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1 INTRODUCTIOI\

The main aim of this paper is to prove weighted estimations of the type:

l l r rr l l  I  Cl l tu2(,\(- t 'v)- E)ul l ( 1 . 1 )

where ,\(-iV) is the convolution operator with the Fourier transform of the function l, the norm

is the Lz-normon the space lR'for rorn. n ) L, E is a real number that may also belong to the

spectrum of the operator i1-r;V; in ,2(R"), u1 and u,2 are_weight functions that grow at infinity and

,iis u too.tion in ,r(R") *ith .opport iar irom the origin. In principle one would like the two weight

functions u1 and ur2 to have similar growth at infinity but usually the function trlz has to grow faster'

The technique on which we want to empbasize is that once one can prove a Mourre estimation (see

lO""tl tgpl tCN] tAtl tMl [BG2] uod oo, Section 2 for the definition and the discussion of these tvpe

of estimations) for the-commutatorof the operatot H = )(-iv), oI even of aperturbation of such an

operator, with a well suited conjugate operator, one can elaborate an abstract procedure leading to

weighted estimations of the type (i.t). Concerning the form of the conjugate operator we make some

comments in Sections 2 and' 4.

The history of this type of inequalities is a long one, starting probably with jhe well-known Hardy

inequality ifif,el and ctntinued by various other authors (see [KT] [ABG2]). In [A1] such an inequality

is proven for the Laplace operator (}(t; = 12) and its importance is put into evidence in connection

with the problem of existence of eigenvalues in a given real interval for some perturbations of the

Laplacian. This type of inequalities is strongly relaied with the study of the decay at infinity of the

eigenfunctions of some classes of perturbations of the operator H := \(*iV) and thus are of great

interest also for the analysis of quantum Hamiltonians. In this last context mainly the perturbations

of the Laplacian (by two-body [A2] IFHHO] or N-body type potentiafs [FH]) and the case of the Dirac

operatorlnCrl, itq i,uu" been'studed but the case of dissipative Ilamiltonians [ABG3], of analytic

d".omporable Hamittonians [GN] and of relativistic Schrodinger llamiltonians [CMS] may motivate

the extension of this type of ineqnalities to larger classes of functions ). Let us also remind that the

case of second order differential operators with variable coefrcients is thoroughly treated in [ABG1]

and [ABG2]. The case of Hardy inequalities with pol-inomial weights appears in [AH] and we i1t1nd

to develop this situation in a forthcomming paper. The case of exponential weights for values of E in

the gaps of a Hamiltonian having spectral gaps is discussed in [N] .

Let us shortly comment upon the eigenfunction decay problem and its connection with inequa[ties of

type (1.1). Suppose H is a self-adjoint operator on the Hilbert space "L2(lR'") for which we can prove

an estimation of type (1.1) (with .\(-iv) replaced by H) for a value E that is an eigenvalue of H

with eigenfunction j outtoii"g by x the smoothed characteristic function of a ball of suffcientiy large

radious R in IR*, by Xt - 1- 1 and by u = XLf we see that:

l lq / l l  S l l r r " l l  + l l r 'x / l l  SCl lwz(H -  E)" l l+ l l 'urx/ l l
(1 .2 )

( H - E ) u = ( / / -  E ) f  - ( H - E ) x f  = ( H - E ) x f

Thus if we can prove that H applied on functions with compact support takes va,lues in the domain of

the weight function ,tr2 (for example if H is a local operator or a convolution operator with the Fourier

transfoim of a function with some strong regularity properties), then:

l l rr/ l l  Scllwz(H - n)xfl l+ l lurx/l l  S c' (1 .3 )

In this way we obtain information on the decay of the eigenfunction /of the operator H' This kind of

analysis may be of much interest for a large class of Hamiltonians of quantum systems'



Let us still point out that up to now two classes of weight functions have been of interest in connection

with the above type of probl"*r, polynomial weights and exponential weights' In order to treat them

in a unified setting *" ,hull consider our weight function tu as being strictly positive and we shall rvrite

it in the form ur i= ee. Then the rnain difference between the polynomial case and the exponential

case comes from the fact that for polynomial weights the derivatives of the phase function I decay at

infinity allowing for some estimation procedures that take advantage of the fact that the function u

hu, ,upport away from the origin, procedure that does not work for exponential weights'

The general method used in the [terature [A2] IABG2] in proving estimations o-f tfre type (1'1) consists

in making two types of cut-ofs: on the fuo.tion u that is approximated with functions of compact

support an on the phase function that is approximated with phase functions that converge to infinity

to some finite constant. Then one proves a weighted estimation for this "regularized" situation and

finany one removes the cut-offs (first in u and thun i' the phase function). we shall also adopt this

general scheme in our work. In order to be able to treat the "regularized" situation, when the function

u has compact support, it is clear that some decay conditions are necessaly for the Fourier transform

of .\ and thus some regularity for the function )'

In this paper we consider the case when ,\ belongs to a class ol real analytic functions on lR" with at

most some specific polynomial growth at inflnity (see the Hypothesis 2'2), case for whicii we can prove

an estimation with exponential weights of the type: u(o) - 
"tl 'I, 

with the constant'y sufficiently

small. In a forthcoming papel *" ,huil consider less regular functions '\ for which we can prove an

estimation with polynoirial'*"ights. The body of our paper is organized as follows' In Section 2 we

present the general frumu*ork needed for the type of calculus we develop and for the statement of our

first main result, which is contained in Theorem 2.6. The following two sections are concerned rvith

the proof of Theorem 2.6. In Section 3 we prove a weighted inequality for functions with compact

support (away from the origin) and weights belonging to a-class containing exponentials with linear

phases (with a small exponJnt'7) together with their bounded approximants that we shall use in the

next section. This section contains the main technical points of our procedure of making use of a

Mourre type estimation. In Section 4 we give the details of the cut-off procedure and we finish the

proof of theorem 2.6'

2 STATEMENT OF THE MAIN RESULT

we shall work in the n-dimensional real space IR.", with the Lebesgue measure denoted by dr and we

shal l  use the notat ions: 
o .y i= LT=tr jg j

(2 .1 )

B ( q R ) ' =  { s  €  R "  I  l Y  - ' l  <  n i '

we shall consider the Hilbert space ?l :- .t2(R';d"r) =trzipn) and we shall set:

< f  ,g > '= - [R"J @ ) s ( r ) d r

L l t j l
; - 1

ll/ll ,= !'7ff;

( t  r \



On ,[1(R") we consider the Fourier transform:

f  (f)(k)= i(1,) ,= 
A, "-o'r f  @)# = 

"/*" 
e-ir 'k f @)dr (2 .3 )

and we denote in the same way its extension to the space,s'(lR")of tempered distrjbutions on lR'"' We

shall work with two ,ubrpu.", of c-(R"), namely 
-Bc*(R") 

the space of indefinitely differentiable

functions on IR. that are bounded togeiher with all their derivatives and Cffr( R") the- space of

indefinitely differentiable function, oo R" that have polynomial growth at inflnity as well as their

derivatives of all orders. we shall constantly use the standard multiindex notations for monomiais in

n  commut ing  var iab les  X:=  (Xr ,  . " ,Xn) , fo r  a  =  (o r , " ' ,a " )  €  N" :

Xo := Xi ' . .Xt"
l o l  : =  c 1  *  . . .  *  a n

al. := or l . - . .anl (2 .4)

a *  0 : =  ( o t  *  0 t , " ' , a n *  0 " )
a S  0  e  a i  1 P i ,  V 7  e  { 1 , . . . n } .

we denote by 6i the multiindex with 1 on position i € {1,.'.n} and 0 in rest' we also use the notation:

( X ) : = (2 .5 )

and the foliowing inequalities for x and y in lR'":

<  r  *  y  > ' < 2 r / 2  <  r  > '  < Y  > ' ,  f o r  r  >  0

<  r  *  U  > , < C ( r ) ( <  x  ) '  *  <  y  > ' )
(2.6)

with: C(r) :=
l f o r r S l

2 ' - r f o r r ) 1

n

r r \ . f ?-  ,  / 2 . - J

I
In ?l we shali work with two sets of commuting self-adjoint operators:

Q  , =  ( Q t , . . . Q " )

D  : =  ( D t , . . . D . )

where Q; is the unique self-adjoint extension of the operator:

Qiil@) = rif (x),V/ e Cff(R'")

and, Di the unique self-adjoint extension of the operator:

D1f := - iy,v/ € Cf ( R'").
d r  j '

For a fixed y € R" we shall a'lso use the notation:

y . D  : = l u 1 D 1
j = l

( 2 . 7 )

(2.8)

(2 .e)

+ lx l '

(2 .10)



for the self-adjoint extension of the operator defined on cf ( R'" )' For any Borrl function Q : R'" -* c

we clenote by O(Q), respectively by O(D) the operator.a^.pta by the usual fuuctional calculus for

commuting families of self-adjoint operatom u"d ty D@(QD'respectively by D(o(D)) their domains

in,t1. Let us also remind the following well-known intertwining property of the Fourier transform on

.s'(R"):
F - L Q 1 |  =  D i  f - l D 1 f  =  - Q i .  ( 2 ' 1 1 )

For a function F e Cl(R'") we shail denote by V.F its gradient'

In the sequel we constantly make use of the functional calculus procedure [ABG3] based on the

unitary group genera,ted by afamily of n commuting self-adjoint operators X = (Xi, "'X") in ?l' that

we denote by: 
ux(r) .-  

" ix 'x 
(2 'r2)

More precisely, if F is the Fourier transform of an integrable function, then:

r(x) = A, fi '1r1ux61a,

defines a bounded normal operator on H with the integral defined in the weak-operator topology on

tl. If F e Cf,a(R') then its Fourier transform is a rapidly decaying distribution F of a finite order

m and in [AbGf] or]e proves the formula:

(2 .13)

< f  ,  F(X)g >= i ' l<  f  ,Uxg >1 (2 .14)

for g € D6r)a...'Dlxn, with the right hand side interpreted as the value of the rapidly decayilg

distribution F of order m applied on the function:

R" ) r r--r ( f  ,Ux(x)t >€ C. (2 .15 )

Indeed the condition on the vector g implies that the function in (2.15) is of class C- (R") and bounded

together with all its derivativ., ,p1o order rn. We shall usually use the formula (2'13) having in mind

the above interpretation and verifying the domain condition {or 9.

Let us remark that if in (2.12) we take for X the usual family of derivation operators D, the unitary

group they generate is the group of translations in ]R'':

(uo@) f ) (Y )=  f (Y+r ) ' (2 .16 )

we shall need this version of the functional calculus in order to make explicit computations of com-

mutators between functions of e and functions of D. The starting point is the observation that for

J € D(F(Q)) one has:

(Up(r)F(Q/Xg) = ( f l (Q)/X v *  t : )  = F(a + *) f (v+ r)  = (r(8 + r)Up(r) f ) (v)  (2 ' r7)

so that formallY we can write:

Unlr)F(Q)f  = F(Q + r)UP(r) f  ' (2 .18 )

This formula is obviously true if .F is continuous and / belongs to the domain of the normal operator

F(q. Thus i f  r  € Cl(R'")  one gets for /  € D(F(q) n 2(VI(Q)):

I"'lun@),r(a)l f  = {F(Q + r) - F(A)\ up(')f = d,s ( r .vF(Q +  so) )  Un@)f  .  (2 ' le )



Notations: For a finite complex measure y on IR" let us denote by lrl its total variation and by

14( R") the space of finite complex measures on IR" with the norm:

l l u l l v  :=  l r l (R" ) ' (2 .20 )

Observing that M(R') cS,iR"; let us denote by fM(R") the space of Borel functions on lR' that

are Fourier transforms of measures in M(R") and by f",v{t(R") the space of functions that belong

to fM(R") together with their first order derivatives. For a function p € fI4( R'") we denote by

ttktk) its Fourier transform with the convenient normalization in order to have:

tr@) = 
lu^"0''* ir{an). (2.21)

Evidentlv, any functionin f M{R") belongs to c1R.") and is bounded together with its first order

derivatives.

Let us consider now p e fMr(rR") and F € Bc*(R"). using a formula similar to (2.13) valid

for Fourier transforms of measures and (2.19). we see that the commutator lp(.D),F(Q)] defines a

bounded operator on ?l and one has the formula:

Ipe) ,F@)1= /R.  r 'Ud [ ]  as l r .vF(Q + sr ) )  up(r )  =  
e .221

= i /p" tJ a'(fi@x).v F(Q + sr))Up(r)

interpreted as eclualities of bounded operators on ?l with integrals with respect to the weak operator

topology. One gets thus the estimation:

i l[p(r), r(0)]ll = ileil,llvF(a)ll . (2.23)

We shall extend now the formulae (2.22) and (2.23) to a more general situation that we shall need in

our computations. Let p be a polynomial of degree m on IR' verifying the relation:

I la"rl < c0 + lpl)'
6s*

le t  pr  €  fMr(R")  and )  :=  PF.Let  F € BC""(R' " ) ,  f  e  
'11 andg e D(p(-D)) '  ForB e N" le t

Ape b; th" duiiuuiive of ordei B of the polynomial p so that due to the hypoellipticity condition on

p we lrave rhar g e OlaArglj; tot 
"L; P with l0l 5 rn. For functions 1/ and Giin BC*(R") rvith

j  €  {1, . . . ,n}  and l " l  2  1 we have the formulae:

n  ,  ^ a - 6 , ^ ,  r l
0t@ .c(,))  = |  {r iaiGi@) + ai-" '  G i@)}

J = T

ai@@)up(')g) = L,tot (N*W) lurour'1)un@)n/o

p(it,)(H (r)u o@) i l  =,p_'# (af ut"l)uo@)(aBpGPlg). (2'26)

(2.24)

(2.25)

Thus the function:
lR."  )  r  , -1  f  , [U(" ) ,  P(Q)g >€ C (2.27)



is of class C''(R") and we have the equality:

< / , [ ) ( r ) ,  FQ / le  )= /p '  p@') (p( i | , )<  f  , lU( ' ) ,F(A) ]g  >)  =

= fi ds ,[p" l i(dr) (p(i} ') < f ,(, 'v F(Q * sn))Up(t)g >) =

= LtBt<* #o fids /p' fi@,) (. f ,agv r(Q + sx)(/n@) (aBp?pl) g t) +

* ItBts- # ft or.[p" r,{a'; (< f ,af r{A + sr)(Jo(r) (oont-D)g t) '

Prom this we derive the estimation:

(2.28)

r< /, [)(D), FQ)]g >l <"" (i lQil, + l lpllnz) l l / l l l lp( -n)sll '  (2'2s)

we want to analyze now the case when the function .F grows polynomially at infinity' To be able to

deal with this case we have to impose stronger regularity conditions on )'

Suppose F is a real function on lR" such that F and all its derivatives up to order rn* 1 grow at infinity

not faster than ( r >". Suppose farther that p is a hypoelliptic polynomial on lR" and p e f'Al( R'")

is such that ( r >r+r p € M(R."). Let A = PP'

Definition 2.1. We define the dense linear subspace:

L := D(p(-r)) n r3,",p(R"). (2 .30 )

weobservethat  for  g  e Landc € suppg wehavethat  lz l  isbounded sothat  F(Q)g € t r2(R")  and:

l< ' >-" (F(Q)uo@)g) (v)l s (8)' l#lls(r + u)l (

3 Cr < r * y ) '  lg(,  + y) l  S Cr(s,r).

Thus for f e 17 and g Q. Lthe distribution i may be evaluated on the function:

lR "  )  r  ' - 1  f  , lUo (x ) , I (A ) l  s  >€C

(this function being differentiable up to order m and growing not faster than < r >'*L for r ---* oo

together with all its derivatives up to order m). In conclusion we can still give sense to the formulae

(2.28) and we obtain the estimation:

l< /, [^(r), r(0)]e >l < t. l l. r >'r1 r,l l, ttrtt l< Q >', p(- D)sll ' (2 .33)

In order to be able to deal with exponential weights we sha,li need to use a variant of our commutator

formula for the case when F grows exponentiaily at infinity. For this situation we have to impose even

stronger regularity conditions on the function ); in fact we shall need analyticity in a strip around lR'"

(2 .31)

(2.32)

and some specific growth condition at infinity'

For  6  >  o  le t :  

c f , := { ,  ec 'y i l t * t r i l t ' .  o ' }  .
" l . j = r )

Hypothes is 2.2, For 6 > 0 and rn e N let {?(Ci) be the space of analytic functions on Ci that are

real on lR'and let 0^(C!) be the space of fon.t"ions \ e CI@i) that are of the form ) - pp where:



1. p is a polynomial of  degree m, ver i fy ing :D1o1g- l0"pl  S C(t  + lpl) '

2. 1t isalalitic a1d p(. + igl) e fM(ry) for any fixed I with lyl < 6'

3.  there exists a str ict ly posi t ive constant rc such that:  rc lpl  S ( t  + l^ l ) '

Let us remark here that a more general class of analytic functions ) can be treated by replacing the

polinomial p with a function u belonging to a class of symbols of type m. In fact all one has to do is to

use the Taylor polinomial of order i*] + f and control the rests; we propose to develop this procedure

in a forthcomming Paper'

Lemma Z.g. If p € 0$n and ueri,fies condi,tion (2) i,n Hgpothesis 2.2, then 
"tl '111o 

€ M(R'") /or

a n y 1 1 6 .

Proof. Let us consider g € R' with lgl ( 6, let us denote by,u, the restriction of the function p to

the plane Ho := {r * iyl , e R"} unJ l"t us co'sid.er a smooth function /with compact support and

R' I  r  *  O(")  ,= 
A" 

d.ke- i 'k  f  (k)  e

T h e n d i s a n a l y t i c a n d d e c a y s r a p i d l y a t i n f i n i t y s o t h a t t h e p r o d u c t

define:

is analytic and goes

compact suPPort:

,,, l) ttrti <

(2 .34 )

(2.35)

/ smooth and with

(2 .36)

(2.37)

C.

function:

lR" ) r -"+1t'(r + iY)d@) e C

to zero at infinity. Using Cauchy formula we obtain for

t oU) = /R, d'k /p" dcp(r + iy)e-i'k 71k1 =
= .IR'Z;tp(x + iv) IF('d'ke.-t-rr f $) =

= .IR" drpt(r + iy)$(r) =
= -[R' d'"rP(t)$(r .-. iY) 

=
= ./R, aip1r7Jh",dee-1'* 11k1e-u* =

= ft-ur 11171.

Approaching any Jr € c-(R") with functions with compact support we can extend the equality in

(2.36) to any / e C-(m.;;. No* for any y € R" and any e € (0,1) we can find a conical set

V,  , :1r  e  R;  I  y . i ->  ( i  - . ) ly l  l r l ) .  Let  us choose now a f i .n i te  fami ly  {h , " ' ,g .nr }  c  R"  wi th

fyi l  = f(f  €)-1 <"6 unJa part i t ion of unity {Xr,, ' . ,Xru} on the unit sphere, such that kl lkl  e suppxi

i*pli", itrut f 6 Vu,. W" huu", Xie-utkp'= Xiftn,, so that we also get the equality of the total

variations: xjeo'k lttl = xi lpr, l. ttt"o'

llatfrtoX/)l < l(,'f,-','-',-a) url . (A-, 1
. 

".,{ ;:r,, 
llr,,ll'} ll/llr-

n
f o r y < 1 ' < 6 .

Let us suppose now that ) = pp e 0T(C") and that F e C*(

ld"f,(r)l 3 Coe"l ' l

R") satisfies the estimations:

(2.38)



f o r a n y r € l R " a n d a n y c r r v i t h l " l  i * * l a n d s o m e o € ( 0 , 6 ) ' R e p e a t i n g n o w t h e a r g u m e n t s t i r a t
led us to (2.33) we conclude that for any f eH and any g € L the formula (2'28) remains true also

for this case and we get the estimation:

l<  / , [ ) ( r ) ,  r (Q)]s >l (2.3e)

w i t h  7  €  @ , 6 ) '

After this elaboration of the main calculus procedure that we shall use let us come back to our

problem that we announced in the introduction and formulate our main result and the method we use

for proving it. We shall consider convolution operators on lR'with functions I = pp € O*(Ci) and

we shall prove an estimation of type (1.1) with exponential weights of the form ur(r) - e1(")for some

sufficiently small positive 7. In order to formulate our theorem we still need some definitions'

Definition 2.4. For a function \ e O (Ci) we define its set of regular ualues:

\A/e call generalized, critical ualue any point in the complementary set of S(I) in R"

Remark 2.5. h is obvious that f(,\) is open in R and that the image by '\ of any zelo of V) is a

generalized critical value; anyhow it may happen that due to its behaviour a't infinity '\ may also have

some other generalized critical values'

Notations i

1. For any linear subspace V Cll and any 'R > 0 we denote:

V p : =  { f  e  V  l t , t P P l n B ( 0 ; f i )  =  0 } '

2. Let us denote by I the domain of the self-adjoint operator,\(D) with the norm:

f l l 's.= l l/ l l '  + l l l(r)/ l l '  .

we are now ready to state our main result concerning the case of exponential weights'

< cr lle'rctr,ll, ttrtt ll'"t0to1-n)rll

t ( ) )  :=  { r  e  n  I  l .  >  0 ,3 rc  )  0  s . l .  lV ' \ (  k ) |2  ov 'b  €  ) -1 ( ( t  -  e ' t+  e ) ) } '

12.40)

T h e o r e m 2 . 6 .  L e t 6 t 0 , a € l R , ) =  p p € o \ ( c " ) a n d ' E e t ( A ) '  T h e n t h e r e e r i s t a s t r i c t l y

positiue constant 1 and two positi,ue 
"orrtoit, 

c oia n such that for any f e D(vt(-D))n *" haue the

estimation: 
llr".n, fll, < clllzate,le>(l(D) - r)i ll

(Let u.s remark that the constantsC and, R d'epend on1 and on E but not on the fu'ncti'on f )'

The inequality in the above statement is understood in the sense that if the function:

r , - - -  ' /7  r  > t r<o>( ( ) (D)  -  g ) /X ' )

is in .L2( R') then the function et<'> f (r) is also in I/2(R') and we have the stated estimation' Let

us remark that in the above statement E may belong to the spectrum of the operator )(D) as well as

to its resolvent set as long as it remains a regular value'



1 n
I Teo ,= 'zI 

{Qita;rxr) + (Ai\@)Q i}
J = t

defined on Cfl(R'"). Then the commutator of '4's with /1 ;= '\(D) is:

n

Bs:= i [)(r) ,  a6] = f  (SirX,) '
j=L

also acting on cf (R") but deflning a positive sesquilinear form on o(p?D) with ) = pp' The form

of the operator Bs given \n Q.a\ makes clear the reason for the definition of the "regular values"'

One observes that ior E e f,()) and for any small neighbourhood J of E contained in t('\)' if one

denotes by g the characteristic function of 'I, one gets the estimation:

our method to prove the above theorem consists in defining a "conjugate operator" associated to

,\(D) and generalize the usuai ideas used in proving estimations of type (1'1) outside the spectrum

[A2], [N] in order to take advantage of the Mourre type estimation that we plove' we dedicate the

final part of this section to the deflnition of the conjugate operator associated to )(D)' In choosing it

*" Luue been guided by some results in [Ar], [ABG3] and [GN]'

The conjugate operator one would iike to choose for )(D) would be (see also [Ar] and [GN]):

(2.4r)

( ,  4 r \

(2.43)

(2.44)

e(,\(D))Bs,p(.\(r)) - {iel l{vrxr-'rt)l '} r(rta)l

rhe constant multiplying P(I(r)) in the right hand side being strictly positive'

An essential ingredient in our proof of the weighted estimations' as we shall show in the next section'

is the observation (see also [FIi] and IABGl]) that by making use of the explicit form of the conjugate

operator, the most singular term appearing in the expression of the sesquilinear form (3'6) has a deflnite

sign. While for polynJmial weights this p-rocedure works by considering the conjugate operator given

in (2.41), the terms appearing in the remainder being small at infinity due to the behaviour of the

phase function, in the case of exponential weights oo" hut to absorb some of these remainders in the

exprursion of the main part and thus one has to consider a more complicate conjugate opelator' mole

intimately connected with the form of the phase function.

Due to our cut-off procedure, we have to work with a class of phase functions containing the linear

phase we are interested in, together with its approximants'

Definition 2.7. For any 1€. (0,6) we define the class of functions:

where rn is the degree of the polynomial p associated to the function ) and we consider weight functions

of the form u.,(r) := ev(<x)) with g a function belonging to the class iD.r,-.

For any weight function tu(e) := sv(<'>) with I e Qt,* we denote:

X(c):= V(P(r))  = 
Zl t r ' (< '  >)

and we define the associated conjugate operator'

d,i(i l) i , l  {uol*),*'x(o)q, + Q ie

Q^, ,^  i=  { ,  ,  r * ( [1 ,  * ) ;R)  |  0  I  e '  Sr ;  lp " ( t ) l  < ! ;  l v (Dt t t l  <  ' '  Y t  S  m*  t ]  '

- '" .x@)ryo@)\A,= L/  r ,  A"
(2 .45)



acting on C6-(R") (witir the slight abuse of notation explained after formula (2.13)). IJsing the same
arguments as in the commutator calculus explained above, rve verify that the operator in (2.-15) is in
fact well defined on Cf ( R") with values in trZiR"). All we have to verify is that for any g €]1 and
any "f € C6'(R") the functiou:

IR"  )  r  , - - - - - . ,  a / r ;s)  :=1 s , {Lrnplesx 'x(Q)g *Qis-sx 'x to)yo1t ; } /  >e C (2.46)

(for j=1,...1) is of class C-(R"), with m = deg(p) and that l(p(i0,)a)(r;s)l  < Qsh*e)<x2 for any
e  )  0 .  Bu t :

(p( i } " )a1)@; s)  =

it l lh.< g,0f 
{"" ' ' 'Q+")1g * r i) * Qie-"t 'x(Ql} (U"t ')taBpGn))) f  >

f larsn'x(Qa,)(ei + r) = 0f-6jesx'x(Q+t) + (0fe'" 'x(a*a) Qi + *i)

tBl
6 9 r s x . x ( q v ' )  =  s l o l I  t  0 ? ' ( r . X ( Q  + r ) ) .  . . . . A o t @ . X ( e  + r ) l e s r ' x ( Q + r )

l =1  a t * . . . * a t=B

0i r 'x (Q+ r )  -  t  { ' ,  @ix) (Q + r )  +  (a i -6 'x , )  to  +  " ;1
; - t
J - r

6A r -sx 'X(Q)  =  1 - r1 l0 l1 .  
B  

Q)  .  r -sx 'X(Q\

(0 lX)( r )  =  0 i+6 ' 'p(<,  >)  -  
t  61(r )e( r ) (< r  >)

t<lol*1

where the coefficients b1(z) are symbols of class 5ll-l"l(R") (see [ABG3]). Putting all these formulae

together one gets the estimation:

l (p( i \ , )a)(r ;s) l  < Qe\1*e)<x> l lg l l  l lp(- .p) / l l  . (2 .53  )

Remark 2.8. Let us notice that this last estimation allows us to extend the operator Ato the domain

C by approaching each / € ll with elements in Cf (R") and observing that Cf (R") is an essential

domain for p(-D).

We end this sectiou with the remark that although we can prove a "sharp Mourre estimation", similar

to (2.43) for the commutator:
B  : =  i  [ ^ ( D ) ,  A ]  ( 2 . 5 4 )

defined on Cf (R"), as we show in the Appendix and although we work with the conjugate operator

A givel by (2.45), for the estimations we have to prove the inequality (2.a3) for Bs is sufficient. In

fact, as it becomes clear by the arguments in Section 3, the inequality (2.43) for Bs implies a similar

inequality for B but with a less precise lower bound.

3 Weighted Estimation for F\rnctions with Compact Support

In this section we begin the proof of our main theorem 2.6 by proving a weighted estimation for

compactly supported functions of class O(p(-D))n with phase functions of class Ot,-.

\-
,tr

l 0 lS*

(2 .47)

(2.48)

(  2.4e )

(2 .50 )

(2 .5r )

(2 .52)
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Theorem 3.1. Let \ = pLI e 0*(C!) and' E e tQ) a regular ualue for \; then' there etists a

cortstrnzt?o < 6 clependir-tg only on ^ ond E such that for ang 1 € (0,f0) there are two constatt'ts R,

anrl  C^,,  such that for ory phase fwrct ion g € Q1,^ and any f  e D(p(-D)) n '3,-e(Rn)R, we haue

the weighted estintotion:

s"vGO>\ 1ll' , r.,ll#&.,<o>)1.r(D) - E)/ll'
l le,(<o>)/ll 'n* n-'(b - rl2) ll. A t-'

for  any b e ( I l2, t )  and'  fo,  tQ) ,= '

The constants c., and R.Y are also depending on the function ,\ and on E. The rest of this section is

devoted to the proof of this theorem.

proof. Let us first sketch a formal argument concerning this proof. We consider thus a function

f e D(p(-r)) n l3o-r(R")n.., and we compute the following sesquilinear form:

2 Im 1  Ae '  f , ( ) ( r )  -  E ) " * f  >=  ( - i )  1  
" *  f , [A , I (D ) ]  ee  f  >  . ( 3 . 1 )

Taki'g an interval ,.I containing the value E and contained in the set f(.\) and denoting by @-r the

opera,tor dtQQD with d.r the characteristic function of the interval J and 6! t= I - fu we have:

2Im 1 A"*  J , ( I (D)  -  E)ea f  >=
- b < e a f , B s e e f  > + ( 1  - b )  <  e e f , Q t B o d t e e f  > *

+ (1  -  D {< t , f ,Bod j r * f  >  +  <  e * f , d iBoQt " ' f  > } *  t e? f ,Re ' f  >
(3.2)

rvhere 6 e (0,1)and -R is a remainder,  mea,suring the di f ference between (- i ) [A,)( ' ) ]  and 'Bs and

that has to be estimated. The "localization" with the operator /.y is necessary because we intend to

use the Mourre type estimation (2.43) for the second term on the right. For the remainder we sha'll

Drove an estimation of the form:

11 e* f , Ru* f >l S $ llP(- D)"* fl lt

for any f e D(p{-D)) n r3,-e(R'")R''

For the left hand side in (3.1) we consider the equality:

(3 .3)

2Im 1 Ae, f , ( ) ( r )  -  E)ev f  s=
2Im <  A" ,  f ,eq( \ (D)  -  E) f  >  *2 Im I  A" '  f , ( ) ( r )  -  ee \ (D)e- ' ) " '  f  > '

Now:
zlrm < A"* f ,ee(),(D) - E)f >l < 2ll?EAe, fll l lf&i:,t^(r) 

- E)/ll <
(3 .5 )

valid for any functio n $ tor which the right hand side is bounded. Concerning the second term on the

right hand side of (3.a) we shall prove the following formula:

. llSo'.rll' *ll#"tt^t, )- Drll' =
(o,*,,(5&)' o,. f) * llffil"(r(D) - E)fll

Im < Aev f, ()(D) - ee\(D)e-e)ee f >--

= - (t", y,WAy f) * Im < Aee f , R"* f >

with the estimation on the remainder E:

lr* . A"'f ,h"'f >lt $ llP(-D)" fll" '

(3 .4 )

(3 .6 )

11
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Ar impoltal t  observat ion is norv that the integrand of the term - (^r*f  ,q 'L!Q2\ 7rvl) '  thot gro\\ 's

at infinity in the spectral representation of Q (when removing the cut-off on,f ), has a definite negative

sign for g € Q1,*.This fact is a reminiscence of the "General Virial Formula" in [FHHO]. Using the

Mourre type inequality (2.a3), denoting:

a i =

and putting everything together we get:

(3 .8 )p1 ltvrltr-'(,)l '

ll ffi"rrt D) - D rll' > t - b)llldt" rll' +
+b  <  ee f  ,Boee f  >  + (n , * "y , ( rW -  W)  *v f )  +  (3 .e )
+ (1 -  D{<u ' f ,Bod i " ' f  >+<  " ' f , 4 !BoQ! " ' f  

, } *

+ < ee f ,  Rr, f  > -h l lp(-D)r '  f l l '  .

With our choice for the function ry' we observe that:

( 3 . 1 0  )

In order to obtain a positive term we follow an idea of IABG1] and prove an estimation of the folm:

1 e, Boe ,> :l l. a t-' Anll  ̂ rc l lp(-D)sll ' ( 3 . 1  r  )

for any g € Cf (R"). This is in fact the reason for putting into evidence the first term on the right

nrna ,ia" .f 1b.iy. io ordu, to deal with the fourth term in (3.9) let us consider the explicit formula

(2.42) for ,86 and observe that:
V . \  =  (Vp)p ,+p(Vt t )  / c  r r )

tQ) t t )  =  . r / - r ( r ) ,  
\u 'Lu  )

so that due to the hypothesis on p and;r the operator Bs is relatively bounded with respect to )(D)2'

Then Bs defines a bounded sesquilinear forrn on I with norm denoted by lllBslll so that we have the

estimation:

(o*,,(,+#? #+) o",r) = -*ll. o '-' o"' rll'

1 + 8 2
C ( E , J ) : =  1 *  # -- \ - ' - l  

d , ( 8 , J " ) 2

l. ", f, 
Bodj"' f > + < e' f,6i Bo6tr* t >l <

< ltB0ln llo*. 711r{llx rltn + lltu"* f lls\ < z lllr'lll llol"'tllnll"' f lls 5
< lllaol tt{ellol". rfl'n* ill,'fll'al .

Let us further observe that:

lVt * rll',< ll ol'.rll' + lloi xu,' rll' <
< (1+ E' l l la!*t l l '+ l l1,r(r1 - E),uf l l '  S

s (1 + r'?;il1,r1a; - pli. ltri - E)-di"'t l l '  * l l(r(r) - E)ev 7112 '

S "(E,/) l l(l(r) 
- E)ev 7112 S "(E,.r1 {11"'1,li l ) - E)f l l ' + llR2ee f l l '?} '

(  3 . 1 3 )

( 3 . 1 - l  )

Where:

12
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and the last term contains a lemainder R2:= ee\(D)e-e -  l ( r)  that has to be est imated. Now rve

use condition (3) in the l{ypothesis 2.2in order to deal with the last term on the right hand side of

(3 .e ) :

llp(- D)e* Jll' 3 ̂ -' llr, JllL = K-2 ll6tu* f ll| + n-2llOl "' tll"n S
(  )  .  ^ r  , u ,  ( 3 ' 1 6 )

< ri-2 
t::Y' "'Iil" 

fll' + n-2llo:* 41',
We shall denote c(,I) :=sup< , >2. Now let us plug all these estimations in (3'9):

, E J

llffi"til D) - Drll'> !1 
- b)allslee rll2 +

+ (; - i) * tt < e >-' n,* fll' - { llp(-D),* fll' -
- (1-a) l l laont 

{r lVl , ' t l l 'n* i l l "* / l l?}+ 
(3 17)

+ < "e f , Ree f > -C1o-'(c("r) lle'pllf +llO+r. fll,r)

Using once again the second inequality in (3.16) for the fi.rst term on the right hand side of (3'17) u'e

get:

llffi*r^(D) - E)fll > t# (n,. nZ -lVt* rll',)
* (b - ;) * ll . e,, 

,' 
o* f,,l)' - 

.1c 
ltl"':\b - 

(s.18)
-(1 - b)l lBolle l0ll6ie'f l ln* i l l , ' f  

,, l l"a 
j 

r2\
*  leef  ,Reef  )  -C1o- ' (c( " t ) l lee l lY + l lOie ' f l ln )  .

or equivalently (taking into account (3.3)):

{,fr# - (tr+ # lBons +2c1n-2c(l)} l l" 'f l l?+
* (b - i)  * t t  < e >- '  ' t" ' f l l '  S (3.1e)

tllffi*t)(r) - E)/il'- ('Sif + p(1 - b)llrolls + hn-2)llol* 41',
From (3.14) we obtain:

(3 .20)

(3 .2 i )

, {t# - ("t 1 
u llsolls + c1n-2c(r l)} l l"rl l? + 

"
*  (b - ' l )  *  l l  <Q > - '  n " * f l l ' - l < " ' f  ,Re . * f  > l - l lRzee f l l 2  3

t l l ff i ,*,)(D) . rrl l l" *
* {s"# + d(1 - a) l ibolLn + ctn-2} c(8,l) l lee()(D) - E)f l l '  '

Finally using (3.3), (3.16) and similar estimatious for the term containing -82 we get:

11 "' f, 
Re' f >l + llR2ee fll2 < "t l l" ' f l l?'

r .  \
Choosing o , lL,1) , I 

small enough and 0 large enough, we can assure the positivity of the coefficient

of the first term on the left hand side of (J.20) and thus we get.the desired conclusion. Let us strengthen

the fact that the choice of ,y and 0 only depends on the value of the constant o in the Mourre type

estimation and on the function ,\ and on E '

In conclusion, all that remains to be done in order to finish the proof of the Theorem 2'6 are the

following four stePs:
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1. to give selse to the calculus done iu (3.2) and to est imate the rerrainder term (3'3);

2.  to prove (3.6) and to est imate the remainder term in (3'7);

3 .  to  p rove  the  inequa l i tY  (3 '11) ;

4. to estimate the remainder term fiz appearing in (3'14)'

Step 1: Let us begin by observing that for f e Ln., we have ee f € Lpr' Infact the support condition is

obvious and choosing 17 e Cf (n;)with the property rtf = / we see that due to the conditions imposed

on the derivatives oith" phase functions in iD.r,* and the hypoellipticity of p, the multiplication ivith

tlre function qee leaves O(ptnDinva,riant. Taking into account the Remark 2.8 and extending A on

Lp-,, we can thus define the sesquilinear form:

L R , x L R - , ) ( g , f ) * - . B ( g , f ) . = ( _ i ) | < A g , ( ) ( , ) _ E ) f > _ <

As remarked previousl| Bs can also be considered as defining a bounded sesquilinear form on 'Cp' '

By abuse of notation we shall also denote this form by < g,Bof >.Thus:

l  e a f  , R e e  f  2 = B ( " ' f  , " * f ) -  1 " ' f  , B s e e  f  ) (3 .23)

anrl all rve have to do is to estimate this difference for f e Ln.r. We shall approach f e Lp., w\th

funcrions in cff(R" \ B(0, fir)) with respect to the norm of p(p( D). On Cff( R'" \ B(0' &)) -"

can compute the difference in (3.23) as the sesquilinear form associated to the operator i[)(D)'A] -

Bo = i  [ ] ( r ) ,  Al  -  (v))z (D).  But:

i  [ , \ (r) ,  A] -  (vA)'? (r)  = (3.24)

We begin by calculating the first

l n

I f dt S*" 1t(dx)p(tA,) It  Y  ' u \
u  - t = l

-  (v))2 ( r ) .

and the third terms together:

7 n
= + j  ds jp" p(dr)p( i } , )  i  r1{Up(t :1"" 'x(Q\01\ (r)  + 01\(D)e- ' " 'x@)r ln@)-

:  _ au J-r 
-zo1)Q)uo(t)) =

7 n
= + i dsfp' 1tld,n)p(i0,) f.r5{un(r;1tsc'x(Q) - l)ai)( ')+

- o  
i = l

+A1\@)(e-sr 'x(Q) -  r )Up(r ) j  =

1 1  n
: + j ,a, j atfp" lrtd')a UU .l .r1,rfi(Jp(r)Xp(Q)et*'x@)0i\(D)--  

O j , k= l

-  A j  A@) X k(Q) e- t  sr '  x  (a)  U D @)j  =

I
1  f  f  

n  r  Y t n \ , , , ^ \  ^ t  r r l ^ \  n t  - s r . X ( 7 l r r  ' )

* | o' l-.  i ,{ar)ntia;tr i  {uo{*)rsc'X(Q) [^(D),8i] + tr(a) ,Qil"-" ' '^(e)un@)]
z  J  J IK  a- l

0  , - .

1

[0,  [* .1.1(dx)pl i0,)Y,r , { rotr l  [ .11] ; ,€s, ' 'x(a)]  Qi+Qi [^( ' ) , ' - "" 'x1o;]  un@)
J JIK
0  , - .

1
- F -, 2

I

t -

, 1 {u o1r1"s'x (Q) [^(, ), Q i] + h(r), Q,l e- sx' x (Ql up (' ) ] 
-

-  (v ) )  (D) '  =

T4



n
jp '  i r (de. )p( f0")  f  r1 , r i {Xr , (Q + r )etsx 'x(Q+")Oi l ( l ) -

i . , t= I
-aj )(, )X* (Q )e-tn' x (a)1 rt p1r1 =

= t j  ,ar j  at fm'rr(a')/p'r,(du)a (i0,)p(i0) f; ,rr*,r, '- o  
o  - *  j , k = 7

.  {X r (Q !  x)s t  sx '  x  (Q + ' )  U o (y)  -  U o @) X x(Q) e- tsr '  x  (Q)1 U o(r )  =

= ti ,ar j at/rn" p(ar) /p" rr(du)r (0,)p(i0r) .f, -rnr,r,._  2  
i " _ "  t _ "  

J lK ._ r , \w_ /  J lK ._ r \_y / f \ " vc  j , k=7  (3 .25 )

.Uo@){Xt(Q + * -  r)" tsx'X(Q4'-v) -  Xi lQ)r-"*x(o)}Up(n).

Let us treat in a similar way the second term in (3.24). First let us observe that:

l^tr l ,  "+"" 'x1o1l 
= .h" 1t(dy)p(i}o) l rr@),.+sc'x(a)] 

-
' 

= .IR' 1t(dy)ei;Ao)fo@)k+"'x(a)'-,+sc'x(Q-v); =
l n

= (*s)j rr /*" p,ld.y)p(i0r)uofu) 
,,pr*rur@rxi(Q 

- ty)s*'"'x(Q-ta) .

so that we obtain for the second term on the right hand side of (3.24):

i i o',fp'rr(dr)r (i0,) f.ri{Lrp@) l^(r), ""' 'x{o)f Qi + Qi [^(r), "-"''x107]un@)]t - r  L, r n

= + [ sds { dt "[n" lr(ar),1^p" lr(du)rQ},)p(i?r) .E -rir,yo.- o  
o  " -  j ' l ' k = l

'UnQ){ (O*Xt ) (Q -  ty  *  r )esx 'x \Q- tv+ ' ) (Q i  + ,  ) -
-Q i - v)(O*xt)(Q - ts)s-sr 'x (a-w)Iu D(x).

Finally, putting (3.25) and (3.26) together, we obtain:

i [)(r), A] - (v))'? (D) =

= + [sds I 
d,t "1"m" r,(a') Ip" u@a)nQ0')p(i0u)Up(s)'

.{  i  rrr iv io"n(Q * r -  r1"tsx'x(Q+'-a) -  Xk(q)e-t '"  x@\+ i  r i rwr, '
j ,k=r j , l 'k=l

. (A*X1) (Q -  ta  *  r )esx 'x (Q- tv+4 (Q i  * ,  ) -
*Q i  -  v i)(}xxt)(Q - tv)s-sc'xtc-tv); ; t ro(r) '

We use now formula (2.26) for p(i1,) and for p(i?o) in order to get:

- = !
1 l

I s d s f d t
o 0

where:

i  [A(r ) ,  A]  -  (Y^)2 (D)  =

= /+) 5- 
"1 

r #jro"iortR"p(dr)e't ' |1*, t t(di le,tat.- 
\ 2 / W?<^ "t WE^ B, d "*"d *"J rK /

.0"p(- D)Up(iltI (Q; r,y)Up(r)08 pl- D)

H " B ( Q ; t , Y ) : =

" -a ( lc l+ lv l )  
(Ugat )  {  i . r r r i y i (x * (Q * r  -  y )e ts t ' x (Q+ ' -s ) -

L E =  L

-X*(Q)e- 'sx 'x(Q)S a i  r j rgx.
i'l'k=!

.(AxXiQ - ta * r)esx'x(Q-tv+") (Q i * * i)-
-Q i - v)(ArX)(Q - tv)s-sx'x(a-ts))) '

( 3 .26  )

(3.27)

(3 .28 )
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Using now the formulae (2.48-2.52) and taking into account the definition of X and the conditions on

tlre phase functions g e Q1,* we see that we obtain:

l l r "B(Q;r ,Y) l l3  tc '

Finally we obtain for any f e Ln^, the estimation (3'3).

Step 2: For / e Lp.., and g e Tt let us compute the diference:

< s , ^ (D) f
=,  <  g , (e -e) (D)e 'P  -  ee \ (D)e-e) f  >  +

+ i  <  g , (21(D)  -  ee \ (D)e-e  -  e -eA(D)" ' ) f  >

We begin with the first term in (3.31):

(3 .30  )

( 3 . 3 1 )

(3.33)

(3.34)

S{g ,  f ) :=1  9 ,@-eA(D)ev  -  eq \ (D)e - ' ) f  >=
= [ ip" tt(dr)p(i7,) 1 g,(e-etJp(r)r '  -  eeUo(n)e-*)f >=

= . IR '  i t@r)e1} ; ;  <  g, { iD(r )evKQ>\e-v(<Q-">)  -  
"v(<Q>\s 

vGQ+'>)Un@)} f  >= , '  e ' \
= /R" 1-t(dr)p(i0,) < s,ar@-)1!. '( to>.)qvl;<a-,a>) - 

"a'x(a)))/ 
> + 

(r 'ozl

+ /R" 1t(r lr)p(i ,0') I  g,{"- ' 'x(Q) - 
"v(<Q>)2-v(<Q+'>)7Up1t))7 

> +

+ 1U"" plar)p(i1,) < s,{LrD@)1e"'x(a) - 1) - (e-t 'x(Q) - t)Up(r)}f > '

Let us denote:

Y ( Q ; r , z )  : =  s { e ( <  Q  )  -  e G  Q +  r  > ) }  -  ( 1  -  s ) r '  X I Q )  =
=  

" { p ( <  Q  )  -  e G  Q *  r  > )  +  r '  x ( Q ) }  -  z '  X ( Q )

so that:
s{g, f) =

< s ,uD@){eGQ >)  -  p (<  Q - t  > )  -  c  ' x (Q) }eY(Q;s ' - t )7  '  *

<  g ,  {p (<  Q +  ,  > ) -  p (<  Q >)  -  r 'X lQ) }eY(Qi ' ' ' ) ryo17) /  >  +

+  jas , [p "  l r , ( d r )a ( i 0 , )  <  g , {ue (a )e ' " ' x (Q) r 'X (q+  t 'X (Q)e -sc ' x (Q)g r ( ' ) } /  >=

= j a"jg - rlotfp'r,(d")a Uo,) f .",rr,rr '
0  0  J ,K= t

.  < g,{un(r)@ixr)(Q - tr)eY(Q;"'-x) - (0ixx)(Q ttt)eY(Q;"' ,)7rrpS}f > *
1 n

+ j  at [w" t  @*)p(i1,) i  r i  1 e,{up(r)e" 'xt?)9,4q1+ 1Q)Qr-st 'x(Q)go1')}f  >
o  

* *  j =7

where Qi€Q) ,: Xi(Q) = @idG Q >) = Qi < Q >-t 9'(< Q >). In conclusion, commuting

Lro@) una 61q1 in t"he last term, taking into account the definition of A (2.45) and observing that

fi!*) = ixlt(d,r),

we get:

1
= [ d,s [p" 1t(dr)p(i1,)

0 - -
1

+ [ ds IR" tr(dr)p(i},)
U

S { g , f ) = 2 i  1 s , t ( Q ) A f  >  +
1 n

+ j a" [o" irldx)p\iQ i rj 1 s,i€(Q + d - eQ)Juo(x)es*x@)g i f > +
o  

* -  
J= l

1 1  n

+ [ dsl(t - t)dtlR" 1t'(d'r)p(i0.) .T -cptpr
o o j,k=7

< g,{Uo(r)@ixr,)(Q - tr)eY(Q;',-r) - @ixx)(Q *tr)ev(Q;' ' ' )Up(*)}f >

16
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But :
l ^ "

€ ( Q +  r ) - t Q ) =  | a t f  z a ( a r { X Q + t r ) .
J
o  E= l

(3.36)

(3 .37)

(3.38)

enough we can

(3.3e)

(3 .40)

(3.41)

eo(o;",");]  Uo@)+

(3.42)

(3.43)

Using once again the formulae (2.48-2.52) and taking into account the definition of r? and the condition

on the phase functions g € Q1,* we obtain:

I m S { A f  , f ) = 2  <  A f  , <  Q  > - '  v ' ( < Q  ) A f  )  * I m  <  A f , h f  >

with the estimation:

l. of ,E,f >l< rt l lpGn)fll '
where the constant C only depends on the function ), so that by choosing 7 small

make this remainder as small as we like.

Let us concentrate now on the second term in (3'31):

S2(e, f) :=

< s ,  {2^ (D)  -  ev(<Q>)  \ (D)e-vGa>)  -  s -v (<Q>)112; tc (<a>) } /  >=

= . IR'  1t(d,r)p( i0,)  < g,{2Up(t)  -  ,vkQ>)LIp(r)e-v(<Q>) -  
"-vGQ>)Up.(r)evGat)}" f  

t=-"!  

/R'  1. t(d,r)p( i0,)  < g,12-.pv(<Q>)- 'p(<Qtx>) -  s-v(<Q>)+p(<Q*x>)jUp(r) f  >== 1p";ia'":ffi .tl,lr,iiu',iJin"l,."r','Jl',;,:,,.,::i::::'J11u'1r17 
>=

-r . X (Q * sr)e-v(<Q>)+e(<Q+">)1U p1x1 7 >=
r ( r ' l

= [  ds"[p" l r (dr)r \ | , )  < s,n.X(Q * sr)(expl  -" t  ' l  dtX(Q +tsr)  f  
-

o 
- 'o 

t  o )
(  t -  l- exn 
lsc 

. I dtx(Q + t.sr) j)an@)f > .

Let us denote:

p ( Q ; s , r ) : =  s r *  tsr ) .

For / € Cff(R") we have:
2ImS2(Af , f )=

l n
= (-i)1rr /U" p,(d,r)p(i0,) D*t . f ,(l '+, xtlg * tsr)(e-o(8;s'") -

o "* j--l

+Xi(Q * tsr)(e-o(Qp'a) -  so(Q;s'c)1lA,ap@)l) f  >

Let us estimate the two commutators appearing in (3.41). If we denote:

G(Q; t ,s ,c )  :=  X(Q + tsn) (e - i lQ;s 'a )  -  
"o (Q;s ' r )1

we see that:
( - i )  [A '  G i (Q; t ,  s ,  c ) ]  -

I

I. I dtx(Q
o

L7



i t l r ly )p l i ly )  t  y t {U n(y) (G iQ; t ,  s ,  r )  -  G i (Q -  v t t ,s ,  r ) )e t ' 'x (Q)q,

*Qp- t r 'X (q r to@)Gi (Q ; t , s ,  r )  -  G i (Q  -  a i t , s , r ) ) )  =
1 1  n

- -  [  , t t . [  d ' , [ rp.  p ldy)p(A) L uruxUn(a)(A*Gi)Q -  ( i  -  r )v; t ,s,x) '
o o l'k=l

.ktx 'x (Q)e t  + (Q t  -  g,1e-tr 'x (Q -u)1

where the derivative of G is computed with respect to the first variable and is given by:

(01,G )(zi t ,  s,  r)  = (01,X)(z * tsx)(e-o(z;s 'x) -  2c?is 'x)1-
- X i  Q + t  s r)(0 1, p)(  z ;  t ,  s, ,  r)(e- o(z;" ' ' )  4 so(z;s 'c1 1 

-

= @1,X)(z * tsr)(e-o(z;s'r) - sc{z;s'')1- Q'44)

-sX iQ *  ts r ) (e -o(z ;s ,o )  1  so( " ;s ,x )1 i  , , i  d . r (LeX1) (Q *  rs r ) .
I=1  0

Let us consider now the second commutator:

1
:  / d l  j p "

o - -

( - i )  [A,  Up(r ) ]  =

1

= ( - ; ) i r, /u" 7t (dy)p(i 0 r) i. y, {U ofu) l"'n' 
x tot q l, Ii p@)l +

I  - 1
u  r - ,

+ lr-r*xrclg,,ur@)f un@)\ =

(3 .45)

l n r n n
= (-;) j at 1*" it(ds)p(tlr)f, sr{Uo(yli a, f r,[.i ty1,(0,Xt)(Q)Qt * 6,fieta'x(Q)1rp@)'

"  o  
- ! \  -  

l =1  0  r=1  k=7
l n n
j  a,  t ,  x, l f  ty1,(O,Xt)(OQt -  6,11e-tu 'x(o)71o1r1ut(g))  =
o  r = 1  * r t  

n  L  n
= Gl f dt fe*" it(dy)eQ1o)D u I d,r I a,Uyt(y)''  - ' o  l = 1  o  r = 1

. { ( i t yu@,Xr" )Q)Qt*6 , )e ta 'x (a )  - ( i t y1 , (0 ,Xn)Q- i l@t -y i *6 , r )e - tv 'x@-d)UD(r ) .
k=l k=1

Putting all these results together we obtain finally:

2 ImS2(A f , f )=  (3 '46 )

1 n l l n
= [ dslm" lr(ar)pUA) L x1 f dt I d, I m" l,(dy)p(i0) .l .wvr'

b 
- 'o  j= l  

-  
o  o  

* *  l , , t=1

.  < f ,  Lr o(y)@*G )(Q - ( 1 - r)yi t ,  s, x){et ' '  x (a)Q, + (Q t - yi"-tu'x (Q -v)}U 
D(r) f  > +

7 n 1 1  n

+ [ dslrn" lr(d")p(id') L ,i*, I rlt I dr / p" l,(du)lU}) L-vr
6 

"  
"o  j , r=7  0  0  

* -  l=1

. <  f  ,Uo@)X iQ+sc  -  y ) (e -oQ-u ;s ' t )  - so (Q-g ; " ' " ) ) { (  i  t v , , (0 ,Xx ) (Q)Qt t6 ,1 )e tu ' x (Q) -
k= l

n
- ( t  ty*(0,x i lQ -  s)(Qt -  y)  -  6,1)e-tu 'x(Q-a) jLrD@)f >=

* l t n t 1 n

= [ ds /rn" p(d")p(,4,) t r1 [ dt I d, { p" p(du)a(i0r) D-ar
b  

- ' *  j = l  o  o  
* *  l = 1

. i { r r < f , ( l p ( y ) @ * G ) ( Q - ( 1  - r ) y ; t , s , r ) ( e t ' ' x ( Q ) Q t + ( Q t - v 1 ) e - t x ' x ( 0 - a ) 1 U o ( r ) f > +
lc=l

*rt 1f ,( lo(i lXi(Q + s* -y)(e-pQ-g;" '") - eo(Q-u;" ')11{itv'1a*X,)(QQt* 6p1)etu'x(Q\-
r=7

1i ty,prx,)(Q - g(Qt - ei - 6nt)e-ta'x@-v))(to(')/ >) =

18



1 n l 1  r L= t 'dslp" l , (ar)p(t?) L , i  I  dt I  dr Iw" p@u)p!lr) t  ur
0  

- *  
i = l  0  6  

- ' o  " ' [ l t -
n

.  D  <  f ,Up(y )Ryt (Q;s , t , r , r , y )Un@)f  >  .
,(= 1

Using the formulae (3.44) and the properties of the phase functions of class O.r,- one can easily see
that:

sup -  e-a( lc l+ls l )  lp( iA,)p( i l r ) r iy1 < f  ,Un(y)Rik(Q; s, t , r ,n,y)Uo@)f >l  S f i  l lpGDf l l '  (g.42)
,',e€lR''

for any s,t,r in the interval [0,1], with C depending only on the function ,\. This finishes the proof of
the est imation (3.7).

Step 3: Let us look at the operator A < Q >-2,4 that defines a sesquilinear form onD(p(-D))p^,
that is bounded with respect to the graph-norm of the operator p(-D).We have:

< f , A < Q > - ' A f > :

= -i L Li 
n'j ,, ,o" /p" r,(dz)r (iv,)r 11t(d,y)p(i0,)at.

.  < f ,Uo(r)  {e" ' 'x(olqj  + e-sr 'x(Q-Aet-  
"r)}  

< e >-,  .
' { tO, *  yt)etv 'x(Q+at I  Q,r- tu 'xto)}  r togiT >=

n l l
-i 

,Pr{o' {dt 
/R" [p" 1t(dr)1t(dy)p(i0,)p(i0r)np1(Bit * Rit * Tit * fit + S1t)

(3 .48)

(3.4e)

(3 .50)

( 3 . 5 1 )

(3 .52 )

(3 .53 )

w.rrere:
Bi1 := 4 < f,Uo(ilei < e >-, eilo@)f >

* ?'r ,'i]{;!:?,[f"q 
.:') 

,t on,;9,,-. io,al',if]{,i: .
+ < J,Uo(r)Q-"" 'x(8+')  -  \Qi  < Q >- '  Qi lo1r17, *

+ < f ,Un(t)s-" 'xQ+,)q.  < e >-,  e lets 'x(Q) -  DUp(y)f  > +
+ < f ,Up(r)(e-" 'x(a) -  I )Qi  < Q >-2 Qi ln@)J > +

+ < f,Up(r)e-"'x(o)q, a e >-2 Q/e-tu'x1s) - rUD(y)f > +
+ < f ,Up(r)(e" 'x(Q+'S -  DQi < Q >-2 Qi ln1r11, *

+ < f,Up(r)e', 'x@)Qj < e >-2 e{etu'x(Q) - DUo(y)f >

Ty := * < f,(Jp(r)e"'x@)Q, a Q >-2 y,stu'x(Q-v)tfn@)f > -
- < f,LIp(r)e-', 'x(o)9, < e >-2 r,"ta'x(Q-u)Un@)f >

fi l r=4 f ,Up(r)e-"' 'x1Q)ri < Q >-' eta'x(Q-v)Unfu)f > +
+ < f,Up(x)s-"' 'x(Q)7i a Q >-2 e-tv'X(Q-v)Uofu)f >

Sit := - < f,Un(r)l '" 'x(Q+'1*' < Q >-' r,"ta'x(Q-u)Uofu)f > .
Now let us discuss each type of term separately. We begin with Bir:

n l 1

i D. I d,s I dtlR" /R" p,(d,x)1r(d,y)p(i,0,)p(i0)riy1Bi1 =
j , l = l  O  0  

* -

n l 1
= E. I dr [dt /R" Ig" p(dr)p(d,y)p(i0,)p(i0)xg1.

i , l = l 0  0  
- *

a
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(3.54)



But we observe that:

so that
n

t  l<  J i ,Qi
;  t - l

n ^

S n I  l l / i l l "

l lo, 'o '

>-'  Qtft  >l  S
I

-' o'll < t (3 .55)

(3 .56 )

(3 .58 )

(3.5e)

(3 .60)

l i  < f i , Q i < Q
l l ' t=t

< Q > - ' Q t f i > l S

In conclusion we obtain that:

n l l

i t f ds I dtfp." /R" p'(dr)1t(ds)p(i0,)p(i0)tivB1 <
' ; , t = r b  o  * *  

, , 2  n  ^  ( 3 . 5 7 )

< " i.l l,rn" aarl pQl")n lJ p(" )/l l '  = " i, l l(ai)XD)/ll ' =' < f , Bo f >'
1 = l

In order to estimate R;1 let us consider one of the eight scalar products appearing in its definition:

t i a'idt /R" Jp" rr(dz)rr (d,y)p(i0")p(i0)rp1'
0 0

;. /i un(*)"7 x(o)q, < q s-z Q{e-tu'x(Q) - r)uD(y)/ >l<

S I d, I t dt D I d,r llx i Q) | l .l"R" I ul (dr) llnla ) r"' 
x tot u 11- 11 7ll'

O O j=1  0

' .fn" lp i(av ) llnl'},)u i r- tr v x (Q\ ry rt u)i ll < c t llp(- D) f ll' ;

so that one can prove that:

I  n  1  1  - l
li t / ds I dt.IR" .IR" p,(d,a)1t'(d'y)p(i'0")p(i0)*iv&Tl 3
l - i - t= to  o  

<c1 i l p ( -p ) f r '

Let us consider now the type of terms appearing in Qt and \n Tir

1 1

I I d" I dl /R" /p" p(dr)rr(ly)p(i0,)p(i0)r1u*'
0 0

< f , iod)esx'x(Q)q. < Q >-' y,sta'x(Q-a)Aa@)J >lS

t j ori r, /o" IR" lil td,)li,l@y).1 pQ'a)pQ0)riv1,
0 0

.  < ei  .  e , - i  
"sr 'x lQ)gr(-*) l ,ur  

< Q 2-1 
" tv 'x(Q-v)UD@)f 

>l<
.l .l

S I d"f ,t/*" /m" lpl (d'n)lit'l(d'v)'
i l ^.llcJi < q >-L p(il,)np";'x@\uoGr)/ll llv, < Q >-' p(i}r)st et!'xto-atao1v1lll

Let us consider the last norm:

llv, < q >-r p(i0)vr'tu'x(Q-alg'(u)/ll =
= ll. q >-' ytp(i0)ynuo(il"'o'"1o[ll <

t 
*E*llile6;;{0f 

,uetu'x(ca1uo(il < Q - u >-t (aorx-alrll <

S C lyl2 "rlvl l l< Q - y >-' p(- D) f l l

20
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and take irrto account the support condition on / € fp, that implies that p(-D)f = ,t^,p(.-D)/ whele

4-, is tlie characteristic function of the exterior of the ball B(0;Rt); thus:

l<  Q + a >- t  p(-D)I l l  < r t  <v > l l< g 2-r  n- ,p(-D)f l l  s

t
ano:

l n 1 1
l+ f j a" j at./R" ./R" p(d,x)1t(dy)p(i,0,)p(i0)np1(Tit + fit)lS

Iln iEr"o 
- 
"o ,^ "^a 

cR;,l lpGn)fl lr .

Now let us finish this step by considering the term 5;l aud observing that:

1 1

I y' [d, /R" /p" rr(dr)rr(du)pU0")p(i0o)xpn'
. < f ,Uo(i1"",'x(Q)r, < Q >-' y,ptu'x(Q-u\Uo(ilf >lS

1 1
< [ d' l  dt /R" /m" [,]  Ur)lful(du)'

o  o  r r r l

> -t p(i,a,) r ","'\ 
\Q1-ry o( - r ) / ll llu' . 0 >-' p(i lr)y retu' x (o - u) u o 1y1 lll

(3 .62 )

(3.63 )

(3 .64)

(3 .65  )

(3.66)

l l ' i  'o
so that finally:

I n 1 1 |

Ii r,E, Io'{dt /R' /p" rr(dc)ir(dv)p(i0')p(i0)tius1ls

Step l: Let us estimate now the remainder term containing .82 in (3.14):

l lftr/l l := ll(ee)(D)r-' - )(D))/ll =

, 
= ll/*",,rtrrl pul,) {evKa>)-v(<re+,>t 1 + uD@1ll 

i ll
t Io"IR" lf,l @,)lle(ia;, . x(Q * sz)exp 

t-"' 
. 
[*Q + tsn)dt] tiD(,)/ll <

< ct llp(-P)f ll.
tr

4 Proof of the Main Theorem

Let 1 ) 0 and gs(t) := 7t for t e [t, m). In order to finish the proof of the Theorem 2.6 we have to

extend the estimation in Theorem 3.1 with ? = go and for 7 sufficiently small (as in the statement of

Theorem 3.1) to the case rvhen / eD(e(D)R-, such that the function:

tr  e 1/{a} svo(<c>) (()(r)  -  n) f )  (*) (4 .1 )

is of class ,2(R"). In order to do this we shall approach the function / with functions with compact

support, but in order to control this limit we shall need to work with bounded phase functions g e Q1,^

that converge to gg. We shall denote (using also the notations of Section 2):

MR i= {t , o1r1-D)Rl \Rqt"vo(<Q>) ((r(r) - E)f) € ,'?(R'")} '
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Let us fix 1 € Cf (R) such that:

0 S x ( t )  S  i ,  x ( t )  = 0  f o r  l r l  >  1 ,  x ( r ) =  l  f o r l t l < 1 1 2 .  ( 4 . 3 )

For r € IR" and for 0 e (0, t] we denote:

y6(x) := x(0 < r  >) .  (4 .4)

For / e JvIn and I € (0,1] we denote:
fe ,=  Xe f  .  ( 4 .5 )

Let:
(  / -  

r  \ - r  1

j(r) := { (/* "-T:7 
d't) e- t:o ' f or ltl < | (4.6)

[ 0,, for ltl> 7

F o r N € N l e t :
rtw(t) := ' 't f or t S 2N and, fiy(t) := 0 Jor t > 2N (4'7)

t

j i . r( t)  := f i iOtr l ,  
r1p:= jv *f i ,1i  pN(t),= 

|  n*G)ds, Vr ) 0'  (4'8)
0

Let us remark that we have the following relations:

j  e cr(R'), 0 < i(t) <(r*"-t= or) 

" 

g.s)
/Rr(t)at = r, /priv(t)at = r, lrl > N =+ j1v(t) = g

?rv€C-(R ' ) "1" ( t )< r '
It(aary)(t)l ,i,"r, Fil(41 7 cn v, € lR (4'10)

for k € N and with Cr indePendent of 'Y;

pn(r) < po(t),, #11e"(r) 
= eo(t), Vt € R. (4'11)

In fact we shall prove only those estimations that are not completely obvious. First:

(4.12)

s o t h a t f o r t ( N w e g e t ? " ( t ) = T a n d f o r t ) 3 / f w e g e t r T r y ( t ) = 0 ;  b u t i n g e n e r a l w e h a v e :

g = inf n* S rl*(t) ( sup itw ='t.  (4.13)

For the first derivative of 4r(t) we see that:

2N

r(0r7')(t) = t/p(Orru)(t - s)rp-'(s)d,s =t7 [ @ix)U - s)ds -

2 N N - 6
=tt  [  (AjnXt -s)d 's: t1 J (AinX")d' r=1tf i rv( l r )  - i t t ( t -2N)]= (4 '14)

r-N t-2N
= -1t jy( t  -  2N) = - tk i ( t lN -  2)  = -y j ( r  -  2) ;

r  ' Y . .  7
ry,(r) = l^i*U- s)a,y(s)ds -- i I jNQ -s)ds = 7 | i*?)a,

JtK 
- J 

,jr*



i
':,
. j

but 7(r - 2) + 0 implies that 1 S r 13 so that l i(Aq1')(t) l  (

derivatives we observe that:
1

(E*r"Xr) = - l(ak-l ivxr -  2N) = -1#@k-' i )( t lN -2)

so that l(a*lrxr)l < C*^tfor any k ) 1, with the constants Cp independent of 'y'

The conclusion of the above analysis is that for any N € N the phase function 91,' defined by (a'8)

belongs to the class Ot,,- for some 1' > 'l '

We fix now the value of 7 small enough (as in the statement of Theorem 3.1), / e MR^,, d 
: 

(9'1] and

N e N large enough so that we can apply Theorem 3.1 with the phase function p1,' for the function

/6 with compact support. Thus we get the estimation:

lt"** felt, - ry||. 0'-' r",* f,ll'. ",, ll ffi"'.()(r) 
- Df'll (4 .16)

where ry'1,, is given by the same formula as in Section 3 with g replaced by plu. In the sequel we remove

the cut-off in / uv letting 0 -* 0 and using Fatou Lemma on the left hand side of the inequality (a'16)

and the Domi*ated Conu"rgence Theorem on the right hand side. Let us remark that the boundedness

of eeN is crucial at this step. This leads us to an estimation for any f , /v4fu with the phase function

plr. A similar procedure allows us to control the limit N --- oo and finish the proof of Theorem 2'6'

Lemma 4.t. There erists a constant C such that for any N € N tle haue:

< r  > seN(<o>)--'b;6-

Proof. For 1f € N we define the function:

< C.,[Z r >e11')

kvw$) (4 .17 )
sN(t )

r, (l* "- 
' 

dt)-'. ,o, the higher

(4 .15 )

(4.18)

(4 .1e)

(4.20)

If , < 2/[ then we see that:

p'N(A = 4'(t) = rt

so that we have the inequalitY:

and thus for t ( 21{:

If t > 2N then we see that:

2N
r
I

J
j ( ( t - s ) l N ) d s = 1

> Jr"t'tt

sN(r) < 6Qnl-1\rtrvN1)S G/rn1)-tuQutt

oo

j ( t l N - s ) d s - 1  t  j i ) d ' r
t l N - 2

1
,

I
-ca

@

>'Y f  j ( r )dr  =
o

t 2 N
= 1 ! d s  I

0 -oo

erN(r) := jq*$)d,, = i dr/m.rou(, - r)fiv(r)d'r =
0

t

/ N ( s - r ) d r = 1 [ d s
0

t/N
= 1 N  {

0

0
N

I  jv l (o)do = 'YN
s-2N

U(1) - "/(' - 2)J ds
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t l N  1

I d ' !
0 s -2

L * 4ntgt*(t)

L +  ntptN1)

j (o )do  = (4.21)



where:

J( t )  := (4.22)

T h u s , f o r l ) 2 , / Vwe obtain:

.pN(t) = ?Ir ts(/(r) - J(, - 2D,:* + 1u'/f , ig - 2)ds =
0

t / N - 2
- t t  - tN [, (t lN - 2 - s)j(s)d,s = ((r)1t

(4.23)

where:
r : = t l N > ' 2

- t

{ ( r )  :=  t  -  ( t l r )  [  ( ,  - 2  -  s ) j ( s )ds .
- 1

(4.24)

We observe that for r ) 3:

(4.25)
- l

and for 2 1 r { 3 there exists a strictly positive constant {s such that:

(4.26)
- 1

s o t h a t : € ( r ) S 1 - € o ( l . W e c o n c l u d e t h a t t h e r e e x i s t s a c o n s t a n t C I o ( l , s u c h t h a t f o r a n y r ) 2
one has {(r) S as ( L and thus:

t t
, t

I  j ( s )ds=  |  j ( s )ds .
J J

-co - l

1
t

{ ( r )  :=  I  -  (1 l r )  I  G -2  -  s ) j (s )ds  =  2 l r  <213
I

r - ,

I

( t l r )  I  Q -2 -  s ) j (s )d ,s  )  {s  >  0
J

g'(r) S lsvx$) < 1r(l-€o)rt S fiert1rte-€ott1 I n1/1stt

with r :=sr1p $,fte-eott).
t>1

Evidently 
f+ fe@) : f (y), for a.e. 3r in IR.". Moreover:

o"(xef) = f cfi@"-Bxil@eil.
F1o

But :
(l9xe)(*) = 6tot I bo@)@ey)(o < * >)

14.27)

tr

(4,28)

(4.2s)
p319l

with 6o(o) the symbols defined in (2.52). Thus we see that j{1 (aeXa)(c) : t for B - 0 and this limit

vanishes if lBl > 1, so that 
f+ 

(4"/a)( y) = (0" f)(y) for a.e. y in IR'.

Let us consider the limit for 0 -* 0 of the right hand side of (a.16):

ffie'"i'l (D) - E)fe =
= xe@)fffieeN (\(D) - E)f t ffievN [r(D), xe?)] f '
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l l  eew l l

l1*'-l l . "" 
(4 31)

so that i t  is enough to analyze the family of . t2-funct ions: {< Q >[A(D),Xe@)]f ]ero.We have:

< Q > [ ] ( r ) , x e Q \ f =
= .IR" t'@r) < Q > p$0,)luo(r),xe(Q)l I =

n l
= 

rA f 
dtlR" r'@,) < Q > p1a,) {ri (?ixe(Q + tz)) up(r)f} =

n I
= 

E[d{ /R" p(d,x)p(il,) {,,8#;0 < e > @x)e < e + tr >)up(r)f} .

We observe that the first term converges in

that the second one converges in 12-norm
constant (diverging with 1{) such that:

Thus:

/R" dY
n  I  

l l < Q > [ X r ) , x e Q ) i f l l ' =  , n

/p - r , tdz ;  - , ia tp l ta , l { r i8# ;0  <Q >  (0xXd <Q + t r  > )up( r ) f } t r i l "  s
j = 1 0  \  - f J ' ' - r -  t  

I
n l

. l2-norm to ff iee"(l(r) 
- E)f and we shall prove

to zero. In fact for any integer lf we can find a finite

(4.32)

(4.33)
< { lpl  (R)} /m" | ' l@r) /p. dy) /dt.

'lnUD {',3#;o < Q > @x)Q < Q + tc

using Jensen formula. Making use of (2.25) we obtain:

p(il,) {-,8#;e < Q > @i(0 < e + tr >)up(n)f} =
= 0 < Q r,R*# {agoi&#;@x)@ < Q +t"))} up@)1@Pp)(- D)f ,

af t, i&#>@ilQ < Q +tr >)) =
= 
Po,ffi @li1fiffi;) {uf-''rur)(o < Q + rr >)},

apiffi = ri(Q j +"tx)A] rqit,,> +^tr1il-6'<AiT;r+
+(Q i + tr 1)fl-ot zaiaF t tTl-"ot ?qi6F

negative order of derivation have to be considered zero because in fact they

* t x i )

For the second factor on the right hand side of (4.35)

r+lal
a]@ilQ < Q + tr >) = llrl )- 0p-1 sp(Q + td?e;d,f

P=L

>1uot*)t\ tu)l'
by

(where the terms with a
do not appear). Further

so that:

we see that:

l 1
t ; J u _

l - ' . Q i t t r i >

lu'''8#

r ^ r  I/  t r u r  _

< Qi  *  tu i  > l+ la l

(4.34)

(4.35)

(4.36)

(4 .3 i )

(4.38)1 C < r >

we have:
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< Q + t r 2 1 (4.3e)



so tha t :

l r y@i l ( e<Q+r '> ) l  <c t t l t e \ (<Q+ t r>1  (4 .40 )

where (p is the characteristic function of the set: 
{r € R+ | fi <t < }} In conclusion, making also

use of the first inequality in (2.6) we obtain:

/R" as, ti"ln4u {,,8#;0 < Q > @x)(e < Q + tx >)(rp(r)r} tuil ' <
- i- l  o

S c <, ) '  . IR. '  le .  A * tu > (e(< Q * tr  >) D (@pp)(p) i l (a * *11'  a,  3 (4.41)
I  l9 l !^ .o I

< c < r  >2 f  .  l@Bd@)f)(v +,)1" avf i  o.
# < l s l - < ; '

where we took into account the fact thal 0 < y > is bounded by 1 on the support 
"f 

(efu). Using the
Dominated Convergence Theorem in (4.33), the above relation implies now that

l l<  I  > [ ) ( r ) '  xe(Q)] / l l  ;  o

and we can control the right hand side of (a.16).

Let us analyze now the left hand side of the inequality (a.i6). The integrand in the first term converges
nointwise:

f;r\e'*@ fe(y) - eqNwt f @).

For the second term on the left side of (4.16) let us remark that if / € D(p(-D))n-, and 1[ € N, then

"vN 
J € D(p(*D))a-, too and we can extend the operator < Q s-t 4 to the domain O(p(-D))a-, (see

the estimations following the definition of A in Section 2). Moreover we have:

l l '  8  t - '  AeeN(fe -  / ) l l '=
= .IR' | # i. i o' Ip'" uktx)n1o,)'

7 = l  U(  , , ,  ,. \ r i ls i r- ' " ' - r(v) + (r i  *  y)e", 'x(x+!))eeN(<"+v>)1111r * U) -  I )(Up(r) f)@j l ,  dy <

(4.42)

< /R' | #it hio',|p" r(dr)ei'
.(xe(, + i l  -  L)p(i},) {aie-" ' 'xtu) + @i * yi)e"'x-( '+u)} evw(<'+v>) 1Up(r)f)(y) l '  dy+

*,.rr^-r # ru" | *t Erlo'/p'r'(dr)r;'
. (0f  xe)@ + y)(7Pp)( i1,)(ai"-" 'x(v) + @i * y)e" 'x(c+v))svw(<o*s>) Qo@)f )(y) 12 dy.

and let us observe that we also have the following bound uniform in d e (0,1]:

/R" | # P,io" [s' it'(d'r)P(io')'
. { r i@ i r - " , ' x ( c )  +  ( r1 *y )e " , ' x ( , * s } )ev t ' r (<c+s>) (Xd( r * i l - L ) (Uy t ( r ) f ) { i l ) l ' dyS

1c(l 
tuE^E 

(le" hrl @.n)e"t't) (le" trt @n)e"t't) /R" ay.

.r-2alcl |  @Pp)(t0,)** {rtuso'x(s) * (r;  * y,1esn'x(c+u}} evwG,+u>)1Up(r)f)(y)) l ,S

< cke) (le" tat @,r)e"d)2 llp(-o)fll, .

(4.43)
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(4.44)



In ot'der to study the pointwise convefgence of the integrand in the last expression in (4.43) let us
observe that the expression in the fifth line obviously goes to zero pointwise while for any B with
l p l > I w e h a v e :

l@f x'tt, + v)l s cQlltgl
so that the last line of (.1.43) converges to zero also. From the uniform bound (4.44) we
obtain the ,t2-convergence to zero of the first line of (a.43) and hence:

l* ll' Q >-t o"'. f'll= ll' o '-' a"* fll
for any /f e N. Using now Fatou lemma for the first term in (a.16) we finally get:

ll"r* fll, + l!=")A ll. g t-t t"** fll2 <
Sliminf (ll"r, fell'+ A.YA ll.8 t-t t"*, fellt) S

S c1 limiat l lff i*'(^(r) - Ii)f,l l '  =
=llrffiu'()(r) -alrll

for any lV e N.

Now we still have to study the behaviour of the inequality (4.47) when 1[ --+ oo. Using Lemma 4.l we
see that the right hand side is uniformly bounded by:

11ffi..(^(D) - q rll < c lllzo;,,<a> ()(D) - D rll', vI{ e N I d  d R \

with C independent of 1[, the right hand side being finite due to the hypothesis / , Jvln,. But
evidentiy:

(4 .45)

immediately

(4.46)

14.47 )

(4.4e)

side in
a way

(4.50)

1 rr)."vwt<,>) --+ J7iSe1<">
t lN\r ) N*oo

so that by the Dominated Convergence Theorem we obtain the convergence of tlie right hand
(4.47). For the first term on the left hand side one can immediately use the Fatou lemma in
similar to the argument we gave for the 0 --+ 0limit. Thus we obtain the desired inequality:

llr.o' rll < c ll\/7o;"rco> ()(D) - 
")/ll
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