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A CELLULAR AUTOMATA ON A TORUS

BY CRISTIAN IOAN COBELI, MARCEL CRASMARU AND ALEXANDRU
ZAHARESCU

ABSTRACT. In this paper we prove a conjecture of Brian Thwaites
concerning the evolution function of a certain cellular automata on
a torus.

In the seventies, when more and more people had access to personal
computers, John Conway’s game of life became very popular. Since
then, the study of this type of game grew up into the theory of cellular
automata. In [5] (see also [2, page 311]) Brian Thwaites proposes a
conjecture which leads to such a cellular automata.

Thwaites’s conjecture is: Given any finite sequence of rational num-
bers, take the positive differences.of.successive members (including dif-
ferencing the last member with the first); iteration of this operation
eventually produces a set of zeros if and only if the size of the set is a
power of 2.

Our aim in this note is to prove that Thwaites conjecture holds true.

Let ag, . .. ,aq—1 be the given d rational numbers, which we may think
as the heights of d poles situated around a circle. These numbers are
replaced at the next step by d rational numbers given by the difference
in heights of successive poles, and then the process is repeated. Being
an iteration of the same operation, it resembles Conway’s life game.

Bemg an iteration of the same opemtlon it resembles Conway’s life
game. For now the field of play is a 1- dlmensmnal torus and since,
as we will see only finitely many numbers which depend on the initial
configuration are involved, inthe long run, we will end up with a cycle.
Finding the lengths of these cycles, which depend mostly on d—the size
of the torus, is the interesting problem. In other words, if d is a power
of 2, Thwaites conjecture. says that the length of any cycle is equal to
1 (the shortest possible) and in section 2 we indicate necessary and
sufficient properties for d which will guarantee that the length of any
cycle is either short or long. We discovered that there is a connection
between this life game of Thwaites and arithmetic in cyclotomic fields.
In section 2 we exploit this connection in order to obtain information



on the lengths of the above cycles. A criterion which tests if a given
integer is a period for this evolution function is given in section 3.

1. PROOF OF THWAITES CONJECTURE

We begin by making some notations which set the problem in a
clearer framework. Let ag, ... ,aq_, be the given rational numbers. For
convenience, we unpack this ordered set of numbers by associating to
it the infinite sequence (ag, ay, ...), where the components are defined
by

Of = Oprd for % > 0. (1)

Let us denote by @Q; and by N, the set of all the sequences with rational
and natural components respectively, satisfying (1). The evolution
function ¢: Q — Qq is defined by ¢(ag, ai,...) = (ag, @, . ..), where

ay, = |ag — ap41) for £>0. (2)

With these notations, Thwaites conjecture says that given an arbi-
trary sequence (ag,ay,...) € Qq, then ¢™(ag,as,...) = (0,0,...) for
all sufficiently large n € N iff d is a power of 2. (Here #™ is the
repeated composition of n samples of ¢.)

Let’s note that all the components of ¢ (ag, ay, ... ) are nonnegative
if n > 1 and by multiplying all the components of the initial sequence
(ap, ay,...) by the least common multiple of their denominators (note
that only finitely many of them are distinct), we may assume that the
evolution function has the domain and the range eqital to Ny.

Let M = max{ao,...,a4-1}. By the definition of ¢, it is easy to
see that all the components of ¢™ (ag,a,,...) are integers belonging
to [0, M]. Because there are only finitely many such periodic sequences
in Ny, it follows that given any initial configuration (ag,as,...), the
repeated application of the evolution function will eventually produce
a cycle of sequences which keep repeating.

The next lemma shows that after sufficiently many steps we always
end up with sequences with components having at most 2 distinct val-
ues.

Lemma 1. Let d be a positive integer, (ag,aq,...) a sequence of non-
negative integers satisfying (1) and suppose the function ¢ is defined
as above. Then there is a positive integer o such that for sufficiently
large n all the components of 3™ (ag,ay, ...) belong to {0,a}.

Proof. The proof is obtained by (inverse) induction. Let us look at
a portion of the sequence of numbers we get at some step. We write

them on a line as follows:
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,0,0,...,00m, ... ,m,0,...,0,c,... (3)
N e N e N e’

S z€eros u numbers t zeros

Here m is the maximum of the all our numbers at this step, b and
¢ are nonzero, m > b, m > ¢ s > 0, t > 0, v > 1 and the
part of the sequence that begins and ends with m contains only 0s
or m's. Then, after at most s + u + ¢ steps, the maximum of the
numbers that are produced out by this portion of the sequence will be
< max {m — b,m — ¢} < m. Of course at a given step the sequence of
numbers we obtain might contain several subsequences of the form (3),
but what happens is that after at most d steps the maximum of the
numbers at that step will be strictly less than m.
The lemma then follows by induction.

By multiplying all the components of the initial configuration by a™%,

where a is given by Lemma 1, we may assume that after sufficiently
many steps all the components of the sequences we obtain are 0 or
1. Then our operation (taking the positive differences of successive
members of the sequence) is nothing else than addition in the group
(z/22,+). '

Now there is a transparent way to generalize the game by replacing
(Z/ 27, —I—) by a more general finite monoid and also by playing on a
multidimensional field. The operation in this case is to take the sum (or
product if the multiplicative notation is used) of the closest neighbors.

We only mention here that if we keep the same group (Z/2Z, + ), but
play on a multidimensional torus, then we eventually obtain a sequence
of zeros if and only if the size of one of the dimensions is a power of 2.
This can be showed by following the same lines of proof.

Returning to our problem, let us observe that by starting with an
arbitrary sequence of 0's and 1’s, by applying repeatedly the evolution
function, we obtain the following table which is filled with the beginning

of the sequences obtained in the first few iterations.
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| Step | 1 2 | 3 [

0. a ay a9

1. ag + a1 ay + as as + a3

2. ag + as ap + az as + aq

3.l ap+ay+ax+az | ag+az+az+ay ap + a3z +ag + as
4. ag + aq ay + as as + ag

5| ag+ay+as+as | ay +ax+as+ag | as+a3+as+az
6. ap+ag+ag+as | a1 +a3+as+ay as + a4 + ae + asg
7. lag+a1+--+a7 |ay+ax+---+ag | ax+az+---+ag
8. ag + as ay + ag as + apg

9.1 ap+ay+as+ag | a1+ a2+ ag+ag | a4+ a3z +app + ann
10. | ag + a2 +ag +aig | a1 + a3 +ag +ayy | az +ag + ap + a2

Now it is easy to prove by induction that in the above table if d = 2™
then the d-th row (and consequently all that follow after it) contains
only 0’s. Also, there are sequences of 0's and 1's, namely those con-
taining an odd number of 1's, for which on the (d — 1)-th row all the
numbers are equal to 1. Thus, if d is a power of 2 and we start with
an arbitrary set of 0's and 1’s, then the process will produce 0's in d
steps and only for particular a;’s in less then d steps.

The outcome in the case d # 2™ can be also deduced easily by
induction. Thus, if we start for example with the periodic sequence
given by ag = 1 and ay = 0 for 1 <k < d— 1, then 1 will always be
the first number on the rows representing the steps of order a power of
2. Therefore, if d is not a power of 2 then there are sequences which
will never produce a set of 0's.

We summarize our result in the following theorem which proves the
Thwaites conjecture.

Theorem 1. Let d be a positive integer and suppose the evolution func-
tion ¢ 1s defined as above. Then there is a rational number r > 0 such
that the repeated application of ¢ to any initial sequence of rational
numbers (ag, ai,...) satisfying (1) will eventually produce a cycle of
sequences with the property (1) with all their components in {0,7}.
Moreover, the cycle will contain only the sequence (0,0,...) indepen-
dently on the initial sequence if and only if d is a power of 2.

2. THE LENGTH OF CYCLES

We assume in this section that the evolution function ¢ is defined

on Uy, where Uy, is the set of all the sequences with components in
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{0,1}, satisfying (1). This is not restrictive as we saw above and also
has the advantage that it makes ¢ to be additive.

Theorem 1 shows that if d is a power of 2 then the length of any
cycle is equal to 1. Suppose from now on that d is not a power of 2.

It is not difficult to prove by induction that j—th component of
#™(ag, ay, ... ) is equal to

n

Z (71) Aj4+k (mod 2)
im0 N ‘
Since ¢ is additive we need to see only the evolution of the sequence
eo with the components given by

a;j =1 if j=0 (mod d)
aj=0 if j#£0 (modd)’

Denote
n
Saln,r)= .
a(n,7) E 3 (k')
1<k<n
. k=r (mod d)
Then

6™ (e0) = (Sa(n,0), Sa(n, —1), Sa(n,=2), ...) (mod 2).
Therefore our problem is to study the behavior of the sums Sg(n,r)
(mod 2).

Let p be an odd prime divisor of d. The sum Sp(n,r) can be written
as .

Sp(n, 1) = Sa(n,r)+Sa(n, r+p)+Ss(n, r+2p)+-- -+Sd(n, r+ (g——l)p).

This shows that if we prove that for any n > 1 there is an 7 such that
S,(n,r) £ 0 (mod 2) then for no n > 1 we have that Sy(n,7) = 0
(mod 2) for all r.
For the sums with d = p we prove the following:

Theorem 2. Let p be an odd prime, ¢ a primitive root of 1 of order
p and J a prime ideal in Z[(] which divides 2. Then, for any n > 1
which is a multiple of (Norm(J) — 1), Sy(n,r) is even if and only if
r = 0(mod p).

Proof. Consider the polvnomial f(X)= (14 X)" and let

fom(X) =2 S ¢p(chx).

b (mod p)

Then f(,,(-X') will pick up from f(X) only the terms Xk withk=r
(mod p). It follows that

-
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f(rl,r)(l) = S(”? T)'

Hence:

pS(nr)= 3 ¢+ (4)

b (mod p)

Now since p is odd S(n,r) will be even exactly when the right-hand-
side of (4) is even. Note that for b = 0 (mod p) the corresponding
term in the right-hand-side of (4) equals 2", which is even for n > 0.
We are left then in (4) with the sum of terms with 1 <0 <p—1.

Let J be a prime ideal in Z[¢] which divides 2. Since the right-hand-
side of (4) is a rational integer, it will be divisible by 2 if and only if it
is divisible by J. We know that 1+ ¢ is a unit in Z[(] (see Borevich-
Shafarevich [1]) and so is any of its conjugates 1+¢*, 1 <b<p—1.1In
particular none of them lies in 7. Now from the Little Fermat Theorem
in Z[¢] it follows that

(1 + ¢ByWeormtT)=1) =1 (mod J).
for any 1 < b < p — 1. Then, for any n which is a multiple of

(Norm(J) — 1) we have:

(1+¢)" =1 (mod J).
Therefore for such values of n the right-hand-side of (4) is

o= Z ¢ (mod J).

1<b<p—1

L4

If r = 0(mod p) this last sum equals p — 1, which is = 0(mod 7).

If r # 0(mod p) then the sum equals -1, which is # 0(mod J).

In conclusion, for any n > 0 which is a multiple of (Norm(J) — 1),
S(n,r) is even if and only if r = 0(mod p), which concludes the proof
of the theorem. '

Let’s translate this in terms of our problem. Suppose we start with
the initial configuration eg. Then after n steps, where n is a multiple of
(Norm(.J)—1), the outcome produced by the evolution function will be
equal to (1,1,1,...,)—eq. In particular, this "population” never "dies”,
so we proved again Thwaites conjecture for d which is not a power of
2. Moreover, we now know that the length of the cycle corresponding
to the initial configuration eg has to be a divisor of (Norm(J) — 1).

There is a simple formula which can be used to compute this number
(Norm(J) — 1) in terms of p. It is known that 2 splits in Z[(] into a
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product J; ... J, of distinct prime ideals. The norm of each of these
ideals is 2°, where s is the order of 2 mod p. Also rs = p — 1. Thus
the number (Norm(J) — 1) is the smallest number of the form 2° — 1
which is a multiple of p.

Note that from the additivity property of the evolution function ¢
it follows that 2° — 1 is a period for the corresponding life problem for
any initial configuration with components 0 or 1.

Two more remarks:

1. The chain produced by an initial configuration with components
0 or 1 is not necessarily periodic from the beginning. It is periodic after
we restrict to the subchain: n > 1. For n = 0 the configuration might
not be the same as for n = 2° — 1. Indeed, recall the term 2" coming
from the term b = 0 above, which adds a 1 to each component of the
configuration. That’s why, if we start with eg in 2° — 1 steps we get
(1,1,) — €g-

More generally, by the same additivity property, we deduce that if we
start with a configuration from U, which has £ of the first p components
equal to 1 and the other p — k equal to 0 then, after 2° — 1 steps we get
a a configuration which either equals the initial one, and this happens
if k is even, or equals (1,1,...) minus the initial configuration and this
happens if k£ is odd.

2. One can ask about short and long periods.

Short periods: 2° — 1 is always a multiple of p; it equals p when
p is a Mersene prime. One doesn’t know if there arg infinitely many
such primes. The first Mersenne primes are 3, 7, 31, 127,.... Note
that for such a prime number p it follows from our results that for any
initial configuration with components 0 and 1, not all equal to 0 and
not all equal to 1, the length of the corresponding cycle is exactly p.
For example, writing only the first p components of the sequences, the
chain produced by the initial configuration e when p = 3 and p = 7
are:

(1,0,0) = (1,0,1) = (1,1,0) = (0,1,1) = (1,0,1) — - -

and

(1,0,0,0,0,0,0) — (1,0,0,0,0,0,1) — (1,0,0,0,0,1,0) —
—(1,0,0,0,1,1,1) = (1,0,0,1,0,0,0) — (1,0,1,1,0,0,1) —
—(1,1,0,1,0,1,0) = (0,1,1,1,1,1,1) = (1,0,0,0,0,0,1) — - -

respectively.



Long periods: 2° —1 always divides 27! — 1; it equals 2°~* — 1 when
2 is a primitive root modulo p. Artin’s conjecture, still unsolved, says
that there are infinitely many such primes. The first prime numbers
which satisfy Artin's conjecture are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61,

67, 83, 101, ... .

Below is the chain produced by the initial configuration eq for p = 5.

It is a cycle of length 15, as expected.

(1,0,0,0,0) - (1,0,0,0,1) — (1,0,0,1,0) = (1,0,1,1,1) —
—(1,1,0,0,0) = (0,1,0,0,1) — (1,1,0,1,1) = (0,1,1,0,0) —
—(1,0,1,0,0) = (1,1,1,0,1) = (0,0,1,1,0) = (0,1,0,1,0) —
—(1,1,1,1,0) = (0,0,0,1,1) = (0,0,1,0,1) = (0,1,1,1,1) —
—(1,0,0,0,1) = ---

In the papers of Rajiv Gupta and M. Ram Murty [3] and Heath-
Brown [4] on Artin’s conjecture there are lemmas showing that for
infinitely many primes p all the prime factors of the number ’%1 are
larger than p'/4. This shows that there are primes p for which the
lengths 2° — 1 of our periods are huge, more precisely they are larger

1/4
than 2°

However, 2° — 1 is not necessary the shortest period. For example,
if p = 11 the length of the cycle produced by any cortfiguration is 341,
while 28 — 1 =219 — 1 = 1023 = 3 - 341. Other examples can be found

in the following Table.

‘ d l length of cycle [ s l 25 —1 l d(252 - 1) ]
%) 3| 2 3 3
) 15=5-3| 4 15 15
7 7T 3 7

11 341 =11-31|10 341 -3 341
13 819 =13-63 | 12 819-5 819
17 266 =17-15] 8 255 255
19 9709 =19 - 511 | 18 9709 - 3° 9709
23 2047 =23-89 | 11 2047

29 475107 = 29 - 16383 | 28 475107 - 5- 113 475107
31 311 5 31

37| 3233097 = 37-87381 | 36 | 3233097 -3 -5-13-109 | 3233097 - 3
41 41943 =41-1023 | 20 41943 - 5° 41943
43 5461 =43 -127 | 14 5461 - 3 5461
47 | 8388607 =47 - 178481 | 23 8388607




We calculated the length of cycles for many other values of d and
we found that when s is even the number d(2%/2 — 1), which is always
a divisor of 2% — 1, is also a period. It would be interesting to know if
this is true in general.

3. A MORE GENERAL EVOLUTION FUNCTION

In this section we introduce a more general evolution function and
give a useful method to calculate its repeated composition by itself.
Finally, we deduce a criterion which discerns if a given integer is or
not the length of a cycle of chains produced by our original evolution
function.

Let d be a positive integer and S = {0,1}¢. We denote by p(x)
the circular rotation to the right of the vector x € S (e.g. for d =
7, p(1,1,0,1,0,0,0) = (0,1,1,0,1,0,0) ) and -: S x S — S the zor
function (which is the componentwise addition mod 2).

Let ay,as, ... ,as be s positive integers and define the evolution func-
tion ¢: S — S by

Bx) = ) - ) ).

Note that for s = 2, a; = 0 and a; = 1 we get our previous evolution
function.

The following lemma adds together some properties of these func-
tions.

Lemma 2. For any nonnegative integers k,m,n and any X,y € S we
have:

3.9(p(x)) = p(¢(x)),
4.6 (xy) = ¢ ()¢
5.6 (p(x)) = p(6"™(x))

Proof. Everything follows easily by definitions and/or by induction.
As a consequence, we immediately obtain the following:

Corollary 1. Suppose d = 2%. Then, for any x € S and n > 1 we
have that ¢!~V (x) = 0 if s is even and ¢V (x) = x if s is odd.
9



Remark. It is easy to see that the properties 1-7 from Lemma 2 do
not depend essentially on S. Thus we may replace {0,1} by a more
general monoid (a nilpotent one may be of particular interest), for
which similar consequences still hold true.

Let
EF=2% 428 4. .. 4 (5)
2

be the representation in base 2 of the positive integer k& and assumne

lo < ...<l,. We denote
Tij = 2ig;  (mod d), 0<r,;<d-1 (6)

for0<:<pand 1< j < 5. The next proposition gives an algorithm
for the calculation of ¢®)(x) in O,(logk) steps.

Proposition 1. Letx € § and
Yo = P ()7 ().
Define inductively
Yy =P (¥5-1) - P (¥5-1)
for 1 <j < u. Then
¢(k)(x) =Yu-
Proof. Let k = k; + 2. Using Lemma 2 we have
B0 () = ¢4+ (x) = ¢4 (629 (x))
_ qb“")(/)(zlo‘“)(x) p2oas)( )
= 6 () 7)) = 6 ()
Similarly, let k; = ko 4 21, Then we have
#*(yo) = 6%+ (yo) = 69 (4% (o))
(s ol
=o”‘-’(/)‘ (yo) - - ﬂ(““‘”(yo))

- ¢( (/) rit) (y ) .. ./)('J‘ls)(yo)) — 96(k2)<Y1)-

It is clear now that the proposition follows by induction following the
same procedure.

A direct way to calculate ¢*)(x) is given in the next theorem.
10



Theorem 3. For any positive integer k represented as in (5), we have

oW = J[ AT ().

1< jous sy <s

Proof. The proof is by induction on p.
If 4 = 0, then k£ = 2% and by Lemma 2

¢(210)(X) _ p(‘2‘0ax)(x) .. .p(Z’Oas)(x) = o) (x) - - .p(ms)(x)_

Suppose the statement is true for p — 1. Let k; = k — 2%. Then the
representation of k; in base 2 has u digits and we can apply to it the
hypothesis of induction. Thus, by Lemma 2 we have

¢,(k)(x) — ¢(2lﬂ+k1)(x) - ¢(2"L)(¢(k1)(x))

= @'(‘21“) ( H p(7'0i1+"'+7‘u—1ip)(x)).

1<iy,... 08, <5

By the definition of ¢(x), (6) and Lemma 2 this is

S
_ Hp(?lu aj) ( H p(T0i1+"‘+r“_li“)(X)>
i=1

1<t i, <5

S

:HP("M)< H P(TO”’L"'*T““%)(X))
j=1 1< i, <

= H P(Toil iy )(X)’ i
110 iy S8

which concludes the proof of the theorem.

Now we apply this result to the particular evolution function from
the previous sections. Thus, from now on we assume that s = 2, a; =0
and a; = 1, that is ¢(x) = xp(x).

Corollary 2. Let k = 2% 421 ... 4 9% be the representation in base

2 of the positive integer k, where ly < ... < [, and ¢(x) = xp(x).
Denote

Ry = {7‘: r=2% (modd), 0<r<d-—1, forsome 0<i< u}.

Then
" 3.7
sWx)=x [[ » (% )(X)
RCP(Ry)
foranyx € 8S.
11



Proof. By Theorem 3 )
oW = [ ATt (x), (7)

IS“ u+l—<—)

By (6) and our hypothesis rj; = 0 and rj2 = 24 (mod d), 0 <7150 < d
for 0 < j < p. The corollary then follows by isolating in (7) the term
with iy = ... =1, = 1, that is p©(x)( = x) and using the fact that

p (E@r) (x)=0.

From Corollary 2 we deduce a criterion for cycling. Thus, o®(x) = x
is equivalent to

IT » (%0 =0 ()

RCP(Ry)

Starting with x = eq = (1,0,...,0), we get @(eq) = eopeg) =
(1,1,0,...,0) = e;. Then, by (8) and Lemma 2, we deduce

H p(reR H p 1+T€ERT (e0) =0,

RCP(Ry) RCP(Ry)

which can be written as

H P rER eO H p 1+T§RT eO)

RCP(Ry) RCP(Ry) *
or

H p(TEZRr) eo)—ﬂ( H P rER eo) (9)
RCP(Ry) RCP(Ry)

For any m € {1,...,d} let
via(m) = #{R C Ry: Zr =m (mod d)}.

reER
Then (9) becomes
d d
H pvk(m)(eo) _ p( H puk(m)(eo)).
m=1 m=1
Since the only invariants of p are (0,...,0) and (1,...,1) we obtain

the following:

Corollary 3. A positive integer k is a period for ¢(x) = xp(x) if and
only if the numbers vy q4(m), 1 < m < d have the same parity.
12



We checked the values of vy 4(m) with &k the length of the shortest
cycle for different values of d and we found some interesting "regularity”
properties . Thus, vy 4(m) not only have the same parity but most of
the time they are equal. Some nontrivial examples are:

1. If d = 11 then k& = 341 = 1010101012, 1/341,11(1].) = 1 and
v34111(m) = 3 for 1 <m < 10.

2. If d = 13 then k = 819 = 11001100115, vg1913(13) = 3 and
Vg1913(m) =5 for 1 <m < 12.

3. If d =19 then £ = 9709 = 100101111011012, 7/9709,19(19) = 25
and 1/9709‘19(777,) =27 for 1 <m< 18.

4. If d = 43 then k = 5461 = 1010101010101, vs461,43(43) = 1 and
Vsae143(m) = 3 for 1 <m < 42,
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