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Abstract In this paper we develop a general procedure to prove Hardy type estimations for an operator

that admits a conjugate operator, starting from the Mourre estimation. We use this method for operators of

convolution with analytic functions, obtaining Hardy type estimations with exponential weights, for sufficiently

small exponents.



1 INTRODUCTION

The main aim of this paper is to prove weighted estimations of the type:
lwiul| < C flwa(AM=iV) = E)u| (1.1)

where A(—iV) is the convolution operator with the Fourier transform of the function A, the norm
is the L2—norm on the space R” for some n > 1, E is a real number that may also belong to the
spectrum of the operator A(—iV) in L*(R"), w and w; are weight functions that grow at infinity and
u is a function in L2(R™) with support far from the origin. In principle one would like the two weight
functions w;, and wsy to have similar growth at infinity but usually the function w; has to grow faster.
The technique on which we want to emphasize is that once one can prove a Mourre estimation (see
[ABG3] [BP] [GN] [Ar] [M] [BG2] and our Section 2 for the definition and the discussion of these type
of estimations) for the commutator of the operator H = A(=iV), or even of a perturbation of such an
operator, with a well suited conjugate operator, one can elaborate an abstract procedure leading to
weighted estimations of the type (1.1). Concerning the form of the conjugate operator we make some
comments in Sections 2 and 4. '

The history of this type of inequalities is a long one, starting probably with the well-known Hardy
inequality [HLP] and continued by various other authors (see [KT] [ABG2]). In [A1] such an inequality
is proven for the Laplace operator (A(t) = £?) and its importance is put into evidence in connection
with the problem of existence of eigenvalues in a given real interval for some perturbations of the
Laplacian. This type of inequalities is strongly related with the study of the decay at infinity of the
eigenfunctions of some classes of perturbations of the operator H := A(—iV) and thus are of great
interest also for the analysis of quantum Hamiltonians. In this last context mainly the perturbations
of the Laplacian (by two-body [A2] [FHHO] or N-body type potentials [FH]) and the case of the Dirac
operator [BG1], [N] have been studied but the case of dissipative Hamiltonians [ABG3], of analytic
decomposable Hamiltonians [GN] and of relativistic Schrodinger Hamiltonians [CMS] may motivate
the extension of this type of inequalities to larger classes of functions A. Let us also remind that the
case of second order differential operators with variable coefficients is thoroughly treated in [ABG1]
and [ABG2]. The case of Hardy inequalities with polinomial weights appears in [AH] and we intend
to develop this situation in a forthcomming paper. The case of exponential weights for values of £ in
the gaps of a Hamiltonian having spectral gaps is discussed in [N] .

Let us shortly comment upon the eigenfunction decay problem and its connection with inequalities of
type (1.1). Suppose H is a self-adjoint operator on the Hilbert space LZ(R") for which we can prove
an estimation of type (1.1) (with A(—iV) replaced by H) for a value E that is an eigenvalue of H
with eigenfunction f. Denoting by x the smoothed characteristic function of a ball of sufficiently large
radious R in R, by x* = 1 — x and by u = x* f we see that:

wfI] < llwrull + oIl < C llwa(H = E)ul| + [oax /|
(1.2)
(H - E)u=(H - E)f - (H - E)xf = (H - E)xf
Thus if we can prove that H applied on functions with compact support takes values in the domain of
the weight function w; (for example if H is a local operator or a convolution operator with the Fourier
transform of a function with some strong regularity properties), then:

lwi fI| < C llwa(H = EYxfll + lwnxfll < €. (1.3)

In this way we obtain information on the decay of the eigenfunction f of the operator H. This kind of
analysis may be of much interest for a large class of Hamiltonians of quantum systems.
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Let us still point out that up to now two classes of weight functions have been of interest in connection
with the above type of problems: polynomial weights and exponential weights. In order to treat them
in a unified setting we shall consider our weight function w as being strictly positive and we shall write
it in the form w := e?. Then the main difference between the polynomial case and the exponential
case comes from the fact that for polynomial weights the derivatives of the phase function ¢ decay at
infinity allowing for some estimation procedures that take advantage of the fact that the function u
has support away from the origin, procedure that does not work for exponential weights.

The general method used in the literature [A2) [ABG2] in proving estimations of the type (1.1) consists
in making two types of cut-offs: on the function u that is approximated with functions of compact
support an on the phase function that is approximated with phase functions that converge to infinity
to some finite constant. Then one proves a weighted estimation for this "regularized” situation and
finally one removes the cut-offs (first in v and then in the phase function). We shall also adopt this
general scheme in our work. In order to be able to treat the "regularized” situation, when the function
u has compact support, it is clear that some decay conditions are necessary for the Fourier transform
of A and thus some regularity for the function A.

In this paper we consider the case when A belongs to a class of real analytic functions on R"™ with at
most some specific polynomial growth at infinity (see the Hypothesis 2.2), case for which we can prove
an estimation with exponential weights of the type: w(z) = e"lel with the constant v sufficiently
small. In a forthcoming paper we shall consider less regular functions A for which we can prove an
estimation with polynomial weights. The body of our paper is organized as follows. In Section 2 we
present the general framework needed for the type of calculus we develop and for the statement of our
first main result, which is contained in Theorem 2.6. The following two sections are concerned with
the proof of Theorem 2.6. In Section 3 we prove a weighted inequality for functions with compact
support (away from the origin) and weights belonging to a class containing exponentials with linear
phases (with a small exponent 7) together with their bounded approximants that we shall use in the
next section. This section contains the main technical points of our procedure of making use of a
Mourre type estimation. In Section 4 we give the details of the cut-off procedure and we finish the
proof of theorem 2.6.

2 STATEMENT OF THE MAIN RESULT

We shall work in the n-dimensional real space R", with the Lebesgue measure denoted by d™z and we
shall use the notations:

Ty =)= T5Y;

o] = | 32 Jasl? 2.1)

=1
B(xiR):={y € R"|ly—2l < B}.
We shall consider the Hilbert space H := L*(R";d"z) =L%(R"™) and we shall set:
< f,g>= [gr f(z)g(z)d"z

Hf“ = V<]7] >

(2.2)



On L}(R") we consider the Fourier transform:

B by OB i gy ;
f8) = for e @) G = Jene (@) (2.3)

I

F(S)(k)

and we denote in the same way its extension to the space S'(R") of tempered distributions on R". We
shall work with two subspaces of C®(R™), namely BC*( R™) the space of indefinitely differentiable
functions on R™ that are bounded together with all their derivatives and Coo( R™) the space of
indefinitely differentiable functions on R™ that have polynomial growth at infinity as well as their
derivatives of all orders. We shall constantly use the standard multiindex notations for monomials in
n commuting variables X := (X1, ey Xp), for a = (a1,.y0n) € N":

X = X7t X0
la| :=a1 + ...+ an
al = aql...an! (2.4)
a+B:=(ar+ B1,rant Br)
aLf<=a; < By Vj € {1,...71}.

We denote by 6; the multiindex with 1 on position j € {1,..n} and 0 in rest. We also use the notation:

<X >=\1+|XP= |1+ ) X? (2.5)
=it

and the following inequalities for x and y in R™:

<r+y> < <cr>T<y>, forr>0

<z4+y><Cr)(<z>"+<y>")

(2.6)
l1forr <1
with: C(r) :=
2-lforr>1
In ‘H we shall work with two sets of commuting self-adjoint operators:
Q = (Q1,---Un) ﬂ»
D := (D1,...Dy) (2.7)
where (; is the unique self-adjoint extension of the operator:
(Qif)(z):=z;f(2),Vf € C5°(R") (2.8)
and D; the unique self-adjoint extension of the operator:
.0 n
D;f = —z—i,erC;;"(R 3 (2.9)
Oy
For a fixed y € R™ we shall also use the notation:
g+ Di= Y 95 (2.10)



for the self-adjoint extension of the operator defined on C5°( R™). For any Borel function o: R"—=C
we denote by ®(Q), respectively by ®(D) the operator defined by the usual functional calculus for
commuting families of self-adjoint operators and by D(®(Q)), respectively by D(®(D)) their domains
in H. Let us also remind the following well-known intertwining property of the Fourier transform on
S'(R™):

FQ;F=D; FD;F =-0Q; (2.11)
For a function F € C1(R™) we shall denote by VF its gradient.

In the sequel we constantly make use of the functional calculus procedure [ABG3] based on the
unitary group generated by a family of n commuting self-adjoint operators X = (X1,...Xy) in H, that

we denote by: '
Ux(z):=e®* (2.12)

More precisely, if F'is the Fourier transform of an integrable function, then:
F(X) = /R" P(2)Ux(z)da (2.13)

defines a bounded normal operator on H with the integral defined in the weak-operator topology on

H. If F el R") then its Fourier transform is a rapidly decaying distribution F of a finite order

m and in [ABG3] one proves the formula:
< f,F(X)g>=F[< f,Uxg >] (2.14)

for g € D(XT*) N ..D(X7), with the right hand side interpreted as the value of the rapidly decaying
distribution F of order m applied on the function:

R™ 5 ¢ — < f,Ux(z)g > C. (2.15)

Indeed the condition on the vector g implies that the function in (2.15)is of class C™(R™) and bounded
together with all its derivatives up to order m. We shall usually use the formula (2.13) having in mind
the above interpretation and verifying the domain condition for g.

Let us remark that if in (2.12) we take for X the usual family of derivation operators D, the unitary
group they generate is the group of translations in R™:

(Up(2)N)(y) = f(y +2). (2.16)

We shall need this version of the functional calculus in order to make explicit computations of com-
mutators between functions of @ and functions of D. The starting point is the observation that for
f € D(F(Q)) one has:

(Up(z)F(Q)N)w) = (FQ) )y +2) = Fly +2)f(y+2)=(F@+ z)Up(z)f)(y) (2.17)
so that formally we can write:
Up(z)F(Q)f = F(Q +2)Up(e)f. (2.18)

This formula is obviously true if F' is continuous and f belongs to the domain of the normal operator

F(Q). Thus if F € C*(R") one gets for f € D(F(Q))ND(VF(Q)):
[Up(2), F(Q)1 f = {F(Q + ) - F(Q)}Up(2)f = /01 ds(z - VF(Q + sz)) Up(z)f. (2.19)
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Notations: For a finite complex measure v on R" let us denote by |v| its total variation and by
M( R™) the space of finite complex measures on R™ with the norm:

1Wllar 1= [ (RT). (2.20)

Observing that M(R™) CS'(R") let us denote by FM(R™) the space of Borel functions on R™ that
are Fourier transforms of measures in M(R") and by FM;(R") the space of functions that belong
to FM(R™) together with their first order derivatives. For a function p € FM( R"™) we denote by
ji(dk) its Fourier transform with the convenient normalization in order to have:

ule) = /R” =k i(dk). (2.21)

Evidently, any function in FM;(R™) belongs to C'R") and is bounded together with its first order
derivatives.

Let us consider now g € FM(R*) and F € BC>(R"). Using a formula similar to (2.13) valid
for Fourier transforms of measures and (2.19), we see that the commutator [w(D), F(Q)] defines a
bounded operator on H and one has the formula:

[u(D), F(Q)] = fgn il(dz) Jy ds(z - VF(Q + s2)) Up(z) =
(2.22)
= i [gr Jo ds(Vp(dz) - VF(Q + s2))Up()

interpreted as equalities of bounded operators on H with integrals with respect to the weak operator
topology. One gets thus the estimation:

(D), P < |[a],, IV F@II. (2.23)

We shall extend now the formulae (2.22) and (2.23) to a more general situation that we shall need in
our computations. Let p be a polynomial of degree m on R" verifying the relation:

S 19%pl < C(L+ IpD),

laj<m

let p € FM(R") and A := pu. Let I € BC>(R"), f € H and g € D(p(—D)). For § € N" let
d°p be the derivative of order 3 of the polynomial p so that due to the hypoellipticity condition on
p we have that g € D(9°p(—D)) for any 8 with |3] < m. For functions H and G; in BC>(R") with
j€{1,..,n}and |a| > 1 we have the formulae:

02z - Gla) = 3 {2:02G,(0) + 95 Gy(2)) (224)
g=1
/! o= I

(1 (@) Up(a)) = 2 (57) (2771 @) Up(@)D’s (225)

1181
s (H()Up(2)g) = Y 7 (007 (2)) Up(a) (9°p(=D)) (2:26)

1Bl<m

Thus the function:

R™ 5z —< f,[U(z), F(Q)lg >€ C (2.27)
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is of class ("™ (R") and we have the equality:

< [,IND), F(@))g >= [gr Aldz) (p(i0:)< [,[U(2), F(Q)lg >) =

= fol ds [Rn ji(dz) (p(idy) < f,(z - VF(Q + sz))Up(z)g >) =

A - (2.28)
S prem i [ ds [gn TA(de) (< £,00VE(Q + 52)Up(@) (0%(~D)) g >) +
b S ppren B 1 ds e ide) (< £,00F(@ + s2)Up(@) (90(~D)) 9 >)
From this we derive the estimation:
< £ ND), F@)lg >| < Cr (|Ta],, + Illar) 171 1p(=D)gll- (2:29)

We want to analyze now the case when the function F grows polynomially at infinity. To be able to
deal with this case we have to impose stronger regularity conditions on A.

Suppose F' is a real function on R™ such that F and all its derivatives up to order m+1 grow at infinity
not faster than < ¢ >". Suppose farther that p is a hypoelliptic polynomial on R™ and p € FM( R™)
is such that < z >™t! 2 € M(R"™). Let A = pp.

Definition 2.1. We define the dense linear subspace:
£ :=D(p(-D))N L%, (R™). (2.30)

comp

We observe that for g € £ and z € supp g we have that || is bounded so that F(Q)g € L*(R™) and:
<z >~ (FQ)Ub(2)9) )| < (£2)"| 5| lg(z +9)l <
(2.31)
<Cp<z+y> lg(z+y)l<Crlg:r)-

Thus for f € H and g € £ the distribution \ may be evaluated on the function:
R* 3z +—< fs [UD(IL'),F(Q)]Q > C (232)

(this function being differentiable up to order m and growing not faster than < z >™1 for 2 — o
together with all its derivatives up to order m). In conclusion we can still give sense to the formulae
(2.28) and we obtain the estimation:

< £AD), F(Q)]g >| < Cr < & > i, I7lllI< @ >" p(=D)all- (2:33)

In order to be able to deal with exponential weights we shall need to use a variant of our commutator
formula for the case when F grows exponentially at infinity. For this situation we have to impose even
stronger regularity conditions on the function \; in fact we shall need analyticity in a strip around R"
and some specific growth condition at infinity.

For 6 > 0 let:

Ch = {z e C"| Zn:IIm(zj)[2 < 52} ;

3=1

Hypothesis 2.2. For § > 0 and m € Nlet O(C}) be the space of analytic functions on C§ that are
real on R”™ and let O™(C3%) be the space of functions A € O(C}%) that are of the form A = py where:
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1. pis a polynomial of degree m, verifying :3_j4j<m |0°p| < C(1 + |p|),
2. uis analitic and p(. + iy) € FM(RE) for any fixed y with |y] < 6,

3. there exists a strictly positive constant s such that: s [p| < (1 + |A]).

Let us remark here that a more general class of analytic functions ) can be treated by replacing the
polinomial p with a function w belonging to a class of symbols of type m. In fact all one has to dois to
use the Taylor polinomial of order [m]+1 and control the rests; we propose to develop this procedure
in a forthcomming paper.

Lemma 2.3. If p € O(C}) and verifies condition (2) in Hypothesis 2.2, then e'la, € M(R™) for
any v < 6.

Proof. Let us consider y € R™ with |y| < &, let us denote by 4y the restriction of the function p to
the plane Hy := {z +iy |2 € R"™} and let us consider a smooth function f with compact support and
define:

R* 5 ¢ — ¢(z) = /R” dke=* f(k) € C. (2.34)

Then ¢ is analytic and decays rapidly at infinity so that the product function:
R" 5z —pu(z +iy)p(z) € C {2.35)

is analytic and goes to zero at infinity. Using Cauchy formula we obtain for f smooth and with
compact support:
fiy(f) = Jgn d™k JRr dop(a + iy)e ™" f(k) =
= [r" d”fw(fv + izz) R ciktz"‘;’“f(k) =
= Jgrd"ep(z +y o(z) =
= Jg» " ap(e)ole — iv) = 28]
= /g dzp(z) [Rn dke= =k f(k)e vk =
= (e ¥ R)(f).

Approaching any f € Co(R") with functions with compact support we can extend the equality in
(2.36) to any f € Co(R"). Now for any y € R™ and any € € (0,1) we can find a conical set
V, ={keR |y -k>(1-elyl |k|}. Let us choose now a finite family {y1,.-,yn} C R™ with
ly;| = 7(1—€)~' < é and a partition of unity {x1,..-, xn} on the unit sphere, such that k/ k| € suppx;
implies that k € V. We have: Xje‘kaﬂ = Xjiy,, so that we also get the equality of the total

. Then:

variations: x;e¥* || = x;j }/ly]

N N
[GLRIEHIES (Z xg'e’yfkﬂ) ()] < (Z X | > (Ifh <
= = (2.37)
<Gy sup iyl o I1fllze -
lyl<~’
fory < v <é. ]
Let us suppose now that A = pp € OF*( C") and that F' € C*°( R") satisfies the estimations:
|0°F(z)] < Cyell®! (2.38)



for any v € R" and any a with o] <m+1 and some @ € (0,6). Repeating now the arguments that
led us to (2.33) we conclude that for any f € H and any g € L the formula (2.28) remains true also
for this case and we get the estimation:

< 1. (D), @)y >| < Cr |7], 111 [e®'p(~D)g] (2:39)

with v € (a,9).

After this elaboration of the main calculus procedure that we shall use let us come back to our
problem that we announced in the introduction and formulate our main result and the method we use
for proving it. We shall consider convolution operators on R"™ with functions A = pu € O™(Cj§) and
we shall prove an estimation of type (1.1) with exponential weights of the form w(z) = €7<*>for some
sufficiently small positive 7. In order to formulate our theorem we still need some definitions.

Definition 2.4. For a function A € O™(Cy) we define its set of reqular values:
()= {teR|3e>0,36> 05t [VAK)| 25 k€ ANt -6t + o)}

We call generalized critical value any point in the complementary set of £(A) in R.

Remark 2.5. It is obvious that £(A) is open in R and that the image by A of any zero of VA is a
generalized critical value; anyhow it may happen that due to its behaviour at infinity A may also have
some other generalized critical values.

Notations:
1. For any linear subspace V C H and any R > 0 we denote:
Vr:={f €V |suppfnB(O0;R) =0}.
2. Let us denote by G the domain of the self-adjoint operator M D) with the norm:

1A% = A7+ MDA (2.40)

We are now ready to state our main result concerning the case of exponential weights.

Theorem 2.6. Let 6§ >0, R € R, A = pp € OF(C") and E € E(X\). Then there exist a strictly
positive constant y and two positive constants C and R such that for any f € D(p(—D))r we have the

stimation:
e [e<e> 4], < ¢|v<@se<@ (D) - By

(Let us remark that the constants C and R depend on y and on E but not on the function f).

The inequality in the above statement is understood in the sense that if the function:
z— <z > ((MD) - E)f)(@)

is in L2( R™) then the function e7<=> f(z) is also in L*(R"™) and we have the stated estimation. Let
us remark that in the above statement E may belong to the spectrum of the operator A(D) as well as
to its resolvent set as long as it remains a regular value.
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Our method to prove the above theorem consists in defining a "conjugate operator” associated to
A(D) and generalize the usual ideas used in proving estimations of type (1.1) outside the spectrum
[A2], [N] in order to take advantage of the Mourre type estimation that we prove. We dedicate the
final part of this section to the definition of the conjugate operator associated to A(D). In choosing it
we have been guided by some results in [Ar], [ABG3] and [GN].

The conjugate operator one would like to choose for A(D) would be (see also [Ar] and [GN]):

1 n
Ao = 53 {Qi(8;A)(D) + (0;M)(D)Q;} (2.41)
i=1
defined on CS°(R™). Then the commutator of Ao with I := A(D) is:
Bo = i [\(D), Ad) = 3 (8,))(DY? (2.42)
i=1

also acting on C§°(R™) but defining a positive sesquilinear form on D(p(—D)) with A = pu. The form
of the operator By given in (2.42) makes clear the reason for the definition of the "regular values”.
One observes that for E € £()) and for any small neighbourhood J of E contained in E(N), if one
denotes by ¢ the characteristic function of J, one gets the estimation:

D) BoeA(D) 2 {1t [ (T 0 fA(D) (2.43)

the constant multiplying »(A(D)) in the right hand side being strictly positive.

An essential ingredient in our proof of the weighted estimations, as we shall show in the next section,
is the observation (see also [FH] and [ABG1]) that by making use of the explicit form of the conjugate
operator, the most singular term appearing in the expression of the sesquilinear form (3.6) has a definite
sign. While for polynomial weights this procedure works by considering the conjugate operator given
in (2.41), the terms appearing in the remainder being small at infinity due to the behaviour of the
phase function, in the case of exponential weights one has to absorb some of these remainders in the
expression of the main part and thus one has to consider a more complicate conjugate operator, more
intimately connected with the form of the phase function.

Due to our cut-off procedure, we have to work with a class of phase functions containing the linear
phase we are interested in, together with its approximants.

Definition 2.7. For any 7 € (0,6) we define the class of functions:
o » 7
O = {s@ € C™([1,00);R) [0 < ¢ <73 |0 (D] < 5 PO s v, Vi< m+ 1},

where m is the degree of the polynomial p associated to the function A and we consider weight functions
of the form w(z) := e#(<*>) with ¢ a function belonging to the class @ .

For any weight function w(z) := e?(<z>) with ¢ € ®,m we denote:

X(a) = V(p(z)) =

and we define the associated conjugate operator:

X
<z>

P<z>) (2.44)

I
_ 1 .5 (3 @ X(Q)0. 1 0= X Q) _
A 2D/ds/Rnd ; () (@) {Un(2)e=*@Q; + Q; Up(z)} (2.45)
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acting on C5°(R") (with the slight abuse of notation explained after formula (2.13)). Using the same
arguments as in the commutator calculus explained above, we verify that the operator in (2.45) is in
fact well defined on C§°( R"™) with values in L2(R™). All we have to verify is that for any g € H and
any f € C5°(R™) the function:

R™ 3 2 — aj(z;s) :=< g,{UD(x)e”'X(Q)Q]— +Q e~ X@ ADUp(x }f >c C (2.46)

(for j=1,..n) is of class C™(R™), with m = deg(p) and that |(p(id,)a;)(z;s)| < CeOFI<> for any
€ > 0. But.

(p(i0z)a;)(2;5) =

agesx-/\'(Q—}—r)(Qj + 1'3) _ af—(sjesr-X(Q+I (8,6 sz X (Q+x) ) (Q + ;) (2.48)

191
PP X(@ta) = AN N 92 (2 X(Q +2)) .- 0 (2 X(Q + 1)) e K@D (2.49)
=1 a1 4..40=p

T

02x-X(Q+2) =Y {2;(92X;)(Q+2a)+ (027" X,) (Q + 2)} (2.50)
=1
()5 —sz- X (Q) ( )181 X[)’(Q) —sz- X (Q) (251)
@2X) (@)= p(<z>) = 3 bla)pl(<z>) (2.52)
I<]al+1

where the coefficients by(z) are symbols of class §'~I°/(R™) (see [ABG3]). Putting all these formulae
together one gets the estimation:

|(p(i0:)a;)(w; 5)] < CeHI<ig||[[p(=D) /|| (2.53)

Remark 2.8. Let us notice that this last estimation allows us to extend the operator A to the domain
L by approaching each f € £ with elements in C§°(R") and observing that C§°(R") is an essential
domain for p(—D).

We end this section with the remark that although we can prove a "sharp Mourre estimation”, similar
to (2.43) for the commutator:

B :=i[A(D), A] (2.54)
defined on C§°(R"), as we show in the Appendix and although we work with the conjugate operator
A given by (2.45), for the estimations we have to prove the inequality (2.43) for Bo is sufficient. In
fact, as it becomes clear by the arguments in Section 3, the inequality (2.43) for By implies a similar
inequality for B but with a less precise lower bound.

3 Weighted Estimation for Functions with Compact Support

In this section we begin the proof of our main theorem 2.6 by proving a weighted estimation for
compactly supported functions of class D(p(—D))r with phase functions of class @ m.
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Theorem 3.1. Let A = pu € O™( C}) and E € E(X) a regular value for A; then there exists
constant vo < 6 depending only on A and E such that for any v € (0,40) there are two constants R,
and C.,, such that for any phase function ¢ € ®~m and any f € D(p(=D)) N L2, (R")r, we have
the weighted estimation:

<Q > .
=< 2 e(<QX)N(D) - E)f
5(Q) =

for any b € (1/2,1) and for ¥(Q) := VA20) 1 +4n < Q > ¢'(< @ >)).
The constants C, and R, are also depending on the function A and on E. The rest of this section is
devoted to the proof of this theorem.

Hev(<Q>)fHZ’ +nl(b—1/2) ”< Q >t Ae«p(<@>)f“2 e L

Proof. Let us first sketch a formal argument concerning this proof. We consider thus a function
feDp(-D))NnL,,,(R")g, and we compute the following sesquilinear form:

9Im < Ae? f,(M(D) — E)e?f >=(—i) < e*f,[A, MD)le?f>. (3.1)
Taking an interval J containing the value E and contained in the set £(A) and denoting by ¢, the
operator ¢7(A(D)) with ¢, the characteristic function of the interval J and @7 := 1 — ¢ we have:

2Im < Ae? f,(AM(D)— E)e? f >=
=b< e?f,Boe?f > +(1 - b) < e f,¢sBodye? f > + (3.2)
+(1-b){< €?f, BodFe?S > + < e[, 05 Bodse”f >h+ < et Re? S >
where b € (0,1) and R is a remainder, measuring the difference between (—i)[4,A(D)] and By and
that has to be estimated. The "localization” with the operator ¢, is necessary because we intend to

use the Mourre type estimation (2.43) for the second term on the right. For the remainder we shall
prove an estimation of the form:

|< e, Re? [ >| < 4C |Ip(=D)e? fII (3.3)
for any f € D(p(=D)) N L2op(R™)R,-
For the left hand side in (3.1) we consider the equality:
2Im < Ae? f,(A(D) — E)e? f >=

2Im < Ae?f.e?(A(D)— E)f > +2Im < Ae? f,(M(D) — e?X(D)e™?)e? f > . (3.4)
Now: 2|Im < Ae? f,e?(A(D) - E)f > <2 H_Z’%Q;)Ae@f ‘ N%ew(/\(D) _ E})f“ <
= H%%)Aewflr + |$Ger @) - E)f“2 = (3.5)
- (sess, (4) aerr )+ [stgeroor- o

valid for any function ¢ for which the right hand side is bounded. Concerning the second term on the
right hand side of (3.4) we shall prove the following formula:

Im < Ae?f,(M(D) — e?X(D)e™?)e?f >=

= <Ae‘/’f, i’gﬁgglAewf) +Im < Aef,Re?f > {3i)
with the estimation on the remainder R:
|1 < Ae? f, Re? f >| <7C [lp(-=D)e? I (3.7)
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An important observation is now that the integrand of the term — <A€¢f, %%L—le*”f» that grows
at infinity in the spectral representation of ¢ (when removing the cut-off on f), has a definite negative
sign for ¢ € @, ,,. This fact is a reminiscence of the ”General Virial Formula” in [FHHO]. Using the

Mourre type inequality (2.43), denoting:
a:=inf [(VHO (0] (3.8)
teJ )

and putting everything together we get:

<%z c(\(D) - BV 2 (1= ballgse sl +
b < eof, Boet S > + (At f, (255520 - L) Aevs) + (B4)
+(1 - b){< e/, BogFe? f > + < €2 f, 85 Boge* f >}

+ < e f,Ref [ > —Cy |lp(-D)e? fII*

With our choice for the function ¢ we observe that:

. P<Q>) (@), L\ 1 _ 2
<Ae‘”f, (2 35 " <0 >2> Ae f> = -—|<@>" et (3.10)

In order to obtain a positive term we follow an idea of [ABG1] and prove an estimation of the form:
1 - 2 2 ;
<g,Bog >2 — |< @ > Ag| ~+Clp(-D)g] (3.11)

for any ¢ € C§¢(R™). This is in fact the reason for putting into evidence the first term on the right
hand side of (3.2). In order to deal with the fourth term in (3.9) let us consider the explicit formula
(2.42) for By and observe that:
VA = (V) +p(Va)
o . 3.12
(FR)(z) = si(e), (3.12)

so that due to the hypothesis on p and u the operator By is relatively bounded with respect to A(D)?.
Then By defines a bounded sesquilinear form on G with norm denoted by ||| Bol|| so that we have the

estimation:

< e?f,Bopge’f >+ < e?f, ¢ Bogge? f >| <
< 1Bolll [o3e2 1] e llg + loae?flig} < 2l1Bolll [@3e2 5], e? Flg < (3.13)
<18l {8 |osees], + b1}

Let us further observe that:

esel, slese s+ feonf
< (1+ £%) |s3es ||+ IAD) - By I <

= (3.14)
< (1+ E|(A(D) - EYAD) ~ B) e 1| + I(AD) = E)esfII* <
< o(E, 7) [(MD) = EYe*fIP < e(E.1) {[[e?(\(D) = EVIP + | Roe? I}
Where: 1 2 B
C(E,J):=1+ d_(ETTTf (3.15)
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and the last term contains a remainder Ry := €?A(D)e™% — A(D) that has to be estimated. Now we
use condition (3) in the Hypothesis 2.2 in order to deal with the last term on the right hand side of
(3.9):

I(=D)ee SIP < w2 [le? IIE = w2 lgse f15 + 2 [oFer f] | <

3.16
< K2 {sup< r >2} ”e«prZ 4 k~2 “q')jL@PfH? . (3.16)
ted ¢
We shall denote ¢(J) :=sup< ¢ >2, Now let us plug all these estimations in (3.9):
ted
Js8ee00) - 1] 2 (1 vpallover s +
+ (b= 1) Hl< @ > Aef|” = 1C (=D} fII" -
2
(1= b) ||| Boll {e |ogees|, +3 uvené} + o

b <ersiress > —Cyt (e fee s + [esees ] )

Using once again the second inequality in (3.16) for the first term on the right hand side of (3.17) we
get:

5% e30) - B[ 2 53 (e - Josees[;)
+(5-1) 2l<@ > Aee | = 1Cllee s - s
-0 Bl {0oses s + e 15} + Y
b <ot rer > 0o (D e+ [eger ] )
or equivalently (taking into account (3.3)):
{0 _ (Cy + 152 | Bollg + 207x™2e(J)) }lle? F I +
+(b-1) Hl< Q> Aecf] < (3.19)
< |5 e (D) - BYf| + (L + 61 - 5) | Bollg + C7n~?) [o5ee 1]
From (3.14) we obtain:
{4 (Cy + 132 | Bollg + Cvw2e()) }le? 1 +
#(b=1) 2< @ >t Aeof| < e#f Re?f > = IRae Il <

< H—z—(c%e“p(/\(D) B E)fllz . (3.20)
+ {24 01— ) | Bollg + Cya~ (2, ) [e#(N(D) = EMII
Finally using (3.3), (3.16) and similar estimations for the term containing Ry we get:
< e f, Re? f >|+ | Rae® fI* < ey [le?fllg - (3.21)

Choosing b € [%, 1), ~ small enough and 6 large enough, we can assure the positivity of the coefficient

of the first term on the left hand side of (3.20) and thus we get the desired conclusion. Let us strengthen
the fact that the choice of v and # only depends on the value of the constant @ in the Mourre type
estimation and on the function A and on E.

In conclusion, all that remains to be done in order to finish the proof of the Theorem 2.6 are the
following four steps:
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1. to give sense to the calculus done in (3.2) and to estimate the remainder term (3.3);
to prove (3.6) and to estimate the remainder term in (3.7);

to prove the inequality (3.11);

= 8 I

to estimate the remainder term Ry appearing in (3.14).

Step 1: Let us begin by observing that for f € Lp, we have e f € Lg,. In fact the support condition is
obvious and choosing 1 € C§°(R™) with the property nf = f we see that due to the conditions imposed
on the derivatives of the phase functions in ®.,,, and the hypoellipticity of p, the multiplication with
the function ne? leaves D(p(—D)) invariant. Taking into account the Remark 2.8 and extending A on
LR, we can thus define the sesquilinear form:

Lr, % Lr, 3 (9,f) — Blg. f) = (=) [< Ag,(\(D) = E)f > = < (A(D) = E)g, Af >] € C. (3.22)

As remarked previously Bg can also be considered as defining a bounded sesquilinear form on Lg, .
By abuse of notation we shall also denote this form by < g, Bof >. Thus:

< e?f,Re?f >=B(e*f, e’ f)— < e?f, Boe* f > (3.23)

and all we have to do is to estimate this difference for f € Lg,. We shall approach f € Lg, with
functions in C5°(R™\ B(0, R,)) with respect to the norm of D(p(-D)). On Cg°( R™\ B(0, R,)) we

can compute the difference in (3.23) as the sesquilinear form associated to the operator ¢ [A(D), A —
Bo = i [A(D), A] - (VA)* (D). But:

i[\ND), Al — (VA)? (D) = (3.24)

n

/R" Ade)p(i0:) Y 2; {Un(@)e™ ¥ @ A(D), Q5]+ (D), Q] e w X Q@Up(a)} +

J

| =

1
/ds
0

1
43 [ds fo ptdzyplion Y- 2 {Un(@) (D)X ] Qs + 05 [M(D), e+ ¥ @) Up(a) | -
0

7=1
~ (VA (D).
We begin by calculating the first and the third terms together:

1 n
[ ds [ Alda)plids) 3 2 {Up(a)e= X @ N(D), Q] + N(D), Q) e X@Up(x)} -
_]:
—(VA)(D)’ =
ds fgr il d2)p(id,) 3 2 {Up(z)e X Da;\(D) + ;M D)e > X QUp(z)-

J=1

~20;MD)Up(e)} =

=t
- 2

O

— sk
- 2

(=X S

ds fir ido)P(i0,) 3 2, {Up(@)(e™ ¥ @) = DIND)+
MDY+ X @~ 1)Up(e)} =

= 12’;flsdsf1dt Jrr dz)p(ids) ki xka:j{UD(z)Xk(Q)e‘”'X(Q)é)j)\(D)—
0 0 7,k=1
~9;\(D)X(Q)e =X (@ Up(2)} =
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_ sdsfdt fgr Ald2)p(is) S ez {Xu(Q + 2)etsr X @+, (D)~
0] Bk=1
—9;A(D Xk(Q) g~ er XN Tp(z) =

1 n
=3 Of Sdé'({dt Jrr ildz) frr i(dy)p(id:)p(idy) Z_l Badi by

] =

AXK(Q + 2)ets* X QT Up(y) — Up(y)Xi(Q)e~ =X (@} Up(z) =

= =t 01 sds({ldt Jrr i(dz) Jrr A(dy)p(idz)p(:0,) 2": TREiY;" (3.25)

—~

Up(Y{XK(Q + 7 — y)ets=X(@F==0) — X\ (Q)e~ =X @ Up(z).
Let us treat in a similar way the second term in (3.24). First let us observe that:

[/\(D) ez X(Q ] = [rr i(dy)p(idy) [UD( ), in(Q)] -
= fgr i(dy)p(id,)Up(y)(exe=X(Q) — eorX(9=v)) =

:(iS)fdtfR” f(dy)p(i0y)Up(y) kZ 21k (06 X1)(Q — ty)eto= X (@),
O —

l,k=1

so that we obtain for the second term on the right hand side of (3.24):

%Ofld s Jgr fldo)p(i0:) X 2;{Up(@) ND), &= @] @; +@; [\(D), e~ @] Up(a)} =
=1 fsdefldtfR fu(dz) frr iu(dy)p(idz)p(idy ) Z LT Yk (3.26)

=¥
DH(OXNQ -ty + D)= X @) g, )
—(Qj — ¥) (O X1)(Q — ty)e™ X QN Up(a).

Finally, putting (3.25) and (3.26) together, we obtain:
i[\(D), 4] - (VA)*(D) = (3.27)

=i o | [ dt g () g HAy)pL02)p(i0,)U ()

0
'{Akzlxkxjyj()‘k(Qfo y)e tsz- X (Q+z-vy) - Xi(Q)e mX(Q))+ ‘ %: T;T Yk
JR= i
(

7,1,k=1
(0 X0)(Q — ty + 2)e= X Q-9 (Q; 4 1)
—(Q; — ¥;) (0 X1)(Q — ty)e™*= X @~} Up(z).

We use now formula (2.26) for p(id;) and for p(id,) in order to get:
z'[/\(D' ), Al = (VA)? (D) = (3.28)

=(3) © & ¥ ig sdsfdtfR fi(de)ec! [ g i dy)el-

|o]<m [BI<m 0

:0°p(=D)Up(y)H (Q,z,y)UD(l)aﬁp( D)

where:
Haﬁ(Q; z, y) =
emel=H) (9805) { 50 zhwjy;(Xn(Q + 7 — ylet= X (@+e—)
Jrk=1

—Xi(Q)e t= X (@) 4 Z T;T1Yk (3.29)

=1
(R X1)(Q — ty + z)e (- ty+x (Qj +z5)-
—(Q; — y;) (0 X1)(Q — ty)e~ =X (@-))},
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Using now the formulae (2.48-2.52) and taking into account the definition of X and the conditions on
the phase functions ¢ € ., we see that we obtain:

| Hap(@;5 2,9l < 7C. (3.30)
Finally we obtain for any f € Lg, the estimation (3.3).
Step 2: For f € L, and g € H let us compute the difference:
< g, MD)f>—<g,e’AND)e¥f >=

= £ < g,(e7*A(D)e* ~ e?!ND)e~?)f > + (3.31)
+1 < g,(2M(D) — e?A(D)e™? — e ¥ A(D)e?)f >

We begin with the first term in (3.31):

Sl(g> f) =<y, (e—'kﬁ/\(D)e‘ﬁ - e¢/\(D)e—¢)f >=
= [g~ A(da)p(ids) < g,(e™?Up(z)e? — e*Up(a)e™)f >=
= fgr ida)p(ids) < g, {Up(a)eA(<Q>)em(<Q>)  P(<Q) =2l <QH22)p(2)} f >=

= Jgr Ada)p(ide) < g, Up(a){e<@)emol<0=53) — e X@)}f > 4 552
+ g idz)p(i0s) < g, {e"X(@ - <@~ <QHNYp(2))f > +
+ fgr ide)p(ids) < g, {Up(a)(e* ¥ @ — 1) = (e7**@ = 1)Up(z)}f > .
Let us denote:
Y(Q;SVT) = S{SO(< Q >) - 5‘9(< Q t+ >)} - (1 - S)CL' ’ X(Q) = (3 33)
=s{p(< Q@ >)—e(<Q+z>)+z - X(Q)} -z -X(Q)
so that:
S1(9,f) = (3.34)
1
= ({ds fRr i(dz)p(idz) < 9, Up(z){p(< @ >) —p(< @ -2 >) ~ 2 - X(Q)yeV@ma) f >

1
+ [ ds fr Ade)p(ide) < g, (o< Q+2>)— (< Q>)—z-X(Q)}e"@"Up(z)f > +

+f1ds SR i(de)p(ids) < g, {Up(2)e=¥ @z - X(Q) + 2 - X(Q)e~>* X DUp(a)}f >=
0

n

11
= ({ds Of(l — t)dt [gr f(dz)p(ids) 3 cikz;Tr:

k=1
- < 9,{Up(2)(8; X¢)(Q — tz)e¥ (@==7) — (3ij)(CJ2 +tz)e¥ @2 Up(2)} f > +

+({1ds Jr» A(dz)p(idz) ,‘Z“l z; < ¢, {Up(2)e* ¥ (@DQ;£(Q) + £(Q)Qje " XD Up(2)}f >
=

where Q;£(Q) = X;(Q) = (9;9)(< @ >) = Q; < Q > ¢'(< @ >). In conclusion, commuting
Up(z) and £(Q) in the last term, taking into account the definition of A (2.45) and observing that

Vi(dz) = izp(de),
we get:

Si(g, f) =21 < g,§(Q)AS > +

n

¥ Of s fyr ilde)p(ids) 35 2 < 9, [E(Q + 2) — EQWUp(@)e= ¥ @Q;1 > +

. i . (3.35)
+0fds g(l — t)dt fgr ii(dz)p(idz) kz.:: Cipl 0%

9 1

- < 9. {Up(2)(9;Xi)(Q — ta)e? @o=2) — (9;X)(Q + t)e¥ @D Up(2)} f > .
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But:

€Q+2)- €@ = [dtY 2u(BE)@ + t2). (3.36)
0 k=1

Using once again the formulae (2.48-2.52) and taking into account the definition of R and the condition
on the phase functions ¢ € @, ,,, we obtain:

ImSi(Af, f)=2< Af,< Q> (< Q >)Af > +Im < Af, Ry f > (3.37)
with the estimation:
|< AL Bt >| <AClIp(-D)IP (3.38)

where the constant C' only depends on the function ), so that by choosing vy small enough we can
make this remainder as small as we like.

Let us concentrate now on the second term in (3.31):
Sog, f) = (3.39)

< g, {2X\(D) - eP(<Q>) \ A(D)e~ P(<Q>) _ ¢ «p(<Q>),\(D)eso <Q>)}f > =
= [pn A(de)p(id,) < g,{2Up(z) - ee(<Q>) Up(z)e™ P(<Q>) _ o—e(<Q>) Up(z )ev(<Q>)}f >=
. fR" fi(dz)p(i0;) < g, {2 — eP(KQ>) —¢(KQ+z>) _ p=o(<@>)+p(<Q+z>) YUp(z)f >=
= Jgr Alde)p(i0s) < g,{(1 — e/ 79(<QE)) 4 (1 — o (<OHAQHEENTp(a) f >=

= [ds fgr il (dz)p(i0,) < g,{z - X(Q + 53)e?(<Q>)= —p(<Q4+sz>) _
-z X(Q+ sz)e™¥ P(<Q>)+¢(<Q+sz>) }Up(a:)f Sope
ds fgr f(dz)p(i0:) < g,z - X(Q + sz)(exp {—sx [ diX(Q + tsa:)} _
0

o%,_

— exp {sa: . }th(Q + t.sz)})UD(x)f >
0

Let us denote:

1
(@ 8,2) = sz - /th(Q + tsz). (3.40)
0
For f € Cg°(R™) we have:
2ImSy(Af, f) = (3.41)

- (—i)flds Jrr ilde)p(i0z) f? ay < i [A’XJ(Q + tsz)(eP(QiT) — e”(Q”’“’))] Up(z)+
0 7=l .
+X;(Q + tsz)(e=?(@592) — er(Qi02)) [A, Up(z)])f > -

Let us estimate the two commutators appearing in (3.41). If we denote:
G(@it 8 2) = X(Q + tsz)(e (@) eP(@ie)y (3.42)

we see that:

(—1)[4,Gi(@;t,8,2)] = (3.43)
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= fdt SR ildy)p(idy) Z u{Up(y)(G(Qs5t,8,2) — G5(Q — y; 1, 5,2))e =X (Q)Q,
+Qe “”‘(Q Up(y)(G;(Q;t,s,2) — G;(Q — y;t,8,2))} =
& Of1 t({dT Jr~ dy)p(idy) l;i; yyeUp(9)(0kG5)(Q — (1 = T)y; ¢, 8,2)
(=X @)Q, + (Q — yy)e~t=X(Q-v))

where the derivative of G is computed with respect to the first variable and is given by

(akG])(Zy t,s, $) 2= (akXJ)(Z + tsz)(e——p(z;s,x) _ eP(Z;s,z‘))_
__Xj(l + ts:z:)((?kp)(z; t,s, g:)(e"P(z;s,x) + ep(z;s,x)) —
== (akX)(Z + tsx)(e p(zs,2) _ ep(Z’s .r))

(3.44)
—sX;(z + tsz)(e —p(zi5,2) 4 gp(z:8,2) Zn: lfdr KX )(Q + Tsz).
Let us consider now the second commutator:
(~i)[A, Up(2)] = (3.45)

- (—%)({ldt Jrr i(dy)p Z u{Un(y) [+ @Qi, Up(z)] +

+ [e't“ Qz UD( )| Un(v)} =
= (-5)/ dt Jg ﬂ(dy)p(iag)é w{Up(y)

[ar £ 0[5 (0, X)(@)Q + bilet X Up(z)-
- [ a5 10 X(@Q - e X OUp(a)Un() =

0 r=

= %)Ofldt fier D)D) = 0 fdr 3 @ Un(u)
(3 (0, X)(@)Qu + 80X = (32 H(OX(@ - (@i~

y) — T])e_ty'X(Q_y)}UD(CII).
k=1

Putting all these results together we obtain finally:

2ImSy(Af, f) = (3.46)

—deIR fi(da)p(i0y) ZxafdtdefR Ady)p(idy) 5 vk

Lk=1
< /[, UD(?J)(akG NQ—-(1- T)y,t>5»$){ X1 DQi + (Qu = w)e =X @} Up(a)f > +

1 n 11 v . n
+({d8 Jr» Ada)p(i0z) ,Zl ;T OfdtodefR" /“i(aly)p(u?y)IZ1 -
J,r= =

< £ Up(y)X;(Q + sz — y)(emPl@win) — ep(@=vism) ) {( i tye(0, X1 )(Q)Qu + 6,1)etv X (@) —
k=1

Z tyi(0, X )(Q — y)(Q1 — i) — 8)e WX Q-YYUp(2)f >=
n 1 1 n
j o g B(da)p(ide) 3 2 [ de [ dr [ e dy)p(idy) 3 ur
'kgl{yk < £, Up(y)(0:G;)(@Q — (1 = m)y; t,5,2) (e X Q@Q, + (Q1 — w)e X Q@) Up(2)f > +

+ax < f,Up(y)X;(Q + sz — y)(eP(@-vinm) — ep(Qvish|( f) 1y, (0 X, )(Q)Q1 + 8r1)ev X (9

5 Z tyr Ok X )(Q — y)( Q1 — i) — Oki)e™ tyX(Q MNUp(z)f >} =
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ds [gr il dz)p(id;) n s fdtdefR f(dy)p(i0,) i Ui

= 1 0 =1

'k; < [, Up(¥)Ri(Q; s, t,7,2,y)Up(2)f > .

O\,,_.

Using the formulae (3.44) and the properties of the phase functions of class ®.,,, one can easily see
that:

0 e~ UMD p(i0,)p(i0, )2 w0 < £, Up(y) Rjn(Q3 5,1, 7,2, y)Up(2)f >| < 1€ |p(~D)S|I? (3.47)
r,Ye

for any s,t,7 in the interval [0,1], with C depending only on the function A. This finishes the proof of
the estimation (3.7).

Step 3: Let us look at the operator A < @ >72 A that defines a sesquilinear form on D(p(—D))r,
that is bounded with respect to the graph-norm of the operator p(—D). We have:

<fHA<Q>T?TAf>= (3.48)

n n 1 1
=-i2 X [ ds [ dt g [ i(d)p(i0z)a; i dy)p(idy )y

<, UD(w){ wX(Q)g, 4 (@ Q- 2;)} <Q>72
Qu+ y)ev X (@) 4 Q et X( Q)} Up(y)f >=

B
1 1 -
Ofdsofdff n Jre A(da)i(dy)p(i0:)p(i0y )z j3i( Bji + Rjt + Ty + T + Sj1)

where:

Bji:=4< f,Up(y)Q; < Q >~* QUp(z)f > (3.49)

Byt =< f UD(-’C)(e”X DQ; < Q>2QUp(y)f > +
+ < f,Up(x)es*X@)Q; < @ >_2 Qi(e=X Q) - 1)Up(y)f > +
+ < f,Up(z)(e e X(@+) -1)Q; < Q> 2 QiUp(y)f > +
+ < £, Up(2)e™>=X @99, < @ >2 Qu(etv ¥ (@) — 1)Up(y)f > +
+ < f,Up(z)(e™=X( @ 1)Q; < Q >72 QIUD(y)f >+
+ < f,Up(2)e™=X(Q)Q; < Q >~2 Qe XQ) _ 1)Up(y)f > +
+ < J,Up(a)(e= X (@+2) 1)Q; < Q >~ QIUD( )f >+
+ < f,Up(2)emX@)Q; < Q >~2 Qe *X(@) — 1)Up(y)f >

Tjii= = < [,Up(2)e**9)Q; < @ >=2 yev-X(@- y)UD( )f>-
~ < f,Up(2)e " X(Q)Q; < Q >~ ¥ XQ@~9yp(y)f >

Tj1:=< f,Up(a)e* X @)z, < @ >=2 v X Q-0 yp(y)f > +
+ < f,Up()e=*XQ)z; < Q >=2 e~ XQ@-Vp(y)f >

Sjt == < f,Up(z)e™* X Oy, < @ 572 ¥ XQ-Vyp(y)f > . (3.53)

Now let us discuss each type of term separately. We begin with Bj:

(3.50)

(3.51)

(3.52)

}Ii ds

JHi=1

dt [gr R f(dz)(dy)p(ide)p(idy )z 3 Bt =

(= LR,
O

(3.54)

FM=

1
({ Of dt fgr Jrr i(de)p(dy)p(id.)p(idy)z;y-
< [, Up(2)Q; < Q> QUp(y)f > .

7i=1
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But we observe that:
“Qj £ »? Q‘H <1 (3.55)
so that
> <@, <Q@>72Qufi>| < X < [i:Q;<Q>2Qufi >| <
Jl=1 ; =1 N (3.56)
< S GIIAN < 2 1517
=1 7=1
In conclusion we obtain that:
w 1 1
1> [ds [dt fgr Jgr f(d)i(dy)p(i0:)p(:0y)z ;91 Bjt <
=10 0 (3.57)

e ilde)p(i0:)z;Up(@) | —n>:||<a N(D)fI* =n < f,Bof >

n
<n )
J=1

In order to estimate Rj; let us consider one of the eight scalar products appearing in its definition

Iofldsof1 ffRn Jrr ide)i(dy)p(i0z)p(idy)zjy1-
(2)emX@)Q; < @ >72 Qu(e™ X — 1)Up(y)f >|< (3.58)

1 n 1
< [ds [1at 3 [ar |X,Q) fe 12l (do) [p(id)e=¥ @Up(~2)f]
]:
- g |l (dy) [p(i0y )yje X DUp(y) f| < v llp(=D)AI

so that one can prove that:

> [ds Ofldt S Jre ildz)i(dy)p(idz)p(idy )y Rt < (3.59)

4]1 10
< Cyllp(-D)fII*.

Let us consider now the type of terms appearing in T} and in Tﬂ:

IdeIdtfR Jrr Ade)pldy)p(idz)p(idy )z yx:
- < f UD(z)e”X(Q)Q < Q> yevX@-NTp(y)f >I<

< fdsfdtfR fR |l (dz) izl (dy)- | p(i0:)p(idy)z;yx (3.60)

'<QJ<C,2>‘1 e X QU (—z) foy < Q >~ eV X @V (y)f >|<

< [ ds [t fr fgr 1l =) I (4)
@5 < @ > plide)z; =X —2)f|[u < @ > p(i0y Jyee X @I Up(v) |

Let us consider the last norm:
Hyl < Q > p(id,)yre¥ X @V Up(y )fi =
H< Q >~ yip(id,)yxUp(y)e¥ X Q)f‘

> [ (O X Up(y) < @ —y > (9Fp)(- I (3:61)

<

lﬁ
<ClylPe|< @ -y >t p(—-D)f|

20



and take into account the support condition on f € Lg. that implies that p(—D)f = n,p(—D)f where
1, is the characteristic function of the exterior of the ball B(0; R, ); thus:

[<@+y>"" p(=D)f|| < V2<y>|<@>""! 1p(=D)f| < (3.62)
<V3<y> B [p(-D)f] |
and:
n 1 1 -
%J'JZZI [ ds [ dt g~ SR~ #(de)(dy)p(i0e)p(i0y ) yi(Ti + Tj1)| < (3.63)

< CR;Y|p(-D)f|I*.

Now let us finish this step by considering the term Sj; and observing that:

| [ds f dt e S (29D (0, e
- < f,Up(2)er X @z < @ >72 v X7V Up(y) f >|<
< J ds [t fr e 1 ) 4 ()
25 < @ >~ plide)ae= X @Up(-a)f] | < @ > plid, e ¥ @2 Up(w) s

(3.64)

so that finally:

%j%l ds [ dt fgr fgrr M(d2)i(dy)p(ids)p(idy)zyiSi| <

< CR;* |lp(-D)f|I*.

(3.65)

Oy

Oy

Step 4: Let us estimate now the remainder term containing R in (3.14):

1B2£1] := [|(e°A(D)e™ = A(D) S| =
= || g alda)p(id,) {e¢1<@>)-#(<@+=>) — 1} Up(a)f]| <

ds fg~ |it] (dz) Hp(iax):v - X(Q+ sz)expq —sz 'jX(Q + tsm)dt} Up(z)f
< Cylip(=D)fll-

y (3.66)

<

(=L -

4 Proof of the Main Theorem

Let v > 0 and o(t) := 7yt for ¢ € [1,00). In order to finish the proof of the Theorem 2.6 we have to
extend the estimation in Theorem 3.1 with ¢ = ¢p and for v sufficiently small (as in the statement of
Theorem 3.1) to the case when f € D(p(—D)g, such that the function:

2 /< z > (D) - E)f)(x) (4.1)

is of class L%(R™). In order to do this we shall approach the function f with functions with compact
support, but in order to control this limit we shall need to work with bounded phase functions ¢ € @4 m
that converge to @g. We shall denote (using also the notations of Section 2):

Mp = {f € Dp(=D)r | V< @5en (<) (AD) - B)f) € I*(R™)} . (42)
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Let us fix x € Cg°(R) such that:
0< x(t) <1, x(t)=0 for [t| > 1, x(t) =1 for |t] < 1/2.
For z € R" and for 6 € (0, 1] we denote:
xo(z) := x(0 < z >).

For f € Mg and 6 € (0,1] we denote:

fo=xof.
Let: 1 . 1
8] = { (fRe_thfdt> e =2 for |t| <1
0, for |t|>1
For N € N let:

in(t) = for t < 2N and fqn(t) := 0 for t > 2N
¢
. 1. ) .
Iu(t) = —N](t/N); Ny i=JN *Tn; en(t) = /nN(s)ds, vt > 0.
0

Let us remark that we have the following relations:

=
jeCr®), 050 < (fRe™Rd)

JRiMd =1, [Rin®dt=1, 12N = jn(t)=0

nw € C(R), w(t) <,
[t(Bnw)(D)] < C1, [(@Fna)(®)] < Ciy Vi€ R

for k € N and with C} independent of 7;
en(t) < po(t),  lim on(t) = wo(t), ViER.

In fact we shall prove only those estimations that are not completely obvious. First:

2N o]
na(t) = /R In(t = 8)iin(s)ds =7 / Jn(t—s)ds =7 / Jn(T)dr
-0 —-2N

t

so that for t < N we get 7y(t) =y and for ¢ > 3N we get ny(t) = 0; but in general we have:

0 = inf iy < nu(t) <supijn =7.

For the first derivative of ny(t) we see that:

Hom)(®) = ¢ [ 03wt — in(s)ds =ty | (D)t = s)ds =

=ty fN(ﬁjN)(t —s)ds =ty / (97n)(T)dr =yt {jn(N) — jn(t - 2N)} =

t—2N
= —ytjn(t - 2N) = =y §i(t/N = 2) = =y7i(r — 2);
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(4.4)

(4.5)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)



sl
but j(r — 2) # 0 implies that 1 < 7 < 3 so that [t(Onn) ()] < 3 (fR e_l——lﬁdt> . For the higher

derivatives we observe that:
Al 1 i ,
(@ nu)(t) = —v(0* 1in)(t = 2N) = —7]—@(3’“ Yj)(t/N - 2) (4.15)

so that ’(3an)(t)| < Cyy for any k > 1, with the constants C independent of 7.

The conclusion of the above analysis is that for any N € N the phase function ¢y defined by (4.8)
belongs to the class @, ,, for some 5 > 7.

We fix now the value of 4 small enough (as in the statement of Theorem 3.1), feMp,0€(0,1]and

N € N large enough so that we can apply Theorem 3.1 with the phase function ¢y for the function

fo with compact support. Thus we get the estimation:
(b—-1/2)

feor ol + LB < @ >t ey < 0

<Q> .

PN (Q)

where ¥y is given by the same formula as in Section 3 with ¢ replaced by . In the sequel we remove
the cut-off in f by letting § — 0 and using Fatou Lemma on the left hand side of the inequality (4.16)
and the Dominated Convergence Theorem on the right hand side. Let us remark that the boundedness
of €#V is crucial at this step. This leads us to an estimation for any f € Mg, with the phase function
¢nN. A similar procedure allows us to control the limit N — oo and finish the proof of Theorem 2.6.

P (MDY~ )y

(4.16)

Lemma 4.1. There ezists a constant C such that for any N € N we have:

. en(<Lz>)
T < CV<z >e'<E,
PN ()

Proof. For N € N we define the function:

te®n (1) _
gll] = (4.17)
/1 + 4ntey(t)
If t < 2N then we see that:
2N 2 o
() =mnt) =% [ j((t=s)/N)ds=7v [ j(t/N-s)ds=7 [ j(r)dr2
- e HN=2 (4.18)
w .
> C{J(T)df =3
so that we have the inequality:
1+ dntphy(t) > V2ny/t (4.19)
and thus for t < 2N:
gn () < (VZ) Wi ) < (v2ny) Ve (4.20)
If t > 2N then we see that:
¢ ¢
on(t) = Oan(s)ds = ({ds JRIN(s — T)in(T)dT =
t 2N t N t/IN 1
=y fds [ jn(s—T)dT =7~ [ds fNjN(a)do = I of ds f2](a)da = (4.21)
0 —00 0 5—2 s—

¢/N
=N Of {J(1) = J(s —2)}ds
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where:

t ¢
J1) e= / j(3)ds = /j(s)ds. (4.22)
—0o0 -1
Thus, for t > 2N we obtain:
» . t/N
en(1) =N [s(J(1) = J(s =2))lg  +N [ sj(s—2)ds =
2 (4.23)
t/N=-2

=t —yN _fl (t/N —2—3s)j(s)ds = &(T)vt

where:
ri=ifN >2
=2 . 4.24
Er):=1=(1/7) [ (1—2—s)j(s)ds ( )
=
We observe that for 7 > 3:
1
£(r)i= 1 - (1/7) /(r — 9~ 8)j(s)ds = 2/7 < 2/3 (4.25)
=1
and for 2 < 7 < 3 there exists a strictly positive constant &y such that:
T—2
(1/7) /(T — 20— 8)j(s)ds > o > 0 (4.26)

so that: £(7) <1 - & < 1. We conclude that there exists a constant ap < 1 such that for any 7 > 2
one has £(7) < ap < 1 and thus:

gn(t) < te?N (1) < (107 < (/17 (Ve 807) < k1€ (4.27)

with k :=sup (v/te~%). o
1

Evidently %iII(l) fo(y) = f(y), for a.e. y in R™. Moreover:

0%(xef) = > C(O°Pxa)(0°f). (4.28)
<o
But:
(0°xs)(z) = 611 5™ by( )0 <z >) (4.29)
p<|8|

with b,(2) the symbols defined in (2.52). Thus we see that ]jm (8Pxg)(z) = 1 for B = 0 and this limit
vanishes if || > 1, so that élr% (0% fo)(y) = (0°f)(y) for a.e. y in R".

Let us consider the limit for § — 0 of the right hand side of (4.16):

Gz eon(A(D) - E)fy =
>

= X6(Q)7F25e#¥ (D) - E)f + joizye?™ IMD), x6(Q)] f. (4.30)
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We observe that the first term converges in L?—norm to %GV’N(A(D) — F)f and we shall prove
that the second one converges in L2—norm to zero. In fact for any integer N we can find a finite
constant (diverging with N) such that:

ePN
’ N (Q)

so that it is enough to analyze the family of L2—functions: {< Q > [A(D), xe(Q)] f}os0- We have:

<Q>[AD),xe(@))f =
= [rr ildz) < Q > p(id:) [Up(2), xe(Q)] f =

” <Cy (4.31)

n 1
Zlofdt Jrr idz) < @ > p(i0z) {z; (0;x6(Q + tz)) Up(2) f} = (4.32)
]:‘
n 1
= j:mfdt Jgr ildz)p(idy) {zj?g—ﬂ%%o <Q>(Ox)0<Q+1tz >)UD(x)f}.
Thus:
1< Q> (D), xa(@)) fII* = )
n 1
JR™ 4y | g~ A(dz) Zl({dtp(iax {x]@{%%(? <Q>(0x)0<Q+tx>)Up x)f}
J=
(4.33)
<AlAH(R)} [re |4] (dz) fg~ dy Zl Ofdt~
]:
- 2
|plide) {2i =350 < @ > (0x)(8 < @ + 12 >)Up(2)f } (v)|
by using Jensen formula. Making use of (2.25) we obtain:
p(i0, ){z]%a <@ > (0X)(6 < Q + 1tz >)Up(a)f} =
z 4.34
=0<Q> % LREH 2,2 HE (33)(0 < Q + t >))} Up(2)(@°p)(~ D), (4.34)
arzGEs (0O < Q1o >) = s
= 3 b (010,22 {021(0x)(0 < @ + 12 )}, 3)
03w Jﬁ—x%—%@:“%)@m‘;“x: A v oo (4.36)

Y—6; 1 ~y—26 1
+(Q; +tx;)0x Qs T t0y 2Q, +iz;>

(where the terms with a negatlve order of derivation have to be considered zero because in fact they
do not appear). Further we see that:

1
aYe’ || 4.37
TLQitta; > T < Q)+ twy >t (4.37)
so that:
Qj +tz;
| L O <> . (4.38)
NQ ta >
For the second factor on the right hand side of (4.35) we have:
14|
02(0x)(0 < Q +ta >) =t 37 7715,(Q + ta)(0"x)(0 < Q + tz >) (4.39)
p=1
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so that:
107(0x)(0 < @ +ta >)| < Cthlgy(< Q + tz >) (4.40)

where (g is the characteristic function of the set: {T eRy | 51—0— <t< %} In conclusion, making also

use of the first inequality in (2.6) we obtain:

Jgrdy 5 [ dt [p(i0) {2, 225250 < @ > (0x)(8 < Q + tz >)Up(2)f } ( y)l

Jj=10
SC<z> prif<@Q+tz>G(<Q+1te >)| IZ ((Bﬁp)(D)f)(y-{—x) dy < (4.41)
Bl<m
<C<a>® [ @D+ dy =, 0.

= <lvl<s

where we took into account the fact that § < y > is bounded by 1 on the support of (4(y). Using the
Dominated Convergence Theorem in (4.33), the above relation implies now that

< @> (D) (@1 =, 0

and we can control the right hand side of (4.16).

Let us analyze now the left hand side of the inequality (4.16). The integrand in the first term converges

pointwise:
lim e fy(y) = 280 f(y). (4.42)

For the second term on the left side of (4.16) let us remark that if f € D(p(—D))r, and N € N, then
e?N f € D(p(—D))r, too and we can extend the operator < @ >~ A to the domain D(p(—D))r, (see
the estimations following the definition of A in Section 2). Moreover we have:

<@ >"1 Ae‘pN (fo - ||
= Jr" | m;]g({ds Jr7 i(de)p(i0;)-
(e XW 4 (2 + y;)e X E)een(<5492) (o + y) — 1)(Up(a)f)(y) } [2 dy <
< I s 5 [ ds fyr o) (4.43)
(xola + y) = D)p(ids) {7 X O + (zj + y;)e™ X fﬂ)} eoN (<) (Up (2)f)(y) |? dy+
t IR s z fds SR ilde)e-

(92x0)(x + y)(0°p) (10, )(yje~ =X W) + (z; + y]) es= X (@) yeen (<e4v>) (Up(2) f)(y) |? dy.

and let us observe that we also have the following bound uniform in 6 € (0, 1]:

e | 5255 5, ] ds g itdayotion)
{ai(yrem X W 4 (a5 + yJerm HEreen <2 (e + y) - 1D)(Up(2)f)(v)} I dy <
<C0 T z (Jge 1l (d2)e!) (fign |l (dw)eo!) [ dy: (4.44)
=2kl | (9P p)(id >2<y> {yj X0 (o 4 g0 o= X (w44) | eon (<o+2) (Up(2) f)(w)) <
< O () (Jige 1l (d)es!) [1p(~ D) £11
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In order to study the pointwise convergence of the integrand in the last expression in (4.43) let us
observe that the expression in the fifth line obviously goes to zero pointwise while for any 8 with
|3] > 1 we have:

|(82x0)(z +9)] < C()0! (4.45)

so that the last line of (4.43) converges to zero also. From the uniform bound (4.44) we immediately
obtain the L?—convergence to zero of the first line of (4.43) and hence:

hm ”< &> Ae‘”Nfg“ = ”< g » Ae‘pr“ (4.46)
for any N € N. Using now Fatou lemma for the first term in (4.16) we finally get:

len 7117 + E52 < @ >t e f|?
<timinf (Jle” fol|” + S22 < @ >~1 Aeon f]P) <
2
< Oy liminf [ £955eex(\(D) - B) || =
|5%5evom) -

(4.47)

for any N € N.

Now we still have to study the behaviour of the inequality (4.47) when N — oo. Using Lemma 4.1 we
see that the right hand side is uniformly bounded by:

” ;chc; e AD) - B)f “2 <C|v<@se<@ o) - By,

with C' independent of N, the right hand side being finite due to the hypothesis f € Mg,. But
evidently:

VNeN (4.48)

; ”’(;)eem(<x>) o~ /T S e<e> (4.49)
N —00

so that by the Dominated Convergence Theorem we obtain the convergence of the right hand side in
(4.47). For the first term on the left hand side one can immediately use the Fatou lemma in a way
similar to the argument we gave for the § — 0 limit. Thus we obtain the desired inequality:

|e<@>s| < c|v<@se< ) - B (4.50)
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