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1. Introduction

Many papers dealing with optimality conditions for control problems asso-
ciated with the thermally coupled Navier-Stokes equations have been written
in the last years. The problem of minimizing a functional involving the tur-
bulence within the flow was studied in [1] for the stationary case, in [2] for
the non-stationary one, the control being the heat flux through the boundary
and in [3] for an optimal control in coefficients (the viscosity and the ther-
mal conductivity coefficients). In other papers, such as [7), [4], [5], the cost
functional involves the temperature.

A lot of physical problems are concerned not with the velocity or the
temperature, but with the pressure of the fluid; this is the reason we introduce
and study in this paper a control problem involving the pressure. Let us first
describe the physical problem which justifies the study of the control problem
considered in the sequel. We have a viscous, incompressible, time-dependent
fluid, occupying a bounded, smooth domain 2 C R2. Because of the internal

heat sources g, the fluid modifies its temperature; hence it modifies also its
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pressure. We have to answer to the following question: which are the internal
heat sources (that cannot be measured) which give a field of the pressure P
as close as possible to a desired pressure p;? The aim of this paper is to
characterize the controls g which give a desired pressure of the fluid.

The outline of the paper is as follows. In Section 2 we introduce the system
describing the problem and the notation. Moreover we give, without proof,
some classical theorems concerning this problem. In Section 3 we discuss the
proposed control problem and we prove the existence of a solution. Section 4
deals with the necessary conditions of optimality. The most important result
of this paper is the proof of the existence and regularity of a solution of the
adjoint system. This system is not a divergence free one. For overcoming this
difficulty, we define several functions which allow us to replace the adjoint

system by a divergence free one.

2. The evolution state system

Let @ C R? be an open, bounded, connected set with its boundary, )
of class C? and T a positive constant. Our physical problem is described by

the following coupled system:

(2.1) V—vAT+(F-V)i+Vp=f+Br in Qr=0Qx(0,7T),
(2.2) divi =0 in Qp,

(2.3) P —KkAT+7.-Vr=g in Qr,

(2.4) 7=0, 7=0 on 80 x (0,T),

(2.5) #(0) =0, 7(0)=0 in 0,

where v, k are positive constants representing the viscosity of the fluid and

the thermal conductivity coefficient, respectively; f € (L2(€r))? represents
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the body forces, B € (L*(97))? is a function given by the Boussinesq ap-
proximation, g € L*(Qz) represents the internal heat sources and ¥, T, p are
the unknown of the system (2.1)-(2.5), the velocity, the temperature and the
pressure of the fluid, respectively.
We shall need in the sequel the following spaces (for their properties see
e.g. [8]):
L) = {u e L}Q)/ /ﬂ udx = 0},

V = {i@ € (Hy(Q))?/ divi = 0},

H = {i € (L*(Q))*/divi = 0, € - ii/eq = 0},

ou Ou O
ot ’ (92:,- ’_ am,-(?:cj
W(0,T;X,X") = {ue L*(0,T; X) /«' € L*(0,T; X")} with X a Hilbert space.

H*'(Qr) = {u € L*(r) / € L*(Qr); 4,5 = 1,2},

The following notations will be used throughout the paper:
(,-) the scalar product in L*() or (L%(02))?,

| -] the norm in L*(Q) or (L*(Q))?,
((+,+))o the scalar product in Hy(Q) or (Hf(R))?,
-l the norm in HY(9) or (HI(@)Y,
(-, )x,x' the duality pairing between a space X and its dual X',
b (4,7) = (- V)7 Vi, 7 € (Hg(0))?,
ba(d, ) =i - Vo Vi € (Hy(Q)), Yo € Hy(9).

Remark 2.1. The ezistence and uniqueness of a solution of the system

(2.1)-(2.5) can be obtained for less regular data 2, f, B, g (see e. g. [8], for



Navier-Stokes equations). We have chosen this regularity for obtaining the
pressure of the fluid (p) at least in L*(Qr). In the last section, this regularity

will be improved, in order to give sense to the ezpression p(T).

The following two theorems establish the existence, uniqueness and reg-
ularity of a solution of (2.1)-(2.5) and some a priori estimates, respectively.
We shall give them without proofs, since the techniques we use are similar
to those of [8], for Navier-Stokes equations, or of [2] for the coupled system:

Navier-Stokes and heat equations for the three dimensional case.

Theorem 2.2. The system (2.1)-(2.5) has a unigue solution (7, T, p)
with 7 € (H*'(27))2 0 C([0,T}; V), v € H*(Qr) N C([0,T}; HL(Q)), p €
L*(0,T; HY(Q) N L3(Q)). |

Remark 2.3. The uniqueness of the pressure is obtained only in the
space L*(0,T; H(Q)NLI(Q)); as an element of L*(0,T; H'(R)) the pressure

15 unique up to an additive function depending on t.

Theorem 2.4. The unknowns of the problem, ¥, T, p satisfy the following
estimate:

Ilall(l‘:!?"(flav))2 + “T“HM(QT) + ”p“Lz(O,T;Hl(Q)nLg(n)) <

(2'6) - -
() flzz@ryr + IBllz=@z: + llgllz2@r))-

Remark 2.5. All the estimates we shall use in the sequel are conse-

quences of the inequality (2.6).

3. Study of the control problem

As mentioned in Section 1, our purpose is to control the pressure of the

fluid, by acting on the internal heat sources, g. Let pg € L2(0,T; L3(Q2)) be
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the desired configuration of the pressure. Taking into account the uniqueness

result stated in Theorem 2.2., the following cost functional:

(3.1) J:IXQr) R, J(g) = -;- /9 5 — paPdxdt

is well defined (p represents the third component of the unique solution of
(2.1)-(2.5) corresponding to g).
Denoting Bj.iq,) = {u € L*(Qr) / |ullz2@p < 1}, we formulate the

optimal control problem in the following way:

Find g() E BZZ(QT) S. t.

(3.2)
J(g0) = min{J(g) /g € Bl2(q,}-

Remark 3.1. When the cost functional is not coercive, as it happens in
our case, there are two ways of introducing the control problem: to look for a

minimum point on a bounded set or to consider the following cost functional:

1 N
(33) J(9) =3 / (p— pa)?dxdt + = [ (g — ga)?dxdt.
2 Qr 2 Qp

From the physical point of view the functional defined by (3.3) is not relevant;

hence we have chosen the first posibility, which is physicaly acceptable.

Theorem 3.2. There ezxists at least a solution of the control problem
(3.2).

Proof. The idea of the proof is to show that J is weakly lower semicon-
tinuous and to use a Weierstrass theorem.

Let {gn}n» be a minimizing sequence of J and (,, 7,, p,) the unique

solution of (2.1)-(2.5) corresponding to gn.

Taking into account the compactness of the inclusion H2'(Qr) C L*(Qr)

and using the estimates for #,, 7, and p,, given by Theorem 2.4., we get the
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following convergences (on subsequences), as n — 00 :

7, — ¥ weakly in (H>!(Qr))?,
#, — ¥ strongly in (L3(Q1))?,
Ta — T weakly in H*!(Q7),
pn — p weakly in L*(Q7),

and, of course,
g — g weakly in L*(Qg).
In order to use these convergences, we shall write the weak formulation

of (2.1)-(2.5) in the following form:

(34) (@(8),2) + w((78), D)o + (Ba(30), 50), ) — (p(2), divE) =
(F(0),8) + (B)r(t), 2) VZe (H())?,
(3.5) (divd(t),s) =0 Vs e L*(Q),
(36) (r'(t),m) + £((r(#),m))o + (ba(3(2), 7(8)),m) = (g(2),m) Vn € Hy(R),
(3.7) #(0) =0, 7(0) =0 in Q.
Using Lemma 3.2. ([8], p. 289) we can pass to the limit, as n = 00, in
(3.4)-(3.7), written for g = g,, and we get the weakly lower semicontinuity

of the cost functional; thus the assertion of the theorem is obtained.

The last result of this section is the differentiability of the cost functional.
Proposition 3.3. The functional J is differentiable and
(3.8)  (J'(90),9—90)12(07) = /Q (p*—po)(po—pa)dxdt Vg, g0 € L*(9r),
g2

where py is the third component of the unique solution of (2.1)-(2.5) corre-



sponding to go and (U*,7%,p*) is the unique solution of the following system.:

(3.9) ¥ — v AT + by (7%, 7) + b1(%0, V%) + Vp* =
Br* + f + by(9, %), in O,
(3.10) divé* =0 in Qr,
(3.11) 79 — k AT +by(7*,70) + ba(0,7*) = g + by(3, 1) in Qr,
(3.12) #*(0)=0, 7*(0) =0 in Q,
(3.13) & =0, 7" =0 on 09 x (0,T).

Proof. For any a € (0,1) and g, gy € L?(Qr) we denote by (¥, 7, p0) the
unique solution of (2.1)-(2.5) corresponding to g = gy and by (g, Tags Pag)

the solution for g = go + @(g — go). Let U4, 7o, po be the following functions:

- -

5 Ugg — U _Tag — T __Pag—Po

Vo = y Ta = )pa_‘ .
a o a

A direct computation gives the system satisfied by (¥, 7a, Pa), Which is of the
same type as (2.1)-(2.5). Hence we obtain for #,, 7o, pa the properties given
by Theorems 2.2. and 2.4., with the constant ¢(f?) in (2.6) not depending on
o The boundedness of (@, Ta, Pa) in (H2}(Qr))2x H2}(Qr) x L*(0, T; L3(2))
yields the existence of (¢*,7*,p*) in this space such that the following con-

vergences hold, as a N\, 0, on subsequences:
¥, — 7" weakly in (H>!(Qr))?,
To — 7* weakly in H>'(Qr),
pa — p* weakly in L2(Q7).
J(g0 + (g — 90)) — J(g0)

o
a \, 0, in the weak formulation of the system with the solution (¥, 7a, Pa)s

and passing to the limit, as

C ting li
omputing al\l;l’(l)

we achieve the conclusion of the proposition.



Let gy be an optimal control. By using (3.8), we obtain the following

inequality:

(3.14) /ﬂ (p"—po)(Po—pa)dxdt > 0.

In the last section, this inequality will be replaced by an inequality with-

out constraints, by introducing the adjoint system.

4. First-order necessary conditions of optimal solutions

Let go be an optimal control and (%, 7y, pg) the unique solution of (2.1)-
(2.5) corresponding to gy. As mentioned in Remark 2.1., in this section we
shall need further regularity for the data: f, B, pq. By taking fle (L(Qr))?,
F(0) € V, B € (L*(27))?, we get at least p) € L2(0, T; L(f2)). Let p; be an
element of L2(Qr); hence py(T) — pa(T) makes sense as an element of L3(().

We introduce the following adjoint system:

(4.1) @ € L*(0,T;(Hs(V)%), ¢ € L*(0,T; Hy(Q)), = € D'(Qr),
(4.2) — @' — v A D — by(d, @) + (Viy)Td + Vrr — 74V = 0 in Qr,
(4.3) diva = py — pq in Qr,

(4.4) — ¢ — Kk A —by(ih,9) — B-&=0in Qr,

(4.5) w(T) = VG, ¢(T)=0inQ,

where G is the unique solution (up to an additive constant) of the Neumann

problem:
G € H'(Q),

(4.6) AG =py(T) - pa(T) in £,
oG
57—1,— =0 on 99Q.



Remark 4.1. For giving sense to the ezpression w(T) in L*(Q) it seems
to be necessary the regularity o' € L*(0,T;(H-1(Q))?). In fact, we shall
obtain only &' € L*(0,T; V"), but also & € C([0,T); (L*())2).

Because of the equation (4.3), we cannot give a variational formulation
of the system (4.1)-(4.5) with test functions in V and then, obtain existence
and regularity results using the Galerkin’s approximation.

In the case of stationary flows, the system with div# # 0 is easily replaced
by a divergence free system (see [8], p. 31). We don’t use the same technique
in our case, since we need also regularity results for the time derivative,

properties which cannot be obtained with this method.

We consider the following problem (a. e. in (0,T)) :

divZ(t) = (po(t) — pa(t)) in 9,
(4.7) ( )4 (Po(2) — pa(t))

Z(t) = 0 on O90.
Taking into account that (py(t) — pa(t))’ € LE() and using a classical result
(see e. g. [8], p. 32) we obtain the existence of a unique 7,(t) € (H}())?

such that:
(4.8) 1Ze()llo < () | (po(t)—pa(t))’ | -
Since (py —pa)’ € L*(r) it follows, from (4.8), that 2, € L2(0, T; (HL(R2))?).

We define a new function, given by:

(4.9) filt) = /t Zy(r)dr, a. e. in (0,T)

T
and we obtain, without difficulty, the regularity 4, € L?(0,T;(L%())?).
Moreover, by using a standard result (see e. g. [6], p. 566), it follows:

¢
Vu:,(t) = /T Vz;;(r)dr, 1 = 1,2. Taking into account the regularity of 2, it
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is easy now to verify that 4@, € L?(0,T;(HL(€2))?). On the other hand, the
definition (4.9) also gives some regularity for @, i. e. 4@}, € L*(0, T’; (H; ())?).
Hence we defined a functions with the following properties: @,(T) = 0, i, i, €

L*(0,T; (H}(0))?) and

(4.10) |l 220,750 )2y Hl Fll 22 0,502y < (4, T)llpo—pallz2ar)-

We introduce another function, 1,59, as the unique solution of the problem:

divi) = po(T) — pa(T) in Q,

(4.11) L
1 =0 on 01,
satisfying the estimate:
(4.12) 1910 < () | po(T)—pa(T) | -

Computing divi,(t), we get, from (4.9) the following equality: divi,(t) =
(po(t) —pa(t)) — (po(T) —pa(T)) a. e. in (0,T); hence, using (4.11) we obtain:
(4.13) div(@,(t)+4p) = Po(t)—pa(t) a. e. in (0,T).

Let us define a new function:

(4.14) 7,(t) = @,(t)+9, a. e. in (0,T).

Taking into account the properties of #, and Jp we obtain for ¥, : ¥, U, €
L2(0,T; (HL(2))?); diviy(t) = po(t) — pa(t) a. e. in (0,T); 4,(T) = d—)‘p in
(L* ().

We are now in a position to introduce the following divergence free system:
(4.15) §e W(O,T;V, V'), ¢ € W(0,T; H5(Q), H7(Q)), = € D'(7),
(4.16) el ﬂ" -vA 3-/‘—- bl(i)‘o,g) + (Vﬁo)Tg-f- Vr — ToV(p = f; in QT,
(417) —¢' — kAo —by(F,9) — B-§ =g, in Qr,

(4.18) 9(T) =gr, ¢(T) =0in Q,
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where:

(4.19) fo= B+ v AT, + bi(30, %) — (Vo)
(4.20) g, =B -4,
(4.21) Jr = VG — 4,

with v, 1/-1;, and G previously defined.

Using the regularity of 7y, %, B and some classical results of [8] we obtain
at least f, € L2(0,T;V’) and g, € L*(Qr). For §r we have the regularity
gr € H. Indeed, divijy = AG — divgp, = 0 in Q and §r - 74 = %g- — A=
0 on O12.

Now we can state the main result of this paper:

Theorem 4.2. The adjoint system (4.1)-(4.5) has at least a solution
(@, @, ), with@' € L*(0,T;V'),w € C([0,T}; (L*(R))?); ¢’ € L*(0,T; H1())
and W, ¢ unique.

Proof. The regularity of the data f;,, gp and yr and some standard results
for Navier-Stokes equations (see [8]) allow us to obtain the existence and
uniqueness of the function § in W(0,7'; V, V'), the existence and uniqueness
of the function ¢ in W(0,T; H§(2), H~*(2)) and the existence of a distribu-
tion , satisfying the system (4.15)-(4.18).

By putting:

- —

(4.22) W =G + Up,

it is easy to verify that @ € C([0,T); (L%())?) and &' € L*(0,T;V’); more-
over (W, p, ) is a solution of the adjoint system (4.1)-(4.5).
The uniqueness of @ and ¢ is obtained as follows. Let (1, ¢;,7) and

(W2, @2, m2) be two solutions of the system (4.1)-(4.5). We denote (@, p, m) =
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(w1, 1, m) — (Wa, @2, m2) and by subtracting the variational formulations of

the adjoint system for (Wi, ¢1,m) and (Ws, @2, m2) we get:

(4.23) — (@'(t), vy + v((@(t), 2))o — ba(W0(2), (1)), )+
(Vo (1)) Td(8), Dvivr — ((t)Ve(t),2) =0 VZ €V,

(4.24) (divid(t),s) =0 Vs € L3(9),

(4.25) — (¢ (), m) -1 (@), m3 (@) + £((0(£),m)o — b2(T0(t), ©(2)), m) -
(B(t)-(t),n) =0 Vn € HY(Q),

(4.26) @(T) =0, o(T)=0in Q.

The desired result is now obtained taking Z = w(t), 7 = ¢(t) and using

standard techniques.

The last result of this paper states the optimality conditions satisfied by

a solution gg of (3.2).
Theorem 4. 3. Let us suppose that gy is an optimal control. Then
there exists the unique elements (3,79,p0) € (H>'(Qr))2 N C([0,T); V) x
H2 () x L0, T5 HY@) 0 L), (do, o) € L0, T; (H(@))) N
C([0,T); (L*(2))?) x W(0,T; H} (), H(Q)), with @ € L*(0,T;V’) and a
unique distribution my up to an additive distribution in (0,T) such that the

following system is satisfied:

F) — v A T + by(d, 50) + Vo = f + Bry in O,
diV'lTO =0in QT,

(4.27)
70 — K A 7o + by(y, 70) = go in O,

7(0) =0, 7(0)=0in Q,
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~1B:) -vA ‘lifo - bl(’[fg,u‘)‘o) + (V'l_;o)T’u_J‘o + V?I'o = TQV(,D() =0in QT,
(4.28) dividiy = py — pa in Qr,
—@h — & D g — by(s, o) — B."LZJ‘U =0 in Qf,

Wo(T) = VG, ¢o(T) =0in Q,

(4.29) /ﬂ @0(go—g)dxdt > 0 Vg € Bjs(q.)-

Proof. The first :ssertion of the theorem has already been obtained. We
have to prove the inequality (4.29). For this purpose we consider the weak
formulations of systems (3.9)-(3.13), (4.27), (4.28). Taking adequate test
functions in these variational formulations, after an easy computation, we
get:

(Po(t) — pa(t),2"(£) = Po(2)) = (o), 90(2) — 9(t))—
(4.30) (o (), 1o(t) — () -1, my — (o) — 7°(2))'s po(2)) -
(@ (1), To(t) — 7 ())vr,y — ((0(t) — 7*(2))', wo(2))-
Integrating the equality (4.30) from 0 to T and using a Green’s formula, it

follows:

[ = po" ~ pixis = [ " oo(g — a0)dxdt — (T(T), 5(T) - (T)) =
| " polg0 — g)dxdt — (VG, 5(T) — #*(T)) =

/OT wo(go — g)dxdt + (G, div(7(T) — v°(T))) = /0 vo(go — g)dxdt,

since 7y — v* € C([0,T);V) and %g = 0 on 99. Therefore the theorem is

proved.
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