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Summary. The flow of an incompressible fluid through a non-homogeneous dam is
considered. A distributed control problem associated with this free boundary prob-
lem is studied. The aim of this paper is to minimize the total pressure of the fluid,
the control being the pérmeabili_ty coefficient of the dam. The first order necessary
conditions of optimality are derived for a family of regular control problems. A finite
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the proposed algorithms is -studied. Some numerical results are discussed, for the case
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A theoretical and numerical approach of a control problem

1. Introduction

The flow of an incompressible fluid through a non-homogeneous dam with general
geometry was studied, for instance, in: Alt (1979), Alt (1980), Friedman and Huang
(1985), Stavre and Vernescu (1985), Stavre and Vernescu (1989). In Alt (1979),

Friedman and Huang (1985), Stavre and Vernescu (1985) this free boundary problem



was studied from a theoretical point of view, while in Alt (1980), Stavre and Vernescu
(1939) numerical methods were used for solving it.

We introduce and study an optimal control model associated with this free bound-
ary problem. We want to minimize the “total pressure” of the fluid in the dam, given
by the functional:

(1) J(k) = [ pla,y)dady,

where the control k is the permeability coefficient of the dam, D C R? is the cross-
section of the dam and p, the pressure of the fluid. The purpose of the paper 1s to
obtain the optimality system (the necessary conditions of optimality) and to approxi-
mate it in order to conpute an optimal control k*, characterized as a minimumnm point
for the functional J, dcfined by (1.1).

Other optimal control models associated with the homogentcus dam problem
were studied in Barlm (1984), Friedman and Yaniro (1985), Friedman, Huang and
Yong (1987). In Friedman and Yaniro (1985), Friedman, Huang and Yong (1987) the
control variable is the rate allowed to withdraw water from the bottom of the dam
and in Barbu (1984) 'he control is the highest level of the fluid in the Teservoirs.

The plan of the paper is as follows. In Section 2 we define the distributed control
problem and we prove an existence result. The necessary conditions of optimality are
deduced in the next :\'<.:ction, by approximating the control problem by a family of
control problems which are regular. Section 4 deals with the finite element approx-
imation of the optiniality system associated with the family of regularized control
problems; the convergence of the proposed algorithms is also discussed. In the last

section, some numerical results are presented, for the case of a non-homogeneous,

rectangular dam.



2. The control problem

First we describe the nathematical formulation of the physical problem, introduced in
Brezis. Kinderlehrer «nd Stampacchia (1978), Carrillo-Menendez and Chipot (1982)
for the homogeneous (am and in Stavre and Vernescu (1985) for the non-homogeneous
case.

The cross-section of the dam is denoted by D, where D C R? is open, bounded,
connected, with the boundary 8D, which is locally a Lipschitz graph. The boundary
is formed by three disjoint parts: Sy—the impervious part, S,—the part in contact
with the air and S3 = S3; U S32—the part in contact with the reservoirs (531, 53,2
being the connected components of S3).

We dennte by h; the level of the fluid in the reservoir with bottom Sz;, ¢ = 1,2

and we defiue J : S0 53— R,
i

0 on SQ,
(2.1) f=
h; —vy on Ss; i=1,2.

The variational formulation of the physical problem is (see Stavre and Vernescu

(1985)):

Find px € H'(D), px 2 0a.e.in D, pr = fon Sy U Ss,

(VP dp
/ k(Vpe - Vo + H(Pk)g’)dmdy <0Vyec HY(D), ¢ =00nSs, ¢ = 00nSs,
JD y

where & is the permcability coefficient of the dam, pi the corresponding pressure of
the fluid and H, the leaviside function. It is obvious that the pressure of the fluid

in the dam depends un the function k.

We suppose that i is a control variable belonging to the following bounded, closed,

convex set:

Jv
(22) K ={ve H' D) el <7 a<vs faeinD, 5; > 0a.c.in D},

where a, 8, r are positive constants, with r large enough.



Since (VP)e has not, in general, a unique solution py (see Stavre and Vernescu
(1985)), the correspondence k v pi is multi-valued.
We define:
(2.3) P, = {p/ p solution of (V P)i},
and we introduce the following problem:
Find (k*,p") € K X Py,
/Dp‘drdy < /Dpd:rdy V(k,p) € K x Pg.

It is known from Stavre and Vernescu (1985) (Theorem 4.2) that there exists a

(2.4)

unique solution py of (V P); so that the boundary of each connected component of
{px > 0} is in contact with at least a reservoir (S3—connected solution). Hence, the

correspondence k — Py is uni-valued.

Lemma 2.1 Let ko be an element of K and let py,, px, b the S;—connected solution

of (VP)x, and another solution of (VP), respectively. Then:

(2.5) /mmw</%a@
D D

Proof. There exists at least a connected set Cy C {pk, > 0} so that 8C; N 53 = 0. We
denote by C the union of all the connected components of {px, > 0} with the above
property and we define:

Pko in D — C,

(2.6) Py =
0 n C.

It can be proved. as in Stavre and Vernescu (1985) (Theorem 3.7), that pj, is a
solution for (V P)g,. Moreover, from (2.6) it follows that p, is S;—connected; hence
Pi, = Pko- Since, from (2.6) we get Pk, < p, in C, the assertion of the lemma is

obtained.

We introduce another minimum problem:

Find k" € K,

/ predzdy < / prdzdy, Vk € K,
D D

and we prove, by using Lemma 2.1, the following:

(2.7)
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Proposition 2.2 (2.}) has a solution iff (2.7) has a solution.

Proof. Let (k*,p") be a solution of (2.4). Hence:

/p'dxdy < / predrdy.
D D

By using Lemma 2.1, it follows p* = p- and, from (2.4) for p = i, k € K, we obtain:

/ By & / fudzdy Yk € K.
D D
Conversely, if k* is a solution of (2.7), we define p* = pi € P,. and, by using

again Lemma 2.1, the proof is achieved.

We shall study in the sequel the problem (2.7).

We define the functional J : K — Ry,

(2.8) J(k) = /D;ﬁkda:dy.

(2.7) can be written as the following control problem:
| Find k* € K,
(CP)
J(k*) = min{J(k)/ k € K}.

The last result of this section is an existence theorem.
Theorem 2.3 (CP) has at least a solution.

Proof. Let {kn}nen C K be a minimizing sequence. Since A is bounded in H*(D),
closed and convex, it follows that k., — ko weakly in H'(D) when s — oo and
ko € K.

Taking into account that {H (Pk,,)}sen is bounded in L"°(D).and7 from (V P,
{Px.., }sen is bounded in HY(D), we get, by passing to the limit on a subsequence 1n

(VP)kn: :

(2.9) /kg(Vpo-V;JrH%f)dIdy§0\/:,9€H1(D),",9:00n53,n,92OonSQ,
D Yy

()]



where pg is the weak limit in H'(D) of a subsequence of {fx,, }sex and H is the weak
star limit in L=(D) of a subsequence of {H(px,,)}sex. With the same technique as
in Stavre and Verncsen (1985), we get H = H(po) and, hence, po verifies (V' P )i,
Moreover, /Dpod\rdg ~ min{J(k)/k € K}. This equality and Lemma 2.1 imply

Do = Pk, and therefore. the theorem has been proved.

For simplicity we shall assume in the sequel that D has a geometry which ensures
the uniqueness of the solution of (V P)x, Vk € K (for instance, Sy given byy =0, z €
(0,a)). We shall denote the unique solution of (V P)x by pk.

In the next section. (CP) will be approximated by a family of regularized prob-

lems, for which we shall deduce the necessary conditions of optimality.

3. The optimality system

We introduce in the sequel the following family of regularized control problems:

Fore>0, find k! € K,
Je(k7) = min{J.(k) [ k € K},

(CP)e

where J.(k) = / pidrdy, pi being a solution of:
D

ps € HY(D), p, = fon Sz U Ss,

(‘/’P)Z : R asp .
]D k(Vpt - Ve + Ha(Pk)"a;)dl"dy =0Vyp=00nS,USs,
e
with H.(z) = IR 2T = mazx(z,0).

Before studying the family of control problems (CP)., we remark that (VP); is
of the same type as (V P.) considered in Stavre and Vernescu (1985), but with a
more regular function H,. We shall use the regularity of H, in the next section, for
obtaining the convergence of a sequence of solutions of the discrete optirnality system
(o a solution of the optimality system, associated with (CP)..

The proof of the next theorem is similar to those of Theorems 3.1, 3.2 from Stavre

and Vernescu (1985). therefore we shall omit 1t.
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Theorem 8.1 For anys >0, k € K, there enists a unique solution pj, of (VP), with

the propertics: pi € (1D U S, U S3), pl. 20 D.

The sense of the #pproximation of (V P), by the family (V P)i, € > 0 is given by:

Theorem 3.2 Let pi. and pi be the unique solution of (V P)i and (V P)y, respectively.

Then p, — px weakly in H'(D), when € — 0.

Proof. By choosing in (VP)i p =pi—v, v € HY(D), v = f on S,US3 and by taking
into account the properties of k and H,, we obtain the boundedness in H!(D) of the
sequence {pg}eso. Moreover, { He(p})}e>o0 is bounded in L>(D). Hence, we obtain, on
a subsequence: p — p weakly in H(D), He(p}) — H weakly star in L=(D), when
¢ — 0. Moreover, p= fon SUS;,p>0ae inD,0< H<1lae inD.

By applying the Stokes formula for ¢ € H'(D),» = 0 on S3, » > 0 oi 37 1t

follows, as in Stavre and Vernescu (1985):

)
(3.1)/1J E(Vps - Ve + //E(pi)—af)dxdy <0Vge HY(D),p=00n53 9 >00nS,.

By passing to the limit, on a subsequence, in (3.1), we get:

9
(3.2) /D K(Vp- Vi - Ha—‘;)dmy <0V HY(D), o =00nSs, ¢ > 0onSs.

If we choose ¢ € D(D) in (3.2) we obtain:

¢ (kH) =01in D'(D)

(3.3) div(kVp) + 5};

and, since kH € L™ (D), by using elliptic regularity (see Gilbarg and Trudinger
(1977)), we deduce that p € C(D U S5 U S3).

In order to conclude that A = H(p), we have to prove:

(i) H=1ae. in{p>0},

(i) H=0ae inD—{p>0},
(431) mes(DNI{p > 0}) = 0.

-
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We begin with the proof of the assertion (i). We have:

(3.4) /{p>o} Hdxdy = ligrLiOnf s0) H.(p)dxdy.

Let § be a fixed positive number. It can be easily proved that:

62

3.5 / H.(p 1 dedy > / ddy — / Ay
(23 (p>0) (s (p>6)n{pL>6} 62 + €2 Jip>sin{pg>6) ¢

By passing to the inferior limit with ¢ — 0in (3.3) and combining this with (3.4),

we get: ‘
(3.6) / Hdzdy > / dedy V6 > 0.
{p>0} {p>5)

By passing to the limit in (3.6) with § — 0 and by taking into account that H<1
a.e. in D, we obtain rthe assertion (i).

For obtaining (ii) and (iii) we need only (3.2) and (i); hence, the proof of (i) and
(iii) is that of Lemma 3.1 of Stavre and Vernescu (1989).

Since H = H(p). it follows from (3.2) that p is the unique solution of (V P);. We
remark that the uniqueness of the solution of (V P) gives the uniqueness of the weak

limit point in H'(D) of the sequence {p%}e>0, which completes the proof.

Theorem 3.8 For anye >0, (CP). has at least a solution.

Proof. Let {k{}nex " K be a minimizing sequence for J.. It follows that on a
subsequence, denoted also by k%, we have: ki — kr weakly in HY(D), ki — k;
weakly star in L®(D), ki — k] ae. in D, when n — oo and k] € K. Moreover,
Jim J(kS) = min{J.1k)/ k€ N} |

By taking in (Vg ¢ = Phe — ¥, with v = f on S, U S3 and by using the
properties of ki and /{. we obtain, on a subsequence: pj. — p° weakly in HY(D)
and H.(pf.) — He(p') strongly in L*(D), when n — oc. By passing to the limit in

(V' P)e. on asubsequence, when n — o0 it follows that p¢ satisfies (V P);. and hence,
{ ke, q P 8 k:

P = Phe- This yields:
min{J.(k1/ k€ K} = T}Lrlolo/Dpi%dlfdy - /l)p;;dl-dy = J.(kD).

8



We establish next the relation between the regularized minimum problems (CP).,

> 0 and the initial control problem.

Theorem 8.4 For unye >0, let kI € K be a minimum point of J.. Then, any weak

limit point in H'(D). k=, of {kl}es0 15 @ solution for (CP). Moreover:
(3.7) lir% Jo(k2) = min{J(k) / k € K}.

Proof. From the definition (2.2) and {k}}c50 C K it follows that there exists at least
an element k* € K such that, we have, on a subsequence: k7 — k~ weakly in H'(D),
kr — k= weakly star in L>=(D), k; — k* a.e. in D, when e — 0.

From (V P)i. we obtain, as before, the boundedness in H'(D) of {pf.}e>o0.

Moreover {H.(pi:)}e0 18 bounded in L*(D). We can now extract subsequences
such that pi, — p weakly in HY(D), He(pt) — A weakly star in £%(D), when
c— 0, withp=fon SUSspz20in D,0< H<1lae inD.

For any ¢ € HY(D), ¢ = 0 on S5, ¢ > 0 on 5 we obtain from (VP)j., as in
Theorem 3.2:
(35) [ KV, Vi + Bl Go)dody <0

By passing to the limit in (3.3), on a subsequence, with ¢ — 0, we get:
: 0 !
(3.9) / E(Vp- Vg + 50 )dzdy <0V € H'(D). ¢ =00n S5, 0 > Oom S,.
D y

" We conclude, with the same proof as in Theorem 3.2, that H = H(p) and, hence,
p = pi-, the unique solution of (VP)er.
On the other hand we have Jo(k7) < Je(k) Vk € K, Ve >0, i.e:

(3.10) / o dedy < / pidzdy Yk € K, e > 0.
Dt D

Taking ¢ — 0in (3.10) and using Theorem 3.2 and the weak convergence in H'(D)
of {p.}:>0 to pir we obtain J(k*) < J(k) Vk € K; hence, the first assertion of the

theorem holds.



For proving (3.7). we first remark that the boundedness of {pi:}es0 in HYD)
implies the boundedness of {J.(k])}eso in R.

If we suppose, by contradiction, that there exists two subsequences such that
.]sf(k.;_.) — 1y, when s — oc and Jeq(k;q) — l,, when ¢ — 0o, with [} # {5 we obtain,
as before, that, on a subsequence, we have: k — ki, pi"., — pg, weakly in H'(D),
when s — oo and kI — k2, pi“iq — pg,weakly in H'(D), when ¢ — oc.

From (3.10), for ¢ = €,, k = ko we get, as s — I, <lyand, fore = ¢4, k =k
we get, as ¢ — 00 [y > ly; hence, a contradiction with {1 # 3.

Thus, (3.7) holds.

In the sequel, we shall derive the necessary conditions of optimality associated
with (CP)..

We first establish the following:
Lemma 3.5 For any k, ko € K, € > 0, we have:
(3.11) Jiko) - (k= ko) = [ g*dzdy,
where ¢ € HY(D) is the unique weak solution of the problem:

, aJ e

div(koN'q7) + a(kgHs( )4
7 . o

= div((ko — k)Vp} sl (s s € D,

(3.12) div((ko — k)Vpt,) + ay(( o — k)H(p5,)) in D

q‘ =0 on Sg ) 53,

Bg* .. ap; ‘ S
kol 2+ Hl(p5,)a"ny) = (ko — K)( 02 + He(ph,)m) on S5,
on dn

where fi = (ng,ny) 1s the outward unit normal to 9D.
Proof. We begin by proving that the solution of (3.12) is unique. Let us suppose that
there exists two solutions of (3.12), ¢¢, ¢ and let us define Q=¢ —¢. Q€ H(D)

satisfies the following variational problem:

g A .
| /D;co(vcgf Vg H;@;)Qf%)dwy —0VypeHY(D),p=00n5USs,

(3.13)
Q° =0o0n S;USs

10



If QF # 0 in D. we can suppose that mes({Q° > 0}) > 0.
Q- 8

For § > 0 given, we take p = ~————— in (3.13) and we obtain:

) -0 A
Hin(1 + @—E—L)HH’(D) < ¢, the constant being independent of 5. When 6 tends to

0 we obtain QF < 0 a.c. in D. It follows that Q¢ =0 in D and, hence, ¢§ = ¢5 In D.

Let ¢ € (0,1). We denote (Pk, yo(k—ko) — pi, )/t by ¢;; hence,

. Je(ko + t(k — ko)) — Je(ko
lim

t—0 1

] .
= l]&])/Dqtd:cdy.
We prove next that {g¢}.e(oy) is bounded in HY ().

(\"P)iow(k—ko) - (Vp)i

t ° for p = ¢f, we get:

By computing
(3.14) lgi a1y < allagllzzp) + c2,

the constants ¢, ¢; being independent of t.

If {¢5}ie(on) is bounnded in L*(D), we obtain, from (3.14), the boundedness of the
sequence in H'(D).

Let us suppose that {g; }ie01) 18 unbounded in L*(D). For a subsequence, denoted
again by {gf}ie(o,) we have lim|lg;{[r2(py = 0.
9

a5l L2(p)
that {Q%}ie(0n) is bonrded in HY(D). Thus we can extract a subsequence such that

We define @ = It is obvious that ||Q%||r2py = 1 and, from (3.14),
Qs — Q° weakly in I'(D), when t — 0.

Moreover, |Q||z:ipy = 1-

By considering the problem sa,tisﬁea by Q¢ and by passing to the limit with
¢ — 0. we obtain that Q€ is the solution of (3.13), i.e. Q¢ = 0in D, which contradicts
1QN 20y =1

The sequence {q }ic(01) beIng bounded in H'(D), it follows that it has at least a
weak limit point in I[Y(D), ¢, which is the solution of (3.12).

From the uniquencss of the solution of (3.12), we obtain that the weak limit point

of {¢}ie(o.1) is unique, which completes the proof.

11



The main result of this section, the necessary conditions of optimality associated

with (C P).. is a conscquence of the above lenuma.

Theorem 3.6 For wny < > 0 let kI be a solution of (CP),. Then, there exnists the

unique elements pi.. (% € H'(D), which satisfy the oplimality system:

_ 0
div(k;Vpi.) + %(k:Hg(pi:)) =01 D,
Pi: = f on S3USs,
)Pk
ki . + H.(p}:)n ,) =0 on 5y,
(0S) dir(k;VQ5.) — ki Hy(p:)—5 99 =11 D,
) ?,/
Q' =0 on S, USs,
;( Q = 0 on 517

on
005
/D(Tp;c. V@5 + He(pi:) gk‘ Yk —kX)drdy > 0Vk € K.
€ (4 14 y

Prooj. Tt is obvious that (OS); has a unique solution, p§., since it represents (VP)-
The uniqueness of the solution Qf. of (OS);s is given by the general results of
Chiceo (1970).
We denote by ¢~ the function given by Lemma 3.5, corresponding tc ko = k7. It
is obvious that:
(3.15) . /Dq*‘dzdy > 0.
By taking ¢ = ¢ in the variational formulation of (OS);r, ¢ = @, in the
variational formulation of (3.12) for ko = Kk} and by using (3.15), we obtain (OS)yu1,

which completes the proof.

The next section deals with the finite element approximation of (OS).

4. The approximation of the control system

Let {7n}r>o be a regular family of triangulations of D and let K, x Vi x Hy be an

internal approximation of K x V x H (see Glowinski, Lions and Tremolieres (1981)),

12
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where:

" V={ve HY(D)/v=[on S, U S5},
(4.1)
H={re HYD)/v=20oen S, U S3).

We consider the discrete optimality system:

(ki pr, Qn) € K x Vi X Ha,
o N
[ E(Vp Vot Ho{p3) S dzdy = 0 Voo € H,
* *= / - a X
/th(th -V + Ho(pi) ih%)dﬂfdy = - /D’thl'dy Vin € Ha,

oQx ,
(¥ 9@+ Holpi) G s = i)y 2 0 Vb € Ki

(4.2) approximates the optimality system (OS) in the sense given by the next

theorem:

Theorem. 4.1 There exists a subsequence {(k; Pk, Q. )}men such that: kj  — k:
weakly in HY(D). ki —— kI weakly star in L>=(D). ki, — kf ae. o D, py, = P
strongly in HY(D). Q5 — @Qr strongly m HY(D), when m — co and (kI,p:,Qr) 1s
solution for (0S).

Proof. The assertions of the theorem concerning {k; }men are a consequence of the
fact that {k;}rso C Kn C K.

For pa, = Ph. — Uh,, With {vh, }men C Vi, a strongly convergent sequence in
H'(D), (4.2), gives the'boundedness in H(D) of {p;,_}men and, hence, the existence
of a weak limit point in HY(D), denoted p;. We can now pass to the limit, on a
subsequence, in (4.2); and we obtain that p: satisfies (OS);; therefore p7 = p. - From
the uniqueness of the solution of (O3); we deduce that {p} }mex has a unique lLimit
point. We also obtain from (OS); :

a,»
V22 dxdy = 0 Vi € Ha

43 /kZV‘.-V B
(4.3) i J(Vphe - Veor + -(pk,,dy

By computing (4.2),—(4.3) for h = hm, With @, = Pk, — Vhm» {vh,, }men C

13



Vi th, — v strongly in H'(D) when m — o<, we get:

/[) ki |V(ph, — pi; )\ Pdrdy = - /D ki V(ph, — Pi:) - Vpidudy

+/ ki S(ph., = Pk:)- Vg, drdy — / (kr  — k)Y D - V(pr., — Vhw)dTdy
(1.4) D , D

( = B = d =
- / (khm - ke)Hs(th)—“(th - Uhm)dxdy
D dy

s 0
[ KU(B,) = Help)) 5 (P = vh )y
D ay

By using the properties of (k; Ymen, {Ph,tmen: {vh, }men and of the function
H. it follows that for m — 0 the right member vanishes. Hence (4.4) gives ;.. — Ph
strongly in H'(D), when m — oo

We prove next that {@% Ymen 18 bounded in HY(D). If {Q,, }men 18 bounded
in L?(D), we obtain, from (4.2);, with @h, = Q;._, the boundedness of {Q% }Jmen
i HYD). 1 {Q}, Jmen 1s not bounded in .LZ(D), we can extract a subsequence,
denoted also by {Q5 Jmex with |Qx. ll2(p) = 0 when m — oco. We define R =

————Qtl—lﬂ—r It is obvious that ||Rml|z2(p) = | and {Rm}men is bounded 1n HY(D).
Q5. l1L2(D)

1
Multiplying (4.2)s for b = fim with —————— we obtain:
| 1@ ll2(D)
* !/ * [ Rm
[ 8 (VR Vepn B (51) )20 =
D dy
) L | #rmdady Yo, € H
- * ’\p m z m E m*
1@ ry o 7o S T =

For passing to the limit in (4.5), we use the properties: the embedding H'(D) C
[P(D)YV1<p<xis compact, ki — k; a.e. in D, o, — ¢ strongly n H'(D), on
a subsequence R, — R weakly in H'(D) and H.(ps,,) — H{p?) strongly in L*(D).
The last assertion Is a consequence of the regularity of the function H,. Passing Lo

the limit with m — oo in (4.5), we get:
A * / * aR
(4.6) [ (VR Vo + Hi{p) g e)dedy =0.

Combining (4.6) with R = 0 on S, U S3, we obtain R =0in D i.e. a contra-
diction with ||Rllz2(py = 1. Hence {Q;. Ymen is bounded in H'(D), which ensures

the existence of a weak limit point in HY(D), Q7. Passing to the limit, as in (4.9),

14



on a subscquence. in (4.2); for h = h,, we obtlain that Q: is the unique solution of
(OS)y. 1e. Q7 = Q,\‘ From the uniqueness of the solution of (OS);; we obtain that
{Q;. }mex has a unique weak limit point. With a similar technique as in the first
part of the proof, we obtain @} — @7 strongly in H'(D). Finally, by passing to the
limit in (4.2) for h = hy, it follows that (k2,p2,Q:) satisfies (OS), which completes
the proof.

In order to solve (4.2), we propose the following algorithm: for kno € Ky given, for
any m € N* and for a suitable choice of a positive number p,, we define (ki.. 1, Phms @hm)

€ K4 x Vi x Hy, as a solution of the following problem:

.
/Dkim(vp}lm - Vepr + Hs(PZm)%)dIdy =0 Vs € Hy,

*

. ; rie Ok
/thm(thm ' V‘r/;h <+ He(phm) g:/”ﬁﬁh)dxdy = - / gOhdIdy Vﬁoh € Hh’

(4.7 e
Pl\"h( Chn ™ Pm_——d f HfhmHL‘\D # 0,
frmllz2 (D

A;Lm Zf “fhml[Q(D 0.

0 hm
dy

internal approximation of L*(D) on K. The projection map can be defined since K

khm+l =

where fam = VPim - VQim + He(Pimn) and Py, is the projection map of the

is a closed, convex subset of L*(D).

Proposition 4.2 The sequence {(k} s Phms @hm ) fmen 18 convergent Lo a solution of

(4.2)1—(4.2)3, for pm chosen with pn — 0 when n — 0.
Proof. From (4.7); and from the properties of the projection map it follows:
[Krms1 = Kimllz2p) < pm ¥ m €N,

Hence the sequence {k}, }mey is strongly convergent in L*(D) to kj. It can be
proved as in Theorem 4.1 that pi, — v, Qi — @3 strongly in HY(D) when
m — o, with (k;,p;, Qh) satisfying (4.2)1—(4.2)s.

[t is obvious that the interest is to obtain a sequence {k; . }men which approximate

a discrete optimal control kj. This 1s possible if we choose p,,, such that

fhm

TP, (K — prm 8
,( K ( h P Hfh,n”L2(D)

)) < Je(kim)-
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[hm

For any m € N*. we define p,, > 0 such that: a < kp, = pm i R
hni

Jim ) > 0in D. |ik;, — pm——i————

, |L2 (D)

5} ke

T R T Pmy

dy | fom |l L2(0)
We finish this section with the remark that the nonlmear problem (4.7), was so

oy &

lved

‘1 Stavre and Vernescu (1989) for a less regular H..

5. Numerical results

Our numerical tests have been performed for D = (0,a) x (0,hy). We are intercested

in comparing the results for different values of kno € K, and for different grids of

the domain D. Let {7x}rso be a regular family of triangulations of D such that

D = |J T, the finite elements T being triangles, as in Fig. 1. Let £ be the set of

TeT,
mesh points In D. V., H, and K} of Section 4 are given by:

"/h == {Uh - CO(E))/U;‘,(TLI') = f(n,) Vn,- € .Sh N (S'z U Sg), vh/T € P1 VT € 77’1}7
H}— = {’Uh € C'D(D)/vh(ni) = () \V/T‘L,‘ € Ehﬂ (Sg U S3>, Uh/T € .P1 V1 e 7_}1},
Ky = KN {l’/- (= CO( )/bh/T = = VT € Th}

——

Fig. 4
5 The aim of the first experiment is to compare the minimum values of the functional

J.. the expressions cf the pressure and the expressions of the permeability coefficient

for different values of kho.v The data common to all runs in the first experiment are:

hy =5 hy =15, a=15=2350,r= 100, ¢ = 0.1, for a mesh size

a = 4, =
h = Az = Ay = 0.25. The following expressions of kno have been considered:
: h ' B
1 47 ny€[0771> 9 4*, 'lny[ '?])
krolzy) = . hy kro(z,y) = hy - hy
107 nyE[“_,h]], 4(y~—_+1)3 nyE P’y hl))
2 2 Pk
; 2, ifzel0,3),
kiolz,y) = 2 kho(z,y) = 4.
2(z ——+1 zfze[ ,al,

In each case, the computed values of the functional J, decrease from one iteration

to another. The CPU time for one iteration was 75 seconds and satisfactory con-

vergence was obtained after 10-15 iterations. In all these cases, we obtained almost
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the same nodal values for the pressure: the minimum values of J, are contained iu
the interval [14.76: 14.82}. The expressions of the computed permeability coefficient
which gives the minimum of J., kg, were different for different ko, but the ratio
kﬁlnm/kﬁlo. | =1,....4, was almost the same. We give below the nodal values of Ky,

corresponding to k.

9 94] 2.641 3.13| 3.43] 3.63| 3.78 3.89| 3.974.03 | 4.07 4.09] 4.08] 4.06| 3.99| 3.82| 3.4§ 3.28 |

9 551 2.92| 3.24| 3.48| 3.66| 3.80| 3.90| 3.98| 4.03 4.0714.10] 4.10] 4.09] 4.05| 3.95] 3.79 3.54

2 381 3.00] 3.33] 3.52| 3.68| 3.80| 3.90} 3.98 403!4.07]4.10] 4.10] 4.09 4.05| 3.96 3.85 3.73

—

3.081 3.23] 3.40 3.56| 3.70| 3.81| 3.90} 3.98 4.0314.0714.10] 4.10} 4.09] 4.05| 3.98| 3.86 3.39

3.92| 3.331 3.47] 3.60| 3.72| 3.82| 3.90 3.98 4.0314.07]4.10| 4.10{ 4.09] 4.05| 3.99| 3.97 4.03

31 3.90| 3.98|4.0314.07|4.10| 4.10| 4.09} 4.05 4.04| 4.08 4.17

3.32| 3.41]3.53| 3.64| 3.74| 3.8
401 3.47! 3.57] 3.67| 3.76| 3.84| 3.90; £.39|4.03 4.0714.10| 4.10] 4.09| 4.06| 4.09} 4.17| 4.26

346! 3.52| 3.61| 3.70] 3.78} 3.85| 3.91} 3.99} 4.04 4080 4.11|4.11]4.09] 4.09] 4.09} 4.17} 4.26

3501 3.55| 3.64| 3.72| 3.80| 3.86| 3.92{ 3.99 4.0414.08]4.11]4.11]4.09] 4.09] 4.09} 4.17} 4.26

35213.57|3.67|3.75] 3.82| 3.87] 3.92| 4.00 4.05!4.08] 4.11| 4.11] 4.10{ 4.09| 4.09| 4.18| 4.26

3.5313.59(3.69|3.77| 3.84| 3.91{ 3.92| 4.00 405! 4.08]4.11|4.11] 4.10| 4.09| 4.09} 4.18 4.26

45414.614.72]4.79 4.85| 4.89] 4.92| 4.95 4.97.4.99]5.00] 5.02| 5.03] 5.03} 5.03 5.02| 5.01

6615.7515.81] 5.86 590! 5.92| 5.95|5.97| 5.98| 6.00| 6.01| 6.02| 6.02 6.02} 6.01} 5.01
8716.9116.93]6.95|6.97|6.98]6.99| 7.00{ 7.01 7.01} 7.01{ 7.02| 7.03

&
D
T
(@ IR )]
ol
&
-3
o0
o3
(©0]
w
D

N

2 7017.7617.8217.86|7.89| 7.92| 7.94| 7.96 | 7.97 7.98|7.99]8.00| 8.00{ 8.01| 8.03} 8.03} 8.06

=1

o0

376 18.8118.85|8.8818.91|8.9318.95]8.96|8.97 .9818.9818.98] 8.98| 8.99| 9.02} 9.05| 9.07
9$219.8619.89{9.9119.9219.94]9.96]9.97|9.98 9.9919.9819.98 9.98{10.0010.03{10.06|10.07

10.87110.90110.92|10.93/10.94]10.95{10.97)10.99 11.00111.00{11.00{11.00{11.00{11.01}11.03}11.05 11.06

11.93111.95(11.94{11.94{11.95/11.96/11.9812.01 12.03112.04/12.05(12.05|12.05(12.04{12.03{12.04 12.03

12.98112.99/12.98]12.97(12.9612.96/12.96|12.96 12.96112.96(12.97(12.98]13.00{13.02{13.04{13.03 13.02

14.0514.14]14.25'14.35(14.44|14.51{14.58 14.62(14.64/14.62|14.54(14.43)14.29]14.16 14“07ilél.()?iiléi.(l(lJ

)

As it can be seen, the differences between k. and kp are greater near S5. There

exists a good reason for this: the pressure of the fluid, which must be minimized, has
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the greatest values near the boundary in contact with the reservolrs.

The purpose of the second experiment is to compare the minimum values of Je
for two different grids. We took: a = 1.5, hy =25 hp=12, =1 3=50,r=
100. = = 0.1 and kpg = k%5 The two different values of the mesh size h were 0.25 and
0.1. In the first case the minimum of J. was 2.21554 and in the second one, 2.22281.

For all the examples, the stopping test was:

lknma1 (ni) — knm (n3)] £0.01 V0, € Zh.
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Fig. 1 The finite element mesh



