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ON A NEHARI TYPE PROBTEM ON
SPACES WITH INDEFINITE INNER PRODUCT

Tiberiu Constantinescu Aurelian Gheondea

Dedicated to Heinz Langer on the 60th anniuersary of his birthday

We formulate a generalised Nehari type problem, in the sense of Adamyan-Arov-
Krein, on spaces with indefinite inner product. We adapt the approach of Ball-Helton
and Treil-Volberg to view it as a problem of existence of invariant maximal nonnegative
subspaces and, in a certain case, we characterise its solvability. Applications to bounds
and singular values of generalised Hankel operators, to contractive intertwining dila-
tions and to some interpolation problems of Carath6odory-Schur and Nevanlinna-Pi:ii,
type for matrix-valued meromorphic functions are given. A direct proof of a theoren:r
of Treil-Volberg is also included.

1. Introduction

According to a ceiebrated theorem of Z. Nehari [28], for an arbitrary function f e L* the
distance of / to l1* coincides with the operator norm of the Hankel operator ly : Psz_Ms,

where //3 denotes the space L2 O H2 and Mr € L(L') denotes the multiplication operator
associated to /. Moreover, this distance is actually a minimum, in the sense that there exists
a function g € H* such that dist (/,//-) : ll/ - gll-.

Let ,5 denote the forward shift on L2. An equivalent formulation of the Nehari problem
Iooks asfol lows: givenaboundedlinearoperator f:L2 -- H? suchthat f S: PprSf , i t is
required to determine a function / €. L* such that | : Pn7M1 w\lh ll/ll- : llMrll : l[-ll.
Note that for any function f e L* such that f : Pu?My we have ll/ll* > lll.ll. On the

other hand, since the class of multiplication operators on tr2 with functions in l- coincides
with the class of linear bounded operators on L2 commuting with the operator ,9, if foliows
that the problem requires actually to determine those linear operators M e L(L2) such that
SM : MS, f : Ps,_M, and llMll < lE"ll.

The latter formulation of the Nehari problem turns out to be a very general problem
encompassing many interpolation problems and it also can be put in a form dealing with
operator valued functions, in particular with matrix valued functions. For a pertinent survey
of these facts, as well as other formulations of the Nehari problem, see C. Foiaq and A. Frazho

[1e].



The problem of characterisation of the singular vaiues of compact Hankel operators was

considered by V.M. Adamyan, D.Z. Arov and M.G. KreYn in [2]. Noting that t]re above

formulation of the Nehari problem can be regarded as referring to the first singular number

so(f) :  i l f l l ,  this can be considered as a general isation of the Nehari problem. In the f irst

for:mulation of the Nehari problem mentioned above this coi-responds to the determination of

the distance dist (f ,Hn where f1,- denotes the class of all merornorphicfunctions g which

admit a multiplicative representation h<p-1 where fr € l1- and g is a polynomial with at

most / roots in the open unit disc D.
In this paper we formulate a generalised Nehari type problem, in the sense of Adamyan-

Arov-Krein, on spaces with indefinite inner product. The approach we follow is an adaptation
of the angular operator and shift invariant maximal nonnegative subspaces method initiaded

by J.A. Ball and J.W. Helton in [8]. However, in the case we are dealing with this geometric

interpretation with angular operator is lost. In addition, this forces a limitation of this

method to the case when the added space is positive definite. To make things precise from

the beginning let us fix some terminology and recall some background material from the

theory of indefinite inner product spaces.
A Krein space is by definition a complex vector space K endowed with an (indefinite)

inner product [.,.] such that there exists an operator J:K -u K, J-L - J with the property

that the posit ive inner product ( ' , ' )"r,

( r , y ) ,  :  l J  r , y l ,  x , Y  e  K ,

turns (K; (.,.).r) into a Hilberi; space. The operator J is called a fundamental symmetry.

Any fundamental symmetry "I admits a Jordan decomposition "/ : J+ - rr-. The spectral

subspaces K* : J+K arc orthogonal with respect to the inner product [', .], (K*, [',']) it

positive definite and (K-, [.,.]) i" negative definite. The decomposition K : K+l*]K- is

called a fund,amental ilecomposition. The strong topology of the Krein space ff is given by

an arbitrary fundamental symmetrg more precisely, by the corresponding positive definite

inner product. It does not depend on which fundamental symmetry is chor;en.
If I is a (closed) subspace of the Krein space K then we denote by l|r its orthgonal.

A decomfosition L : L-l+)Lol+lQ exists, where L- is negative definite, La is positive

definite, and ,C0 : Ln LL is lhe isotropic subspace. The cardinal numbers n,+(L) : dim(f,*)

are cailed the positiae/negatiae signatures of .C and they do not depend on the particular

above decomposition. If these numbers are finite then they coincide with the number of

positive/negative squares of the quadratic forms f,+ ) r r. fr,xl.
If. K;, i = 1.,2, are KreYn spaces then we denote by t (Kr,K2) the vector space of bounded

linear operators T:Kt --1 Kz.For such an operator we denote by 7I € L(Kr,K1) its adjoint,

more precisely,

[ T " , y ] : f r , T n y l ,  r  € K 1 ,  A  € K z .

If fundamental symmetries .I1 and J2 on K1and, respectively, K2 are fixed then Til : JtT* Jz'

Let (K, [.,.]) b" a KreYn space and A € LW) a selfadjoint operator, that is, A : A[. We

consider a fund.amental symmetry J in K and then the operator G : JA is selfadjoint with

respect to the Hilbert space (K; (.,.)r). tt G : G+ - G- is the Jordan decomposition of G

then we denote by rc1(A) the dimension of the spectral subspace clG*K. For instance, if

"-(A) 
is finite then it coincides with the number of negative eigenvalues, counted with their

multiplicities, of G.



L e t ( K . , [ . , . ] )  u K r e i n s p a c e a n d l e t ] l b e a ( c l o s e d )  s u b s p a c e o f  K .  W e f i x a f u n d a m e n t a l
symmetry J on K,let (. , .) be the corresponding posit ive definite inner product, and let
G e L(11) be the Gram operator of [ . , ' ]  with respect to (., . ]  on'11, that is, G is selfadjoint
with respect to the posit ive definite inner product (., .) and

l * , y ) :  ( G r , y ) ,  r , y  e  7 1 . ( 1 . 1 )

Clearly we have G : PuJl]{ where PH denotes the projection on 77 along JllL.
Consider G : G+ - G- the Jordan decomposition of G, let t/1 denote the spectral

subspace corresponding to the nonnegative semiaxis [0, +oo) and let 71- be the spectral
subspace corresponding to the negative semiaxis (--,0). Clearly we have the decomposition

7'(. : 'l-t+ 
@'11- ( 1 . 2 )

and, if r : x+ * c- and A : A+ * y- are the corresponding representations of arbitrary
vectors r,A e 11, then

l r ,A l :  (G+r+,y+)  -  (G-*- ,y- ) .

In the following we will use the notions of positivity, negativity, neutrality, etc. with respect
to the indefinite inner product space (11;[., . ]),  and f ix the decomposit ion (1.2).

Let M be a nonnegative subspace of ')1, that is, a closed linear manifold such that

[r,r]> 0 for al l  r e M. Withrespect to the decomposit ion (1.2) this means

( G + * + , r + )  )  ( G - x - , x - ) ,  r : n + * x - € M . ( 1 . 3 )

As in the case of Krein spaces ihis enables us to introduce an angular operator. Let P1 denote
the projection of ?/1 with respect to the decomposition (1.2). Clearly Ps arc orthogonal
projections in the Hilbert space 'l{, in particular their norms are ( 1. Let us define an
operator Kr,,r1: PaM --'17- by

K1q: Pax r-+ P-x, a € M. (1 .4 )

By (1.3) and taking into account that G- is injective on7{-, this definition is,rorrect and

M : { * * K y r l c e P a M } . (1 .5 )

Since ,,tl is closed, this implies that the operator Ks is closed. The operator Ks is called the
generalised angular operator of the nonnegative subspace;tl. Also note that in this general
setting there is no reason to conclude that P+M is a (closed) subspace. This anomaly is
remedied if an extra condition is imposed, more precisely, the condition that in the Jordan
decomposition of the Gram operator G the operator G- has closed range or, equivalently, the
condition that the spectrum of G has a gap (-e ,0). This condition is independent on which

admissibie positive definite inner product (., .) we consider on the space '11, since, by changing
it with another Gram operator, say B, we have B : C*GC for some boundedly invertible
C e L(11) (the lnner products on the incoming Hilbert space 71 ard the outgoing Hilbert
space '11 are different) and this transformation preserves the topology of the spectrum.

The following result established in [35] (cf. [36], see also [20]) shows the possibility of

handling generalised angular operators in a similar fashion as the angular operators in Krein
spaces.



Lntvllt,q. 1.1 With the preuious notation, o,ssurne that the operator G- has closed r&nge'

Then:
(l) M is anonnegatiue subspace 

"111 
,f and only i f  P+M is closed, I{y

the following inequality holds:

Kj"G-Ku 3 Pp*uG+lP+M. (1  .6 )

(2\ Let M and Af be nonnegatiue subspaces. Then M e A{ xf and only ,f Ku g. Kt,

that is, P+M e P+Al and Kyr: KNx for all r € PqM

(J) For g,ny rwnnegatiae subspace M there erists a marirnal nonnegatiae subspace M

s u c h t h a t M e M .
(4) A nonnegatiae subspace M is mari,mal if and only i,f P+M - Tta'

Another result that can be extended from Krein spaces to subspaces of Krein spaces

under the condition that G- has closed range refers to the existence of maximal nonnegative

invariant subspaces for expansive operators. Starting with the work of Pontryagin [30] the

problem of existence of semi-definite invariant subspaces played a key role in the development

Lt tn" theory of operators on indefinie metric spaces. Major contributions appeared in the

work of M.G, KreYnl24],H. Langer [27], and I. s. Iokhvidov [23]. using 1fi1ed 
point theorem

of Ky Fan [16] u"a bU.irUetg [21] ut'Jfollo*ing an ideaof Ky Fan [17], I.S. Iokhvidov [22]

essentially provqd (cf. [36]) the following result:

Tunonnu L.2 LetH be a subspace of some Krein sp&ce such that, with the aboue notation,

the operator G- has closed, roigr. LetV € L(11) be an operator subject to the followi'ag

conditions:
( i) V is ergtansiae, lVr,Vnl> lr,*) for al l  x e 

'11.

(ii) The operator Py*V Pn- is compact.

Then there erists a maxirnal nonnegatiae subspace Jvl in'11 which is inuariant und'er lhe

operator V.

A recent important application of this theorem was provided by S. Treil and A. Volberg,

[35], [36] to an abstract Nehari problem encompassing applications in the field of Hankel

op"ruiotr on weighted Bergman spaces. The main idea was to use Theorem I.2 in conjuction

with the.ng,rl., operator-u,pp.o*h used by J. A. Ball and J. w. Helton [8] to a generalised

interpolation probi"-. This allows for a much broader range of applications, as already

shown in [36].
In this pip". we adapt the approach of Ball-Helton and Treil-Volberg to a Nehari type

problem on spaces wittr indefinite inner products. We consider it as a problern of exis-

tence of invariant maximal nonnegative subspaces and, in a certain case, we characterise

its solvability, cf. Theorem 2.4. Applications to bounds and singular values of generalised

Hankel operators, to contractive intertwining dilations and to some interpolation problems

of Carath6odory-Schur and Nevanlinna-Pick type for matrix-valued meromorphic functions

are given. A direct proof of.the main theorem of Treil-Volberg in [36] is also included.

is bounded and.



2. A Generalised Nehari Type Problem in KreYn Spaces

In this section we reformulate in the frarnework of indefinite metric spaces an abstract Nehari

problem and we indicate a situation when necessary and sufficient conditions can be found

in order that the problem can be solved.
Let 9t be a Krein space and let ,5r be a bounded operator ingt.Also, let gzb" another

Krein 5pu"" such that 9z contains the space'112 as a regular subsqtace (that is, a subspace

of gz which is also a Krein space with the induced indefinite inner product and the same

strong topology).
We also consider ̂92 a bounded operator in Q2 and we assume that the subspace grnllt

is inaarianf under .92. Following the idea in [36] we introduce

DnEtNtrtoN 2.1 With the above notation, a bounded operator f :Q1 -'+ 'Jlz is called an

(S1,Sz)-Hankel operator i f  l-Sl :  PxrSzl '

Dnr,rxrrroN 2.2 With the above notation,, let f be an (51,S2)-Hankei operator, p ) 0 and

rc a cardinal number. The set N^(f ;p) consists of those pairs (M;t) subject to the following

conditions:

(1) t is a subspace of 9r invariant under ^9r and of codimension at most rci

(2 )  M : t  -  Qz i s  bounded , l t r t l r , ,Mr l<  p ' l * , r l f o r  a l l  n  e  t , and  MSt l t :  S2M;

(3) rlt -- Px,M.

The problem that we address here is to determine the elements of the set N^(l-;p). First

we notice that
,  N , ( r ;p ) :  {p - 'u  I  M e  N, (p - ' r ;  t ) i .  (2 '1 )

As a conclusion, it is sufficient to determine the set N,,(.f ;1); in the foliowing this set will

be denoted by N"(l-)' for simplicity.
For the b"gi""i"! we obtain a necessary condition of solvability of the generalised Nehari

problem.

Lstvttu.A 2.3 Assume that the set N^(.f; p) is nonuoid. Then

o_(pz I  -  r tn ( rc * rc-(92)71i).

Proof . Let (M;t) be in N,,(f ;p). Then for all r € t we have

p'l*, rl - lf ,, I rl : p'l*, *7 - lPv,M t, Pv, M rl

: p2lx, r) - lM r,, M r) * lPq,ny; M n, Ps,ny; M rl.

Taking into account that the quadratic form p' lr,17-lM*,Mr)-is nonnegative on t and

that the codimension of t is at most rc, from here we obtain the desired inequality. I 
'

A general method to produce elements of N,(J-) in case of Hilbert spaces was applied in

[36], f lr  n:0, fol lowing an idea of J.A. Ball  and J.W. Helton [8] based on the existence

of maximal nonnegative-subspaces with some additional properties. We now adapt this

construction in this more general setting of indefinite inner product spaces'



Let
K : 9 r 0 9 2  Q ' 2 )

on which we consider the indefinite inner product [','] defined by

f t ,  +  , r . , h  +  y21 :  l c r ,  a r l  -  @r ,y r1 ,  11 , l t  €  Q t ,  r , ' uz  €  9z '

Then  (K ,1 . , . ] )  becomesaKreYnspace .  F i x fundamen ta l symmet r i es  J t , J randJ ionOt ,Hz

ar4, Q) O ?tz-. On K we have the fixed fundamental symmetry ./ where, with respect to the

deconrposi t ion 
K:  g t@,t12€ (gzO?72) ,

the operator ,,/ has the representation

l r ,  o  o  I
t : 1 0  - J z  0  l .

f  o  o  - r i )

We consider the linear manifold 
'11in K

? { :  { * *  f  r l r  € g }  @ ( g z o ? 7 2 ) .  Q . 3 )

Taking into account that ?{ is the direct orthogonal sum of the graph of a bounded operator,

h"n."1 subspace, with another subspace, it follows that ?l itself is closed, that is, it is a

subspace of K. This implies that the G'i;rilr operator of.'l1is G - PHJI'|{.

We remark that we can write

,|I :'1lo @ (gz O'llz), Q.4)

where 'Jlo: 
{x * ln I x e Q} is the graph of f. Lettiog Go - PlloJl'}7o, with respect to

the decomposition (2.4) we have

c - f c o  o  I  e . b )- :  
L o  - J i ) '

'l1o rs also a subspace of K, and of 7/ as well.

Let us remark that rc_ (77i : K-(I - J.lf ). To see this, just note that for arbitrary

r € 9r we have

la  *  f r , r  +  lx l :  f r , r ]  *  l l r ,  lx ) :  l ( I  -  fn f ) r , r l '

Consider now the Jordan decomposition Go - Go+ - Go- of the Gram operator Go and

let'l1o- : cl&(Go-) and ']10+ :'l1o e ?lo-. Therefore

rank Go- : dirnlfio- : rc-('tlo) : n-(I - fll-). (2'6)

Further, letting
G + : G o + 0  J z - ,  G -  -  G o - @  J z + ,

where 4 : J"+ - J; is the Jordan decomposition of Jt, iL follows from (2.5) that G :

G+ - G-- is the Jordan decomposition of G, and '11 : H+ @11- is the corresponding spectral

decomposition, where

?l+ : ' |70+ @ (92 eHr)-, 11- - Ho- @ (92 e' l lz)+' (2'7)



Finally, with respect to the decomposition (2.2) of the Krein space K we define

- f s, o l' : L o  s ,  l '
We remark that the space 1l is invariant under ,9.

In this framework we can try to construct elements of N^(f) as follows:

Step 1 Let L be an '|7-maximal nonnegative subspace invariant under S, and

that

(2 .8)

t : PsrL is a closed subsPace of 9t,'

Step 2 Define the maPPing

M : t :  P q r L )  P s r f  *  P s r f ,  f  e L ,

and assume that M is correctly defined and bounded'

such

(2.e)

(2 .10)

We can verify that the pa\r (M;t) satisfies most of the properties of an elerrent in N,,(f)'

To see this we rernark that

L : { P s , f  * P s , f  l f  e  L } : { r +  M x l x € t } ,

so, if r € t, then ^9(r * Mr) e L or Sp- y and SzMx : MY for some V € t''iheiefore,

Sf  c  t  and SzM: MSt l t .
Since .C is nonnegative, it follows for t ---Ps,f , f e L,that

lM r, M xl : lM Pe, f , M Ps, ll : LPs, f , Ps, fl < f,Ps, f , Ps, f) - l',']'

so that, M is a contraction'
Since L 911 and (2.4), we have

fPs , f  :P 'u , f '  f  eL

and then, for arbitrary r: Psrf € t we have

( 2 . 1 1 )

l r :  Pxrf :  Pu"Psrf :  Pl lrMPsrf :  PurMn,

and hence PH,M : f lt holds.
It is clear that we have difficulties to deal with the property codimgr € 1 n in this general

framework, as well as with verification o{ the conditions involved in the constructions of ̂ 9lep

/ and Step L. We indicate here a situation general enough to include some applications and

for which we can perform the previoo, 
"o*trrrction 

in order to obtain the existence of at

least one element in N"(l-).

Tnnonnu 2.4 Let Q1 and,9z b" Krein spoces and, let ?12 be a regular subspace of A2 such

that the subspace qr^H+ is positi,ue defi,nite. Assume that & is an etpansiue operator on

Q1 and. let s) be a-contiaction on Qz, Let I be an (^5r,^92)-flankel operator, rc a cardi'nal.

nurnber and, p ) 0 be such that r-(p'I - rlr1) ( oo. Then the sel N^(l-; p) i's nonaoi'd if

and only i f  n-(pzI - f t l)  < rc.



Proof. As noted before, it is sufficient to prove the result for p - 1. From Lemma 2.3
and taking into account that 8rOTlt is positive definite, in order for there to exist solutions
of the problem N^(f) i t  is necessary that o-(l  - l-uf) < rc.

Conversely, assume that rc-(1 - ff,f) ( rc. We divide the proof in three steps.

1. We show that there erists an Tl-marimal nonnegatiue subspace L, inaariant under
S. Since ̂ 91 is expansive and 52 is contractive, for any vector r : rr * rz, h € 9t and
xz e 8z we have

lSr ,  Sr l :  [Srr r , .9r r r ]  -  lSzxz,  S2r2 l  ]  [ " t ,  " t ]  
-  Lr t , r t ] :  [ r , * ] ,

that is, ,S is expansive.
Since dirn']lo- : rc-(I - J-l-l- ) ( oo, it follows from (2.6) that the operator G- has closed

range, with G defined as in (2.5) (and Ji : 1, due to the hypothesis that tlie subspace
grn1lt is positive definite). We now take into account the decomposition {2.a) of 7{ and
get

Pvrs Pv- 
!t',-t'f::- i i*:;1,,","

Since SzOHz is invariant under ,92 and 11o+ I h0'l1z we also have that Pyo*SPqrs'u, : 0.
Therefore

Pn*SPv- - Puo-SPuo-,

and hence rank P71* SPu- < dim?lo- : rc-(I - faf) ( oo, in particular, the operator
Py*SPy- is compact.

The assumptions of Theorem 1.2 are verified and hence there exists an'l7-maximal non-
negative subspace 4 invariant under ,9.

2. We show that t : PsrL is closed and codimsrt : K-(I - fill-).
Since L is tt-maximal nonnegative subspace, by Proposition 1.1 there exists the gener-

alised angular operator Kp:}{a --+ 7t- such that

L : { x * K p l x e T l a } .

Taking into account of (2.7) we get

Ps,L *'l1o- ) Ps,lL + 110-) ) h. {2.12)

We claim now that the operator Pg, is injective also when restricted to the subspace
L*7{o- .  Indeed,  le t  /  €  L andh e ' lLo-  besuch that  Ps, ( l+h) :0,  equiva lenty  Psr l :
-Ps"h. Taking into account of (2.4) it follows that / : (t + lx) * 92 for some 92 e 8z O'l-tz
and CI : -Pgrh. But, by the construction of the space hto- we have h : o f fr where

" :  
-Pgrh,  and hence I :  -h  *gz.  Now remark that  the subspaces Ho-  andCzOTlz are

negative subspaces and orthogonal with respect to the inner product [','] of K and hence
the vector I : -h * gz is either negative or null. But / is nonnegative, as any other vector

in 4, and hence I : 0 and h : 0. The claim is proved.
Since L is a nonnegative subspace and'Jlo- is a negative subspace it follows that the sum

L *'|1o- is direct and, taking into account that Ps, is injective on L*1-h-, from (2.I2) we
get 

t* PsrTlo- : 9t'



which proves that the codimension of t  in 9r is exactly dim?lo- : n-( l  - ]-rf).

We now prove that t is closed. First considcr the subspace H| : ker(PHo- Kt) e Vl+

and remark that codirnn*1-t'. < dim'l1o- -- rc. Define the subspace of. L

L ' : { r * K p l r e ' } 1 ' * } ,

anclnotethats ince Kc ' \ l ! re  9zO' l lz t t fo l lows PsrL ' :Ps, . l l ! .  S incel l ' * is  asubspaceof
'J1- it follows that

H|:  { f  + f  7 |  f  e Ps,H'*} .

since 
'11'* is closed and f is bounded it follows thaL Ps'H'+ : Pg,(' -is 

closed' Taking into

account ihat codimePgrf.' 1rc 1oo it follows that the linear manifold t is closed' too.

3. The mapping def,ned by (2.10) is a well-def.ned bounded operator.

As a consequence of the injectivity of the operator PsrlL, which was proved at step 2,we

get that the operat or M is correctly defined and closed. Since its domain t is also closed,

then the closed graph theorem implies that M is bounded. I

Rnuenx 2.5 Theor em 2.4shows a bit more than it is stated, more precisely, under the

assumptions of Theorem2.4 and assuming that u-(p'I - filf) S^rc it fg]l_ows that for any

solution (M; t) of the problem N,(f ; p) we have codim s,€ : o-(p" I - fHJ-)' f

As a by-product of the above approach we can sl,ow that the correspondence defined as in

(2.9) and iZ.f O; between pairs (M;3) and subspaces I provides a parametrization of N,,(-l-)

by ?l-maximul'nonoegative subspaces invariant under S, similar as the parametrization of

the generalised interpllution proll"* obtained by J.A. Ball and J.W. Helton in [8]'

Tnsonnrd 2.6 Assume the conditions of Theorem 2.1 hold and rc-(f - fuf; I n. Then the

correspond,ence as in (2.9) and, (2.10) i,s bijectiae between the set N^(f ) and the set of all

?{-maxi,mal nonnegatiae subspaces inaariant uniler S.

Proof. Assume the conditions of Theorem 2.4hold. That is, 92n17* is positive definite,

5i is an expansive operator, ^92 is a contraction and f is an (^91,S2)-Hankel operator such

that rc-(I- fuJ-) ( m. Let, in addit ion, o-(I - lHl-) < rc'

First we show that if. M:sG 9) - 92 is a bounded contraction, codimsrt 1rc and

flt -- Pn"M' Lhen 
L : {, * Mr I r e t}, (2.13)

is an ?/-maximal nonnegative subspace invariant under ^9.

Since M is contractiire we readily check that L is nonnegative. In order to prove that ,C

is a subspace of 'll,pick 
/ : r * Mr for some vector r € €.. Then we have

f  Ps , f  -  f  Ps ,@ *  Mr ) :  f  t :  Pu ,Mx :  P17 , ( x  *  Mr ) :  Pu" f  '

In view of the definition of. !-(, this implies that L g ]1.

From Lemma 1.1 it follows that there exists an'|l-maximal nonnegative subspace L ) L'

Then, as in the proof of Theorem 2.4, we get that PgrL is a subspace of' 9t of codimension

K. Since pnrE ) PsrL - t y a subspace of codimension in gr a\ most rc it follows that

PnrZ : t, in particular L : Z is an ?l-maximal nonnegative subspace and codim gr€ : K'



Finally, we show that L is invariant under S.
If /  is an arbitrary vector in,C, then f :  r* Mx for some r € t.  Consequently,

S f  = .9 ( r  *  Mr ) :  S f i  *  SzMr :  S r r  {  M ,S1x  €  L .

The fact that ?l-maximal nonnegative subspaces f invariant under ,9 produce solutions
of the probiem N^(f) is already proved in Theorem 2.4. It remains to notice that these two
correspondences are inverse one to the other. I

3. Bounds and Singular Numbers of Generalised Hankel Operators

3.1 Minus-operators. Let K1 and Kz be Krein spaces and ? € L(Kt, K2). The operator
7 is called minus-operator if there exists p > 0 such that

lTx,Tr l  1 1t [ r , r ] ,  r  € Kt. ( 3 . 1 )

In this case, two numbers are associated to the minus-operator ?,

p+Q) : 
,1,\p=rlTr,Trl, 

p-(T): 
1",i1'1, 

-[Tr,Tr). (J.2)

An operator 7 € L(Kt,K2) is called strong minus-operator if 7 is a minus-operator and

P+(T )  >  0 '
If Kr and Kz are positive definite, that is, Hilbert spaces, then all operators in L(l','r.,fri.2)

are minus operators and, in this case, tr+Q): ll?ll and p,-(T): *oo. Clearly, all nontrivial
operators are strong minus-operators.

If Kt and K2 are negative definite, then again all operators in f,(f,t,Kr) are minus-
operators, p+Q): -oo and p.-(f) : 1(T),, the minimum rnodulus of the operator 7.

A distinct situation corresponds to the case when Kr is indefinite, that is, it contains pos-
itive vectors as well as negative vectors. In this case, according to a result of M.G. Krein and
Y.L. Shmulyan [26], an operator I e f(Kt,K2) is minus-operator if and only if lTr,Txl 3 0
for all [r,r] < 0, r € K1. Moreover, if T is a minus-operator then p+Q) I p,-(Z) and a
real number p satisfies (3.1) if and only if p lies in the interval lp*(T),, p-g)]. A recent
consideration of this bounds, for the finite dimensional case, was done by A. Ben-Artzi and
I. Gohberg [9].

Let now Q1 and gz be Krein spaces and consider linear operators & e L(?r) and Sz g

L(92). An (,9t, S2)-rnultiplier is, by definition, an operator M e L(9t,92) intertwining
the operators 51 and ^92, that is, M 51 - SzM. Assume, in addition, that Hz is a Krein
subspace of 9z such that gz n 71* is invariant under ^92 and positive definite. If M is an
(S1,,92)-multiplier then fya - PurM is an (Sr,S:)-Hankel operator. In addition, if. M is a
minus-operator and /, € R then it follows from the positive definiteness of. Qzn'|7| that

pl r , r ] * lM*,Mxl :  pb, t l - l lu* , fur ) - lPs"nn;Mx,Ps,nx;M*1< p l* ,x l - f fuar , lux l ,

and hence the interval lp*(M), t t-@)l is contained in the interval lp*(fr),p-(fta)].  This
shows that, if f € L(]t,'l-t2) is an (^91,,S2)-Hankel minus-operator, that is, f is a minus-
operator and l-^9r : Pu"Szf (see (2.1)), then

U lp+(M), p,-(M)l g [p+(r), /r- (r)].
MS1=S2lt51!, f=PnzM

10
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All these considerations are more or less trivial consequences of the definitions. The inter-
esting part o{ this discussion is that Theorem2.4 shows that if f is a strong minus-operator
then the inclusion converse to (3.J) holds, too.

THooRolr 3.7 Let f e f(gr,Tl2) be an (51,i2)-Hankel strong minus-operator and assu1ne
that the l{rein subspace grn'}lt is positiue def,nite. Then, for-any p € LIt+{l), p_(f)) there
erists an (s1,s2)-multiplier M such that f : px,M and,IMr,Mr] s /l*,'d'fi, i l ' , e gr.

3.2 Bounds for Hankel Operators. In the paper [18] the following number is associ-
ated to an (,S1,,92)-Hankel operator f in the Hilbert space case:

p( l )  :min{ l lMl l  I  M e L(h,Qz) ,  MSt  :  SrM,  f  :  pn,M},

and it is remarked that if 51 and 52 areisometric, the problem of computing pl(,1-) is equiv-
alent to the lifting of commutants and that 1t(f): llfll. As a consequnce of Theorem f .i
in [36] (which is a particular case of Theorem 2.a) it foiiows that if .9r is expansive and Sz
is contractive, then again p(f) : llfll. For this reason, it might present some interest to
have an "elernentary" and more constructive proof of it, i.e. 

" 
ptoof that is not based on

Theorem 1.2.

TnooRnu  3 .2  [36 ]  Assumetha tQ ;  a re  H i l be r t spaces , i : I , 2 ,  f  €  L (Qr ,? t z )  i s  an (51 ,52 ) -
Hankel operator, s1 is erpansiue and s2 is contractiue. Then trg): llrll.

Proof. Without restricting the generality we assume llf ll < i. Let us write

S z -

with respect to the decomposition Q2:'lt+ @'112. The fact that I is an (,g1,.92)-Hankel
operertor means that Rf : l-^91. We search for a contraction M - IT f ] wiitr itre property
that ?.9r :3zT + Qf .The fact that the problem of finding an element in lf(f)(: Nr(f))
redur:es to the solvability of a Lyapunov equation was already remarked in [18] u"d it 

"*pluinsthe connection with the existence of maximal non-negative S-invariant ,nbrpu."r. Thus, the
following remark is well-known. Let K be a Krein space and, K - K- + K+ is a fundamental
decomposition. To each maximal non-negative subspace I there corresponds its angular
operator T e t(K-,K+), l l" l l  < 1, such that L: G(T). I f  ^9 is un op..aior on K with the
block-matrix representation

i? nl

* -  f  s t t  ^9t r l
" - L o Szzl

with respect to the decomposition .f, - rc- * K+, then .C is ,9-invariant if and onlv if

T S r r : ' S r z * S z z T ,

which is an equation of the iyp" encountered in the search for an element in .n/(f ).
Now, we show that the equation

TS, -- Srr + Qr

1 1



- 
admits a solution provided that ,Sr is expansive and ,92 is contractive. Without loss of

generality, we can assume that ,l- and ,92 are strict contractions (indeed, if this is not the

case, we can perturb these operators and then use a subsequence with the original operators

as lirnits). Since Rf : f ,9r and R is a contraction, it follows that

'9il-.l-^gr : f* R* Rl < f.]-,

SO

I  -  S I r . l s t2  I  -  r *L

Since ,S1 is expansive,

sis, - sir.f &>I - SiJ-.l-& > I - r*r,
therefore S1DT$ > D7, where Dr: (I - ff)r12. Consequently, we can define the

contraction X by the formula XDrSth: Drh on the closure of the range of Dr^9r and by

Xh :0 on the orthogonal of that space. s,Ie now search for f of the form T : Y X Di-, with

YX a contraction. Then. we must have

YXDTS::SzYXDr*Ql ' ,

or

y : j ryx + ef  Dr ' .

Since ,9, i. urro-ed to be a strict contraction, this equation admits the unique solution

Y : Q I DV' + 3rg r Dr' x + Sigr n;' x' + ... .

It remains to show thatYX is a contraction. To that end, define Cs: Qf D!1X and for

n )  1 ,

C, : Qf Drt x + . .. + SrQr Drt x".

Then, since ̂ 9r is expansive and ^92 and f are contractions, for all h €. h we have

s llrhll" < llbll, < lls,hll,.
This implies that

l lCoDr StUl2 < l lrrs14l2,
so C0 is a contraction on the closure of the range of Dr^9r. Since on the orthogonal of that

space Ce is zero, it follows that Co is a contraction.

Suppose now that Ct arccontractions for r < k 3 n -1. Since 5z and 
I C--'Dr1' L  r  l a r e

contractions and ^91 is expansive, for h e h we have

ult'!'] ou,,': tt [91]0,,': ll^e, lJr] ,' '
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u l c , n r l  , q , 6 1 1 2  _  r r c  l c " - r n r l, ,  L  r  l * , - , ,  
: l l s ' 1 " " - ; " '  

l o t t ' <11 's 'h l l ' '
Therefore, C, has to be a contraction and the proof is concluded' I

3.3 Singular Numbers of Hankel Operators. We consider Hilbert spaces 8t and 9z

and the remainder of the notation is as in Section 2. Let ,l- be an (,9t,,9r)-Hunkel operator.

Let {s6(f)}*>o b" the sequence of the singular numbers of f and note that

r * ( f )  :  m i n { p  >  0 l r - ( p 2 I  -  f " 1 1  <  k } ,  k > 0 .

This observation and Theorem2.4 imply the following characterisation of singular numbers

of generalised Hankel operators.

Tneonnlr 3.3 Assume that 51 is erpansiae and Sz is contractiue and let I e L(Qu'l{z) be

an (51, S2)-HankeI operator. Then for all intergers k > 0 we haae

"u(i-) 
: minillMlll M e L(t,92), codims,t 1k, S$ g t,

MSr l€ :SzM,  f  :Pu ,M j '

This theorem can be viewed as an abstract form of the operator valued version of the

celebrated theorenr of V.M. Adamyan, D.Z. Arov and M.G. Krein ([2] and [1]). Following

ciosely the approach in [36] it can be shown that it also contains the characterisation of the

singular values for the matrix valued version of the four-block problem.

4. Contractive Intertwining Dilations

We show that a certain generalisation of the contractive intertwining dilation problem as in

[20] can be obtained from the Nehari type problem considered in Section 2.

Let Th and, 7{z be Krein spaces and consider two operators T; e L('11;), i - 1,2- We

assume that for i :1,,2 there exists pairs (14;9;), subject to the following conditions:

(";) g; is a Krein space extension of- 17;;

(b;) V e L(9;) is a di lat ion of [ ,  that is, Pu,V: T;Pu,.

As a consequence of assumption (b;) it follows that 9;fi'|1f is invariant under the operator

I \ ,  i  : 1 , 2 .
Let A e L('t7r,T{2) be an operator intertwining the operators ft and 72, thai is AT1:

TzA. Theset of contractiue i,ntertwining dilations of A, denoted by CID^(,4; Tt,Tr), consists

of pairs (A*,t) subject to the following properties:

(1) t is a subspace of.9t of. codimension at tnost rc and invariant under V1;

(2) A* e L(t,]r) i t  cqntraction, that is [,4""c, A*r13lr,r) for al l  t  € t;

(3) Pn"A* -- APn,lt ;

(4) A*Ult :  V2A*.

Simply by inspecting the definitions we obtain'

13



Leulte 4.\ Let A,1'r, V1, e.tc. be as aboue and, denote f :  APur:Qt -+ ?72. Then f is a

(V,, Vz) - Hankel operator and

CID" (A ;  V t ,V r ) :  N ' ( f  ) .

As a consequence of this equality and Theorem2.4 we obtain the following result proved

in [20] (for similar investigations see [4], [5]).

THeoRnu 4.2 Il both of the subspaces Q;n71!, i : I,2, are positiae definite, V1 is erpans'iae,

V2 is a contraction and A is a quasi-contraction, that is rc-(I - AtA) ( oo, then the set

CID,(A; Tt,Tz) is nonuoid i f  and only i f  , .-( l  -  AtA) < rc.

Conversely, under the conditions of Theorem 4.2 it is easy to see that each N^(l-) can

be realised;i,s a set CID,(A;U,V). Thus, let l-  be an (.9r,^92)-Hankel operator. Define

Tt:Vr - Sr, Tz: Px"Sr,V, - ^92 and A: f .  Then it  is readily checked that, under the

condi t ions in  Theorem 4.2,we have N^( . f )  =  CID"(A;V,Vz) .
The Hilbert space version of Theorem 4.2 for r : 0 was obtained in [36] and it was shown

there to contain the commutant lifting theorem of D. Sarason and Sz.-Nagy and Foiaq ([32],

[33], [34]). In [20] it was mentioned that some of the indefinite variants of the commutant

ii{ting theorem as in [11], [12], [13], [14] are also consequences of Theorem 4.2.

5. A Carathr6odory-Schur Type Problem for Meromorphic tr\rnctions

We illustrate the applicability of Theorcrn 4.2 to an interpolation problem of Carath6odory-

Schur type for meromorphic matrix valued functions. In a siightly different form it was

formulated by M.G. KreYn and H. Langer in [25].
Let'm,,n be nonnegative integer numbers and denote by Mn,* the set of n x rn matrices

with complex entries, identified with 4(C-,C"). We denote by H*(M",-) the space of all

functions .F': D -+ M^* which are analytic and uniformly bounded in D,

l lr l l* : ::B llr(')l l 
( oo'

Let a € D. We consider the Mobius transformation

b , ( z ) : a i - ; ,  z € D ,
d  r - 0 2

which maps conformally the unit disk into itself. A Blaschke-Potapou cell of" order g ( n is

by definition a square matrix of order n

wlrere rL : r * q * s. A Blaschke-Potapou prod,uct of f,nite order is by definition a finite

product of analytic functions, each one being unitary equivalent with a Blaschke-Potapov

Leil. The order of a Blaschke-Potapov product, is the sum of the orders of all its factors.

l L  o  o l
B " @ ) : l 0  b , ( z ) I n  0  l ,

L o  o  1 " . ]
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Since the functions bo rnaps 0D into itself, a Blaschke-Potapov product is always of norm
one and the corresponding rnult ipl ication operator is isometric H'(C) -+ H2(C).

Let / be a nonnegative integer. By 31(M,,,,,) *e denote the generalised Schur class of

functions G which can be represented G: Ftlr- l  where F e H*(M*,"), l lFl l-  ( 1 and f e
II*'(M,,) is a Blaschke-Potapov product of order < /. lf we impose the additional condition
that no zero of the function G conincides with some zero of the Blaschke-Potapov product
f then this representation of functions in 31(M^.,,) is unique, modulo unitary equivalence.
Such a factorization is called right coprime.

In the following we use a theorem whose proof, for the scalar case, can be found e.g.
in [19]. The matrix valued version follows in a similar way but uses the theorem on the
structure of the matrix valued inner functions (see e.g. [31]) and the theorem of Beurling-
Lax characterising ihe shift  invariant subspaces in H2(C).

Tunonnnr 5.1. A subspace € e Hz(C) is shift  inuariant and of codinzensionl < x i f  and
only i f  t :VH2(C) whereil t  e H*(M^) i ,s a Blaschke-Potapoa product of ord.erl.

We are no.w in a position to introduce the variant of Carath6odory-Schur type problem

we are interested in.

DoptmlrtoN 5.2 Let C : {Ct}f=, C L(C^,C") be a sequence of rz x m complex matrices.
For rc € N we define the set C-S,(C) consisting of all meromorphic matrix valued functions

G e E,"i,E^, C") such that the first k* I "Taylor coefficients" at 0 of G coincide, respectively,
with (.r1, Ct,. . .Cr. More precisely, if the function G has the representation G : FW-|, where

F e H*(M*,,,) and V e H*(M*) is a Blaschke-Potapov product of order ( rc, then the

first * * 1 Taylor coefrcients at 0 of G coincide, respectively, with the first Taylor coefrcients
of the analytic matrix-valued functioo (C0 * zCr + . . . zkCx)V(r).

We note that in the above definition a function G e C-S"(C) is not necessarily analytic
at 0.

Associated to the data C -- {Co,Ct,. . ., C6} there is the foliowing lower triangular block-

matrix of Toeplitz type

T c : (5 .1 )

f1 /'1 f1(J&-1 w k-2 t /0

THnonsrd 5.3 If rc is f,nite then the problem C-S,,(C) has solutions if and, only if the n'umber
of negati,ae eigenaalues, counted with their multiplicities, of the matrir I - TATI does not
etceed n.

Proof. we consider the Hilbert space gr: Hr(c-) and the forward shift operator

€ L(H'?(A*D, (Vtd(z) : zg(z), for al l  g € H2(C-) and z e D. Let 11r be the subspace

Ht (C^) of polynomials with coefficients in C- of degree not exceeding k and define
= P.HrVllTr.Since hO't l t  is invariant under V1 it  fol lows that I is a di lat ion of &.

0 0
C o 0
Ct Co

Co
Ct

Cz

C*

Vt
of
T1
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Similarly, let Q2 : Hz(C) and I/z the forwa,rd shift operator on H2(C") . Denote 712
the subspace of ,?2(C") consisting of all polynornials with coefficients in C" of degree not
exceeding k and letTz: PltrVzl] lz.Since QzOTlz is invaliant under Vz it  fol lows that I/z is
a dilation of Tz.

Let  us consider  now the matr ix-va lued polynomia l  C(z) :  Co* zCr + " '+  zkC1,  and
denote by Mc e L(H?(A^) ,H2(C))  the mul t ip l icat ion operator  wi th  C € .H""(C- ,C") .
Then define A e L(711,']1r) by A = Px,Mcl'112. Since Mc is a multiplication operator it
intertrvines the operators Vr and Vz. Therefore

ATr - P11rM6 PyrVtl'|7t : P11" McVll{t : PyrV2Msl}L : TzA.

These relations show that the problem CID^(A;Tr,Tz) makes sense. In the following we
prove that the problem CID,(A; Tt,T'r) has solutions if  and only i f  the same does C-S"(C).

Indeed, let (,4-,t) e CID,(A;Tt,,72). Since t is a shift  invariant subspace of H'(C^)
of codimension at most rc ( oo, from Theorern 5.1 it follows that t : VH2(C^) for some
Blaschke-Potapov product V e H*(A-) of finite order. Taking into account that A,,VLlt :

VzA* we get
A*VVh :  A*V tVh :  VzA* i I h ,  h  e  Hz (C^ ) ,

l lrhll : l lA*{',t l l l  S l lrhll : l l l?l l, he H2(c*),

that is, F is contractive. These relations prove that 4." is the multiplication operator with
a function in 5,(C-, C").

We now take into account that PyrA*: APHirlt. For arbitrary h e Hz(C*) we have

PnrMph : Px.,A*i[h: APurM,th -- PyrM6,vh.

This proves that the first k + 1 Taylor coefficients at 0 of G coincide, respectively, with the
first Taylor coefficients of the analyti.c matrix-valued function (C6 * zC1+- . . zkC*)itrt(z) and
hence, we have a solution of the problem C-S"(C).

The converse implication that once we have a solution of the problem C-S^(C) we have
also a solution of the problem CID,(,4; Tr,Tr) is straighforward and we omit the details.

We note now that we can identify ?/r with a direct sum of k + | copies of C- and,
sirnilarly, T{z can be identified with the direct sum copies of. k * 1 copies of C'. With these
identifications it is easy to see that ihe operator ,4 coincides with the operator Ts as in (5.1).
The proof is now concluded as an application of Theorem 4.2. I

6. Quasi-Multipliers and an Interpolation Problem of Nevanlinna-Pick Typ.

that is, letting F : A*V we have FVl -

some function -F. € H*(C^,C"). Since
with the function ( is isometric we have

Let A be a set of complex lumbers and rn € N. Consider
kernel I{: A x A -- L(C^). Then, e.g. see N. Aronszaj" [6],
with reproducing kernel /{, that is,'11(K) consists of vector
that

( f  , I {p)y1r ;  :  ( / ( . \ )  , r )s .^ ,  f  e  H(K) ,

VzF and hence F is a multiplication operator with
A- is contractive and the multiplication operator

a matrix valued positive definite
there exists?7(K) a Hilbert space
valued functions h: fl --+ C- such

) € A , r € C *  ( 6 . 1 )
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where I i{p): I{(),p). The association between reproducing kernel Hilbert spaces and
posi t ive c le f in i te  kernels  is  b i ject ive.  A lso,  ?1(K) :  c . l .s .  { l {p lAe A,  r  €  C' " } .

A subset 9t 9 A is a sel of uniqueness for 11(K) if whenever two functions f ,g e 7{(K)
coincide on A1 it follows that they coincide on the whole set A. This is equivalent to say
tha t  c . l . s .  {K^ *  l )  e  J71 ,  z  €  C- }  : 11 ( l { ) .

Let now K':A x A -- L(C") be another matrix valued posit ive definite kernel on A
and 77(Ii' ) the corresponding reproducing kernel l{ilbert space. A rnatrix valued function
(D:A -- L(C^,C") is cal led a mult ipl ieri f  Qh € 14(Kt) for al l  h e T-qn. Denotirrg by
Me:?{(I{) -- '17(K') the corresponding multiplication operator, by the closed graph theorem
it follows that Mo is bounded. Let il@ll : llMrll denote the norm of the multiplier @.
Foliowing J. Agler and N.J. Young [3] we introduce the following definition.

DprtrvtrroN 6.1 Let rc be a nonnegative integer. A function G:A6 -- L(C^,C") is cal led
a rc-quasimultiplier if G : F{r-r, where:

(u) F andilt are multipliers on f7 such that the multiplication operatot Mg is isornetric;
(b) f is invertible everywhere on fic I J7 with the exception of at most rc points in A;
(c) A[,!H(K) has codimension at most K as a subspace of 7{(K).

As some examples in [3] show, the following assumption is natural.

(A0) Any subset At e A such that A \ At is finite is a set of uniqueness for 11(K).

If G is a quasimultiplier (that is, G is a rc-quasimultiplier for some /r < oo) then a
rnultiplication operator M6: t --+ 71(I{') can be defined, where t : $/;t(K) is a subspace of
7{(K) of codimension at most rc. The norm of the quasirnultiplier G is defined by llcll :

llM"ll. Thanks to the assumption (A0) it can be proven that this definition is correct.
Our interest is related to a problem of quasimultiplier extensions of multipliers defined on

subsets. More precisely, let A be a subse t of. A and consider the reproducing kernel Hilbert
spaces

1{(KlA):  c. l .s.  {Kx,  |  )  e / ,  r  € C^},

11(K' lA):  c. l .s.  {K>,y |  )  e l ,  y e C"}.

Let also 9: A --+ L(C^,C") be a multiplier on .4, that is, 9h e TI(K'14) for all h e 17(KlA),
and let p be a positive real number. It is required to deterrnine those quasimultipliers G
of norm llcll < p extending p) more precisely, for some representation G : -Ff-l as in
Definition 6.1 we have

, p ( . \ ) r ( ) )  :F ( l ) ,  \ eA . (6 .4)

The approach rve follow for the above mentioned problem makes use of Theorem 4.2.
I{owever, as shown also by P. Quiggin [29] and J. Agler and N.J. Young [3], some further
assumptions are needed. These are:

(A1) The forward shift operators of multiplication by the independent variable are
bounded on71(K) and, respectively, 71(K').

(A2) Any subspace t of 77(K) invariant under the forward shift operator and of codi-
mension at most rc < oo admits a representation t : Mo'11(K), with O: Q -+ L(C*) an
isometric multiplier which is invertible for all but at most rc points of A.

(A3) Every bounded linear operator M:11(K) -, 17(K') which intertwines the forward
shift  operators is of the form M - Mp for some mult ipl ier F: Q "+ L(C^,C).

and

(6.2)

(6 3)
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TnpoRptnr 6.2 Assurne that (A0), (Al), (A2) and(AJ) hold and, in addit ion, that the for-
warrl slr i f t  operatorV onH(l{) is erpansiue and that the forward shift  operatorVz on'11(K')

is contractiae. Let A be a subset of fl, g a multiplier on A, K 0. nonnegatiae integer and p a

posit.iue real nurnber. Then, there erists a K,-quasimultiplier G of norm I p ertending 9, in

thr  r r rx  of  $ . \ ,  i f  and only  i f  thekerne. l  (p ' -V} i ,p( ) ) )  I { ( \ ,p)  has at  most  n  nesat iue

sqllares on A.

Proof'  Without restr ict ing the general i ty we wil l  assume p:1. We consider the Hi]bert

spaces h : Tt(K) and Qz : ?1(K'). Then define V{t : T{(KIA), see (6.2)' Note that

v; I{^ -\Ks, \ e a,,

and hence defining Ti : Vil'|l1 we obtain that P71rV1 : TrPxf that is, I is

71.
Similarly, define '112 -- t{(K'lA), cf. 6.3, and the operator Tz e L(Tlz) Ti :

v ; r i \ : \ K \ ,  ) € A ,

it follows that Pn"V2 : TzPtlr, that
We define now the operator A :

TiA.K\:

it follows that ,4 intertwines the operators T1 and 72.

From what is proved until now we conclude that the set CID^(A; TtrTr) makes sense.

Moreover, for arbilray complex valued function {or}.r.a with finite support, supp{c1 | '\ e

Aj < oo, and arbitrary vectors frrU € C- we have

((I * A-A)f o1r1 ,,Dc,rK,a)xr7; : t  alar(( l  -F04vQ))l((I '  p')a,v)c-,
^ e A  P € A  \ ' P € A

which proves that rc- (I - A- A) coincides with ther number of negative squares of the matrix

valued kernel (t  -V}')v(.\))1{(.\ ,  p).

Assume now that the number of negative squares of the kernel (t -q(p)p()))1{('\,p)

is ( rc. By Theorem 4.2 there exists a solution (A*,t) € CID'(A;T1,Tz). From the

assirmption (A2) it follows that t : MvtT(I{), where ilt: A - LG*) is a muitiplier such

thal Mv, is isornetric. Taking into account that A*Vtlt : V2A* we get

A*MvVh : A*VN| : V2A,-i [ th, h €7{(K),

that is, ietting F : AooW we have FVr :72F. Using the assumption (A3) it follows that F is

the rnultiplication operator with some function F:A -- L(C^,C"). Since l.* is contractive

and Mv is isometric we have

l l rh l l  - l lA*{ th l l  < l l rh l l  : l lh l l ,  heH(I{ ) ,

that is, F is contractive. Therefore, A"o is the multiplication operator with a rc-quasimultiplier

F i l / - L . I n  add i t i on , f rom PurA* -  APx*  fo ra l l  \ ,F€A , t€  C- ,and  y  €C^  wehave

(A*V Ks*,, K'ry)u(x\ : \hlrAooV I{sx, K'ra)x6'1a, : (APxrilt Ksn, I{'ry)x1x'1a1

a dilation of

V} l l7z.Since

is, 72 is a dilation of 72.
M, € L(11t, ?12) and since

T{vK^-A, .T ;K\ ,  )eA,

1 8



: (Px,V I{ sr, A" K'rul rux la1 : (w I{ 1x, A* Kluy) 16 1o1 : \p }t)v (p) /i ( )' p) r, v) s^'

On the other hand,

(A,-V K 1r ,  K ' ra)  x{x , )  :  (F (p)  I {  ( ) ,  p) t ,  y)  c" ,

and hence v}t)V(p) : F(p) for al l  P'€ A.

The converse implication can be obtained by tracking back on the the same lines of the

proof as above. I

Theorem 6.2 can be applied to a variant of the Nevanlinna-Pick interpolation problem

which was first introduceiby M.G. Krein and H. Langer [25] in a slighly different forrn' The

present formulation was considered first by J.A' Ball [7]'

DpptNtrtoN 6.3 Let z : {r}f=t be a sequence of complex numbers in the open unit disc

D and let Z : {Z}f=r C ip;,-C') be ai"qrr"n"" of n x rn complex matrices. For rc € N

we define the set N-T,1r;2) .oorlrting of ull ,rr"ro*orphic matrix valued functions G €

5^(C-,C.)  such tnat  i ( )  -  z t ,  for  iu  l :  I ,2 , . . . ,k ,  more prec ise ly ,  i f  the funct ion G

has the representation G - FV-t, where F e H*(M*,,,) and V_, H*(ry") is a Blaschke-

Potapov product of order ( rc, then ihe condition G(21) : Zt has to be interpreted as

F(21) : ZP(21).

We note that in the above definition, it irray happen zl tobe poies of the function G for

s o m e /  e . { 1 , 2 , . . . , k } .
Associited to the dala z and, Z there is the Pic,k matrit P(z;Z) defined by

P(z;z):llff']:,,=, (6.5)

Under the additional condition that the Pick matrix in nonsingular, the following result

was first obtained by J.A. Ball [?]. In the more gen.eral case of the bitangential Nevanlinna-

pick problem it was obtain"a ty J.A. Ball and JI.W. Helton in [8]. In the following we

,ho* ih.t, in the case of the variant of the Nevarrlinna-Pick problem as.in Definition 6'3,

it can be obtained as a consequence of Theorem 6.2 by letting K(\,li : I*l(l -P^)

and, respectively, K'(^,p) : hl(l - p)) to be the matrix valued schur kernels' In this

"u"e 
H(k) : ir(C*) and ?l(I{i) - H,(C), in particular, the forward shift operators are

isometric on these ,pu"", and hence the'assumption (A1) is satisfied. Theorem 5.1 shows

that the assumptiorr (A2) is also satisfied. As ii is well-known, the assumption (A3) holds,

too. We consider I : {L,}f=, € D and let the muliplier tp be defined by vQ') : Z; for all

i :  I ,2 , . . . ,k .Then. tot " lhut  the Pick matr ix  is  the matr ix  representat ion of  the kernel

(t - i6)o(.\))1((.\, ti), \, p e A. Therefore, from Theorem 6'2 we obtain the foilowing

TuBonnu 6.4 If rc i,s finite then the Neaanlinna-Pi'ck problem N-P^(z; Z) has solutions iJ

and, only if the number of negatiae e'igenaalues, counted, with thei,r multiplicities, of the Pick

matrir P(z;Z) does not etieed n.
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