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1 Introduction

It is well known that for a Noetherian ring R, an ideal I of R and M a finitely
generated R-module, the local cohomology modules Hj(M) are not always finitely
generated. On the other hand if R is local and m its maximal ideal then Hzn_( M)

are Artinan modules, which is the same thing to say that:

(i) Suppr(H,,(M)) € {m}, and

(i1) The vector space Hompg(k, H: (M)) has finite dimension over k where k =

m
R/m.

Taking account of these facts, Grothendieck [5] made the following conjec-

ture:

Conjecture 1.1 If [ is an ideal of a local Noetherian ring R and M a finitely gen-
erated R-module, then Homg(R/I, Hi(M)) is finitely generated.

Later, Hartshorne [7] refined this conjecture and asked the following more general

question:




Conjecture 1.2 [f [ is an ideal of a Noctherian local ring R and M a findely gon-
erated R-module, does it follow that Extiy(R/I, Hf(:\v])) are finitely generated for all
L,j =0 %

In the same paper, Hartshorne gave the following general definition:

Definition 1.3 [f [ is an ideal of a Noetherian ring R, then a module N will be
called I-cofinite if it satisfies the following conditions:

(i) Suppr(N) C V()
(ii) Extp(R/I,N) is finitely generated for all v 2 0.

In Grothendieck’s definition of cofiniteness, in (il) it was asked only that
Hompg(R/I,N) to be finitely generated. Hartshorne’s definition is motivated upon
the fact that, if we have a short exact sequence of modules, in which two of them are
I-cofinite, in the sense of Grothendieck, then does not result that the third has the
same property, due to the presence of an Ext!. Hartshorne’s definition is fulfiled,
for instance, in the case when the ideal I coincides with the maximal ideal of a local

1
m

ring, since in this case not only the socle Homp(k, H (M)) is finitely generated but

all Exti{(k, H: (M)) are finitely generated for all i and j. as we can see bv using

Matlis duality.

He also gave avcounterexample to (1.1) which essentially is the following: let
I be field and let R = K[[X,Y,Z,U]] and I = (X,U)R. If we take M =
R/(XY — ZU) then H}(M) is not [-cofinite. In fact he proved much more
than this, namely Hompg(k, H3(M)) is not finitely generated. If we denote by
A = k[X,Y,Z,U)/(XY = ZU) and by J = (X.U)A then the counterexample
of Hartshorne says that Homy4(A/J, H3(A)) is not finitely generated. So. even in
the case of a complete intersection ring A, Hj(A) can not be J-cofinite. for all + = 0.
Nonetheless by using the derived category theory he proved that if R is complete

regular local ring, then Hj(M) is I- cofinite in two cases:

(i) I is a non-zero principal ideal, and



(i1) [ is a prime ideal with dim(R/[) =1

In [10] Huneke and Koh generalized the above result to the case of a Gorenstein
complete domain, and an arbitrary one-dimensional ideal.
In [3] Delfino extends the above result to a complete ring, under some restrictions

and finally, Marley and Delfino [11] proved the general case:

Theorem 1.4 Let R be a Noetherian local ring, I a dimension one ideal of R, and
M a finitely generated Rmodule. Then Hi(M) is I-cofinite for all 1.

The purpose of this paper is to give a new proof of this result. We are trying to
avoid, as far as possible, the use of spectral sequence, a technique adopted both by
Hartshorne and Huneke-Koh. The hard part of the proof is to show, in the case of
a complete regular ring, that H{7Y(M) is I-cofinite for a finitely generated module
M. The reduction to a complete regular local ring uses the same idea as in 3] or
[11].

The terminology used is standard and follows [9] and [13].

2 Background material

We will use the following remarkable result, known as Hartshorne-Lichtenbaum van-

ishing theorem (HLVT in short):

Theorem 2.1 Let (R,m) a Noetherian ring of Krull dimension d and I an ideal of
R. Then the following are equivalent:

(i) H{(R)=0.

(1) dim(R/IR+ P) > 0, for all prime ideals P of the m - adic completion R such
that dim(R/P) = d.

Remark 2.2 For a complete domain the condition (:2) is equivalent to the fact that

[ is not m-primary.



We shall use the following standard fact:

Proposition 2.3 Let R be a Noetherian ring and [ an ideal of R and m a natural
number such that Hi(R) = 0 for all1 > m. Then there is the following isomorphism:

HM M)~ MwrH(R)
j‘o’r‘ all R'”lOdulpg M.

Proof. The condition Hi(R) = 0 for all + > m is equivalent to Hi(M) =0 for
all 7 > m and all R-modules M ( cf.[8] ). This implies that the functor Hj*(—) is
right exact and so by [13] ( Th.3.33 ), we infer that H7 (M)~ M g Hi*(R), for all
R-modules M. ®

To prove the finiteness of some Ext, we shall often check, by using Matlis duality,
that the Matlis dual of it is an Artinian module, which is similar to checking that
some Tor is an Artinian module.

In this sense the following proposition is fundamental:

Proposition 2.4 Let R be a commutative ring, M and N two R-modules and I an

injective R-module, then we have the following isomorphism:
Homp(Tor®(M, N), I) ~ Extiz(M, Homg(N ., I))

In addition, if R is Noetherian and M is finitely generated, then

v

Homp(Exty(M, N),I) ~ Tor;(M, Homg(N, I))

A proof of this result can be found in [6] Prop.VL5.1 or [14]

Lemma 2.5 Let R be a Noetherian ring. S a multiplicative closed set such that
mnNS #¢ and N a Rg-module. Then Hompg(k, N)=0.
Proof. We have the following isomorphisms
Hompg(k, N) ~ Homg(k, Hompg (Rs, NV)) =~ Homp, (korRs, N)

But the last module is zero since, by hypothesis we have mRs = Rs. H
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Lemma 2.6 Let A be a Noctherian ring and A == B a faithfully flat A-algcbra.
Then for any finitely generated A-module N and each A-module M. such that

M 4 coker(p) = 0, we have:

Tor (M. Extf;(N, coker(p))) =0
and

Tor (M, Tor), (N, coker(¢))) = 0

for all i,j > 0.( For the second equality is not necesary to assume that N us finitely
generated.)

Proof. Since B is a faithfully flat A-algebra we infer that A is a pure submodule
of B and so coker(y¢) is a flat A-module. Now we have the following canonical

isomorphisms: (see [1], Prop.7 and Prop.8 pg.108-109)

Tor (M, Ext’, (N, coker(¢))) ~ Tor?(M, Exty (N, A) @4 coker(e))
~ Tor(M @4 coker(p), Ext’,(N, A))

But the last module is zero by hypothesis. For the second equality a similar

proof works. (In the above isomorphisms we used the flatness of coker(¢)). ®H

The proof of the following lemma is straightforward, so we'll omit it.

Lemma 2.7 Let (R,m,k) be a Noetherian local ring and
M—N-—L-—P

an eract sequence of R-modules, where M and P are finilely generated. If T is
a finitely generated R-module then Hompg(T, N) is finitely generated if and only iof
Hompg(7T', L) has the same property.

Sox



3 The proof of (1.4) in the regular case

The reduction to the regular case is the same as in [3] or [11]. So, we prove the
theorem only in the case when R is regular.

We need the following lemma:

Lemma 3.1 Let (R,m, k) be a complete Gorenstein ring of Krull dimension d. and
[ a radical ideal of it such that dim(R/1) =1 and H}(R) = 0. If {P1, Pa,.... P}
is the set of minimal prime ideals over I and S = R\ Lnj P;, then there exists the

following two eract sequences
0— R—> Rs— H" — 0

which gives by localization

0 — Rg 5 Rg — (H')s — 0

where HY means the Matlis dual of H} "' (R) and U is the canonical homomorphism

of completion.

Proof. For any element f of S and any natural number n, we have the following
exact sequence, which arises from Cech complex applied to the R-module R/I™ and

to the principal ideal (f) :

o
O——>Hm

(R/I") — R/ 5 (RJ ), — HL (R/I") — 0

By the base ring independence of local cohomology, applied to the canonical

homomorphism R — R/I"™ and to the ideal (f), we deduce the exact sequence:
0 — Hipm g Uti/]”)——r[‘z/]n (R/[’)j—>H1 NI —0

Since f is an element of S it results that the radical of (I™, f) is the maximal
ideal and taking the direct limit over all elements f of S the above exact sequence

becomes:

0 — H2(R/I") — R/I” —Z (R/I” s — HY (R/T") — 0

m m



All modules of the above sequence define inverse sistems which satisfie Mittag-Leffler

condition so, taking inverse limit, we obtain

0 — Jim HY(R/I") — R =5 Ry — lim Hy (R/I") — 0

n n

m

By local duality we know that Hfﬂ(]\) ~ Hompg(Exty (N, R), E), for any finitely
generated R-module N, where E denotes the injective hull of k&, so we get the

following isomorphisms:

lim Hi, (R/I") =~ lim Homp(Extg*(R/I", R), E)

T n

~ Homp(lim Exty*(R/I™, R), E)
~ Honm(h’;}i—i(R), E)
Since H¥(R) = 0 we get the exact sequence:
Bt B% Fe —s H* — 0

It’s clear that the homomorphism ® is obtained as the composition of the con-
tinuous ring homomorphisms B — Rs 3 R\g, where the first homomorphism is
the localization with respect to S and Wy is the completion homomorphism of the

semilocal ring Rs with respect to the topology given by its Jacobson radical. H

We are ready to prove the main result of this section.

Proposition 3.2 Let (R,m,k) be a complete Gorenstein ring of Krull dimension
d, I a radical ideal of it, such that H{(R) = 0 and dim(R/I) = 1. If M is a finitely
generated R-module then H{=Y (M) is I-cofinite.

Proof. We have to show that Exti(£/1, H{7'(M)) is finitely generated for all

i > 0, or, by using Matlis duality, this is similar to show that:
Extiy(R/I. Hi ™ (M))" = Tor{(R/I, Hy™ (M)")

is an Artinian module. By using a standard caracterisation of Artinian modules this

is the same thing to prove the following two facts:

7



(i) Homp(k, Tor®(R/I, H{~Y(M)¥)) is a finitely dimensional k-vector space.
(i) Suppg(Tor{(R/I, Hi}(M))) C {m}
Since H{7'(—) is right exact we have, by (2.3),
HEY (M) ~ (M g H)Y ~ Homg(M, H")

Firstly we’ll prove (i). Since Hompg(—, Ng) > Homp,((—) ®r Rs, Ns) for any
R-module N and applying the functor Homg(M, —) to the first exact sequence of

lemma (3.1), we get a long exact sequence of Ext’s :

0 — M* —> Homp,(Ms, Rs) = HI™H (M)’ - Exth(M,R) — -

O

where M~ is Homg(M, R) and S is defined as in (3.1). The above sequence breaks

up into short exact sequences from which we keep only the first two of them:
0 — M* —s Homp (Ms, Rs) — U — 0
and
0—U— HIF' (M) —V —0

where U := Im(a) and V := Im(B). Note that V is finitely generated.
Tensoring the sécond exact sequence with R/I, we get a long exact sequence of

Tor’s :

- Tor (R]1,V) = Torf(R/1,U) — Torf(R/1, H{ (M)") — Tor[(R/1, V)" -

Since Tor(R/I,V) are finitely generated for all © > 0, by (2.7) it results
that the k-vector space Hompg(k, Torf(R/I,U)) is finitely generated if and only
if Homp(k, Torf(R/I, Hf 1 (M)")) has the same property.

Tensoring with R/I the first exact sequence we obtain:
Torf | (R/I,M™) — Torf‘(}z/(, Homp, (Mg, Rs)) — Torf(R/I,U) — Torf'(R/1, M")
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and using (2.7) we infer that Hom];i(k,Torfi(f{/[,[")) is finitely generated if and

only if Homj:g(k:,Torz-R'(lfi/]j Homp.(Ms, f,z’:))) has this property. But, by (

last module is zero and (i) is completely proved.

Now we’ll prove (ii). Since:
Supp p(Hompg(Tor(R/1, H{ T (M)Y)) C V()
to prove (ii) it will be sufficient to show that:
Tor!* (Rs/Is, Homp (Ms, (H")s)) = 0
where we made the identifications:
(H{7(M))")s =~ Homg(M, H")s = Hompg, (Mg, (H")s)
Since Ry —% Ry is faithfully flat and since
Rs/Is ®ps (H)s ~ Rs/Is ®p, coker(Vs) =0

(because Rg/ls = Rs/1s), we may apply lemma (2.6) and (ii) is proved.

2.5). the

Remark 3.3. Using a similar proof as above, and applying lemma (2.6), we
can prove also that Torf(M,H) and Ext%,(M, H) are I-cofinite for all j > 0.
We must observe that only Homg(M, H) and Extk(M, H) are non-zero modules,

because idr(H) = 1, as we can see easily. In fact these are isomorphic with

h_ﬂ})EXth_l(M/]nM, R) and, respectively EIL])EX‘C%(M/[”[W, R) as it can be seen by

K T
using some collapsing spectral sequence. This modules are, in Hartshorne’s language

of [7], nothing else but H4=1(D;(M)) and, respectively, H*(D(M)).

We are ready to give the proof of (1.4) in the case when R is regular.

Proof. By faithfully flatness of the m-adic completion R, it’s clear that a R-

module T" is I-cofinite if and only if 7" g R is I R-cofinite, and since:

Exth(R/1, H{(M))®rR ~ Exth(R/IR, HI-(M))
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we may assume that R is complete. On the other hand by, [3] or by [10]. we can
assume that I is a radical ideal. We’ll proceed by induction on pdg(M). If M is
free then Hi(M) = 0 for all ¢ # d — 1 (since depth;(R) = d — 1 and by HLVT we
have H(R) = 0). By (3.2) Hf"'(R) is [-cofinite and so in this case we are done.
Now, take a finite presentation of M : 0 = N — F' — M — 0, where F' is a
free module of finite rank and pdg(N) < pdg(M). If we apply I';(—) to this exact
sequence, and taking account that Hj(F) = 0 for all ¢ # d —1 we’ll obtain an exact

sequence:
0 — HI"X(M) — HEYN) -5 HEYF) — HIFY(M) — 0

and the isomorphisms Hi(M) ~ H{t'(N) for all 1 < d — 2 . By induction we infer
that HH(M) is [-cofinite for all ; < d — 2. If we break up the above exact sequence

into two short exact sequence:
0 — HFYM) — HIY(N) — Im(p) — 0

and

0 —> Im(p) — H{ H(F) — H{ (M) — 0

and since, by (3.2), H¢"'(M) is I-cofinite, it results that [m(p) is I-cofinite and
finally we deduce that H¢%(M) is I-cofinite. |
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