,. On K we have the fixed fundamental symmetry J where, with respect to the
decomposition

K=6®H:® (G2 6 Ha),

the operator J has the representation

Ji 0 0
J: 0 *JQ 0 3

0 0 —J;
We consider the linear manifold H in K
H={z+Tz|z€G}B (G0 Hs) (2.3)

Taking into account that H is the direct orthogonal sum of the graph of a bounded operator,
hence a subspace, with another subspace, it follows that H itself is closed, that is, it 1s a
subspace of K. This implies that the Gram operator of H is G = PyJ|H.

We remark that we can write

H = Ho @ (gz @ Hg), (24)
where Ho = {z + I'z | € G1} is the graph of I'. Letting Go = Py, J|Ho, with respect to
the decomposition (2.4) we have

| Go O
o [20] .

H, is also a subspace of K, and of H as well.
Let us remark that £_(Ho) = k_(I — I''I"). To see this, just note that for arbitrary

z € G1 we have
[t 4 Iz,z + 'z) = [z,z] — [I'z, ['z] = [(I—-TI'Tz,z).

Consider now the Jordan decomposition Gg = Goy — Go- of the Gram operator Gyp and
let Ho— = cl R(Go-) and Hoy = Ho © Ho-. Therefore
rank Go_ = dim Ho- = £_(Ho) = k(I — I'"'I"). (2.6)
Further, letting , ,
G+ = G0+ o) J2~, G_ = GO S, J2+a

where J, = J,t — J,~ is the Jordan decomposition of J;, it follows from (2.5) that G =
Gy —G_ is the Jordan decomposition of G, and H = H, & H_ is the corresponding spectral
decomposition, where

Hy = Hoy ® (G2 O Ha)-y, H- =Ho- © (G2 6 Ha)+ (2.7)



Finally, with respect to the decomposition (2‘.2) of the Krein space X we define

(s 0 ‘
5_{0 52}' (2.8)

We remark that the space H is invariant under .

In this framework we can try to construct elements of N(I") as follows:

Step 1 Let £ be an H-maximal nonnegative subspace invariant under S, and such
that

£ = Py L is a closed subspace of Gi. (2.9)

Step 2 Define the mapping
M:c(::Pgl,CSPglfHszf, f€[’7 (210)

and assume that M is correctly defined and bounded.

We can verify that the pair (M; €) satisfies most of the properties of an element in N ().
To see this we remark that

L={Psf+Pof|feLy={z+Mz|z€}

so, if z € &, then S(z + Mz) € L or S1z =y and S Mz = My for some y € €. herefore,
515 C g a,nd Szjw = MSllS
Since £ is nonnegative, it follows for z = Pg, f, f € £, that

[M:L‘,MCB] = [MP91f3MPg1f] = [szf)Pg2f] < [Pg1f)P91f] = [CB,CE],

so that, M is a contraction.

Since £ C H and (2.4), we have
I'Pg,f=Puf, €L (2.11)
and then, for arbitrary z = Pg, f € £ we have
'z = Py, f = Pu,Po, [ = Pu, MPg, f = Py, Mz,

and hence Py, M = I'|€ holds.

Tt is clear that we have difficulties to deal with the property codimg, & < & in this general
framework, as well as with verification of the conditions involved in the constructions of Step
1 and Step 2. We indicate here a situation general enough to include some applications and
for which we can perform the previous construction in order to obtain the existence of at
least one element in N (I").

THEOREM 2.4 Let Gy and G, be Krein spaces and let Hy be a reqular subspace of Go such
that the subspace G N Hy is positive definite. Assume that Sy is an expansive operator on
G, and let Sy be a contraction on G,. Lel I' be an (S, S2)-Hankel operator, £ a cardinal
number and p > 0 be such that k_(p*I — I'"I") < oco. Then the sel N.(I;p) is nonvoid if
and only if k_(p*I — I''I") < k.



Proof. As noted before, it is sufficient to prove the result for p = 1. From Lemma 2.3
and taking into account that G, NHy is positive definite, in order for there to exist solutions
of the problem N, (I") it is necessary that x_(I — I"'I") < «.

Conversely, assume that xk_(I — I'"I") < k. We divide the proof in three steps.

1. We show that there exists an H-mazimal nonnegative subspace L, tnvariant under
S. Since S; is expansive and S, is contractive, for any vector x = x; + z2, 1 € Gy and
z9 € G, we have

[Sz,Sz] = [Siz1, S124] — [Sy2q, Syza] 2 [, 24] — [£2, 2o) = [z, 7],

that is, .S is expansive.

Since dimHo_ = k_ (I — I'"'I") < o0, it follows from (2.6) that the operator G_ has closed
range, with G defined as in (2.5) (and Jj = I, due to the hypothesis that the subspace
Gy N Hi is positive definite). We now take into account the decomposition (2.4) of H and
get

PH+SPH~ = PHO—S(PHO— F PQz@'Hz)
= PHO_SPHO_ S E P’Ho+ SPg29H2.

Since G, & H, is invariant under S3 and Hoy C G1 @ H, we also have that Py, SPg,en, = 0.
Therefore
Py, SPy_ = Py,_ SPx,_,

and hence rank 2y, SPy_ < dimHo- = £_( — I'TI) < oo, in particular, the operator
Py, SPy_ is compact.

The assumptions of Theorem 1.2 are verified and hence there exists an H-maximal non-
negative subspace £ invariant under S.

2. We show that € = Pg, L is closed and codimg, & = k_(I — I'"T").
Since £ is H-maximal nonnegative subspace, by Proposition 1.1 there exists the gener-
alised angular operator K: H; — H_ such that

L={z+ Kcz |z € Hs}
Taking into account of (2.7) we get
Pgl,c + Ho- 2 Pg, (ﬁ + Ho_) =) G ; (2.12)

We claim now that the operator Pg, is injective also when restricted to the subspace
L + Ho-. Indeed, let I € £ and h € Hy_ be such that Pg (I + k) = 0, equivalenty Pg | =
—Pg,h. Taking into account of (2.4) it follows that [ = (z + I'z) + g2 for some g, € G2 S H;
and z = —Pg h. But, by the construction of the space Ho— we have b = z + I'z where
z = —Pg h, and hence | = —h + g,. Now remark that the subspaces Ho_ and G, © H, are
negative subspaces and orthogonal with respect to the inner product [-,-] of K and hence
the vector [ = —h + g, is either negative or null. But [ is nonnegative, as any other vector
in £, and hence [ = 0 and A = 0. The claim is proved.
Since £ is a nonnegative subspace and Hy_ is a negative subspace it follows that the sum
L + Ho- is direct and, taking into account that Pg, is injective on LA4Ho_, from (2.12) we
get
E+ Pg, Ho- = Gi,



which proves that the codimension of £ in Gy is exactly dimHo_ = k_( — ]””F).
We now prove that & is closed. First consider the subspace H, = ker(Pu, Kr) € Hy
and remark that codimsy, H/, < dimHo- = &. Define the subspace of £

L ={z+ Kez|zeH,},

and note that since K H} C G, © H, it follows Pg, L' = Pg, H, . Since H, is a subspace of
H. it follows that

M, = {f+ 1] €Pot,).
Since M/, is closed and I" is bounded it follows that Py, H', = Pg, L' is closed. Taking into
account that codime Pg, £’ < £ < oo it follows that the linear manifold £ is closed, too.

3. The mapping defined by (2.10) is a well-defined bounded operator.

As a consequence of the injectivity of the operator Pg, |£, which was proved at step 2, we
get that the operator M is correctly defined and closed. Since its domain £ is also closed,
then the closed graph theorem implies that M is bounded. B

REMARK 2.5 Theorem 2.4 shows a bit more than it is stated, more precisely, under the
assumptions of Theorem 2.4 and assuming that k_(p*I — I''I") < & it follows that for any
solution (M;&) of the problem N«(I'; p) we have codimg, & = k_(p?l —I"T). 8

As a by-product of the above approach we can show that the correspondence defined as in
(2.9) and (2.10) between pairs (M; &) and subspaces £ provides a parametrization of N.(I')
by H-maximal nonnegative subspaces invariant under S, similar as the parametrization of
the generalised interpolation problem obtained by J.A. Ball and J.W. Helton in [8].

THEOREM 2.6 Assume the conditions of Theorem 2.4 hold and k_(I — I'"I") < k. Then the
correspondence as in (2.9) and (2.10) is bijective between the set Ni(I') and the set of all
‘H-mazimal nonnegative subspaces invariant under S.

Proof. Assume the conditions of Theorem 2.4 hold. That 1s, G, N'Hy is positive definite,
S, is an expansive operator, S is a contraction and I" is an (51, S, )-Hankel operator such
that k_(I — I''I") < co. Let, in addition, x_(/ — Iry < k.
First we show that if M:E(C Gi) — Gy is a bounded contraction, codimg, & < & and
I'|€ = Py, M, then
L={z+Mz|ze€fl} (2.13)

is an H-maximal nonnegative subspace invariant under S.
Since M is contractive we readily check that £ is nonnegative. In order to prove that £
is a subspace of H, pick f = z + Mz for some vector z € £. Then we have

Py f =I'Ps(z+ Mz) =TIz = Py,Mz = Py,(z + Mz) = Py, f.

In view of the definition of A, this implies that £ C H. 5
From Lemma 1.1 it follows that there exists an H-maximal nonnegative subspace £ 2 L.

Then, as in the proof of Theorem 2.4, we get that Pglf is a subspace of G; of codimension

K. SNince'Pglf 2 P L=C1sa subspace of codimension in G; at most « it follows that

Pg L = &, in particular £ = £ is an H-maximal nonnegative subspace and codimg, & = &.

9



Finally, we show that £ is invariant under S.
If f is an arbitrary vector in £, then f = z + Mz for some z € €. Consequently,

Sf=8+Mz)=Sz+ SMz =S+ MSz € L.

The fact that H-maximal nonnegative subspaces £ invariant under S produce solutions
of the problem N, (I") is already proved in Theorem 2.4. It remains to notice that these two
correspondences are inverse one to the other. §

3. Bounds and Singular Numbers of Generalised Hankel Operators

3.1 Minus-operators. Let Ky and K3 be Krein spaces and I' € L(K1,K;). The operator
T is called minus-operator if there exists g > 0 such that

[Tz,Tz] < plz,z], =€ K;. (3.1)
In this case, two numbers are associated to the minus-operator T,
pi(T) = sup [Tz, Tx], p_(T) = iﬁlf —[Tz,Tz). (3.2)
[z,z]=1 z,zj=-1

An operator T' € L(K1,K,) is called strong minus-operator if T is a minus-operator and
(1) > 0.

If K, and K, are positive definite, that is, Hilbert spaces, then all operators in L(Xy, il5)
are minus operators and, in this case, 4 (T') = ||T|| and p—(T) = 4+o00. Clearly, all nontrivial
operators are strong minus-operators.

If £; and K, are negative definite, then again all operators in L(K;,K;) are minus-
operators, py (1) = —oo and p_(1') = v(T'), the minimum modulus of the operator T.

A distinct situation corresponds to the case when K; is indefinite, that is, it contains pos-
itive vectors as well as negative vectors. In this case, according to a result of M.G. Krein and
Y.L. Shmulyan [26], an operator T € £(K1, K5) is minus-operator if and only if [Tz, Tz] <0
for all [z,z] < 0, 2 € K;. Moreover, if T is a minus-operator then py(7) < p_(T') and a
real number u satisfies (3.1) if and only if u lies in the interval [p4(7"), p—(T)]. A recent
consideration of this bounds, for the finite dimensional case, was done by A. Ben-Artzi and
I. Gohberg [9].

Let now G; and G, be Krein spaces and consider linear operators S; € £(G;) and S, €
L(Ga). An (S1,S2)-multiplier is, by definition, an operator M € L(Gy,G,) intertwining
the operators 57 and S, that is, M.S; = SyM. Assume, in addition, that H; is a Krein
subspace of G, such that G, N H3 is invariant under S, and positive definite. If M is an
(Sy, Sz)-multiplier then Iy = Py, M is an (57, Sz)-Hankel operator. In addition, if M is a
minus-operator and p € R then it follows from the positive definiteness of G, N Hy that

pule, 2] =Mz, Mz] = plz,z] - [ITuz, Ima] = [Po,rnnr Mz, Pg, s M) < plz, 2] = [Tuz, Dz,

and hence the interval [y (M), u_(M)] is contained in the interval [y (L), pp—(I'ar)]. This
shows that, if I' € L£(Gi1,Hz) is an (Sy, S;)-Hankel minus-operator, that is, I'" is a minus-
operator and I'Sy = Py, S2I (see (2.1)), then

U [+ (M), p (M)] € [ (D), p— (L)) (3-3)
M$;=5,M, I'=Py, M

10



All these considerations are more or less trivial consequences of the definitions. The inter-
esting part of this discussion is that Theorem 2.4 shows that if I" is a strong minus-operator
then the inclusion converse to (3.3) holds, too.

THEOREM 3.1 Let I' € L(G1,Hz) be an (Sy, S,)-Hankel strong minus-operator and assume
that the Krein subspace G, Ny is positive definite. Then, for any p € [py (1), p—(I)] there
crists an (Sy, Sy)-multiplier M such that I’ = Py, M and [Mz, Mz < plz,z] for allz € G;.

3.2 Bounds for Hankel Operators. In the paper [18] the following number is associ-
ated to an (51, 5;)-Hankel operator I" in the Hilbert space case:

p(I) = min{|[M|| | M € L(G1,G2), MS, = S;M, I' = Py, M},

and it is remarked that if S; and S, are isometric, the problem of computing u(I") is equiv-
alent to the lifting of commutants and that u(I") = III']]. As a consequnce of Theorem 1.1
in [36] (which is a particular case of Theorem 2.4) it follows that if S} is expansive and S,
is contractive, then again u(I") = ||I'||. For this reason, it might present some interest to
have an "elementary” and more constructive proof of it, i.e. a proof that is not based on
Theorem 1.2.

THEOREM 3.2 [36] Assume that G; are Hilbert spaces, 1 = 1,2, I' € L(G1,Hz) is an (51, S7)-
Hankel operator, Sy is ezpansive and Sy is contractive. Then p(I') = ||I|.

Proof. Without restricting the generality we assume II]] < 1. Let us write

e
Sz—{o RJ

with respect to the decomposition G, = Hi @ H,. The fact that I' is an (51, 52)-Hankel
operator means that RI" = I'S;. We search for a contraction M = [T I ] with the property

that 7Sy = SoT + QT. The fact that the problem of finding an element in N(I")(= Ny(I"))
reduces to the solvability of a Lyapunov equation was already remarked in [18] and it explains
the connection with the existence of maximal non-negative S-invariant subspaces. Thus, the
following remark is well-known. Let K be a Krein space and K = K~ + K is a fundamental
decomposition. To each maximal non-negative subspace £ there corresponds its angular
operator T' € L(K~,K¥), ||IT|| < 1, such that £ = G(T). If S is an operator on K with the
block-matrix representation

_ |51 S
=7 5]

with respect to the decomposition K = K~ + K+, then £ is S-invariant if and only if

T'S11 = Si2 + S2T,

which is an equation of the type encountered in the search for an element in N(I).
Now, we show that the equation

TS, = S,T+Qr

11



admits a solution provided that S; is expansive and 53 1s contractive. Without loss of
generality, we can assume that I" and S, are strict contractions (indeed, if this is not the
case, we can perturb these operators and then use a subsequence with the original operators
as limits). Since RI" = I'S; and R is a contraction, it follows that

SyrrSy = I"R'RI' < I''T,
SO
[ =SSy >1-1"T.
Since S; is expansive,
S;‘Sl—S{F*FSlzl—SfF*F.Sl >1-I"T,

therefore S;D%S; > D%, where Dp = (I — I'"I')/2. Consequently, we can define the
contraction X by the formula X DrSih = Drh on the closure of the range of DrS5, and by
Xh = 0 on the orthogonal of that space. We now search for T of the form T' = Y X Dr, with
Y X a contraction. Then, we must have

YXDrS, = S;Y XDr+ QI
or
Y = S,YX +QI'D;'.
Since S, is assumed to be a strict contraction, this equation admits the unique solution
Y = QI'Di! + S,QI' DX + S2QI D X2 + ...

It remains to show that Y X is a contraction. To that end, define Cp = QI D;lX and for
n>1,

C.=QI'DF'X +...+ S;QI' DR X™.

Then, since S; is expansive and S, and I" are contractions, for all h € G; we have

IR ET AL

<||ITRI> < IRIP < NISiRIP.
This implies that

ICoDrS1hl* < [|DrSihll%,

so Cy is a contraction on the closure of the range of Dr.Si. Since on the orthogonal of that
space () is zero, it follows that Cq is a contraction.

) . G
Suppose now that Cj are contractions for 1 <k <n — 1. Since S, and [ ; F] are

contractions and S; is expansive, for h € G; we have

12



C.D CpnD g
1[0 | s = | 1P [ e < nsinie

Therefore, C,, has to be a contraction and the proof is concluded. §

3.3 Singular Numbers of Hankel Operators. We consider Hilbert spaces G and G,
and the remainder of the notation is as in Section 2. Let I" be an (S, Sz)-Hankel operator.
Let {s¢(I")}xs0 be the sequence of the singular numbers of I and note that

sp(I) =min{p > 0| k_(p’I = I"T") <k}, k>0

This observation and Theorem 2.4 imply the following characterisation of singular numbers
of generalised Hankel operators.

THEOREM 3.3 Assume that Sy is expansive and Sy is contractive and let I' € L(G1,Hz) be
an (Sy,Sy)-Hankel operator. Then for all intergers k > 0 we have

sp(I) = min{||M|| | M € L(£,G), codimg, & <k, 5:& C &,
MS1]5 e S2M, F - PH2A4}

This theorem can be viewed as an abstract form of the operator valued version of the
celebrated theorer of V.M. Adamyan, D.Z. Arov and M.G. Krein ([2] and [1]). Following
closely the approach in [36] it can be shown that it also contains the characterisation of the
singular values for the matrix valued version of the four-block problem.

4. Contractive Intertwining Dilations

We show that a certain generalisation of the contractive intertwining dilation problem as in
[20] can be obtained from the Nehari type problem considered in Section 2.

Let H; and H, be Krein spaces and consider two operators T; € LiH;), & = 1,2. We
assume that for i = 1,2 there exists pairs (V;;G;), subject to the following conditions:

(a;) G; is a Krein space extension of H;;

(b;) Vi € L(G;) is a dilation of Tj, that is, Py, V; = T; P;.

As a consequence of assumption (b;) it follows that G;N'H} is invariant under the operator
W, 5= 1,2

Let A € £(Hi,H,) be an operator intertwining the operators 7y and T3, that is ATy =
T,A. The set of contractive intertwining dilations of A, denoted by CID,(A; T3, T5), consists
of pairs (Aw, &) subject to the following properties:

(1) € is a subspace of Gy of codimension at most and invariant under Vi;

(2) Ao € L(E,G2) is contraction, that is [Awe, Awz] < [z, 2] for all z € &;

(3) Pry Ao = APy, |E;

(4) AV1|€ = V2 Ao

Simply by inspecting the definitions we obtain.

13



LEMMA 4.1 Let A, Ty, Vi, elc. be as above and denote I' = APy,:Gy — Hy. Then I' is a
(Vi, Va)-Hankel operator and

CID,.(A; Vi, Vi) = N(I).

As a consequence of this equality and Theorem 2.4 we obtain the following result proved
in [20] (for similar investigations see [4], [5]).

THEOREM 4.2 If both of the subspaces G;NVHE, 1 = 1,2, are positive definite, Vi is ezpansive,
V, is a contraction and A is a quasi-contraction, that is k_(I — A'A) < oo, then the set

CID(A; Ty, T3) is nonvoid if and only if k_(I — A*A) < k.

Conversely, under the conditions of Theorem 4.2 it is easy to see that each N(I") can
be realised as a set CID.(A; V4, V). Thus, let I' be an (Si,Sz)-Hankel operator. Define
Ty =Vi =51, Ty = Py, S2, Va = S and A = I'. Then 1t is readily checked that, under the
conditions in Theorem 4.2, we have N, (I") = CID.(4; V3, V2).

The Hilbert space version of Theorem 4.2 for £ = 0 was obtained in [36] and it was shown
there to contain the commutant lifting theorem of D. Sarason and Sz.-Nagy and Foiag ([32],
[33], [34]). In [20] it was mentioned that some of the indefinite variants of the commutant
lifting theorem as in [11], [12], [13], [14] are also consequences of Theorem 4.2. ’

5. A Carathéodory-Schur Type Problem for Meromorphic Functions

We illustrate the applicability of Theorem 4.2 to an interpolation problem of Carathéodory-
Schur type for meromorphic matrix valued functions. In a slightly different form it was
formulated by M.G. Krefn and H. Langer in [25].

Let m,n be nonnegative integer numbers and denote by M, », the set of n X m matrices
with complex entries, identified with £(C™, C"). We denote by H*(M, ) the space of all
functions F:D — M, ,, which are analytic and uniformly bounded in D,

| Flloo = sup ||F(2)]| < oo.
zeD

Let a € D. We consider the Modbius transformation

e w—=

z €D,

ba(2)

o
al—az

which maps conformally the unit disk into itself. A Blaschke-Potapov cell of order ¢ < n 1s
by definition a square matrix of order n

L 0 0
Bu(z)=| 0 ba(z)], O |,
o 0 I

where n = r 4+ ¢+ s. A Blaschke-Potapov product of finite order is by definition a finite
product of analytic functions, each one being unitary equivalent with a Blaschke-Potapov
cell. The order of a Blaschke-Potapov product is the sum of the orders of all its factors.

14



Since the functions b, maps 9D into itself, a Blaschke-Potapov product is always of norm
one and the corresponding multiplication operator is isometric H*(C™) — H?*(C").

Let { be a nonnegative integer. By S)(M,,,,) we denote the generalised Schur class of
functions G which can be represented G = FU™! where F' € H*(M,, ), || Fllee <1 and ¥ €
H*>(M,) is a Blaschke-Potapov product of order < I. If we impose the additional condition
that no zero of the function G conincides with some zero of the Blaschke-Potapov product
¥ then this representation of functions in 8;(M,,,) is unique, modulo unitary equivalence.
Such a factorization is called right coprime.

In the following we use a theorem whose proof, for the scalar case, can be found e.g.
in [19]. The matrix valued version follows in a similar way but uses the theorem on the
structure of the matrix valued inner functions (see e.g. [31]) and the theorem of Beurling-
Lax characterising the shift invariant subspaces in H*(C").

THEOREM 5.1 A subspace £ € H*(C") is shift invariant and of codimension | < oo if and
only if & = WH?*(C") where ¥ € H®(M,) is a Blaschke-Potapov product of order L.

We are now in a position to introduce the variant of Carathéodory-Schur type problem
we are interested in.

DEFINITION 5.2 Let C = {C/}f, C L(C™,C") be a sequence of n X m complex matrices.
For x € N we define the set C-S.(C) consisting of all meromorphic matrix valued functions
G € &./C™, C") such that the first k41 ”Taylor coeflicients” at 0 of G coincide, respectively,
with C. O, ... Ck. More precisely, if the function G has the representation G = F¥ ™!, where
F € H®(M,,,) and ¥ € H*(M,) is a Blaschke-Potapov product of order < «, then the
first £+ 1 Taylor coefficients at 0 of G coincide, respectively, with the first Taylor coefficients
of the analytic matrix-valued function (Co 4 2Cy + -« - 28Cy)¥(2).

We note that in the above definition a function G € C-S,(C) is not necessarily analytic
at 0.
Associated to the data C = {Cy, Cy, ..., Ck} there is the following lower triangular block-

matrix of Toeplitz type

Co 0 o --- 0
Ci Gy o --- 0
Te=]C G Co - 0 . (5.1)

| Cr Crr Gz -+ Co |

THEOREM 5.3 If & is finite then the problem C-S.(C) has solutions if and only if the number
of negative eigenvalues, counted with their multiplicities, of the matriz I — T3Tc does not
exceed K.

Proof. We consider the Hilbert space G; = H?(C™) and the forward shift operator
Vi € L(H*(C™)), (Vig)(2) = zg(2), for all g € H*(C™) and z € D. Let H; be the subspace
of H*(C™) of polynomials with coefficients in C™ of degree not exceeding k and define
Ty = Py, Vi[H,. Since G; & H; is invariant under V; it follows that V4 is a dilation of Tj.
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Similarly, let G, = H?*(C") and V;, the forward shift operator on H?*(C"). Denote H,
the subspace of H?*(C™) consisting of all polynomials with coefficients in C™ of degree not
exceeding k and let Ty = Py, Va|[Ha. Since Gy © Hy is invariant under V; it follows that V5 is
a dilation of Tb.

Let us consider now the matrix-valued polynomial C(z) = Cp + 2C; + - -+ + 2FCk and
denote by Mg € L(H*(C™), H*(C")) the multiplication operator with C' € H>(C™,C").
Then define A € L(H1,Ha) by A = Py, Mc|H,. Since M¢ is a multiplication operator it
intertwines the operators V; and V;. Therefore

ATy = Pry Mo Py Vi[Hy = Pry MoVi[Hy = Pr, ViMoo My = ToA.

These relations show that the problem CID(A;Ty,T,) makes sense. In the following we
prove that the problem CID.(A;T1,T5,) has solutions if and only if the same does C-S5.(C).
Indeed, let (Aw, &) € CIDL(A;T1,Ty). Since & is a shift invariant subspace of H*(C™)
of codimension at most & < oo, from Theorem 5.1 it follows that & = W H?*(C™) for some
Blaschke-Potapov product ¥ € H*(C™) of finite order. Taking into account that A V1|€ =
VoA we get
AW Vih = AL ViWh = VaALWh, h € H*(C™),

that is, letting F' = A, ¥ we have F'V; = V4 F and hence F' is a multiplication operator with
some function F' € H*(C™,C"). Since A is contractive and the multiplication operator
with the function ¥ is isometric we have

[P = || Acchll < ||| = |I2ll, k€ H*(C™),

that is, F' is contractive. These relations prove that A., is the multiplication operator with
a function in S,(C™,C").
We now take into account that Py, A, = APy, |E. For arbitrary h € H*(C™) we have

Py, Mph = Py, AuWh = APy, Mgh = Py, Mcgh.

This proves that the first k£ + 1 Taylor coefficients at 0 of G coincide, respectively, with the
first Taylor coefficients of the analytic matrix-valued function (Co+ 2C; + - - - 25C)¥(2) and
hence, we have a solution of the problem C-S,.(C).

The converse implication that once we have a solution of the problem C-S,(C) we have
also a solution of the problem CID,(A; Ty, T5) is straighforward and we omit the details.

We note now that we can identify H; with a direct sum of k + 1 copies of C™ and,
similarly, H, can be identified with the direct sum copies of k + 1 copies of C*. With these
identifications it is easy to see that the operator A coincides with the operator T¢ as in (5.1).
The proof is now concluded as an application of Theorem 4.2. §

6. Quasi-Multipliers and an Interpolation Problem of Nevanlinna-Pick Type

Let {2 be a set of complex numbers and m € N. Consider a matrix valued positive definite
kernel K: {2 x {2 — L£L(C™). Then, e.g. see N. Aronszajn [6], there exists H(K) a Hilbert space
with reproducing kernel K, that is, H(K) consists of vector valued functions h: {2 — C™ such
that :
2 Koz = (F),zlems [ € H(K), A€, z€CT (6.1)
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where K (p) = K(A,p). The association between reproducing kernel Hilbert spaces and
positive definite kernels is bijective. Also, H(K) = c.ls. {Kyz | X € 2, z € C"}.

A subset {2y C {2 is a set of uniqueness for H(K) if whenever two functions f, g € H(K)
coincide on (2 it follows that they coincide on the whole set 2. This is equivalent to say
that c.l.s. {K\z | A € {), z € C"} = H(K).

Let now K':£2 x 2 — L(C™) be another matrix valued positive definite kernel on {2
and H(A") the corresponding reproducing kernel Hilbert space. A matrix valued function
@: 2 — L(C™ C") is called a multiplier if ®h € H(K') for all b € H(K). Denoting by
Mg: H(K) — H(K') the corresponding multiplication operator, by the closed graph theorem
it follows that Mg is bounded. Let ||@]| = ||Ms|| denote the norm of the multiplier @.
Following J. Agler and N.J. Young [3] we introduce the following definition.

DEFINITION 6.1 Let £ be a nonnegative integer. A function G: {2 — L(C™,C") is called
a k-quastmultiplier if G = FU™!, where:
(a) F" and ¥ are multipliers on {2 such that the multiplication operator My is isometric;
(b) ¥ is invertible everywhere on 2¢ C {2 with the exception of at most & points in f2;
(c) MyH(K) has codimension at most & as a subspace of H(K).

As some examples in [3] show, the following assumption is natural.
(A0) Any subset §2; C §2 such that 2\ §2; is finite is a set of uniqueness for H(K).

If G is a quasimultiplier (that is, G is a k-quasimultiplier for some & < co) then a
multiplication operator Mg: £ — H(K') can be defined, where £ = ¥{(K) is a subspace of
H(K) of codimension at most k. The norm of the quasimultiplier G is defined by ||G|| =
||Mg]||. Thanks to the assumption (AQ) it can be proven that this definition is correct.

Our interest is related to a problem of quasimultiplier extensions of multipliers defined on
subsets. More precisely, let A be a subset of {2 and consider the reproducing kernel Hilbert
spaces

H(K|A) =cls. {Kyxz | A€ A, z € C™}, (6.2)

and
H(K'|A) =cls. {Kiy | A€ A, ye C"}. (6.3)
Let also ¢: A — L(C™,C") be a multiplier on A, that is, ph € H(K'|A) for all h € H(K|A),
and let p be a positive real number. It is required to determine those quasimultipliers G
of norm ||G|| < p extending ¢, more precisely, for some representation G = F¥™! as in
Definition 6.1 we have
e(AMT(X) = F(X), XeA. (6.4)
The approach we follow for the above mentioned problem makes use of Theorem 4.2.
However, as shown also by P. Quiggin [29] and J. Agler and N.J. Young [3], some further
assumptions are needed. These are:

(A1) The forward shift operators of multiplication by the independent variable are
bounded on H(K') and, respectively, H(K").

(A2) Any subspace € of H(K) invariant under the forward shift operator and of codi-
mension at most k& < oo admits a representation & = MeH(K), with ©: 2 — L(C™) an
isometric multiplier which is invertible for all but at most x points of 2.

(A3) Every bounded linear operator M: H(K) — H(K') which intertwines the forward
shift operators is of the form M = My for some multiplier F: 2 — £(C™,C").
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THEOREM 6.2 Assume that (A0), (A1), (A2) and (A3) hold and, in addition, that the for-
ward shift operator Vi on H(K) is expansive and that the forward shift operator V3 on H(K")
is contractive. Let A be a subset of £2, ¢ a multiplier on A, k a nonnegative integer and p a
positive real number. Then, there exists a k-quasimultiplier G of norm < p extending ¢, n
the sense of (6.4), if and only if the kernel (p* — () (X)) K (X, ) has at most k negative
squares on A.

Proof. Without restricting the generality we will assume p = 1. We consider the Hilbert

spaces G; = H(K) and G, = H(K'). Then define Hy = H(K|A), see (6.2). Note that
ViKy =K\, X€A,

and hence defining Ty = V;*|H1 we obtain that Py, Vi = Ty Py, , that is, V; is a dilation of
T;.
Similarly, define Hy = H(K'|A), cf. 6.3, and the operator T € L(H;) Ty = V;'|Ha. Since

VyK, =2K§, A€ A,
it follows that Py, Vs = T2 Py, that is, V3 is a dilation of T5.
We define now the operator A = M, € L(H1,H;) and since
TA K, = T79K) = AT;K,, A€ A,

it follows thai A intertwines the operators 17 and T5.

From what is proved until now we conclude that the set CID,(A; Ty, T>) makes sense.
Moreover, for arbitray complex valued function {a)}ea with finite support, supp{ax | A €
A} < o, and arbitrary vectors z,y € C™ we have

(I - AA)Y  anKaz, Y auK,uy)n) = > aa@u (1 —p()e(N) K (X w)z,y)em,

AEA HEA A u€A

which proves that «_(I — A*A) coincides with the number of negative squares of the matrix
valued kernel (1 —3(p)e(X)) K (X, ).

Assume now that the number of negative squares of the kernel (1 — B()p(A) K (A 1)
is < k. By Theorem 4.2 there exists a solution (A, &) € CIDk(A;T1,Ty). From the
assumption (A2) it follows that €& = MyM(K), where ¥: £ — L(C™) is a multiplier such
that My is isometric. Taking into account that A N|E = V2 A we get

AuMyVih = AViTh = VoA h,  h € H(K),

that is, letting F = AW we have FV; = V,F. Using the assumption (A3) it follows that F'is
the multiplication operator with some function F: 2 — L(C™, C™). Since A is contractive
and My is isometric we have

|Fh|| = [|Ae@h]| < 1R = [All, k€ H(K),

that is, F' is contractive. Therefore, A is the multiplication operator with a k-quasimultiplier
F@~!. In addition, from Py, Ae = APy, forall \,p € A, z € C™, and y € C™ we have

<Aoo!pI{A$,I{Ly>H(K’) == (PHonoip](Axa]{Ly>H(K’lA) = (APHllp,K,\:E, [(Ly>H(K/|A)
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= (P, WKz, AT K )10y = (WK, A K uy)wreiay = ()P (1)K (X 1)z, y)er.
On the other hand,

<AOO{I/]X,,\$, ](;y>H(K‘) = <F‘(/l)]((/\, /L);‘l‘, y>C"7

and hence ¢(p)¥(p) = F(p) for all p € A.
The converse implication can be obtained by tracking back on the the same lines of the
proof as above.

Theorem 6.2 can be applied to a variant of the Nevanlinna-Pick interpolation problem
which was first introduced by M.G. Krefn and H. Langer [25] in a slighly different form. The
present formulation was considered first by J.A. Ball [7].

DEFINITION 6.3 Let z = {z}5_, be a sequence of complex numbers in the open unit disc
D and let Z = {Z}F, C £L(C™,C") be a sequence of n X m complex matrices. For K € N
we define the set N-P,(z;Z) consisting of all meromorphic matrix valued functions G €
S.(C™,C") such that G(z) = Z;, for all [ = 1,2,...,k, more precisely, if the function G
has the representation G' = F¥~' where F € H®(My,») and ¥ € H*(M,) is a Blaschke-
Potapov product of order < &, then the condition G(z) = Z; has to be interpreted as
F(Zl) = Z[W(Z[).

We note that in the above definition, it 14y happen 2 to be poles of the function G for
somel € {1,2,...,k}.

Associated to the data z and Z there is the Pick matriz P(z;Z) defined by
1-%:7,]"
____I__z] (6.5)

1—-Zi12

Pz) = |

pyi=1

Under the additional condition that the Pick matrix in nonsingular, the following result
was first obtained by J.A. Ball [7]. In the more general case of the bitangential Nevanlinna-
Pick problem it was obtained by J.A. Ball and J.W. Helton in [8]. In the following we
show that, in the case of the variant of the Nevanlinna-Pick problem as in Definition 6.3,
it can be obtained as a consequence of Theorem 6.2 by letting K(X, p) = /(1 = [IA)
and, respectively, K'(\,u) = I/(1 — EA) to be the matrix valued Schur kernels. In this
case H(K) = H*(C™) and H(K') = H*(C"), in particular, the forward shift operators are
isometric on these spaces and hence the assumption (A1) is satisfied. Theorem 5.1 shows
that the assumption (A2) is also satisfied. As it is well-known, the assumption (A3) holds,
too. We consider A = {z}%, € D and let the muliplier ¢ be defined by ¢(z;)) = Z; for all
i = 1,2,...,k. Then note that the Pick matrix is the matrix representation of the kernel

(1- P(p)e(N) KX 1), A, p € A Therefore, from Theorem 6.2 we obtain the following
THEOREM 6.4 If k is finite then the Nevanlinna-Pick problem N-P.(z;Z) has solutions if

and only if the number of negative eigenvalues, counted with their multiplicities, of the Pick
matriz P(z;Z) does not exceed k.
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