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A CETLULAR AUTOMATA ON A TORUS

BY CRISTIAN IOAN COBELI, \,{ARCEL CRA$MARU A}'ID ALEXANDRU
ZAHARESCU

AgsrnA,cr. In this paper lve prove a conjecture of Brian Thwaites

concerning the evolution function of a certain cellular automata on

a torus.

In the seventies, when lnore and more people had access to personal

computers, John Conway's game of life became very popular. Since

then, the study of this type of game grew up into the theory of cellular

autornata. In [5] (see also [2, page 311]) Brian Thwaites proposes a

conjecture which leads to such a cellular automata'

Tlrwaites's conjecture is: Given any fi.nite sequence of tational num-

b er s, t ake .the p ositiw di;ffereacqs,ofs,uecegsi ve memb ers (iacluding dif-

ferencing the last rnetnber with the frrst); iteration of this opetation

eventually produces a5et of zeIQS.if and only if the size of the sef is a
power of 2.

Our aim in this note is to prove that Thwaites conjecture holds true.
Let a6, . . . , ad-t be the given d:rational numbers, which we may think

as the heights of d poles sitrlat'ed around a circle. These numbers are

replaced at the next step by d rational nurnbers given by the difference
in heiglits of successive poles, and then the process is repeated. Being

an iteration of the same operation, it lesembles Conway's life game.

Being an iteration of'the'same operatioh, it'resembles Conway's life
game. Fo, no* the'field of plaj' is' a 1-dimensional torus and since,
i, *. rvill see only finitely ntany numbers lvhich depend on the initial
configuration are involved, in the long run' we will end up with a cycle'
Finding the lengths of these cycles, which depend mostly on d-the size

of the torus, is'"the interesting problem. In other words, if d is a power

of 2, Thwaites. conjectlre.says that the length of any cycle is equal to

1 (the shot-test possible) ancl in section 2 we indicate necessary and
sufficient propelties fbr d which will guarantee that the length of any

c1,-cle is either sholt or long. \\e discovered that there is a connection

bet.rveen this life game of Thwaites ancl arithmetic in cyclotomic fields.

In section 2 we exploit this connection in order !o obtain information



on the lengths of the above cycles. A criterion which tests if a given
integer is a period for this evolution function is given in section 3.

1. Pn,oop oF THwAITES coNJECTURE

We begin by making some notations rvhich set the problem in a
clearer framelvot'k. Let a6, . . . , (Ld-r be the given rational uumbers. For
convenieuce, we ttnpack this olderecl set of numbers by associating to
it t lre inf inite secluellce (cts,a1,...),  rvhere the components are defined
by

ak:  ak+d fo r  k  >  0 . ( 1 )

Let us denote by Qa and bv Na the set of all the sequences rvith rational
and natural componetits respectively, satisfying (1). The evolution
fu r r c t i on  d ,  Qa  -+  Q7  i s  de f i ned  by  6 (ao ,a r , . . . )  :  ( o6 ,  Q l , . . . ) ,  r i ' he re

a'r: lcL1, - cLk+tl for f t  > 0. (2)

With these notations, Thrvaites coujecture says that given an arbi-
t ra l y  sequence  ( c6 ,  aL t . . .  )  g  Qa ,  t hen  / ( " ) (ay t& r t . . .  )  :  ( 0 ,0 , . . .  )  f o r
all sufficiently large rz € N iff d is a power of 2. (Here d(") is the
repeated composition of n, samples of 6.)

Let 's note that al l  the compouents of $@)(a0,ar,..  .) are uonnegative
if. n ) 1 and by multiplying all the components of the initial sequence
(oo,or,..  .) bV the least conrmon rnult iple of their denominators (note
that only finitely many of thern are distinct), we may assume that the
evolution function has the dornain and the range eqrrbl to Na.

Let M : lr lax{oo,.. .  ,aa-r).By the definit ion of. $, rt  is easy to
see that al l  the components of d(") (a0,cr,1,..  .  ) are integers belonging
to [0,.V1]. Because there are only finitely lnany such perioclic seclueuces
in N4, i t  fol iorvs that given any ini11u1 configuration (as, art.. .  ),  the
repeated application of the evolution function will eventually produce
a cycle of sequences lvhich keep repeating.

The next lemrna shows that after sufficiently many steps we always
end up with sequences r,vith components having at most 2 distinct val-
ues.

Lemma L. Let d be a posi,t iue i ,rr, teger. (as,ct1,.. .) a sequellce oJ n'ort-
negati,ue i.ntegers satisftli'ng Q.) and suppose the funct'iorr, $ i.s def,ned
as aboue. Th,en there i,,s a posit'i'ue r,nteger a, such that for srtffici'ently
large n a l l  the cor tqton,err , ts  o f  6 \ " t  (cs, r i1 ,  . . . )  be long to  {0,a} .

Proof. The proof is obtainecl br' (inverse) induction. Let us look at
a poltion of the seqrrellce of numbers rve get at some step. We write
them on a line as follorvs: 

,



Here m is the maximum of the all our numbers at this step, b and

c a r e r l o n z e r o , T n > b , r n )  c , s ) 0 ,  t >  0 ,  u 2 l a n d t h e
part of the sequence that begins and ends with nz contains only 0's

or rn's. Then, after at most s + u + f steps, the maximum of the

numbers that are produced out by this portion of the sequence rvill be

S max {'m - b,m - c) < m. Of course at a given step the sequence of

numbers rve obtain might contain several subsequences of the form (3),

but what happens is that after at most d steps the maximum of the

numbers at that step will be strictly less than rn.
The lernma then follows bv induction.

By multiplying all the conponents of the initial configuration by a-',
where a is given by Lemma 1, we may assume thatsafter sufficiently
many steps all the components of the sequences we obtain are 0 or
1. Then our operation (taking the positive differences of successive
members of the secluence) is nothing else than addition in the group
(z1zz, +).

Now there is a transparent way to generalize the game by replacing
(Z1ZZ, +) bv a more general finite monoid and also by playing on a
multidimensional field. The operation in this case is to take the sum (or
product if the niultiplicative notation is used) of the closest neighbors.

\\ie onl;,'mention here that if we keep tlie same group (V'l2V', * ), but
play on a multiclimensional torus, then we eventually obtain a sequence
of zeros if and only if the size of one of the dimensions is a porver of 2.
This can be shou'ed by following tlte same lines of proof.

Returning to our problem, let us observe that by starting with an
arbitrar-y sequence of 0's aucl 1's, by applying repeatedly the evolution
function, we obtain the follou'ing table rvhich is filled with tlie beginning
of the secluences obtainecl in the first few iterations.

(3 )



Step I 2 3

0. a0 O,1 &2

l . a o * a t 0,1 * a2 a2 * o,3

2 . a 0 + a 2 frl + 03 a 2 l a 4

3 . a g * a , 1  * a 2 * a 3 a 1 * a 2 * a g * a a a 2 l a 3 * a a * a 5

4 . a s * a 4 CI1 1- o,g a z * a a
d . a s * a 1 * a a * a 5 a 1 * a 2 * a 5 * 4 6 a 2 * a 3 * a 6 * a 7

6. a s * a 2 * o q * 4 6 a 1 * a s * a s * a 7 a 2 * a 4 * a 6 * a s

7. a s * a 1 * . . . * a 7 a y  *  a 2  * . . . *  a g a 2 * a 3 * . . . * 4 9

8. 0,9 * a6 a 1 * a g a 2 t a n

L as * a1 * as * rlg a1*  a ,2  *  ag  *  o ro a 2 + a s * o r o * o r r
10. c t s * a 2 * o 3 * 4 1 6 a 1 * a s * o 9 * o 1 1 a 2 * a 4 * a n * a n

Now it is easy to prove by induction that in the above table if d:2'n
then the d-th row (and consequently all that follow after it) contains
only 0/ s. Also, there are sequences of 0's and 1' s, namely those con-
taining an odd number of 1's, for which on the (d - l)-th row all the
numbers are .equal to 1. Thus, if d is a power of 2 and we start with
an arbitrary set of 0's arld 1' s, then the process will produce 0's in d
steps and only for particular a;'s in less then d steps.

Tlre outcome in the case d + 2* can be also deduced easily by
induction. Thus, if we start for example with the periodic sequence
given by oo:1and &i , :0  for  1  (  k  < d -  1 ,  then, l  wi l l  a lways be
the first number on tlie rows representing the steps of order a power of
2. Therefore, if d is not a power of 2 then there are sequences which
will never procluce a set of 0's.

We summarize our result in the following theorem which proves the
Thr.vaites conjecture.

Theorem L. Let d be a positiue i,nteger and suppose the euoluti,on func-
t'ion $ i,s def,ned as aboue. Then there is a rati,onal number r ) 0 such
that the repeuted appli,cati,on of $ to ang i,ni,ti,al se(luence of rati,onal
nurnbers (o0,ot,. . .) sati ,sfying (1) wi, l l  euentuallg produce a cycle of
sequences wi,th the property (7) with all thei,r components rn {0, r}.
Moreouer, the cycle will contai,n only the sequence (0,0,. . . ) indepen-
dently on the i,ni,ti,al sequence if a'nd only i,f d i,s a power of 2.

2. THe LENGTH oF cYCLES

We assunre in tliis section that the evolution function / is defined
on IU4, where [J,y, is the set of allothe sequences with components in



{0,1}, satisfS'ing (1). This is not restrictive as we sary above and also

has the advantage that it tnakes d to be aclditive.
Theorern 1 sho.rvs that if d is a polver of 2 then the length of any

cycle is equal to 1. Suppose from now on that d is not a power of 2.

It is not difficult to prove by incluction that J-th component of

d@) (oo, att .  .  .  ) is equal to

i (i),,-- (mod 2)
7-^ \J  /  -

Since / is aclditive we need to see only the evolution of the sequence

e6 with the cornpouents given bY

fn, :1 i f  j  = o (mocl d)

\ o r : o  i f  i * o  ( m o d d )  
'

Denote

Then

d@Go) :  (So@,0),  Sa(rz,  -L) ,  S6(n,-2),  . .  . )  (mod 2).

Therefore our problem is to study the behavior of the sums ̂ 9a(rz, r)
(mod 2).

Let p be an odd prime divisor of d. The sum ,So(n, r) can be written

S r(n,  r )  :  S a(n,  r )  +  S 6(n,  r  +  p)  + S a(n,  r  +2p)  * ' ' '  * ,9a (n, ,  +  (4r -  t )p) '

This shows that if we prove that for any n ) 1 there is an r such that
Sr(n,r) I  0 (mod 2) then for no n ) 7 we have that Sa(n,r) :  0
(rnod 2) for all r.

For the surns with d : p we prove the following:

Theorem 2. Let p be an odd pri,me, ( a pri,mi,ti'ue root of 1 of order
p and J a pri,me i,deal i,n Zl(l which diui,des 2. Then, for any n 2 1
whi,ch i,s a ntulti,p/e o/ (Norrn(J) - t), So(n,r) i's euen if and only if

r :  O(rnod p).

Proof . Consider the poll 'nornial /(X) : (1 + X)" and let

/ i , , " , (r)  :1 ) ]  c-t l ( (bx).
P o riiol

Then /r,, ,1(f) wil l  pick up froru /(X) only the terms Xft with k: r
(mod p). It follol,vs that 

F

Sa(n , r )  = (;)
l1k1n

,t=r-(mod d)



Hence:

/ r " , ' l (1 )  :  S(n , r ) '

ps(n,r) -- I (-b"(1 + eb)"
b (mod p)

Now since p is odd S(rt,r) will be even exactly when the right-hand-

sicle of (4) is even. Note that fol b : 0 (mod p) the corresponding
term in the right-hand-side of (a) equals 2', which is even for n > 0.

We are left then in (a) with the sum of terms with 1 < b S 7t * I'

Let J be a prime icleal in Zl(lwhicb divides 2. Since the right-hand-

side of (a) is a rational integer, it rvill be divisibleby 2 if and only if it

is divisible by J. We know that 1 * ( is a unit in V'l(] (see Borevich-

Shafarevich [1]) and so is any of i ts conjugates 1*(b, 1 < b < p- 1. In
particular none of them lies in .7. Now from tlie Little Fermat Theorem
in V,l() it follows that

(1 + 4a;(N"rm( '7) - t )  =  1 (mod'7) '

for any 1 ( b < p - 1. Then, for any n which is a muitiple of
(Norm(,7) - 1) we have:

( 1  + ( b ) " : 1 ( n i o d , 7 ) .

Therefore for such values of n the right-hand-side of (a) is

: t e-u, (mod /).
1<b<p- l

I f  r:  0(mod p) this last sum equals p - I ,  which is : 0(mod ,7).
If  r lO(mod p) then the surn equals -1, which is lO(mod ./).
In conclusion, for any rl > 0 rvhich is a multiple of (Norrn(J) - l),

S(n, r) is even if and only if r : 0(mod p), which concludes the proof
of the theorem.

Let's translate this in terms of our problem. Suppose we start with
the initial configuratior) €s. Then after n steps, where n is a multiple of
(Norm(/)- 1), the outcome produced by the evolution function will be
eclual  to  (1,1,1, . . .  ,  ) -eo. In  par t icu lar ,  th is  "populat ion"never  "d ' ies" ,
so lve proved again Tirrvaites conjecture for d which is not a power of
2. Ntoreover, rve nolr, kuo'w that the length of the cycle corresponding
to the irritial configuration €6 has to be a divisor of (Norm(J) - 1)

There is a sirnple fonnula ri'hich can be used to compute this number
(Norm(,/) - 1) in tenns of p. I t  is known that 2 spl i ts inZl( l  into a

(4)



product Jr. . .J, of distinct prime ideals. The norm-of each of these
ideals is 2', where s is the order of 2 mod p. Also rs - p - 1. Thus
the nurnber (Norm(.7) - 1) is the smallest number of the form 2' - 1
rvhich is a multiple of p.

Note that from the additivity property of the evolution function @
it follows that 2" - 1 is a period for the corresponding life problem for
any initial configuration with components 0 or 1.

Two more rernarks:

1. The chain produced by an initial configuration with components
0 or 1 is not necessarily periodic from the beginning. It is periodic after
we restrict to the subchain: n ) L For n : 0 the configuration might
not be the same as for 11, : 2'- 1. Indeed, recall the term 2" coming
from the term b : 0 above, which adds a 1 to each component of the
configuration. That's r,vhy, if we start with ee in 2' - 1 steps we get
( 1 ,  1 ,  .  .  . )  -  u o .

More generally, by the same aclditivity property, we deduce that if we
start with a configuration frorn IIJ' which has k of the first p components
equal to 1 and the other p-ft equal to 0 then, after 2' -7 steps we get
a a configuration which either equals the initial one, and this happens
if ft is even, or- equals (1, 1, . . . ) minus the initial configuration and this
happens if ft is odd.

2. One can ask about short and /ong periods.
Short periods: 2' - 1 is always a multiple of p; it equals p when

p is a Mersene prime. One doesn't know if there are infinitely many
such primes. The first Mersenne primes are 3,, 7, 3I, 127 ,, . . . . Note
that for such a prime number p it follows from our results that for anv
initial configuration with components 0 and 1, not all equal to 0 and
not all equal to 1, the length of the corresponding cycle is exactly p.
For exarnple, writing only the first p components of the sequences, the
chain produced by the initial configuration €s when p :3 and p - 7
are :

( 1 , 0 , 0 )  - +  ( 1 , 0 , 1 )  - +  ( 1 ,  1 , 0 )  - +  ( 0 , 1 , 1 )  - +  ( 1 , 0 , 1 )  * +  . . .

and

( 1 , 0 , 0 , 0 , 0 , 0 , 0 )  - +  ( 1 , 0 , 0 , 0 , 0 , 0 ,  1 )  - +  ( 1 , 0 , 0 , 0 , 0 , 1 , 0 )  - +

- + ( 1 , 0 , 0 , 0 ,  1 ,  1 ,  1 )  - +  ( 1 , 0 , 0 ,  1 , 0 , 0 , 0 )  - +  ( 1 , 0 ,  1 ,  1 , 0 , 0 ,  1 )  - +

- + ( 1 , 1 , 0 , 1 , 0 ,  1 , 0 )  - +  ( 0 ,  1 , 1 , 1 ,  1 , 1 , 1 )  - +  ( 1 , 0 , 0 , 0 , 0 , 0 ,  1 )  - +  .  .  .

respectively. 
7



Long periods: 2'- 1 always divides zp-r - 1; it equals zp-L - 1 when
2 is a primitive root modulo p. Artin's conjecture, still unsolved, says
that there ale infiuitely many such primes. The first prime numbers
rvhich sat isfy Art in 's conjecture are 3,5,  11,  13, 19, 29,37,53,59,61,
6 7 ,  8 3 ,  1 0 1 , . . .  .

Below is the chain ploduced by the initial configuratiorl €6 for p - 5.
it is a cycle of leugtli 15, as expected.

( 1 , 0 , 0 , 0 , 0 )  - +  ( 1 , 0 , 0 , 0 ,  1 )  - +  ( 1 , 0 , 0 ,  1 , 0 )  +  ( 1 , 0 , 1 ,  1 ,  1 )  - t

- + ( 1 ,  1 , 0 , 0 , 0 )  - +  ( 0 ,  1 , 0 , 0 ,  1 )  - +  ( 1 ,  1 , 0 ,  1 ,  1 )  - +  ( 0 ,  1 ,  1 , 0 , 0 )  - +

- + ( 1 , 0 , 1 , 0 , 0 )  - +  ( 1 ,  1 , 1 , 0 ,  1 )  - +  ( 0 , 0 ,  1 ,  1 , 0 )  +  ( 0 , 1 , 0 , 1 , 0 )  - +

- + ( 1 ,  1 ,  1 ,  1 , 0 )  - +  ( 0 , 0 , 0 ,  1 ,  1 )  - +  ( 0 , 0 ,  1 , 0 , 1 )  - +  ( 0 ,  1 , 1 ,  1 ,  1 )  - +

- + ( 1 , 0 , 0 , 0 ,  1 )  - +  .  .  .

In the papers of Rajiv Gupta and M. Ram Murty [3] and Heath-
Brown [a] on Artin's conjecture there are lemmas showing that for
infinitely many primes p all the prime factors of the number \ are
larger that p1la. This shows tliat there are primes p for which the
lengths 2' - I of our periods are huge, more precisely they are larger
than 2ot/n .

However, 2' - I is not necessary the shortest period. For example,
rf p:11 the length of the cycle produced by any corffiguration is 341,
while 2' - I : )r0 - 1 - 1023 : 3. 341. Other examples can be found
in the following Table.

d length of cycle Q 2 s  - 1 d(2s/2 -  I )
.) ,) 2 3 3
r 1 5 : 5 . 3 A: 15 15
17
a 7 3 .7

I

1 1 3 4 1  :  l i  . 3 1 10 3 4 1 . 3 341
1 3 8 1 9  :  1 3  . 6 3 12 8 1 9 .  5 819
1 7 2 5 5  : 1 7 '  1 5 B 255 255
i9 9709  :  19  .511 1B 9709 . 3" 9709
23 2 0 4 7  : 2 3 . 8 9 I 1 2047
29 475707 :29.16383 28 475707 .5 .  113 475107
31 3 1 31
37 3233097 :  37.  8738136 3 2 3 3 0 9 7 . 3 . 5 .  1 3 .  1 0 9 3233097 . 3
i 1. tr 4 1 9 1 3  =  4 1 . 1 0 2 320 41943 .52 41943
43 5461 :  43.727 ' t 4

I = 5 4 6 1  ' 3 5461
47 8388607 :  47 .178.X8123 8388607

8



\\re calculated the length of cycles for many other. values of d and
we found that when s is even the number d(2s12 - 1), which is always '

a divisor of 2' - 1, is also a period. It would be intelesting to know if
this is true in general.

3. A ivronE GENERAL EVoLUTIoN FUNCTIoN

In this section rve introduce a more general evolution function and
give a useful rnethod to calculate its repeated composition by itself.
Finally, we deduce a criterion which discerns if a given integer is or
not the length of a cycle of chains produced by our original evolution
function.

Let cI be a positive integer and 5 : {0,1}d. We denote by p(")
the circular rotation to the right of the vector x € S (e.g. for d :

7 ,  p ( 1 , 1 , 0 ,  1 , 0 , 0 , 0 )  :  ( 0 , 1 , 1 , 0 ,  1 , 0 , 0 )  ) a n d . : . 9  x  5  - +  5  t h e  r o r
function (which is the conlponentwise addition mod 2).

Let a1 , (tr2, . .. , o, be s positil'e integers and define the evolution func-
tion /: 5 -+ S by

d ( * )  =  r t ' r ) ( x )  . . . p (%) (x ) .

Note tliat for s : 2, a1 :0 and az : I we get our previous evolution
function.

The follou'ing lemma adds together some properties of these func-
tions.

Lemma 2. For anA nonnegatiue integers k,m,,n and, anA x,y e S we
haue:

1.p(xy)  :  p(x)p(y) ,

z .d$v) :6 ( . " )d$) ,
s.d(p(*)) : p(6$)),
4.0@) (*y) : 6t^)1x16t'")1y;,
s.Oon) (p(")) : p(d@ $)) ,
6.607') (p(")(")) - o@) (d{-){")),

7.yQk) (*) :  r{zkat) (") .  .  .  p(2eo,)(x).

Proof. Evelytliing follou's easily by clefinitions and/or by induction.

As a consequence, we irnmediately obtain the following:

Coro l l a ry  L .  Supposed :2k .  Then ,  f o r  any  x  €  5  andn)  7  we
haue that 6@+n-t1(*) : O if s is euen und 6@d')(*) : x if s i,s odd.



Remark. It is easy to see that the properties 1-7 from Lemma 2 do

not depend essentially on ,S. Thus we may replace {0,1} by a more

general monoid (a nilpotent one rnay be of particular interest), for

which similar consequeltces still holcl tme.

Let

k : 2 t r + 2 t t + . . . * 2 1 ,  ( 5 )

be the representation in base 2 of tlie positive integer k and assume

io ( .  . .  1 l ,  We denote

r i i = 2 L i c t i  ( m o c l d ) ,  0 { r 1 , i < d - 1  ( 6 )

for 0 ( i < 1t, and 1 < i < s. The lext proposition gives an algorithm

for the calculation of d(ft)(x) in O,(logk) steps.

P ropos i t i on  1 .  Le tx€S  and

f s :  p t ' o t  ( * )  . . . p ' ' 0 , ( x ) .

Defi,ne i,nducti,uely

y: -- p'i ' (y:-t) . . . p'i" (y:-t)

f o r L < j 1 p . T h , e r " r ,
6tr)(x) : vr,.

Proof. Let ft : kr * 2lo. Using Lemma 2 we have r

4*) (x) 
:r^'ur r',,.i,,,'):l ;"1-. . Yj::,:l'  \ '  '  \ ' /

4tr ' ' )  (or .o ' ) (*)  .  .  .  o( '0,)("))  :  d(* , ) (yo).

Similarly, let kr : kz* 2l'. Then we have

d u' (vo) 
:'r'ur -',i 1i,');] ;,i- fj::]ffj

. , , , . ,  /  , , ,  ,  r o . ,  \ r  . \  , / I , . ,-  4 ( * t )  (p t " ' t ( yo )  . . . r ( t ' r " ) (Vo ) , )  :  d ( * r ) ( y r ) .

It is clear no$' that the proposition follows by induction following the
same procedure.

A direct way to calculate @ta)(x)^is given in the next theorem.
,tu



Theorem 3. For any positiue integer k represented ag in (5), we haue

4( t ) (x)  :  n  o?ot t* " ' * t r tu+t ) (x) .
1 S i r , . . . , i r 4 t S s

Proof. The proof is by induction on pr.
I f  1 t :0 ,  then k :2 to  and by  Le tnma 2

4(z 'o ) (x )  
-  

, (2 too t )  ( * )  . . .  O(z loa" )  ( * )  :  Ot 'o r ) (x ) . . . r { '0 " ) (x ) .

Suppose the statement is true for p, - 1. Let h - k - 2I'. Then the
representation of k1 in base 2 has p digits and we can apply to it the
hypothesis of induction. Thus, by Lemma 2 we have

4tr)(x) - 6Qtu+k) (*) : 6tz' ')(6lk)(x))
, / \

:  6QIu l  (  IT O0oi r*" ' * r r - ' , r ) (x)  ) .
\  rsi,*^. l i ,s s /

By the definition of @(x), (6) and Lemma 2 this is

: g o{zt' o) (,=,,llr, 
=" 

P('0" +"'+"-"' I 1*))

:  
I I  o\roir*" '*rrnr+r 

)(x), .v

L( . i1 r . . . , i r *11s

: g ot") (,=o,llr,=, o?ot'*"'*r'-"'r(*))

which concludes the proof of the theorem.

Now we apply this result to the particular evolution function from
the previous sections. Thus, from now on we assume that s :2, at :0
and a2: 1, that is /(x) : xp(x).

Corollary 2. Let k :2to +2h +. . .*21, be the representati,on in base
2 of the posi,tiue i,nteger k, where lo ( . .. 1 l* and $(x) : xp(x).
Denote

R r : { r : r : 2 t ' ( m o d d ) ,  0 ( r  < d - 7 ,  f o r s o m e  0 < i < p } .

Then

4(r) 1x) : x II o 
("4') 

1*1
RcP(Rh)

for any x € 5.
11



Proof. By Theoren 3

6(t)(x) : II ,(ro4*"'*ru',+')(x). (7)
1 3 i 1 , . . . , i r a 1 5 2

Bv (6) and our hypothesis r i t :  A and r3z - 2t i  (mod d), 0 < r iz 1d

for 0 ( j 3 [t.The corollary then follows by isolating in (7) the term

wi th i r  :  . . .  :  i1 t+r :1 ,  that  is  p(0)(x) ( -  * ) 'and us ing the fact  that

( r " )  ,  .
p ' r e o ' ( x )  : 0 .

From Corollary 2 we deduce a criterion for cycling. Thus, 4(r)(x) : x
is equivalent to

I
RcP('Rr)

/  s - . )
p\ ,?* ' ' ( * )  :  0 . / R i

Star t ing  w i th  x  -  €s  :  (1 ,0 , . . . ,0 ) ,  we ge t  d (eo)  -  €6p(eo)  :

(1, 1,0, . . . ,0) - €1. Then, by (8) and Lemma 2, we deduce

/ s - - \  ( t * l ' ) .
p\,?"' '("o) . I I  p\ '  

'  ,"r* ' ' ("0) : 0,
) ncP("-k)

which can be written as

i l p(E')(eo) - II o('*'D*")1"0;
RcP(Ed 

3

II
RCP(Rh

il
RCP(R

RcP("-k)

rn=1

p(E') ("0) : p( II p 
(E ) 1",)). (e)

r) RcP(Rk)

For any rn e {1,. . . , d} let

u*,a(m) :  #{R C Rn, l ,  
:  ^  (mod d)} .

Then (9) becomes

reR

d , d

i l p"or*t (eo) : o( II p,r"(*) 1u.)).
m=l

Since the only invar iants of  p are (0, . . . ,0)  and (1, . . . ,1)  we obtain
the following:

Corollary 3. A posi,ti,ue i,nteger k i,s a peri'od for $(x): xp(x) i'f and
only i,f the numbers up,6(rn), I S m 3 d haue the same parity.



We checked the values of. up,a(rn) with k the lengtlr of the shortest
cycle for different values of d and we found some interesting "regularity"
properties . Thus, u*,a(m) not only have the same parity but most of
the time they are equal. Sotne nontrivial examples are:

1 .  I f .  d : 1 1  t h e n  k  : 3 4 1  :  1 0 1 0 1 0 1 0 1 2 ,  u 3 4 1 , 1 1 ( t t ;  :  1  a n d
usarJ t ( * )  :3  fo r  1  1m 1L0.

2 .  I f .  d : 1 3  t h e n  f t : 8 1 9 :  1 1 0 0 1 1 0 0 1 L 2 ,  u s 1 s , " ( 1 3 )  :  3  a n d
us1s,B(tn) : 5 for 7 1 m < 12.

3.  I f  d :19 then k :  9709: 100101111011012, /e7se,1e(19) :  25
and ze76e,1s(m) : 27 for I S m < 18.

4. If d: 43 then k : 546I: 10101010101012, vsm.qz(43) : 1 and
usaar.sz(m) : 3 for I I m' < 42'
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