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Abstract. By studying the two-dimensional FitzHugh-Nagumo (F-N) bio-
dynamical system a double breaking saddle connection bifurcation was de-
tected (Section 2). Numerical investigations of the bifurcation curves emerg-
ing from this point, in the parameter plane, allowed us to discover new
types of codimension-one and -two bifurcations. They were coined by us
saddle-node—saddle connection bifurcation and saddle-node—saddle with
separatrix connection bifurcation respectively. The local bifurcation dia-
grams corresponding to these bifurcations are presented in Section 3. An
analogy between the feature of bifurcation corresponding to the point of
double homoclinic bifurcation and the point of double breaking saddle con-
nection bifurcation is also presented in Section 3.
Y
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1. Some codimension-one and -two bifurcations for the F-N sys-
tem

Consider the Cauchy problem z(0) = zo,y(0) = yo for the FitzHugh-
Nagumo (F-N) system [1]

. m3

t=clr+y- ), (1.1)
s e

y—”c(z_a+by)'

Here a,b,c € R are parameters, z,y : R =& R, z = z(t),y = y(t)
are the unknown functions, ¢ is the independent variable and the dot over
quantities stands for their rate of change. For a = b =0, (1.1) becames the
Van der Pol system having z as the main variable and y as the auxiliary
Liénard variable.

The F-N model is associated with a two-dimensional time-continuous
dynamical system. It has z and y as state variables and ¢ plays the role of
the time.

Since the transformation (z,y) — (—z,—y) corresponds to the phase
space portraits for —a, only the case a > 0 will be considered. Our the--
oretical and numerical results, valid for fixed ¢ > 2 and concerning the
bifurcation for the F-N model, were sumarized in the global bifurcation di-
agram [2], [6]. In the following we present only those bifurcation manifolds
concerning the new types of bifurcations. Their representation from Figure
1 is qualitative, due to the very small gap between some of the curves.

Thus, the saddle-node bifurcation takes place for values of the parame-
ters (b, a) situated on the curves S; 5 of equations

a::t%[bl (1—%)3,66 (~90,0) U[1,00). (1.2)

The Hopf bifurcation takes place for values of the parameters (b,a)
situated on the curves H; 5 of equations

b 3 b b
a:ig(_ug—?),h—c—wbe(—c,c). (1.3)

The points of tangency of S;,S; and H; and H; were denoted by
Q1,Q2,Q3, Q4. At these points, the linearized system around the double
equilibrium point has a double zero eigenvalue.



New types of codimension-one and -two bifurcations in the plane 3

Fig. 1. Some bifurcation manifolds for the F-N system

The following theorem holds.

Theorem 1.1 ! [7] The system (1.1) with ¢ fized has at Q; resp. Q3 a
codimension-two bifurcation of Bogdanov-Takens type. At QQ1, resp. Q3 one
curve of homoclinic bifurcation values emerges. Its approzimation around
@1, resp. Q3, is given by the curve BTy

e 7b% — 10bc® + 3c? | 7b% + 5bc? — 12¢2 i
B 15¢3 5b ’ (1.4)

for —¢ < b <0, resp. BT3

7% 4 10bc? — 17c2\/—7b2 + 5bc? + 2¢2 (15)

15¢3 5b '
for 0<b<ec.

Thus, one equilibrium (among the two equilibria) corresponding to @,
or (Y3 is a Bogdanov-Takens bifurcation point. By symmetry, this result
holds for Qq and Q4.

'The proof of this th. will be given in Sec. 4.
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In fact, the given equations for BT; 3 are only asymptotic representa-
tions of the corresponding curves of homoclinic bifurcation. This is why
their form is satisfactory near @), and @3, whereas for larger distances from
Q1 and Q3 the curves BT 3 were drawn with the aid of numerical results
and were denoted by BTn, 3.

Let Qs = BTn; N Ob and Qs = BTnz N Ob, Q7 = BTng N Sy,
Qs = BTnz N S;. Due to the symmetry of the phase portraits, for the
case a = 0,Q)s and Qg are not homoclinic bifurcation values. To Qg a dou-
ble homoclinic bifurcation point corresponds. In addition, at Qg two curves
D, and D; of homoclinic bifurcation points emerge. These curves were ob-
tained numerically. Let Q9 = D; N Sy, and Q10 = D2 N S3. The segments
Q7Q9 and QsQ1o of S; and S, correspond to saddle-node homoclinic bi-
furcation [4], while points Q;,¢ = 7,10 are of saddle-node homoclinic with
separatrix loop bifurcation [8].

2. Breaking saddle connection bifurcation. Double breaking sad-
dle connection bifurcation

A numerical study of the phase dynamics taking into account the manifolds
of saddle equilibria emphasizes the breaking saddle connection bifurcation.

Qqq

Fig. 2. The curves K, 3
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It takes place for (b, a) situated on the curves K;i=1,4 (Figure 2) passing
through the point @s, already introduced in Section 1 as the point at which
the curves BTn1 and BTn3 intersect the Ob-axis (Figure 1).

The curves K3, K4 are symmetric to K1, Ky with respect to the Ob-axis.
The representation from Figure 2 is also qualitative.

Consider now the following important points Q1; = KN S1, Q13 = K3n
Hi, Q15 = K3n Sy and denote by Q12, Q14, Q16 the symmetric points of
Q11, Q13, Q15 with respect to the Ob-axis. Denote by (b5, a;) the coordonates
of Q;, 1 =T, 16.

In this way, the domain 1 of the (b, a)-plane bounded by BTn; and
S1 for b € (-0, —c), whithin which the F-N system possesses two saddle
equilibria and a repulsor and no oscillatory regimes, is divided by K into
two domains 1A and 1B, with nontopologically equivalent phase dynamices.
Some global manifolds of saddle equilibria, obtained numerically using the
soft DIECBI [3], before and after the breaking of saddle connection, are
presented in Figure 3.

I}
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a)a=1418,b= -39 b) a=1418,b=-31
Fig. 3. Stable and unstable manifolds of the saddle-points for ¢ = 5,
Z,y € (=3,3) and (b, a) in domains 1A and 1B of Figure 2

Symilarly, the domain 2, bounded by Hj, BT, and the Oag-axis for
a € (0,1), is divided by Kj into the domains 2A and 2B. For (b,a) in
2A and 2B, the F-N system possesses two saddle equilibria, a repulsor and
an attractive limit cycle. The phase portraits of 2A are not topologicaly
equivalent to those of 2B (Figure 4).
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a) a =1.418, b = —0.62437 b) a = 1.418, b = —0.6243675
Fig. 4. Stable and unstable manifolds of the saddle-points for ¢ = 5,
z €(-5,3),y € (-9,3) and (b, a) in domains 2A and 2B of Figure 2

The domain 3, bounded by S; for b € (—¢,0), H; and the Oa-axis for
a > 1, is divided by K3 into the domains 3A and 3B, with nontopologi-
cally equivalent dynamices (Figure 5). For these domains the F-N system
possesses two saddle equilibria, an attractor and no oscillatory regimes.
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a)a=15b=-0.6 b) a=1.5,b=-0.5
Fig. 5. Stable and unstable manifolds of the saddle-points for ¢ = 5,
z € (-5,3),y € (~11,3) and (b, a) in domains 3A and 3B of Figure 2




New types of codimension-one and -two bifurcations in the plane

| ek
/< /.

b)a=0,b=-1.95

b)a=0,b=-18
Fig. 6. Stable and unstable manifolds of the saddle-points for ¢ = 9,
z,y € (—3,3) and (b, a) in domains 1A and 2B of Figure 2
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Fig. 7. The double breaking saddle connection bifurcation at Qs
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For a = 0, the phase portraits are symmetric with respect to the origin
of the (z,y)-plane. The manifolds of saddle equilibria for @ = 0 and (b, @)
in domains 1A and 2B are presented in Figure 6.

The analysis of the phase dynamics around Qs revealed a first type of
novel bifurcation. We coined 1t 2 double breaking saddle connection bifur-
cation. The local bifurcation diagram around such 2 point is presented in

Figure 7.

3. Saddle-node—saddle connection bifurcation.
Saddle-node—saddle with separatrix connection bifurcation

Our numerical investigations around @11, emphasized another two novel
types of bifurcations, not yet met by us in the literature. One is of
codimension-one, corresponding to points of Sy, for b < by, and another of
codimension-two corresponding to the point Q11

Sq
Q41 Q11 @ 4
Sq
w //
K
T
b Sq, b>bqq
1A l

Fig. 8. Bifurcation diagram for the saddle-node——saddle with separatrix
connection bifurcation. Here the saddle-node equilibria are partially repulsive

This new codimension-one bifurcation was coined by us the saddle-
node—saddle connection bifurcation. This name Was suggested by the fact
that at the points of Sp, for b < bi1, @ saddle-node is connected to a saddle.
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The new codimension-two bifurcation, corresponding to ()11, was coined
by us the saddle-node—saddile with separatriz connection bifurcation. Its
difference from the saddle-node—saddle connection bifurcation consists of
the fact that in the case of (211 the connection of the saddle-node with the
saddle is a separatrix while in the case of the points of Sy, for b < by, the
connection of the saddle-node with the saddle is not a separatrix.

The local bifurcation diagram around @11 is presented in Figure 8.

A similar situation takes place around Q5. However in this case there
exist an attractive saddle-node. The local bifurcation diagram around Q5
is presented in Figure 9.

Q15
—_—
K = 17T
S1,b<b1s 3 7%) | 1Syb>bys
e T

K 3B
Lt Al 3

Fig. 9. Bifurcation diagram for the saddle-node—saddle with separatrix
connection bifurcation. Here the saddle-node equilibria are partially attractive

The points of S; with b < bii1 or b > b5 correspond to saddle-
node—saddle connection bifurcation. A schematic representation of this new
type of codimension-one bifurcation is given in Figure 10 for the two situ-
ations when the saddle-node is partially repulsive or partially attractive.

Let us remark a stricking analogy between the feature of bifurcation cor-
responding to the point Qg (double homoclinic bifurcation) and Qs (double
saddle breaking connection).
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Fig. 10. Saddle-node—saddle connection bifurcation
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For a > 0, at Qg two curves of homoclinic bifurcation (D;, BT'n;) cut
tangently the curve S; at Q7 and Qg (saddle-node homoclinic with sepa-
ratrix loop bifurcation). Completely similarly, at Qs for @ > 0 two curves
K, and K3 of breaking saddle connection bifurcation emerge and cut tan-
gently the curve Sy at Q11 and Q15 (saddle-node—saddle with separatrix
connection bifurcation).

Finally, the points of S; situated between ()7 and ()9 correspond to
saddle-node homoclinic bifurcations. Similaly, the points of Sy for b < by
or b > by correspond to saddle-node—saddle connection bifurcation.

4, Proof of theorem 1.1

In order to determine the curves of homoclinic bifurcation emerging from
the bifurcation points (b*,a*, z*,y*), let us first perform some changes of
variables transforming such a point into the origin. Thus, with the aid of
the transformations

Ty=cx—2z",z2=y—y", (4.1)
ap=b-b"a;=a—a", (4.2)

the system (1.1) becomes

oo . 1
&1 = Erxq + ez — Egz} — cm‘?/B, To = ——C—ml + Eszb? (4.3)

where
1
E; =c¢(1 - (z%)?), By = cz*, B3 = —=(a1 +57). (4.4)

Recall that at @), we have b* = —¢, a* = %(c—}-l)\/l + % and z* =4/1+4 %
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The linearized system around the equilibrium (z1,z2) = (0,0) has the
eigenvalues

/\1,2 = [E1 + E3 £ (El + E3)2 = 4]/2 (45)
In the region of the (b, a)-plane where (E; + E3)% — 4 < 0 we have
M o(@) = pla) £ iw(a) (4.6)

where 1
ple) = g4c*(1 = (%)) = (a1 + 7],
w(@) = g5 V/AZ — [ — (@)7) + (a1 + 0%
Following the lines in [5] we shall use several tranformations which will

associate (4.3) with its normal form. Thus, the first liniar transformation
is

1 1
Wi = =T, Yo = —=T1 + I3 (4.7)
C C

such that the system (4.3) becomes

=1+ E)y+y2 — cEay?,

Jo = (E3 — E1 — 2)y1 + (F3 — 1)y2 + cEayi. (4.8)
Using the nonlinear transformation
Uy =1, Uz = (L+ E1)y + y2 — cEayy, (4.9)
the system (4.8) becomes
: U1 = Uz, (4.10)
Uy = (~E1E3 — ))Ur + (E1 + E3)Us + cELE3U} — 2¢ExUn Uy
With the transformation
Uy=Vi+34, Up=Vy, (4.11)

where § is chosen so that the coefficient of V, vanish, i.e. § = %’h, the

system (4.10) becomes

. . V2
V1=V, Vo = hoo + h1oV1 + h20—§1— + h11V1Va, (4.12)

where
ho() = [Eg(E§ = E%) = 2(E1 + E3)]/(4CE2), h10 = E% = 1,
hgo = 2CE2E3, hn = ~2€E2.

For a new time scale

T (4.13)
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and a new tranformation

_ Aa) . Blg) A?(a)
m= ’BT(_O{—)VD N = Szgn(A(a))(BS(O()

Vs (4.14)

the system (4.12) has the normal form

1= 12, 12 = Bu + Bam + 711 + S (4.15)
where )
Alo) = "2, (o) = (@), (@) = FotSHhan(e) :
2
Ba(a) = ﬁ (Z hio(e); s = Signl—jil(%% =-L

Thus, at Q; a Bogdanov-Takens bifurcation takes place and in the
(a, og)-parameter space a curve of homoclinic bifurcation

925 A () hoo 4 6h3p(a) =0 (4.16)

emerges for hyg < 0. The condition hig < 0 implies —1 < FE3 <1 and
taking into account that at Q1 we have b* = —c, it follows —¢ < b < c. In
terms of the initial variables, (4.16) reads (z*)* =1— %:&: %(—Zbg + %) and,

taking into account that z* is an equilibrium point, (1.4) follows.
Similarly, starting with the point @s, (1.5) is obtained.

The first author was partially supported by CNCSU Grant no. 303/1999.
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