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ON THE REGULARITY OF p-BOREL IDEALS

JURGEN HERZOG AND DORIN POPESCU

INTRODUCTION

In this paper we prove Pardue’s conjecture on the regularity of principal p-Borel
ideals. As a consequence we obtain an upper bound for the regularity of general
p-Borel ideals.

Let K be field, and I C S a graded ideal in the polynomial ring S = Kl®y o 0 80l
Recall that the generic initial ideal Gin(I) of I with respect to the reverse lexico-
graphical order is Borel-fixed. This means that Gin([) is fixed under the action of
the Borel group of the upper triangular invertible matrices acting linearly on the
polynomial ring. By a theorem of Bayer and Stillman [2], the regularity of I and
Gin([) coincide. This is one of the reasons why one is interested to compute the
regularity of Gin(/). In characteristic zero a Borel-fixed ideal is strongly stable, and
so 1its regularity is simply the highest degree of a minimal generator. In positive
characteristic however, Borel-fixed ideals are p-Borel (see 1.1 for the definition), and
these are monomial ideals with a quite difficult combinatorial structure.

Monomials uy, ... ,uy,, € I of a p-Borel are called Borel generators of I, if I is the
smallest p-Borel ideal containing ui,. .. ,u,;,. In this case we write I = (Uy. ooy Upm).
The ideal I is called principal p-Borel if I has only one Borel generator. Pardue
conjectured a formula for the regularity of a principal p-Borel ideal which only
depends on the exponents of the Borel generator, see 1.4. In a paper by Aramova
and Herzog [1] it was shown that Pardue’s formula gives indeed a lower bound for
the regularity. Some of the results in that paper have been later extended by Ene,
Pfister and Popescu [5] to more general ideals. In the present paper we will show
that Pardue’s formula yields also an upper bound. Our method in proving this
uses a criterion of Eisenbud, Reeves and Totaro [4] for determining the regularity of
p-Borel ideals.

The authors are grateful to the Alexander von Humboldt Foundation for support-
ing their collaboration. /

1. p-BOREL IDEALS

Throughout this paper we fix a field X, and let S = K[,,. .., Zp] be the poly-
nomial in n indeterminates over K.

Let p be a prime number, and & and [/ be non-negative integers with p-adic ex-
pansion k = > k;p' and [ = S lip'. We set k < Lif by < U for all 4.

Definition 1.1. A monomial ideal I C S is p-Borel, if the following condition
holds: for each monomial u € I, u =[], 2!, one has (v;/x;)"u € I for all 3,5 with
1<i<j<nandallv<, ;.



The significance of p-Borel principal ideals is given by

Proposition 1.2 (Pardue). Suppose char K = 0, and let I C S be a monomial
ideal. Then I is Borel-fixed if and only if I is p4Borel.

We denote by G(I) the unique minimal set of monomial generators of a monomial
ideal I. It is easy to see (cf. [1]) that I is p-Borel if the conditions of 1.1 are satisfied
for all v € G(I).

A principal p-Borel ideal can be explicitly described. We use the following stan-
dard notation: If J is a monomial ideal we let J Pl be the ideal generated by all
monomials u?" with u € G(J). The ideal JP! is called the p‘th Frobenius pow-
er of J. Note that we define the p'th Frobenius power of monomial ideals in any

characteristic.

Proposition 1.3 (Pardue). Let w = [[, =", and let p; = Y, pijp’ be the p-adic
expansion of u; fori=1,... ,n. Then

HH TLgs vo 50 'u”)[p]]

=1 j

In particular, (u) = H:l ).

It follows from 1.3 that (z*) = (z{*)(z#/z{"), so that reg(z*) = uy + reg(z#/z!").
Therefore, if we are interested in the regularity of the p-Borel principal ideal (z#)

we may assume that z; does not divide z*.
Denote by |*] the greatest integer function, and for 1 < k£ < n and j > 0 define

(1) ZLNZJ

For each k such that uy # 0, let s, = Uogp x|, and set
Dy = dis,, ()p™ + (k = 1) (p* — 1).
Conjecture 1.4 (Pardue). If z; does not divide z*, then
) o= D }.
reg(z") = max {Dy}

In the following we will express the right hand side of 1.4 in different ways. The
following easy fact can be found in [1].
Proposition 1.5. Let S = {sp: e # 0}, let ¢; = max{k: s = j} for each j € S,
and set E; = Dg,. Then
() By = S0, (50, midpt + (g5~ 1)o7 — 1) for all j € ;
(ii) max{Dk t # 0} = max{E;: j € §};
We shall need still another reformulation of Pardue’s formula for the regularity of
a principal p-Borel ideal. Set s = max{sg: ux # 0}, and for each ¢ with 1 < ¢ < s
let m; = max{k: j; # 0}. Finally set

S

F=Y"O mi)p' + (m—1)(p' —1) forall t=1,....s

i=t k=2



Proposition 1.6. With the notation introduced we have

max Fy; = max Ej.
1<i<s jES
Proof. Tt is clear that m; > ¢; for all j € S, so that maxi<i<s £y > maxjes Ej.

In order to show the opposite inequality we first prove the following claim: let
S={j€S:j>t)and @, ={g;: j € S;}. (Note that S, 0, since s € St). Let
e € &; such that ¢ = max{g; € Q;}. Then we claim that F, > F,.

Indeed, we have

e—=1 n
Fo=Fo==> " mi)p' + (me = 1)(p° = 1) = (my — 1)(p' — 1)
i=t k=2 )
Since we assume that ¢, is maximal in @, it follows that uz; = 0 for k > ¢, and
¢ 2 t. Thus m, = q. > max{k: py; # 0} = my, because again yu, = 0 for k > g,.
Now it follows that

e—1 ge
Fo=Fi= = 305 it + (g~ 1 — 1) — (mq — 1) - 1)
i=t k=2
Finally, since Zf:_t]( T )P = Z;Q(Zf;tl prp' < (g — 1)(p° — pt), we get

Fo—F > (ge—=1)(p' —1) = (my = 1)(p* = 1) = (ge — my)(p* —1) > 0. This concludes
the proof of the claim.

Continuing with the proof of the opposite inequality, we let ¢ < s be the maximal
number for which F; = max;<,<; F;. Let e € &, be chosen such that ¢, is maximal
in ;. Then, according to our claim, we have E, > F}. By the choice of ¢ this implies
that e =, so that in particular, ¢ € ;. Since ¢; is maximal in Q; it now follows
that p; = 0 for i+ > t and k > ¢;. Consequently, m; = ¢;, and so F} = E,. O

Remark 1.7. Using the methods of [1] the following result was proved in [5]: Let

(1;)1<1<s be some stable ideals and I = Hle It[prt] for some integers 0 < r; < -+ < ry.
If I; contains xfrzzg;?_l for all 1 < j < s (we set m(u) = max{j : z;[u} for a
monomial u) and m(l;1) = max{m(u) : u € G(I;+1)}) then reg(I) = pa(I), where
we pa(l) = maxcree {3t b max(ly) + max e [P deg(u)+ (m(u) ~ 1) (7 — 1))}
Moreover if I; has the form I; = []7 ,(z1,... , ;)" with 0 < py < p for all t < s,
the above result gives reg(l) = maxj<i<s F;. Hence the Pardue Conjecture holds
in a special case, which can be also obtained directly from [1]. Trying to extend
the equality reg(/) = pa([) for general products of p'-th Frobenius powers of stable
ideals one must consider first the following example which shows how tight Pardue’s
Conjecture is: Let n = 3, p = 2, ) = (z1,33)%, I, = (z1,22,23) and I = 111'%2}.
Then pa(I) = 4, but reg(I) > 4, because [ is not stable (see 2.1 below).

2. THE PROOF OF PARDUE’S CONJECTURE
In [1] it is shown that if 2# € S is a monomial which is not divisible by z;, then

) P Dy}.
reg(z*) 2 max {Dy}
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In the section we will prove the opposite inequality. Our proof is based on the
following result [4]:

Proposition 2.1 (Eisenbud, Reeves, Totaro). Let I be a p-Borel ideal with max(I) =

d, and let e > d be the smallest integer such that I, is stable. Then reg(I) = e.

2.1 needs some explanations: max(/) = max{degu: u € G(I)}, and I, is the
ideal generated by all monomials v € I with degu > e. Finally, recall that, according
to Eliahou and Kervaire [3], a monomial ideal I is stable if for all monomials (or
equivalently all generators) u of I one has (z;/Tm))u € I for all ¢ < m(u), where
m(u) = max{j: z,|u}.

Recall from Section 1 that (z*) = [], It[pt] where I, = [, (x1,...,3;)*t with
0 < i < p. Thus the desired inequality will follow from 2.1 and

Theorem 2.2. For given integers 0 < r; < --- < 1y, and integers 0 < aqy < pit+i—"
fort=1,...,sandk=1,... ,my let I = I, (z1,... ,2)% and I = Hleft[prt].
Let 6, = >0, p" max([;) + (my — 1)(p™ — 1) and d = max{d;|1 <t < s}. Then Isq
1s stable.

The proof needs some preparations.

Lemma 2.3. Let J =[]} (@1,... ,2x)™ with0 < ar <p" —1, and let n € J be a
monomial such that degn > 1 + max{m(n)(p" — 1), max(J) +p" — 1}. Then there
exists an integer t such that n € 2% J.

Proof. We reduce the problem to the case where m(n) < m. Since J is stable, 7
has the following Eliahou-Kervaire decomposition: 7 = vw for monomials v and
w with v € G(J) and min(w) > m(v). We may assume that w ¢ (z¥') for all

t. Then w = u/a"f,{iﬁl xi’(‘;’;) with 8; < p" — 1. Thus the element ' = vw' has

degree > degn — (m(n) — m)(p" — 1) > m(p" — 1) + 1. Since m(n’) < m and
max(J) < (m — 1)(p" — 1), we may replace n by 7/, and thus may as well suppose
that m(n) < m.

Let n = a:;"(:;;) We apply induction on max(J), and may assume that

am # 0. If max(J) = 1, then J = (x,...,2,). If m( ) = 1, then n =

with a; > max(J) +p" = p” + 1. In that case, n = 2% 1/ with 5/ = 237" ¢ J
QUppoqo now that m(n) > 2. Then, since deg 7} > m(n)(p" — 1) + 1, it follows that
)} € (z¥") for a certain t < m(n), and so = z¥ 1 where n' is a monomial of degree

(771(1}) —1)(p" —1) > 1. Hence i € J, and son € 2% J.

Now suppose that max(J) > 1. We will distinguish several cases. In the first case
suppose that a,m > p". Let again n = vw be the Eliahou-Kervaire decomposition
of n. Then degw = degn — degv > p” > 0. Hence, since m(v) < min(w), it follows
that ;1:’;7: ) divides w, and we are done.

Now we consider the case that amp <p" —1, m(n) > 3 and ) < Do G-
We choose the maximal integer ¢, m(n) < t < m, such that amu) < Zz:t al, and
Write Qm(y) = ZZHI a; + b, with 1 < b, < a;. Now set ¢ = n/x:{&(]’)’) Observe that



for all monomials p € J with m(p) < m one has

m—1

P/ iy € H (1, k)™ (T, .., @)L (1)

=2

>

Applying (1) successively we see that ¢ € J” where

t—1
J! = H(-Tl, R ,_’])k)ak (4731, L 7xt)at—bt.

k=2
We have
deg ¢ = degn—aumm) > degn—(p"—1) > 1+(m(n)—1)(p" = 1) > 1+m(p)(p" —1),

and deg ¢ = degn — am(y) > max(J) 4+ p" — () = max(J") + p". Hence we may
apply our induction hypothesis, and conclude that there exists an integer ¢ < m(y)
such that ¢ € x” J". It follows that n € a:p o

Next we Cons1der the case appy < p"—1, m(n) > 3and iy > Yo m(n) %+ Using

again (1) we see that 7 = :anl(n) "%y with ' € J where J = Hk A A L

Note that for any monomial p € J with m(p) > m it follows that p/'zm(,, € J.
Applying this successively to ' we see that ¢ = 7)/xm(7;") belongs to J. As in the
second case it follows that degy > 14 m(p)(p” — 1). Since on the other hand
max(.J) < (m(n) = 2)(p" = 1), it also follows that dege > 1+ (m(n) — 1)(p" —
1) > maxJ +p. Applying the induction hypothesis to ¢ and J yields the desired

conclusion for 7.

It remains to consider the case aup) < p" — 1 and m(n) < 2. If m(n) = 1',
then a; > p", a contradiction. Therefore n = 225> with @y # 0 and oy + ag =
max{2p” —1,max J +p"}. It follows that oy > p”. Then the element 77 = gt P gt

belongs to (71 2)™*/ which is contained in J, and so 5 = 22 7/ € 22 . O

Corollary 2.4. Let J = [[;",(x1,...,2%)% where 0 < ap < p" — 1 for k =
2,...,m, and let g be a positive integer and n € J a monomial with m(n) < q
and degn > 1 + maz{(¢ — 1)(p" — 1),max(J)}. Then there ezists t < m(n) such

that 27" ~n € 2V J.

Proof. Let o = 27" ~'n. We have degn’ > 1+ max{m(n')(p" — 1), max(J) +p" — 1}
since m(z;) = ¢. Thus by 2.3 there exists an integer ¢ < m(n’) = q such that
n' € 2} J, and hence LP “neaxd "J. Since p" — 1 is the maximal power of x, which

divides 7/, we have t 75 g and so t < m(n). O

Lemma 2.5. Let J =[] o(z1, ..., 2)% with 0 < a; < p™~¢ —1 fork=2,....m
and integers 0 < e < r. Let I = J¥1 and n € I a be monomial such that degn >
1+ max{m( 77)(p —1),max(l) +p" —p°+m(n)(p°—1)}. Then there ezists t < m(n)
such that € 27" I.

Proof. We may write n = v*w, v € G(J) and w = ol 0y, where oy and o, are
monomials, and og & (2F ,... 2" n)- Thus degag < m(n)(p°—1) and the monomial

m(



n' = voy belongs to J. Since n = 1" gy it follows that

p‘degn’ = degn—degoy > degn — m(n)(p° — 1)
> 1+ max{m(n)(p" - p°), p° max(J) + p" — p°}.
Therefore degn’ > (1/p®) + max{m(n)(p" ¢ — 1), max(J) +p"~¢ — 1}. Since deg7’ is
an integer we get degn’ > 1+ max{m(n)(p"~¢ — 1), max(J) + p"~¢ — 1}. Note that
m(n') < m(n). Therefore by Lemma 2.3 there exists an integer ¢, t < m(n') < m(n)
such that ' € 27" "J. Thus n € 7 1. O

Applying 2.5 recursively we get

Corollary 2.6. With the hypotheses of 2.5 suppose in addition that degn > cp” +
1+max{m(n)(p" —1), max(I)+p" —p®+m(n)(p¢ —1)} for some integer ¢ > 0. Then
there exists a monomial o of degree ¢ + 1 such that m(c) < m(n) and n € 0¥ I.

Lemma 2.7. Let J =[]} o(z1,... ,26)* with0<apr <p ¢ —1fork=2,...,m
and integers 0 < e < r. Let I = JP1 ¢ a positive wnteger and n € J o monomial
with m(n) < q and degn > cp” + 1+ max{(¢—1)(p" — 1), max() + (¢ — 1)(p* — 1)}
for some integer ¢ > 0. Then there exists a monomial of degree ¢ + 1 such that
a?" ' e o' I and m(o) < m(n).

Proof. Set 7' = z2"~'n. Then
degn’ > cp” + 1+ max{m(y)(p" — 1), max(I) + p" — p° + m(n') (p° — 1)}.

So by Corollary 2.6 there exists a monomial o with m(o) < m(n’) and dego = c+1
such that 7/ € o I. Finally we have m(c) < m(n) because z, does not divide o

since it appears only with power p” — 1 in o. t
Lemma 2.8. Let I, = [[2o(z1,... ,2p)% with 0 < ay < po+i= — 1 1 <
t < s, and integers 0 < e; < --- < €, < T = e541. Let I =[] It[p%], q a

positive integer and n € I a monomial with m(n) < q and degn > cp” + 1 +
maxi<i<si1{y s, P9 max(l;) + (¢ — 1)(p* — 1)} for some integer ¢ > 0. (Here
Sl pomax(l;) =0 fort = s+1). Then there ezists a monomial o with dego =
c+1, m(o) <m(n) and 28" ~'n e o' I.

Proof. We apply induction on s. The case s = 1 is given in 2.7. Let d; =
Do P max(l) + (¢ = 1)(p% = 1), 1 < j < s+ 17and let ¢ < s be maximal
integer such that d; = max{dj: 1 < j < s}. Then we have d; <dgfort <j<sand
d; < d; for j <t.

We now distinguish two cases. In case ¢ > 1, write 5 = 'II{_,u”" with v; € G(I;)
and n' € I' = Hf;}[}pei]. We have deg(n’) = deg(n) — >°7_, p® max([;) > cp" + 1+
dy =0, p“max(l;) = ¢p" + 1+ (¢—1)(p* — 1). Choose the maximal integer ¢ > 0
such that deg(n’) > ep” + 1 +ep® + (¢ — 1)(p® — 1). As dy = max{d;: 1 <1 < s},
we see that 7' satisfies the necessary inequalities and so by induction hypothesis
there exists a monomial 7 with deg(7) = e¢p" ™% 4+ ¢ + 1, m(7) < m(n') < m(n) and
b=ty = " for some " € I'. Note that by the choice of ¢, we have deg(n') <
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cp” +1+ept+q(p—1), and so p°t deg(7) +deg(n”) < cp"+1+ep®+(g+1)(p* —1).
Hence deg(n”) <1 —p+ (¢ +1)(p* —1) = ¢q(p* — 1).

Set p = 7II_,v"""; then p € T = IT_, I ™™} and p® deg(p) = deg(a?™~1n) -
deg(n”) > ep” + p® + max{d;,ds11} — q(p®* — 1) = ¢p" + 1+ a for a = p®b and
b =max{d ], p " max(l;)+(¢—1)(p*~*~1): t <4 < s+1}. Therefore deg(p) >
cp’ ¢ +1/p° +b. Using that deg p is an integer we get deg(p) > cp"* +1+b. Thus
we may apply the induction hypothesis to p,f , and hence there exists a monomial
o with m(c) < m(p) < m(n), deg(c) = ¢+ 1 such that 22" “~1p € o? " I. Hence
xgr_ln = :cgr_pqp”etn” € o I.

Finally we consider the case ¢t = 1, and write n = wazzvfei, v; € G(I;) and ¢ €
17! We have deg(p) = deg(n)— 325, p% max(l;) > cp"+1+dy =35, p% max(l;) =
cp”+1+p max(I)+(¢—1)(p® —1). But ¢t = 1 implies dy < d;, and so p®* max([;)+
(¢g—1)(p* —1) > (g —1)(p* — 1). Thus ¢ satisfies the condition of 2.7. As
in the previous case we choose the maximal integer ¢ > 0 such that deg(y) >
cp” + 14 ep®+ (¢ —1)(p — 1). Then by 2.7 there exists a monomial v with
deg(y) = ep™® +1+¢, m(y) < m(n) and 227~ = ¥7?¢/ for some ¢' € 17 and
we see as above that deg(y’) < ¢(p® —1).

Set v = YTl then v € [ =TI, 1P ™), m(y) < m(n) and p** deg(y) =
deg(x2”~1n) — deg(y') > cp” + p? + max{d;: 2 < j < s+ 1} —q(p= - 1) =
cp’ + 1+ max{) _;p®max(f;) + (¢ — 1)(p¥ — p*): 2 < j < s+ 1}. Since degy) is
an integer we get deg(v)) > ¢p™ ™ + 1+ max{)_;_. p*~*2 max([;) + (¢ — 1)(p% 2 ~
1): 2 < j < s+ 1}. Thus we may apply our induction hypothesis to ¢ and I and
conclude that 22" "1 € v?"*] for some monomial v with deg(v) = ¢+ 1 and
m(v) < m(v¥) < m(n). This yields the desired conclusion. O

We are now in the position to prove Theorem 2.2.

Proof. [Proof of 2.2] Let p = TI5_,u}" w, u; € G(I,) and w a monomial such that
deg(p) = d. Let j < m(p). We must show that z;p/xpn(,) € I>q4. Apply induction on
s, case § = 0 being trivial. If m(p) = m(n), n = Hf;lluf” w, then we may apply the
induction hypothesis because deg(n) = d — deg(u?"*) > max{d;: 1 <t < s—1}, for
&) = 507} p max(L;) + (my—1)(p" —1). By induction hypothesis I = II;Z] It[p”] has
I, gog(m Stable and s0 20/ Tm) € IS4,y Hence 2,0/ Ty = (27/Tmn)ul " € Isa.

We may suppose from now on m(p) = m(us) > m(n). Set ¢ = m(us), di =
St primax(L) + (¢ — 1)(p"t — 1). We have & > d, if and only if m; > ¢. In
particular 0, > dj, since my; > ¢. If my < g, then max([;) < (g—1)(p™+ "™ —1) since
ag, < pitHt7—1, and so dpp—6; = (¢—1)(p"+ —1)—(my—1)(p" —1) —p" max(Iy) >
(g—1)(p"t+* —p") — p"tmax([;) > 0. Thus 6; < dy;; if m; < ¢. The same argument
shows that d; < dy,; if my < q.

By backwards induction on j we now show that

max{d;: j <t < s} <max{d:j <t <s} (2)
We have already seen that (2) holds for j = s. Suppose the inequality holds for
j+1. If m; > q then &} > d;, and so (2) is implied by the induction hypothesis. If

~
{



m; < ¢, then 0% < dji;, dj < dj;1, and hence 0 < djp <max{ds: j+1<¢<s}<
max{d,: j +1 < t < s}. Hence max{¢}: j < } <sp=max{d:j+1<t<s}>
max{d;: j+1 <t < s} =max{d;: j <t < s}, as desired.

Now since by (2) we have deg(z;n) = 1 + deg(n) = 1 + deg(p) — p’™* max(I,)
1+ max{d;: 1 <t<s}>1+max{d;: 1 <t < s}, we may apply Lemma 2.8 for
s — 1, z;n € I' and ¢q. Then there exists e < m(n) such that N aym) = 2y
for some n' € I'. Thus z;p/Tp,) = (Tes/Tm(u,))P 1" belongs to I, because I is
stable. O

For a monomial u, we set pa(u) = max. 4, 20{Dx}, if u is not a multiple of z;.
Otherwise u = z{"v such that v € (z;), and we set pa(u) = u; + pa(v) (cf. Section
1). By our main theorem we have reg(u) = pa(u). More generally we get

Corollary 2.9. Let I be a p-Borel ideal with Borel generators ui, ... ,Un,. Then

reg(I) < max{pa(u1),...,pa(unm)},

and equality holds if I is principal p-Borel.

Proof. For each ¢ = 1,...,m, the ideal reg(u;)>4 is stable for d > pa(u;). Thus
I q is stable for d > max{pa(u;),...,pa(un,)}. Therefore the assertion follows from
2.1. ]
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