

INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

ON THE REGULARITY OF p-BOREL IDEALS

by

JÜRGEN HERZOG and DORIN POPESCU

Preprint nr. 14/1999

ON THE REGULARITY OF p-BOREL IDEALS

by

JÜRGEN HERZOG* and DORIN POPESCU**

October, 1999

^{*}FB6 Mathematik und Informatik, Universität-GHS-Essen, Postfach 103764, 45117 Essen – Germany e-mail: <u>juergen.herzog@uni-essen.de</u>

^{**} Institute of Mathematics, University of Bucharest P.O.Box 1–764, Bucharest 70700 Romania, e-mail: dorin@stoilow.imar.ro

ON THE REGULARITY OF p-BOREL IDEALS

JÜRGEN HERZOG AND DORIN POPESCU

Introduction

In this paper we prove Pardue's conjecture on the regularity of principal p-Borel ideals. As a consequence we obtain an upper bound for the regularity of general p-Borel ideals.

Let K be field, and $I \subset S$ a graded ideal in the polynomial ring $S = K[x_1, \ldots, x_n]$. Recall that the generic initial ideal Gin(I) of I with respect to the reverse lexicographical order is Borel-fixed. This means that Gin(I) is fixed under the action of the Borel group of the upper triangular invertible matrices acting linearly on the polynomial ring. By a theorem of Bayer and Stillman [2], the regularity of I and Gin(I) coincide. This is one of the reasons why one is interested to compute the regularity of Gin(I). In characteristic zero a Borel-fixed ideal is strongly stable, and so its regularity is simply the highest degree of a minimal generator. In positive characteristic however, Borel-fixed ideals are p-Borel (see 1.1 for the definition), and these are monomial ideals with a quite difficult combinatorial structure.

Monomials $u_1, \ldots, u_m \in I$ of a p-Borel are called Borel generators of I, if I is the smallest p-Borel ideal containing u_1, \ldots, u_m . In this case we write $I = \langle u_1, \ldots, u_m \rangle$. The ideal I is called principal p-Borel if I has only one Borel generator. Pardue conjectured a formula for the regularity of a principal p-Borel ideal which only depends on the exponents of the Borel generator, see 1.4. In a paper by Aramova and Herzog [1] it was shown that Pardue's formula gives indeed a lower bound for the regularity. Some of the results in that paper have been later extended by Ene, Pfister and Popescu [5] to more general ideals. In the present paper we will show that Pardue's formula yields also an upper bound. Our method in proving this uses a criterion of Eisenbud, Reeves and Totaro [4] for determining the regularity of p-Borel ideals.

The authors are grateful to the Alexander von Humboldt Foundation for supporting their collaboration.

1. p-Borel ideals

Throughout this paper we fix a field K, and let $S = K[x_1, \ldots, x_n]$ be the polynomial in n indeterminates over K.

Let p be a prime number, and k and l be non-negative integers with p-adic expansion $k = \sum_i k_i p^i$ and $l = \sum_i l_i p^i$. We set $k \leq_p l$ if $k_i \leq l_i$ for all i.

Definition 1.1. A monomial ideal $I \subset S$ is p-Borel, if the following condition holds: for each monomial $u \in I$, $u = \prod_i x_i^{\mu_i}$, one has $(x_i/x_j)^{\nu}u \in I$ for all i, j with $1 \le i < j \le n$ and all $\nu \le_p \mu_j$.

The significance of p-Borel principal ideals is given by

Proposition 1.2 (Pardue). Suppose char $K = \emptyset$, and let $I \subset S$ be a monomial ideal. Then I is Borel-fixed if and only if I is p-Borel.

We denote by G(I) the unique minimal set of monomial generators of a monomial ideal I. It is easy to see (cf. [1]) that I is p-Borel if the conditions of 1.1 are satisfied for all $u \in G(I)$.

A principal p-Borel ideal can be explicitly described. We use the following standard notation: If J is a monomial ideal we let $J^{[p^i]}$ be the ideal generated by all monomials u^{p^i} with $u \in G(J)$. The ideal $J^{[p^i]}$ is called the p^i th Frobenius power of J. Note that we define the p^i th Frobenius power of monomial ideals in any characteristic.

Proposition 1.3 (Pardue). Let $u = \prod_i x_i^{\mu_i}$, and let $\mu_i = \sum_i \mu_{ij} p^j$ be the p-adic expansion of μ_i for i = 1, ..., n. Then

$$\langle u \rangle = \prod_{i=1}^n \prod_j ((x_1, \dots, x_i)^{\mu_{ij}})^{[p^j]}$$

In particular, $\langle u \rangle = \prod_{i=1}^n \langle x_i^{\mu_i} \rangle$.

It follows from 1.3 that $\langle x^{\mu} \rangle = (x_1^{\mu_1}) \langle x^{\mu}/x_1^{\mu_1} \rangle$, so that $\operatorname{reg}\langle x^{\mu} \rangle = \mu_1 + \operatorname{reg}\langle x^{\mu}/x_1^{\mu_1} \rangle$. Therefore, if we are interested in the regularity of the p-Borel principal ideal $\langle x^{\mu} \rangle$ we may assume that x_1 does not divide x^{μ} .

Denote by $\lfloor * \rfloor$ the greatest integer function, and for $1 \leq k \leq n$ and $j \geq 0$ define

$$d_{kj}(\mu) = \sum_{i=1}^{k} \left[\frac{\mu_i}{p^j}\right].$$

For each k such that $\mu_k \neq 0$, let $s_k = \lfloor \log_n \mu_k \rfloor$, and set

$$D_k = d_{ks_k}(\mu)p^{s_k} + (k-1)(p^{s_k} - 1).$$

Conjecture 1.4 (Pardue). If x_1 does not divide x^{μ} , then

$$\operatorname{reg}\langle x^{\mu}\rangle = \max_{k: \ \mu_k \neq 0} \{D_k\}.$$

In the following we will express the right hand side of 1.4 in different ways. The following easy fact can be found in [1].

Proposition 1.5. Let $S = \{s_k : \mu_k \neq 0\}$, let $q_j = \max\{k : s_k = j\}$ for each $j \in S$, and set $E_j = D_{q_j}$. Then

- (i) $E_j = \sum_{i=j}^s (\sum_{k=2}^{q_j} \mu_{ki}) p^i + (q_j 1) (p^j 1)$ for all $j \in \mathcal{S}$; (ii) $\max\{D_k \colon \mu_k \neq 0\} = \max\{E_j \colon j \in \mathcal{S}\}$;

We shall need still another reformulation of Pardue's formula for the regularity of a principal p-Borel ideal. Set $s = \max\{s_k : \mu_k \neq 0\}$, and for each t with $1 \leq t \leq s$ let $m_t = \max\{k : \mu_{kt} \neq 0\}$. Finally set

$$F_t = \sum_{i=t}^{s} (\sum_{k=2}^{n} \mu_{ki}) p^i + (m_t - 1)(p^t - 1)$$
 for all $t = 1, \dots, s$.

Proposition 1.6. With the notation introduced we have

$$\max_{1 \le t \le s} F_t = \max_{j \in \mathcal{S}} E_j.$$

Proof. It is clear that $m_j \geq q_j$ for all $j \in \mathcal{S}$, so that $\max_{1 \leq t \leq s} F_t \geq \max_{j \in \mathcal{S}} E_j$. In order to show the opposite inequality we first prove the following claim: let $S_t = \{j \in S : j \ge t\}$ and $Q_t = \{q_j : j \in S_t\}$. (Note that $S_t \ne \emptyset$, since $s \in S_t$). Let $e \in \mathcal{S}_t$ such that $q_e = \max\{q_i \in Q_t\}$. Then we claim that $F_e \geq F_t$.

Indeed, we have

$$F_e - F_t = -\sum_{i=t}^{e-1} (\sum_{k=2}^n \mu_{ki}) p^i + (m_e - 1)(p^e - 1) - (m_t - 1)(p^t - 1).$$

Since we assume that q_e is maximal in Q_t it follows that $\mu_{ki} = 0$ for $k > q_e$ and $i \geq t$. Thus $m_e = q_e \geq \max\{k : \mu_{kt} \neq 0\} = m_t$, because again $\mu_{kt} = 0$ for $k > q_e$. Now it follows that

$$F_e - F_t = -\sum_{i=t}^{e-1} (\sum_{k=2}^{q_e} \mu_{ki}) p^i + (q_e - 1)(p^e - 1) - (m_t - 1)(p^t - 1).$$

Finally, since $\sum_{i=t}^{e-1} (\sum_{k=2}^{q_e} \mu_{ki}) p^i = \sum_{k=2}^{q_e} (\sum_{i=t}^{e-1} \mu_{ki} p^i \le (q_e - 1)(p^e - p^t)$, we get $F_e - F_t \ge (q_e - 1)(p^t - 1) - (m_t - 1)(p^t - 1) = (q_e - m_t)(p^t - 1) \ge 0$. This concludes the proof of the claim.

Continuing with the proof of the opposite inequality, we let $t \leq s$ be the maximal number for which $F_t = \max_{1 \le r \le s} F_r$. Let $e \in \mathcal{S}_t$ be chosen such that q_e is maximal in Q_t . Then, according to our claim, we have $F_e \geq F_t$. By the choice of t this implies that e = t, so that in particular, $t \in \mathcal{S}_t$. Since q_t is maximal in Q_t it now follows that $\mu_{ki} = 0$ for $i \geq t$ and $k > q_t$. Consequently, $m_t = q_t$, and so $F_t = E_t$.

Remark 1.7. Using the methods of [1] the following result was proved in [5]: Let $(I_t)_{1 \le t \le s}$ be some stable ideals and $I = \prod_{t=1}^s I_t^{[p^{r_t}]}$ for some integers $0 \le r_1 < \cdots < r_s$. If I_j contains $x_{m(I_{j+1})}^{p^{r_{j+1}-r_{j-1}}}$ for all $1 \le j < s$ (we set $m(u) = \max\{j : x_j|u\}$ for a monomial u) and $m(I_{j+1}) = \max\{m(u) : u \in G(I_{j+1})\}$) then $\operatorname{reg}(I) = pa(I)$, where we $pa(I) = \max_{1 \le t \le s} \{\sum_{i>t}^s p^{r_i} \max(I_i) + \max_{u \in G(I_t)} [p^{r_t} \deg(u) + (m(u) - 1)(p^{r_t} - 1)] \}$ Moreover if I_t has the form $I_t = \prod_{i=2}^n (x_1, \dots, x_i)^{\mu_{it}}$ with $0 \le \mu_{it} < p$ for all t < s, the above result gives $\operatorname{reg}(I) = \max_{1 \le t \le s} F_t$. Hence the Pardue Conjecture holds in a special case, which can be also obtained directly from [1]. Trying to extend the equality reg(I) = pa(I) for general products of p^i -th Frobenius powers of stable ideals one must consider first the following example which shows how tight Pardue's Conjecture is: Let n = 3, p = 2, $I_1 = (x_1, x_2)^2$, $I_2 = (x_1, x_2, x_3)$ and $I = I_1 I_2^{[2]}$. Then pa(I) = 4, but reg(I) > 4, because I is not stable (see 2.1 below).

2. The proof of Pardue's conjecture

In [1] it is shown that if $x^{\mu} \in S$ is a monomial which is not divisible by x_1 , then

$$\operatorname{reg}\langle x^{\mu}\rangle \ge \max_{k: \, \mu_k \ne 0} \{D_k\}.$$

In the section we will prove the opposite inequality. Our proof is based on the following result [4]:

Proposition 2.1 (Eisenbud, Reeves, Totaro). Let I be a p-Borel ideal with $\max(I) = d$, and let $e \ge d$ be the smallest integer such that $I_{\ge e}$ is stable. Then $\operatorname{reg}(I) = e$.

2.1 needs some explanations: $\max(I) = \max\{\deg u : u \in G(I)\}$, and $I_{\geq e}$ is the ideal generated by all monomials $u \in I$ with $\deg u \geq e$. Finally, recall that, according to Eliahou and Kervaire [3], a monomial ideal I is stable if for all monomials (or equivalently all generators) u of I one has $(x_i/x_{m(u)})u \in I$ for all $i \leq m(u)$, where $m(u) = \max\{j : x_j|u\}$.

Recall from Section 1 that $\langle x^{\mu} \rangle = \prod_t I_t^{[p^t]}$ where $I_t = \prod_{i=2}^n (x_1, \dots, x_i)^{\mu_{it}}$ with $0 \leq \mu_{it} < p$. Thus the desired inequality will follow from 2.1 and

Theorem 2.2. For given integers $0 \le r_1 < \cdots < r_s$, and integers $0 \le a_{tk} < p^{r_{t+1}-r_t}$ for $t = 1, \ldots, s$ and $k = 1, \ldots, m_t$ let $I_t = \prod_{k=2}^{m_t} (x_1, \ldots, x_k)^{a_{tk}}$ and $I = \prod_{t=1}^{s} I_t^{[p^{r_t}]}$. Let $\delta_t = \sum_{i=t}^{s} p^{r_i} \max(I_i) + (m_t - 1)(p^{r_t} - 1)$ and $d = \max\{\delta_t | 1 \le t \le s\}$. Then $I_{\ge d}$ is stable.

The proof needs some preparations.

Lemma 2.3. Let $J = \prod_{k=2}^{m} (x_1, \ldots, x_k)^{a_k}$ with $0 \le a_k \le p^r - 1$, and let $\eta \in J$ be a monomial such that $\deg \eta \ge 1 + \max\{m(\eta)(p^r - 1), \max(J) + p^r - 1\}$. Then there exists an integer t such that $\eta \in x_t^{p^r} J$.

Proof. We reduce the problem to the case where $m(\eta) \leq m$. Since J is stable, η has the following Eliahou-Kervaire decomposition: $\eta = vw$ for monomials v and w with $v \in G(J)$ and $\min(w) \geq m(v)$. We may assume that $w \notin (x_t^{p^r})$ for all t. Then $w = w'x_{m+1}^{\beta_{m+1}} \cdots x_{m(\eta)}^{\beta_{m(\eta)}}$ with $\beta_i \leq p^r - 1$. Thus the element $\eta' = vw'$ has degree $\geq \deg \eta - (m(\eta) - m)(p^r - 1) \geq m(p^r - 1) + 1$. Since $m(\eta') \leq m$ and $\max(J) \leq (m-1)(p^r-1)$, we may replace η by η' , and thus may as well suppose that $m(\eta) \leq m$.

Let $\eta = x_1^{\alpha_1} \cdots x_{m(\eta)}^{\alpha_{m(\eta)}}$. We apply induction on $\max(J)$, and may assume that $a_m \neq 0$. If $\max(J) = 1$, then $J = (x_1, \dots, x_m)$. If $m(\eta) = 1$, then $\eta = x_1^{\alpha_1}$ with $\alpha_1 \geq \max(J) + p^r = p^r + 1$. In that case, $\eta = x_1^{p^r} \eta'$ with $\eta' = x_1^{\alpha_1 - p^r} \in J$. Suppose now that $m(\eta) \geq 2$. Then, since $\deg \eta \geq m(\eta)(p^r - 1) + 1$, it follows that $\eta \in (x_t^{p^r})$ for a certain $t \leq m(\eta)$, and so $\eta = x_t^{p^r} \eta'$ where η' is a monomial of degree $\geq (m(\eta) - 1)(p^r - 1) > 1$. Hence $\eta' \in J$, and so $\eta \in x_t^{p^r} J$.

Now suppose that $\max(J) > 1$. We will distinguish several cases. In the first case suppose that $\alpha_{m(\eta)} \geq p^r$. Let again $\eta = vw$ be the Eliahou-Kervaire decomposition of η . Then $\deg w = \deg \eta - \deg v \geq p^r > 0$. Hence, since $m(v) \leq \min(w)$, it follows that $x_{m(\eta)}^{p^r}$ divides w, and we are done.

Now we consider the case that $\alpha_{m(\eta)} \leq p^r - 1$, $m(\eta) \geq 3$ and $\alpha_{m(\eta)} \leq \sum_{i=m(\eta)}^m a_i$. We choose the maximal integer t, $m(\eta) \leq t \leq m$, such that $\alpha_{m(\eta)} \leq \sum_{i=t}^m a_i$, and write $\alpha_{m(\eta)} = \sum_{i=t+1}^m a_i + b_t$ with $1 \leq b_t \leq a_t$. Now set $\varphi = \eta/x_{m(\eta)}^{\alpha_{m(\eta)}}$. Observe that

for all monomials $\rho \in J$ with $m(\rho) \leq m$ one has

$$\rho/x_{m(\eta)} \in \prod_{k=2}^{m-1} (x_1, \dots, x_k)^{a_k} (x_1, \dots, x_m)^{a_m - 1}. \tag{1}$$

Applying (1) successively we see that $\varphi \in J''$ where

$$J'' = \prod_{k=2}^{t-1} (x_1, \dots, x_k)^{a_k} (x_1, \dots, x_t)^{a_t - b_t}.$$

We have

 $\deg \varphi = \deg \eta - \alpha_{m(\eta)} \ge \deg \eta - (p^r - 1) \ge 1 + (m(\eta) - 1)(p^r - 1) \ge 1 + m(\varphi)(p^r - 1),$ and $\deg \varphi = \deg \eta - \alpha_{m(\eta)} \ge \max(J) + p^r - \alpha_{m(\varphi)} = \max(J'') + p^r$. Hence we may apply our induction hypothesis, and conclude that there exists an integer $q \le m(\varphi)$ such that $\varphi \in x_q^{p^r} J''$. It follows that $\eta \in x_q^{p^r} J$.

such that $\varphi \in x_q^{p^r}J''$. It follows that $\eta \in x_q^{p^r}J$. Next we consider the case $\alpha_{m(\eta)} \leq p^r - 1$, $m(\eta) \geq 3$ and $\alpha_{m(\eta)} > \sum_{i=m(\eta)}^m a_i$. Using again (1) we see that $\eta = x_{m(\eta)}^{\sum_{i=m(\eta)}^m a_i} \eta'$ with $\eta' \in \tilde{J}$ where $\tilde{J} = \prod_{k=2}^{m(\eta)-1} (x_1, \dots, x_k)^{a_k}$. Note that for any monomial $\rho \in J$ with $m(\rho) > m$ it follows that $\rho/x_{m(\eta)} \in J$. Applying this successively to η' we see that $\varphi = \eta/x_{m(\eta)}^{\alpha_{m(\eta)}}$ belongs to \tilde{J} . As in the second case it follows that $\deg \varphi \geq 1 + m(\varphi)(p^r - 1)$. Since on the other hand $\max(\tilde{J}) \leq (m(\eta) - 2)(p^r - 1)$, it also follows that $\deg \varphi \geq 1 + (m(\eta) - 1)(p^r - 1) \geq \max \tilde{J} + p^r$. Applying the induction hypothesis to φ and \tilde{J} yields the desired conclusion for η .

It remains to consider the case $\alpha_{m(\eta)} \leq p^r - 1$ and $m(\eta) \leq 2$. If $m(\eta) = 1$, then $\alpha_1 \geq p^r$, a contradiction. Therefore $\eta = x_1^{\alpha_1} x_2^{\alpha_2}$ with $\alpha_2 \neq 0$ and $\alpha_1 + \alpha_2 \geq \max\{2p^r - 1, \max J + p^r\}$. It follows that $\alpha_1 \geq p^r$. Then the element $\eta' = x_1^{\alpha_1 - p^r} x_2^{\alpha_2}$ belongs to $(x_1, x_2)^{\max J}$ which is contained in J, and so $\eta = x_1^{p^r} \eta' \in x_1^{p^r} J$.

Corollary 2.4. Let $J = \prod_{k=2}^{m} (x_1, \ldots, x_k)^{a_k}$ where $0 \le a_k \le p^r - 1$ for $k = 2, \ldots, m$, and let q be a positive integer and $\eta \in J$ a monomial with $m(\eta) < q$ and $\deg \eta \ge 1 + \max\{(q-1)(p^r-1), \max(J)\}$. Then there exists $t \le m(\eta)$ such that $x_q^{p^r-1}\eta \in x_t^{p^r}J$.

Proof. Let $\eta' = x_q^{p^r-1}\eta$. We have $\deg \eta' \ge 1 + \max\{m(\eta')(p^r-1), \max(J) + p^r - 1\}$ since $m(\eta') = q$. Thus by 2.3 there exists an integer $t \le m(\eta') = q$ such that $\eta' \in x_t^{p^r}J$, and hence $x_q^{p^r-1}\eta \in x_t^{p^r}J$. Since p^r-1 is the maximal power of x_q which divides η' , we have $t \ne q$ and so $t \le m(\eta)$.

Lemma 2.5. Let $J = \prod_{k=2}^{m} (x_1, \ldots, x_k)^{a_k}$ with $0 \le a_k \le p^{r-e} - 1$ for $k = 2, \ldots, m$ and integers $0 \le e < r$. Let $I = J^{[p^e]}$ and $\eta \in I$ a be monomial such that $\deg \eta \ge 1 + \max\{m(\eta)(p^r - 1), \max(I) + p^r - p^e + m(\eta)(p^e - 1)\}$. Then there exists $t \le m(\eta)$ such that $\eta \in x_t^{p^r}I$.

Proof. We may write $\eta = v^{p^e}w$, $v \in G(J)$ and $w = \sigma_1^{p^e}\sigma_0$, where σ_0 and σ_1 are monomials, and $\sigma_0 \notin (x_1^{p^e}, \dots, x_{m(\eta)}^{p^e})$. Thus $\deg \sigma_0 \leq m(\eta)(p^e-1)$ and the monomial

 $\eta' = v\sigma_1$ belongs to J. Since $\eta = \eta'^{p^e}\sigma_0$ it follows that

$$p^{e} \deg \eta' = \deg \eta - \deg \sigma_{0} \ge \deg \eta - m(\eta)(p^{e} - 1)$$

 $\ge 1 + \max\{m(\eta)(p^{r} - p^{e}), p^{e} \max(J) + p^{r} - p^{e}\}.$

Therefore $\deg \eta' \geq (1/p^e) + \max\{m(\eta)(p^{r-e}-1), \max(J) + p^{r-e}-1\}$. Since $\deg \eta'$ is an integer we get $\deg \eta' \geq 1 + \max\{m(\eta)(p^{r-e}-1), \max(J) + p^{r-e}-1\}$. Note that $m(\eta') \leq m(\eta)$. Therefore by Lemma 2.3 there exists an integer $t, t \leq m(\eta') \leq m(\eta)$ such that $\eta' \in x_t^{p^r-e}J$. Thus $\eta \in x_t^{p^r}I$.

Applying 2.5 recursively we get

Corollary 2.6. With the hypotheses of 2.5 suppose in addition that $\deg \eta \geq cp^r + 1 + \max\{m(\eta)(p^r-1), \max(I) + p^r - p^e + m(\eta)(p^e-1)\}$ for some integer $c \geq 0$. Then there exists a monomial σ of degree c+1 such that $m(\sigma) \leq m(\eta)$ and $\eta \in \sigma^{p^r}I$.

Lemma 2.7. Let $J = \prod_{k=2}^m (x_1, \ldots, x_k)^{a_k}$ with $0 \le a_k \le p^{r-e} - 1$ for $k = 2, \ldots, m$ and integers $0 \le e < r$. Let $I = J^{[p^e]}$, q a positive integer and $\eta \in J$ a monomial with $m(\eta) < q$ and $\deg \eta \ge cp^r + 1 + \max\{(q-1)(p^r-1), \max(I) + (q-1)(p^e-1)\}$ for some integer $c \ge 0$. Then there exists a monomial of degree c + 1 such that $x_q^{p^r-1}\eta \in \sigma^{p^r}I$ and $m(\sigma) \le m(\eta)$.

Proof. Set $\eta' = x_q^{p^r - 1} \eta$. Then

$$\deg \eta' \ge cp^r + 1 + \max\{m(\eta')(p^r - 1), \max(I) + p^r - p^e + m(\eta')(p^e - 1)\}.$$

So by Corollary 2.6 there exists a monomial σ with $m(\sigma) \leq m(\eta')$ and $\deg \sigma = c+1$ such that $\eta' \in \sigma^{p^r}I$. Finally we have $m(\sigma) \leq m(\eta)$ because x_q does not divide σ since it appears only with power $p^r - 1$ in σ .

Lemma 2.8. Let $I_t = \prod_{k=2}^{m_t} (x_1, \ldots, x_k)^{a_{tk}}$ with $0 \le a_{tk} \le p^{e_{t+1}-e_t} - 1$, $1 \le t \le s$, and integers $0 \le e_1 < \cdots < e_s < r = e_{s+1}$. Let $I = \prod_{t=1}^s I_t^{[p^{e_t}]}$, q a positive integer and $\eta \in I$ a monomial with $m(\eta) < q$ and $\deg \eta \ge cp^r + 1 + \max_{1 \le t \le s+1} \{\sum_{i=t}^s p^{e_i} \max(I_i) + (q-1)(p^{e_t} - 1)\}$ for some integer $c \ge 0$. (Here $\sum_{i=t}^s p^{e_i} \max(I_i) = 0$ for t = s+1). Then there exists a monomial σ with $\deg \sigma = c+1$, $m(\sigma) \le m(\eta)$ and $x_q^{p^r-1} \eta \in \sigma^{p^r} I$.

Proof. We apply induction on s. The case s=1 is given in 2.7. Let $d_j=\sum_{i=j}^s p^{e_i} \max(I_i) + (q-1)(p^{e_j}-1), \ 1 \leq j \leq s+1, \ \text{and let} \ t \leq s$ be maximal integer such that $d_t=\max\{d_j\colon 1\leq j\leq s\}$. Then we have $d_j< d_t$ for $t< j\leq s$ and $d_j\leq d_t$ for j< t.

We now distinguish two cases. In case t>1, write $\eta=\eta'\prod_{i=t}^s v_i^{p^{e_i}}$ with $v_i\in G(I_i)$ and $\eta'\in I'=\prod_{i=1}^{t-1}I_i^{[p^{e_i}]}$. We have $\deg(\eta')=\deg(\eta)-\sum_{i=t}^s p^{e_i}\max(I_i)\geq cp^r+1+d_t-\sum_{i=t}^s p^{e_i}\max(I_i)=cp^r+1+(q-1)(p^{e_t}-1)$. Choose the maximal integer $\varepsilon\geq 0$ such that $\deg(\eta')\geq cp^r+1+\varepsilon p^{e_t}+(q-1)(p^{e_t}-1)$. As $d_t=\max\{d_i\colon 1\leq i\leq s\}$, we see that η' satisfies the necessary inequalities and so by induction hypothesis there exists a monomial τ with $\deg(\tau)=cp^{r-e_t}+\varepsilon+1$, $m(\tau)\leq m(\eta')\leq m(\eta)$ and $x_q^{p^{e_t}-1}\eta'=\tau^{p^{e_t}}\eta''$ for some $\eta''\in I'$. Note that by the choice of ε , we have $\deg(\eta')\leq 1$

 $cp^r + 1 + \varepsilon p^{e_t} + q(p^{e_t} - 1)$, and so $p^{e_t} \deg(\tau) + \deg(\eta'') \le cp^r + 1 + \varepsilon p^{e_t} + (q+1)(p^{e_t} - 1)$. Hence $\deg(\eta'') \le 1 - p^{e_t} + (q+1)(p^{e_t} - 1) = q(p^{e_t} - 1)$.

Set $\rho = \tau \prod_{i=t}^{s} v_i^{p^{e_i-e_t}}$; then $\rho \in \tilde{I} = \prod_{i=t}^{s} I_i^{[p^{e_i-e_t}]}$, and $p^{e_t} \deg(\rho) = \deg(x_q^{p^{e_t-1}}\eta) - \deg(\eta'') \ge cp^r + p^{e_t} + \max\{d_t, d_{s+1}\} - q(p^{e_t} - 1) = cp^r + 1 + a$ for $a = p^{e_t}b$ and $b = \max\{\sum_{j=i}^{s} p^{e_j-e_t} \max(I_j) + (q-1)(p^{e_i-e_t}-1) \colon t \le i \le s+1\}$. Therefore $\deg(\rho) \ge cp^{r-e_t} + 1/p^{e_t} + b$. Using that $\deg \rho$ is an integer we get $\deg(\rho) \ge cp^{r-e_t} + 1 + b$. Thus we may apply the induction hypothesis to ρ, \tilde{I} , and hence there exists a monomial σ with $m(\sigma) \le m(\rho) \le m(\eta)$, $\deg(\sigma) = c + 1$ such that $x_q^{p^{r-e_t-1}}\rho \in \sigma^{p^{r-e_t}}\tilde{I}$. Hence $x_q^{p^r-1}\eta = x_q^{p^r-p^{e_t}}\rho^{p^{e_t}}\eta'' \in \sigma^{p^r}I$.

Finally we consider the case t=1, and write $\eta=\varphi\Pi_{i=2}^sv_i^{e_i}$, $v_i\in G(I_i)$ and $\varphi\in I_1^{[p^{e_1}]}$. We have $\deg(\varphi)=\deg(\eta)-\sum_{i=2}^sp^{e_i}\max(I_i)\geq cp^r+1+d_1-\sum_{i=2}^sp^{e_i}\max(I_i)=cp^r+1+p^{e_1}\max(I_1)+(q-1)(p^{e_1}-1)$. But t=1 implies $d_2< d_1$, and so $p^{e_1}\max(I_1)+(q-1)(p^{e_1}-1)>(q-1)(p^{e_2}-1)$. Thus φ satisfies the condition of 2.7. As in the previous case we choose the maximal integer $\varepsilon\geq 0$ such that $\deg(\varphi)\geq cp^r+1+\varepsilon p^{e_2}+(q-1)(p^{e_2}-1)$. Then by 2.7 there exists a monomial φ with $\deg(\varphi)=cp^{r-e_2}+1+\varepsilon$, $m(\gamma)\leq m(\eta)$ and $x_q^{p^{e_2}-1}\varphi=\varphi^{p^{e_2}}\varphi'$ for some $\varphi'\in I_1^{[p^{e_1}]}$, and we see as above that $\deg(\varphi')\leq q(p^{e_2}-1)$.

Set $\psi = \gamma' \Pi_{i=2}^s v_i^{p^{e_i-e_2}}$; then $\psi \in \hat{I} = \Pi_{i=2}^s I_i^{[p^{e_i-e_2}]}$, $m(\psi) \leq m(\eta)$ and $p^{e_2} \deg(\psi) = \deg(x_q^{p^{e_2}-1}\eta) - \deg(\varphi') \geq cp^r + p^{e_2} + \max\{d_j \colon 2 \leq j \leq s+1\} - q(p^{e_2}-1) = cp^r + 1 + \max\{\sum_{i=j}^s p^{e_i} \max(I_i) + (q-1)(p^{e_j}-p^{e_2}) \colon 2 \leq j \leq s+1\}$. Since $\deg \psi$ is an integer we get $\deg(\psi) \geq cp^{r-e_2} + 1 + \max\{\sum_{i=j}^s p^{e_i-e_2} \max(I_i) + (q-1)(p^{e_j-e_2}-1) \colon 2 \leq j \leq s+1\}$. Thus we may apply our induction hypothesis to ψ and \hat{I} and conclude that $x_q^{p^{r-e_2}-1}\psi \in \nu^{p^{r-e_2}}\hat{I}$ for some monomial ν with $\deg(\nu) = c+1$ and $m(\nu) \leq m(\psi) \leq m(\eta)$. This yields the desired conclusion.

We are now in the position to prove Theorem 2.2.

Proof. [Proof of 2.2] Let $\rho = \prod_{t=1}^s u_t^{p^{r_t}} w$, $u_t \in G(I_t)$ and w a monomial such that $\deg(\rho) = d$. Let $j < m(\rho)$. We must show that $x_j \rho/x_{m(\rho)} \in I_{\geq d}$. Apply induction on s, case s = 0 being trivial. If $m(\rho) = m(\eta)$, $\eta = \prod_{t=1}^{s-1} u_t^{p^{r_t}} w$, then we may apply the induction hypothesis because $\deg(\eta) = d - \deg(u_s^{p^{r_s}}) \geq \max\{\delta_t' \colon 1 \leq t \leq s-1\}$, for $\delta_t' = \sum_{i=t}^{s-1} p^{r_i} \max(I_i) + (m_t - 1)(p^{r_t} - 1)$. By induction hypothesis $I' = \prod_{t=1}^{s-1} I_t^{[p^{r_t}]}$ has $I'_{\geq \deg(\eta)}$ stable and so $x_j \eta/x_{m(\eta)} \in I'_{\geq \deg(\eta)}$. Hence $x_j \rho/x_{m(\rho)} = (x_j \eta/x_{m(\eta)})u_s^{p^{r_s}} \in I_{\geq d}$. We may suppose from now on $m(\rho) = m(u_s) > m(\eta)$. Set $q = m(u_s)$, $d_t = \sum_{i=t}^{s-1} p^{r_i} \max(I_i) + (q-1)(p^{r_t} - 1)$. We have $\delta_t' \geq d_t$ if and only if $m_t \geq q$. In particular $\delta_s' \geq d_s$, since $m_s \geq q$. If $m_t < q$, then $\max(I_t) \leq (q-1)(p^{r_{t+1}-r_t} - 1)$ since $a_{tk} \leq p^{r_{t+1}-r_t} - 1$, and so $d_{t+1} - \delta_t' = (q-1)(p^{r_{t+1}} - 1) - (m_t - 1)(p^{r_t} - 1) - p^{r_t} \max(I_t) > (q-1)(p^{r_{t+1}} - p^{r_t}) - p^{r_t} \max(I_t) \geq 0$. Thus $\delta_t' < d_{t+1}$ if $m_t < q$. The same argument shows that $d_t \leq d_{t+1}$ if $m_t < q$.

By backwards induction on j we now show that

$$\max\{d_t \colon j \le t \le s\} \le \max\{\delta'_t \colon j \le t \le s\}. \tag{2}$$

We have already seen that (2) holds for j = s. Suppose the inequality holds for j + 1. If $m_j \geq q$ then $\delta'_j \geq d_j$, and so (2) is implied by the induction hypothesis. If

 $m_j < q$, then $\delta'_j < d_{j+1}$, $d_j \le d_{j+1}$, and hence $\delta'_j < d_{j+1} \le \max\{d_t \colon j+1 \le t \le s\} \le \max\{\delta'_t \colon j+1 \le t \le s\}$. Hence $\max\{\delta'_t \colon j \le t \le s\} = \max\{\delta'_t \colon j+1 \le t \le s\} \ge \max\{d_t \colon j+1 \le t \le s\} = \max\{d_t \colon j \le t \le s\}$, as desired.

Now since by (2) we have $\deg(x_j\eta) = 1 + \deg(\eta) = 1 + \deg(\rho) - p^{r_s} \max(I_s) = 1 + \max\{\delta'_t : 1 \le t \le s\} \ge 1 + \max\{d_t : 1 \le t \le s\}$, we may apply Lemma 2.8 for s-1, $x_j\eta \in I'$ and q. Then there exists $e \le m(\eta)$ such that $x_q^{p^{r_s}-1}(x_j\eta) = x_e^{p^{r_s}}\eta'$ for some $\eta' \in I'$. Thus $x_j\rho/x_{m(\rho)} = (x_eu_s/x_{m(u_s)})^{p^{r_s}}\eta'$ belongs to I, because I_s is stable.

For a monomial u, we set $pa(u) = \max_{k: \mu_k \neq 0} \{D_k\}$, if u is not a multiple of x_1 . Otherwise $u = x_1^{\mu_1} v$ such that $v \notin (x_1)$, and we set $pa(u) = \mu_1 + pa(v)$ (cf. Section 1). By our main theorem we have $reg\langle u \rangle = pa(u)$. More generally we get

Corollary 2.9. Let I be a p-Borel ideal with Borel generators u_1, \ldots, u_m . Then $reg(I) \leq max\{pa(u_1), \ldots, pa(u_m)\},$

and equality holds if I is principal p-Borel.

Proof. For each $i=1,\ldots,m$, the ideal $\operatorname{reg}\langle u_i\rangle_{\geq d}$ is stable for $d\geq \operatorname{pa}(u_i)$. Thus $I_{\geq d}$ is stable for $d\geq \max\{\operatorname{pa}(u_1),\ldots,\operatorname{pa}(u_m)\}$. Therefore the assertion follows from 2.1.

REFERENCES

- [1] A. Aramova and J. Herzog, p-Borel principal ideals, Illinois J. Math. 41, no 1 (1997), 103–121.
- [2] Bayer and Stillman, A criterion for detecting m-regularity, Invent. Math. 87 (1987), 1–11.
- [3] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. of Algebra 129 (1990) 1–25.
- [4] D. Eisenbud, A. Reeves and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, Adv Math. 109 (1994), 168–187.
- [5] V. Ene, G. Pfister and D. Popescu, Betti numbers for p-stable ideals, Preprint Bielefeld, 1998, to appear in Communications in Alg.
- [6] K. Pardue, Nonstandard Borel-fixed ideals, Dissertation, Brandeis University, 1994.

Jürgen Herzog
FB6 Mathematik und Informatik
Universität – GHS – Essen
Postfach 103764, 45117 Essen
Germany
E-mail: juergen.herzog@uni-essen.

E-mail: juergen.herzog@uni-essen.de E-mail:dorin@sto

Dorin Popescu
Institute of Mathematics
University of Bucharest
P.O.Box 1-764, Bucharest 70700
Romania,
E-mail:dorin@stoilow.imar.ro