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Abstract- By studying the two-dimensional FitzHugh-Nagumo (F-N) bio-
dynamical system a double breaking saddle connectiin bifircation was de-
tected (section 2). Numerical investigations of the bifurcation curves emerg_
ing from this point, in the parameter plane, allowed us to discou., n.iu
types of codimension-one and -two bifurcations. They were coined by us
saddle-node-saddle connection bifurcation and saddie-node-saddle with
separatrix connection bifurcation respectively. The local bifurcation dia_
grams corresponding to these bifurcations are presented in section 3. An
analogy between the feature of bifurcation .orr"rponding to the point of
double homoclinic bifurcation and the point of doutle br"iking saddle con-
nection bifurcation is also presented in Section 3.

Keywords: codimention-one and -two blfur.ations, dynamical systems,
breaking saddle connection bifurcation, saddle-node bifurcation, FitzHugh_
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1. Some codimension-one and -two bifurcations for the
tem

Consider the Cauchy problem r(0) : ro,y(0) - yq for the
Nagumo (F-N) system [1]

F-N sys-

FitzHugh-

Here a,  b ,c  € R are parameters,  x ,U i  R -+ R,  r  -  r ( t ) ,y  = y( t )
are the unknown functions, t is the independent variable and the dot over
quantit ies stands for their rate of change. For a: b:0, (1.1) becames the
Van der Pol system having c as the main variable and y as the auxiliary
Li6nard variable.

The F-N model is associated with a two-dimensional time-continuous
dynamical system. It has r and y as state variables and t plays the role of
the time.

Since the transformation (2, y) -+ (-x,-gr) corresponds to the phase
space port"raits for -a, only the case a 2 0 will be considered. Our the-
oretical and numerical results, valid for fixed c ) 2 and concerning the
bifurcation for the F-N model, were sumarized in the global bifurcation di-
agram [2], [6]. In the following we present only those bifurcation manifolds
concerning the new types of bifurcations. Their representation from Figure
1 is qualitative, due to the very small gap between some of the curves.

Thus, the saddle-node bifurcation takes place for values of the parame-
ters (b, a) situated on the curves ,S1,2 of equations

i : c ( x + 9 - E ; ) ,
y :  - i @  -  a * b y ) .

I
a : i ; l o l

J

o: *f ,ez + ,[;+,,be (-c,c).

( 1 . 1 )

, b e  ( - o o , 0 )  U [ 1 , o o ) . (1 .2 )

The Hopf bifurcation takes place for values of the parameters (b, a)
situated on the curves H1.2 of equations

(1.3)

The points of tangency of 51, ,52 and I/1 and ly'2 were denoted by
Qt,Qz,Qs, Qa.At these points,  the l inearized system around the double
equilibrium point has a double zero eigenvalue.

3  b , ,
b -  7 )



New types of codimension-one and -two bifurcations in the plane

Fig. 1. Some bifurcation manifolds for the F-N system

The fbllowing theorem holds.

Theorem 1.1 1 
[7] The system (1.1) with c fined has at Q1 resp. Qs a

codimension-two bifurcation of Bogdanoa-Takens type. At Q1, resp. Qs one
curae of homoclinic bifurcation ualues ernerges. Its approximation around,
Q1, resp. Qs, is giaen by the curue BT1

7 b 2 - L 0 b c 2 + 3 c 2
15c3

(1 .4 )

for -c < b < 0, resp. BTs

7 b 2 + I 0 b c 2 - 1 7 c 2
- = - 

1b;3- ,  (1 .5)

fo r  0  1b  1c .

Thus, one equilibrium (among the two equilibria) corresponding to Q1
ot Qs is a Bogdanov-Takens bifurcation point. By symmetry, this result
holds for Qz and Q+.

lThe proof of this th, will be given in Sec. 4.

7 b z + \ b c z _ I 2 c 2

_ 7 b 2 + 5 b c 2 y 2 " z
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In fact, the given equations for BTr,s are only asymptotic representa-
tions of the corresponding curves of homoclinic bifurcation. This is why
their form is satisfactory near Q1 and Q3, whereas for larger distances from
Q1 and Q3 the curves BTtp were drawn with the aid of numerical results
and were denoted by BTn1,s.

Lel Q5 - BTnt ft Ob and Qa : BTns n Ob, Qz = BTna f\ 51,
Qa = BTns fl 52. Due to the symmetry of the phase portraits, for the
case o = 0, Qs and Q6 are not homoclinic bifurcation values. To Qo a dou-
ble homoclinic bifurcation point corresponds. In addition, at Q6 two curves
D1 and D2 of homoclinic bifurcation points emerge. These curves were ob-
tained numerically. Let Qe = Dr O,S1, and Qrc = Dzfl Sz. The segments

QrQg and QaQro of 51 and ,S2 correspond to saddle-node homoclinic bi-
furcation [4], while points Q;, i -ffi are of saddle-node homoclinic with
separatrix loop bifurcation [8].

2. Breaking saddle connection bifurcation. Double breaking sad-
dle connection bifurcation

A numerical study of the phase dynamics taking into account the manifolds
of saddle equilibria emphasizes the breaking saddle connection bifurcation.

Fig. 2. The curves K1,3
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It takes place for (b, a) situated on the cy.velIr;.i : I,4 (Figure 2) passingthrough the point e5,'arreadv i"ir"l"."a in seciion L;;;; point at whichthe curves BTnI and BTnJ intu.r".tJf,e Ob-axis (Figure 1).

The curves Kz, Ks are symmetric to -I(1, 1(2 with respect to the ob-axis.The representation from Figure 2 is also qualitative.
Consider now the following importantpoints e11 = 1(rO Sr, ers = IriflHt, Qrc: I(eo 51 and denJte i, er;, eu, ercthe symmetric points ofQn, Qn, Q15 with respect to the Ob_;;. Denote by (bl, ar) the coordonateso f Q ; , f : T J 6 .

In this way, the do11i.n 1 of the (b, a)_plane bounded by BTnl andst 
{:: 1 e ( --, 

-c) , whithin rtri.h1ilu p-N system possesses rwo saddreequilibria and a repulsor and no or.ii.lory regimes, is aividea by 1(1 intotwo domains 1A and 18, with nontopologically equivarent phase dynamices.some global manifords of saddle d;li;;r, ottained 
"".iri.rrrv using thesoft DIECBI [3], before and urtur'ir," treaking or .uaalu-.onnection, arepresented in Figure B.

a)  a  -  1 .418,  6  =  -3 .2 b )  o - 1 . 4 1 8 , b = - 3 . 1
Fig' 3' stable and unstable manifolds of the saddre-points for c = s,r,y € (-8,3) and (D, a) in domains 1A and fg 

"f 
Fig"* Z

symilarly, the domain 2, bounded by Ht, BTnr and the oa-axis foro e (0,1) , is divided bv rri into the dlmain, 2A'r;l-2il. For (b, a) in24 and 28, the F-N system possesses two saddre equilibria, a repursor andan attractive limit cycle. The phase portraits of ir are not topologicalyequivalent to those of 28 (Figure a). 
'
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a ) o = 1 . 4 1 8 , 0 = - 0 . 6 2 4 3 7 b) a = 1.418, b = -0.6243675
Fig. 4. Stable and unstable manifolds of the saddle-points for c = b,
r  €  ( -5 ,3) ,ye ( -9,3)  and (6,o)  indomains24 and 28 of  F igure 2

The domain 3, bounded by 51 for b e (-c,0), I/r and the Oo-axis for
a ) 1, is divided by /(3 into the domains 3A and 38, with nontopologi-
cally equivalent dynamices (Figure 5). For these domains the F-N system
possesses two saddle equilibria, an attractor and no oscillatory regimes.

a )  o = 1 . 5 , b - - 0 . 6 b )  o - 1 . 5 , b = - 0 . 5
Fig. 5. Stable and unstable manifolds of the saddle-points for c = b,

c  €  ( -5 ,3 ) ,ye  ( -11 ,3)  and (b ,a )  in  domainsBA and lB  o f  F igure  2
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b )  o - 0 , b - - 1 . 9 5 b )  o - 0 , b = - 1 . 3
Fig. 6. Stable and unstable manifolds of the saddle-points for c

r ,y  e ( -3,3)  and (b,o)  in  domains 1A and 28 of  F igure 2
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Fig. 7. The double breaking saddle connection bifurcation at e5
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For a = 0, the phase portraits':::1fril":il,'T;li"'T::":1*"t"il:;
of tnl'(r, y)-plune' The manifolds ot sa'

in domains 1A and ;;-r;" pr":"nt"-1,'::5["a%, reveated a frrst tvp". of
^" *in" 

analvsis of the phase dvnuPtt'i;';:;;;"ttdd'Ie.connection bifur-

"*ii'it*'il;;" 
we coined \r a douote 

""firJil;foint 
is presented in

cation.The locat 
ji"*ttr"" diagram around such a potnt

Figure 7'

s . s ad dre-no 1" ; ffi3 ti ;"1"?'"".t;*'i;;;:Hln b if u r c at io n

:11tffi5*****.nsaround$'i-"T"onT:'iff l;Jl":'Si:::"il
tvpes of bifurcattons," not .{"t :":^,0-',r;;;, i", o ( brr, and another of

.t""oil*rt" n- o ne' cor res?on$,i1g ll ;tli"r "t "t Q r r .codimension-one' "]ililG to ihe point Q11.
codimension-two cot

51, bcb11

/ [ \

a/4.*\
{ ( . - /*l*-
t  51, b>b11

1 a
I

P r b

u,*.lEil:t'"':jl;,:Hl:H:,"',',1ili:;:X1ff illlll][,"'
connection bifurcatron' rrerc u'! 

. r L., ,," the .saddi

T::'::' ". ;: ",'o r ? n " ?ll'?1,""\ ffi: ;"J :1 #,,Tq ff ,"1 .t :r
nod'e-sadd"le connection bit'urcation' rnrffi'""a" 

O totii""t"a to a saddle'

that at the points t'S'';fo; b < b"' a saddle-node is connect'e



New types of codimension-one and -two bifurcations in the plane g

The new codimension-two bifurcation, corresponding to e11, was coinedby us the saddle-nod,e-.sad,d,re. with separatrir 
"orr"ri,ion 

Lifurcation. rtsdifference from the saddle-node-saddle connection bifurcation consists ofthe fact that in the case of err the connection of the saddle-node with thesaddle is a separatrix while in the case of the points 
"rsr, 

r", b ( 611, theconnection of the saddle-node with the saddle is not a seiaratrix.
The local bifurcation diagram around err is presented in Figure g.
A similar situation takes place around e15. However in this case thereexist an attractive saddle-node. The local bifurcation diagram around e15is presented in Figure g.

51,  bcb15 l '-_r 51 ,  b>b15

Fig. 9. Bifurcation diagram for the saddle-node-saddle with separatrix
connection bifurcation. Here the saddle-node equilibria are partially attractive

The points of ,S1 with 6 q 611 or 6 ) 615 correspond to saddle_
node-saddle connection bifurcation. A schematic representation of this new
type of codimension-one bifurcation is given in Figure 10 for the two situ_
ations when the saddle-node is partially repulsive 

-or 
partially attractive.

Let us remark a stricking analogy between the feature of bifurcation cor_
responding to the point Q6 (double homocrinic bifurcation) and e5 (double
saddle breaking connection).

/ l
- - ' I

/ r #
l (  ' l
4 \  '
l i L _*T*-
Y 3 4
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\ )\ _ r '
\ i
\ _ /

{ \
le connection bifurcation

For a ) 0, at Q6 two curves of homoclinic bifurcation (D1, BTn) cut

tangently the curve 51 at Q7 and Qe (saddle-node homoclinic with sepa-

ratrix loop bifurcation). Completely similarly, at Qs for a ) 0 two curves

.I(1 and K3 of breaking saddle connection bifurcation emerge and cut tan-
gently the curve 51 at Q11 and Q15 (saddle-node-saddle with separatrix

connection bifurcation).
Finally, the points of ,91 situated between Q7 and Qe correspond to

saddle-node homoclinic bifurcations. Similaly, the points of .91 for b ( b1
or b ) b1s correspond to saddle-node-saddle connection bifurcation.

4. Proof of theorem L.1

In order to determine the curves of homoclinic bifurcation emerging from

the bi furcat ion points (b,a",r*,U*), let  us f i rst  perform some changes of

variables transforming such a point into the origin. Thus, with the aid of
the transformations

X L : n - I * r 1 2 : A - U * ,

a t : b - b * , a 2 : a - ( t r * t

the system (1.1) becomes

\

)

{

\.-

\

)

\
-sadd

\ta
10. Saddle-nodeFie.

(4 .1 )

(4.2)

i t  :  Et r t  *  crz  -  Ezr? -  cx l1Z,  bz = - ; " t  *  Esxb2 (4.3)

where

E 1 :  c ( I -  ( r . ) ' )  , ,  E 2 :  c r * ,  E s =  - l ( o ,  +  b - ) . (4.4)

Recall that at Qr wehave b* - -c, o- : !1"+1)/;T and z* = {l+ 
L,
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The I inearized system around the equi l ibr ium (21 ,rz):  (0,0) has the

eigenvalues

)r,z = lh * Es* tl@t 1 Es)2 - 4ll2

In the region of the (b,a)-planewhere (Er* ni2 - 4 < 0 we have

)r ,z(o)  -  p(a)  X iw(a)

wnere
p(a) : fi1",1t - (r-)') - (or + b.)l ,
w(a) : h
Following the lines in [5] we shall use several tranformations which will

associate (4.3) with its normal form. Thus, the first liniar transformation

i s l r

a t  :  l r t ,  Y z :  - l r t  *  r z  @ ' 7 )

such that the system (4.3) becomes

y r = ( 1  * E ) W * A z - c E z U ? ,
0z = (Es - Er - 2)ar + (Es - I)Yz + cEza?.

Using the nonlinear transformation

(Jt : At, (J2 : (1 * Er)vr * az - cEzU?,

the system (4.8) becomes

Ut = Uz,

U2: (-E1h - I)th* (Et I Es)Uz * cEzEsU? - 2cE2U1U2

With the transformation

Ut :Vr  *  5 ,  U2 -  V2, (4 .11 )

(4 ' o l

(4 .6)

(4.8)

(4,e)

(4 .10)

where 6 is chosen so that the coefficie nt of V2vanish, i.e. 6 : W, *r"

system (4.10) becomes

Vr = Vz,, Vz = hoo * hrcVt + hrory * hrtVrVz, @.I2)

where
hoo : l4t(83 - E?) - 2(Et + Es)1/ @cDz), hrc - E! - r,
hzo = 2cE2E3, hn = -2c82'

For a new time scale 
lB(a) |t=l f f i l r  (a '13)
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25A(a)hss+ 6hlo(a) : o

and a new tranformation

A ( a \  -  , B ( o ) , , A ' ( o ) , ,
r y :  E6v t '  Tz :  sxgn \  

A@) t r  pz ( -a ) ' 2

the system (4.I2) has the normal form

rh: \zt rtz: 0t * pz\ l  ql + srlnz

where
hr"(a\A\a) = -'f ,B(a) = h,,("), 0r@):ff in*1") '
8 2 ( a \ ,  /  \ .  ^ . ^ - B ( o )gz(*) : 
ffihro("); 

t : sisnffi - -1'

Thus, ut 8; 
'a 

Bogdanov-Takens bifurcation takes place and in the

(41, a2)-pir.rameter space a curve of homoclinic bifurcation

( a , 1 4 \

( 4 . 1 5 )

(4 .16 )

emerges for h16 ( 0. The condition hro ( 0 implies -I I Es ( 1 and

taking into account that at Q1 we have b* ::",  i t  f$owg 
, "utb i  

t ' I :

terms of the init ial variables, (4.16) reads (r*)2 - 1 - 
t+ tep + f ) ana'

taking into account that r* is an equilibrium point' (t'+) follows'

Siirilarly, starting with the point Q3, (1'5) is obtained'

Thef i rs tauthorwaspar t ia l lysuppor tedbyCNCsUGrantno.303/ i999 '
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