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1. Introduction

Many papers dealing with optimality conditions for control problems asso-

ciated with the thermally coupled Navier-Stokes equations have been written

in the last years. The problem of minimizing a functional involving the tur-

bulence within the flow was studied in [1] for the stationary case, in [2] for

the non-stationary one, the control being the heat flux through the bounda"ry

and in [3] for an optimal control in coefficients (the viscosity and the ther-

mal conductivity coefficients). In other paper€, such as [Z], [4], [5], the cost

functional involves the temperature.

A lot of physical problems are concerned not with the velocity or the

temperature, but with the pressure of the fluid; this is the reason we introduce

and study in this paper a control problem involving the pressure. Let us first

describe the physical problem which justifies the study of the control problem

considered in the sequel. We have a viecous, incompressible, time-dependent

fluid, occupying a bounded, smooth domain O c R2. Because of the internal

heat sources g, the fluid modifies its temperature; hence it modifies also its



pressure. We have to answer to the following question: which are the internal

heat sources (that cannot be measured) which give a field of the pressure p

as close as possible to a desired pressure pfi The aim of this paper is to

characterize the controls g which give a desired pressure of the fluid.

The outline of the paper is as follows. In Section 2 we introduce the system

describing the problem and the notation. Moreover we give, without proof,

some classical theorems concerning this problem. In Section 3 we discuss the

proposed control problem and we prove the existence of a solution. Section 4

deals with the necessary conditions of optimality. The most important result

of this paper is the proof of the existence and regularity of a solution of the

adjoint system. This system is not a divergence free one. For overcoming this

difficulty, we define several functions which allow us to replace the adjoint

system by a divergence free one.

2. The evolution state system

Let o c R2 be an open, bounded, connected set with its boundary, ao

of class C2 and T a positive constant. Our physical problem is described by

the following coupled system:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

d  -  v  Ao*+ (d .V ) t+  Yp :  i+  E ,  i n  Or :  O  x  (0 ,? ) ,

divd: 0 in Oa,

/  -  n A r *  d . Y r : 9  i n  O 2 ,

u ' : d ,  r : 0  o n  d O x ( 0 , ? ) ,

d(0) - d, r(0) - 0 in o,

where v, K are positive constants representing the viscosity of the fluid and

the thermal conductivity coefficient, respectivelr; i e (Lr(Ad), represents



the body forces, E e Q*(or))' is a function given by the Boussinesq ap-

proximation, g c L'(ad represents the internal heat sources and u', r, p are

the unknown of the system (2.1)-(2.5), the velocity, the temperature and the

pressure of the fluid, respectively.

We shall need in the sequel the following spaces (for their properties see

e.g. [8]):

L?o&): {u € L,@) t  [  "u:  o] ,
JA

v - {d € (H;(o))2 1aivil - o},

n : {d € (r2(o))2 I divil,: 0, 17 .frl,*: 0},

H,,,(nr) : {u € L,(nr) lX, #, # 
e L2(ad; i, j :1,21,

W(0,7;X,X') :  {u € L2(0,7;X) l " '  e L2(0,7;X,)}  wi th X a Hi lberr  space.

The following notations will be used throughout the paper:

(., .) the scalar product in t2(O) or (t2(e))2,

| . I the norm in ,2(O) or (^t2(O))2,

((.,.))o the scalar product in llot(n) or (I/j(O))2,

ll .116 the norm in ro1(O) or (H;(O))2,

(.,.)t,x, the duality pairing between a space X and its dual X',

h(il,d)- (d. V),i vd, d € (r/d(o))2,

bz(il,p) - d,.Ve Vd e (rj(o))', Vp € r4(o).

Remark 2.1. The eristence onil uniqueness of a solution of the system

(2.1)-(2.5) can be obtai,ned for less regular d,ato Q, i, E, g ftee e. g. [8], for



Naui'er-Stokes equations). We haae chosen this regularity for obtaining the

pressure of the fluid (p) at least in L2(Q7). In the last section, this regulority

utill be irnproued, in order to giue sense to the erpression pg).

The following two theorems establish the existence, uniqueness and reg-

ularity of a solution of (2.1)-(2.5) and some a priori estimates, respectively.

We shall give them without proofs, since the techniques we use are simila.r

to those of [8], for Navier-Stokes equations, or of [2] for the coupled system:

Navier-Stokes and heat equations for the three dimensional case.

Theorem 2.2. The systern (2.1)-(2.5) has a unique solution (d, r, p)

with 6 e (H2,1(nd)2 n c([0, T];v), r e H2,1(Q") n c([0, rl; nl(o)), p e

L' (o,r; //1 (o) n r3(o)).

Remark 2.3. The uniqueness of the pressune is obtained only in the

spa,ce L2(0,T;I1t(O)n ffr(O)); as an element of L2(0,T; I/1(O)) the pressurc

is unique up to an additiue lunction depending on t.

Theorem 2.4. The unlcnourns of the problem, d, r, p satisfy the following

estimote:

(2.6) lftilflr,,'1o,1y, * llrlls,,r1o,; * llpllpp,r;* (n)nrA(o)) <

dnXllilftr2(or)), + lldllrr,-ror)), * llgllrtn,l).

Remark 2.5. All the estimates we shall use in the sequel ore conse-

quences of the inequality (2.6).

3. Study ofthe control problem

As mentioned in Section 1, our purpose is to control the pressure of the

fluid, by acting on the internal heat sources, 9. Let pa e L2(0,f;Ifi(O)) be



the desired configuration ofthe pressure. Taking into arcount the uniqueness

result stated in Theorem 2.2., the following cost functional:

( 3 . 1 )  J : L 2 ( Q r ) s R ,  J ( s ) = * [ @ - p i ' , a * a t
o Jd l r

is well defined (p represents the third component of the unique solution of

(2.1)-(2.5) corresponding to 9).

Denoting BL,@,) : {u e Lz(A'i lllullpprl ( r}, we formulate the

optimal control problem in the following way:

Find 96 € Bi'e,y s, t.
(3.2)

J(gi - min{"I(e) lg e Bi'p,).

Remark 3.L, When the cost functional is not coerciue, as it happens in

our case, there are two uays of introducing the control problem: to look for a

minimurn point on a bounded set or to cowider the following cost functional:

1 t ^ N f
(3.3) t(g) :  * I  @-po)'dxdt* * |  tn-ea)2dxdt.

z  J f i r '  z  JQr

fuom the physicol point of aiew the functional def'neil Dy (3.3) is not releaant;

hence we haue chosen the fi,rst posibilitg, which is physicalg acceptable.

Theorem 3.2. There enists at least a solution o! the control problem

(3.2).

Proof. The idea of the proof is to show that J is weakly lower semicon-

tinuous and to use a Weierstrass theorem.

Let {g,"},n be a minimizing sequence of J and (6n, r,., p") the unique

solution of (2.1)-(2.5) corresponding to gn.

Taking into account the compactness of the inclusion H'''(dlr) C Lz(Ar)

and using the estimates for in, Tn and p,r, given by Theorem 2.4., we get the



following convergences (on subsequences), as n 1 @ |

d,. ' d weakly in (I/2'1(O"))2,

dn i d strongly in (r2(O"))2,

rn ^ r weakly in .[/2'1(O1),

po ^ p weakly in .L2(Or),

and, of course,

9n ̂  9 weakly in L2(Qr).

In order to use these convergences, we shall write the weak formulation

ot (2.L)-(2.5) in the following form:

(3.4) (,7(f), | + v11t1t),4)o + (h(?t(r),d(4),4 - (p(t),divfl -

(i@,4 + 181t1,(t),4 vi e (r{(o))2,

(3.5) (divrl(t), s) : 0 Vs € 1,2(O),

(3.6) (r'(t),fl + n((r1r),'r))o + (b2(d(t),"(t)), ri: b(t),ri Va e I/i(o),

(3.7) d(0) - d, r(0) - 0 in o.

Using Lemma 3.2. ([8], p. 289) we can pass to the limit, as n -] oo, in

(3.4)-(3.7), written for 9 - 9,., and we get the weakly lower semicontinuity

of the cost functional: thus the assertion of the theorem is obtained.

The last result of this section is the differentiability of the cost functional.

Proposition 3.3. The functional J is difrerentiable and

(3.8) (J'(go),e-eo)r,p,,, : [ (p. -pr)(po-pa)dxdt Ys,,so e L2(Qr),
J {lr

where ps is the third cornponent of the unique solution of (2.L)-(2.5) corce-
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sponding to gs and (t,r*,p') is the unique solution of the following system:

(3.9) i*' - u A oi. + br(t do) + br(do,m) + Vp* :

Er* + i+h(dods), in oa,

(3.10) divrl :0 in O1,

(3 .11)  r * ' -  KAr*  +  b r ( t , to )  *  bz(do , r * ) :  g*b2( is , r6 )  in  Oa,

(3.12) il(o) : d, r-(o) : o in o,

(3.13) f :  d, t* :0 on EO x (0,7).

Proof. For any a e (0,1) and 9, 9o e L'(Ad we denote by (,i0, rs,ps) the

unique solution of (2.I)-(2.5) corresponding to g - gs and by (ri' roe,Pog)

the solution for g : go * a(g - go). Let 6o, ro, po be the following functions:

d ' : r y s r a : T , r ' - P # '

A direct computation gives the system satisfied by (,io, ro,Po), which is of the

same type as (2.1)-(2.5). Hence we obtain for t1o, ro, Pa the properties given

by Theorems 2.2. and2.4., with the constant c(O) in (2.6) not depending on

a. The boundedness of (r7o, ro,po) in (//2'1(Or))zxH2'r1Or) x L2(0,T;r3(O))

yields the existence of (ti, r*,p*) in this space such that the following con-

vergences hold, as a \ 0, on subsequences:

do - tl weakly in (//2'1(Or))2,

ro - r* weakly in //2'1(oa),

po ^ p* weakly in .12(Or).

computing ti*@ and passing to-  - o \ 0  
d .

a \ 0, in the weak formulation of the system with the solution

we achieve the conclusion of the proposition.

the limit, as

(do, ro, Po),



Let 96 be an optimal control. By using (3.8), we obtain the following

inequality:

f

(3.14) I @'-po)(po-pa)dxdt>0.
JA,

In the last section, this inequality will be replaced by an inequality with-

out constraints, by introducing the adjoint system.

4. First-order necessary conditions of optimal solutions

Let gs be an optimal control and (d6, ro, p0) the unique solution of (2.1)-

(2.5) corresponding to go.As mentioned in Remark 2.1., in this section we

shall need further regularity for the d,ata: f', E, pa.By taking f e Q21nr11z,

/-(0) € V, E' e @2(Ad)2, we get at least pi e L2(0,f; f!@)). Let p!6 be an

element of L2(Q'7); hence pa€) - po!) makes sense as an element of ,3(O).

We introduce the following adjoint system:

(4.1) 6 e L2(0,r; (Al(O)),), p e L2(0,7;r/ot(O)), r eD',(Q7),

(4 .2)  -d '  *v  Ad -br (o 'o ,u l )+(Vdo) ' r f r+Yn-roVg -0 in  Oa,

(4.3) divri: po - pa in Oa,

(4 .4 )  -  e ' -  nLs -bz ( io ,d  -  E .d  -  0  i n  Oa ,

(4.5) ,ig) - VG, p(r):0 in o,

where G is the unique solution (up to an additive constant) of the Neumann

problem:

G e r/'(o),
(4.6) 

*: 
= po!) - Pa(r) in o,

: : - o o n d o .on



Remark 4.t. For giuing ser,se to the etpression d(T) in Lr@) it seems

to be necessary the regularity fit e L2(0,7;(I/-t(O))r). In fact, we shall

obtain only d' e L2(0,7;V,), but also 6 e C([0,7];(Lz@))z).

Because of the equation (4.3), we cannot give a variational formulation

of the system (4.1)-(4.5) with test functions in I/ and then, obtain existence

and regularity results using the Galerkin's approximation.

In the case of stationary flows, the system with divti l0 is easily replaced

by a divergence free system (see [8], p. 31). we don't use the same technique

in our case, since we need also regularity results for the time derivative,

properties which cannot be obtained with this method.

We consider the following problem (a. e. in (0, f)) :

divi(t) - (po(4 - pa(r)), in o,

i ( t ) -dondf) .

Taking into account that (po(t) - pa(t))' € ,3(o) and using a classical result

(see e. g. [S], p. 32) we obtain the existence of a unique rp$) e (Hd(O)),

such that:

(4.7)

(4.8)

(4.e)

l lto(t)llo ( 
"(o) | 

(po(t)-po(t))' | .

Since (po -pa)' e L2(nil it follows, from (4.8), that io e L2(0,r; (rf (o))r).

We define a new function, given by:

doQ) - 
l) 

;,610,, &. €. in (0, ?)

and we obtain, without difficulty, the regulaity d,o € L2(0,f;Qr@))r).

Moreover, by using a standard result (see e. g. [O], p. b66), it follows:
. f t

Vu|(t) : 
JrO";(r)dr, 

i =1,2. Taking into account the regularity of io,it



is easy now to verify that d,o e L2(0,";(H01(O))'). On the other hand, the

definition (4.9) also gives some regularity for il.,i. e. do e L2(0,f ;@t(O))').

Hence we defined a functions with the following properties: dr(f) - d, ilo, do e

Lr(o,r;(rrt(n))2) and

(4.10) llil,olll..p,r;lnlpyzyrlldollt"{o,r,@t(o)),) < c(0,r)llps-palln,g,,1.

We introduce another function, $p, as the unique solution of the problem:

(4.r1) 
divri - PoQ) - aa(T) in o'

i : d o n d o ,
satisfying the estimate:

(4.r2) llillo < "(o) I po(r)-pa(") I .

Computing divdr(t), we get, from (4.9) the following equality: divQ(t) -

bo(t) -pa!))-(po!)-po€)) a. e. in (0,7); hence, using (4.11) we obtain:

(4.13) div(dr(t)+6): po(t)-pa(t) r. u. in (0,?).

Let us define a new function:

(4.14) io(t) -i lp(q+6pu e. in (0,?).

Taking into account the properties of do and $o *" obtain for 6o : do, do e

L'(o,r;(rf i(o))z); divrio(t) : po(t) -pa(t) a. e. in (0,?); 6oV) : $oin

(r'(o))'.

We are now in a position to introduce the following divergence free system:

(4.15) { eW(0,7;V,V'),  e e W(O,r;Hj(O),I1- '(o)),  r  €D'(Qy),

(4.16) -f  -v Li-  br(r 'o,f)  + (Vrto) '{+Vn _ roYs - ioir_QT,

(4 .17 )  -  p ' -  nLp -bz ( io ,d  -  E ' i=9p in  Oa ,

(4.18) {Q) : {r, v(T): 0 in o,
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where:

(4.1e)

(4.20)

(4.2r)

fo : ilu * u L do * b{is,6) - (viirdP,
{

9 p :  b  ' U p 1

ir :YG - io,

6 : i + t p ,

with dp, $p and G previously defined.

Using the regularity of 6n, 6p, .d and some classical results of [8] we obtain

at least f-o e L2(0,7;V') and go e Lz(Or). For {y we have the regularity

i r  €  H . I n d e e d ,  d i v y ' 7  -  A G  - d i v $ o : 0  i n  O  a n d  i r ' f i , : X - r i u ' d :

0 on dO.

Now we can state the main result of this paper:

Theorem 4.2. The adjoint systern (4.1)-(4.5) has at least a solution

(6,9,r) ,  wi tht f i '  e L2(0,7;v ' ) ,d e c( l0,Tl ; ( r t (o)) ' ) ;p '  e L|(0,T; I { - t (o))

and rfi, g unique.

Proof. The regularity of the data iu, go and {7 and some standard results

for Navier-Stokes equations (see [S]) allow us to obtain the existence and

uniqueness of the function f in W(0, T;V,V'), the existence and uniqueness

of the function 9 inW(0,f;I/61(O), .F/-t(O)) and the existence of a distribu-

tion zr, satisfying the system (4.15)-(4.18).

By putting:

(4.22)

it is easy to verify that ri € C([0,f];(f2(n))2) and ti' e L2(A,T;V'); more-

over (ri, 9,r) is a solution of the adjoint system (4.1)-(4.5).

The uniqueness of riand tp is obtained as follows. Let (d1,g1,r1) and

(rtrr,gr,zr2) be two solutions of the system (4.1)-(4.5). We denote (6,9,r) :

1 1



(dr,grror) - (rfirrgr,zr2) and by subtracting the variational formulations of

the adjoint system for (ui1, gr,nrL) and, (ri2,g2tTz) we get:

(4.23) - (rfi'(t),4u,r' + v((d(t),4)o - 61(t7s(t), rfr(t)),4+

((Vrto (4)t ri (t), 4 u,u, - (re (t)V eQ), 4 : 0 Y 2 € V,

(4.24) (divtd(t), s) : 0 Vs e ,12(Q),

(4.25) - (p' (t),7) 6-1 1o1,r| toy + r((e1t),'l))o - b2(is(t), p(t)), ri -

@(q',n(4,?) :o vae r1o1(0),

(4.26) rn(r):d, pQ) - 0 in o.

The desired result is now obtained taking i - ti(t\, rl - g(t) and using

standard techniques.

The last result of this paper states the optimality conditions satisfied by

a solution 9e of (3.2).

Theorem 4. 3. Let us suppose that gn is an opti,mal control. Then

there exists the unique elemenfs (u's, ra,po) € (I/2'r(nr))' n C([0, f.hv) *

H'''(Qr) x L2(0, T; HL({l) n ,3(o)), (fr|, po) e L2(0, T; (rol(o))'?) n

C([0, rJ;Q2({t))2) x W(0,T;Il j(O),I/*t(O)), with ti l6 e L2(0,7;V') and a

unique distribution ro up to an additiae distribution in (0, T) such that the

following systern is satisfi,ed:

do * u A rio + br(,70, rio) + Vpo : l'+ Ero in Qr,

d i v u ' s - 0 i n O 7 ,
(4.27\

ri - n A rs * bz(60,"0) :90 in Or,

do(0) : d, 16(0) - 0 in O,

L2



(4.28)

-1 f r 'o-v  Ads -  b t (do, r ig)+(Vd0)"? i0*Vzrs - roYgo -  0  in  O1,

divuio - Po - pa in Q7,

-vi - K L po - bz(io,vo) - E . Ao: 0 in Or,

,fro!) - VG, po€) = 0 in O,
f

I po(go-e)dxdt > oVg eBi"s,1.
J ftr

(4.2e)

Proof. The first assertion of the theorem has already been obtained. We

have to prove the inequality (a.29). For this purpose we consider the weak

formulations of systems (3.9)-(3.13), (4.27), (4.28). Taking adequate test

functions in these variational formulations, after an easy computation, we

get:

(4.30)
bo(t) - pa(t), o. 1t) - p0 (t)) : (pg(t), go (t) - e(t)) -

k'a\),ro(t) - r'(t))g-'1n),'rol(o) - ((ro(t) - r.(t))',vo(t))-

INsrrrurn oF MATHEMATIcS
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(rn[ (t), 176 (t) - fr (t))u,,r' - ( (r*o(t) - fr (4)',,t0 (t) ).

Integrating the equality (a.30) from 0 to f and using a Green's formula, it

follows:
pT pT

l^ 
(po - pa)(p- - p6)dxdt: 

Jo 
po(g - ss)dxdt - (do(")'r7o(?) - f (")) =

'f;,
I po(go - e)dxdt - (VG, do(r) - f (r)) =
tor, 

1T

l, 
po(go - s)dxdt + (c,div(ris(?) - fr(r))) : 

/, 
po(go - e)dxdt,

since ds - fr € C([0, \;V) ^rd 
X: 

0 on 0O. Therefore the theorem is

proved.
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