0y
/
<

\\\\STI uv;

IMAR

INSTITUTUL DE MATEMATICA
AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

2 B

ISSN 0250 3638

ROBUST CONTROLLERS WITH RESPECT
TO THE NORMALIZED COPRIME
FACTORIZATION FOR TWO-TIME-SCALE SYSTEMS
by

V. DRAGAN and A. STOICA

Preprint nr. 15/1999

BUCURESTI



ROBUST CONTROLLERS WITH RESPECT
TO THE NORMALIZED COPRIME
FACTORIZATION FOR TWO-TIME-SCALE SYSTEMS

by

V.DRAGAN" and A. STOICA™

October, 1999

“Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, RO-70700,
Bucharest, Romania e—mail: vdragan @stoilow.imar.ro

" University "Politehnica of Bucharest, Faculty of Aerospace Engineering, Str.
Splaiul Independentei, no. 313, R0O-77206, Bucharest, Romania
e—mail: stoica@aeronet.propulsion.pub.ro



ROBUST CONTROLLERS WITH RESPECT
TO THE NORMALIZED COPRIME
FACTORIZATION FOR TWO-TIME-SCALE
SYSTEMS

V. Dragan
Institute of Mathematics of the Romanian Academy,
P.O. Box 1-764, Ro-70700, Bucharest, Romania
vdragan@stoilow.imar.ro

A. Stoica
University ”Politehnica” of Bucharest,
Faculty of Aerospace Engineering,
Str. Splaiul Independentei, no. 313,
Ro-77206, Bucharest, Romania

stoica@aeronet.propulsion.pub.ro

Abstract

The aim of the present paper is to provide a state-space solution to the
robust stabilisation problem with respect to the NLCOE for two-time-scale
systems. The construction of the robust controller uses the solutions of the
control and [iltering algebraic Riccati equations corresponding to the slow
and to the fast dynamics of the nominal plant, respectively. These solutions
do not depend upon the singular perturbation and therefore all computa-
tions are well-conditioned. It is also investigated the particular case when
an e-independent robust controller can be determined. Numerical examples
illustrate the theoretical developments.



1 Introduction

Singularly perturbed systems have been intensively investigated over the last three
decades. This interest is motivated by the wide arca of applications in which such
systems appear (see e.g. [12], [8]). More recently a special attention has been paid
to the robust stabilization problem of two-time-scale systems for which a key role
is played by the H* theory (see e.g. |7], [9], [18] and the references therein). In the
case of singularly perturbed systems the H* control problem reveals specific aspects
determined by the descomposition of the problem into slow and fast components.
Different methods have been proposed to investigate this problem including the
state-space solutions derived in [13], [15] and [16], the differential game-theoretic
approach [10], [11] and frequency domain methods [6].

On the other hand the robust stabilization problem with respect to normalized
left coprime factorization (NLCF) (see e.g. [9], [17]) has been frequently considered
in the recent control literature. This is a very general type of unstructured un-
certainty used in the robustness specifications ([19]) as well as in the loop-shaping
procedures ([9]).

Although the robust stabilization problem with respect to the NLCF of the two-
time-scale systems can be integrated in the general framework of H* theory, there
are some specific aspects which individualize this problem. The first is the fact that
the computations become ill-conditioned for small values of the singular perturbation
e > 0. In order to avoid this feature the computations must be performed using
the slow and the fast components of the nominal system without using its whole
dynamics. The second specific aspect is the fact that the robustness radius with
respect to the NLCF has an explicit formula in terms of the solutions of the control
and filtering algebraic Riccati equations associated with the nominal plant.

The aim of the present paper is to provide a state-space solution to the robust
stabilization problem with respect to the NLCF for two-time-scale systems. The
construction of the robust controller uses the solutions of the control and filter-
ing algebraic Riccati equations corresponding to the slow and to the fast dynamics
of the nominal plant, respectively. These solutions do not depend upon the sin-
gular perturbation and therefore all computations are well-conditioned. It is also
investigated the particular case when an e-independent robust controller can be
determined. Numerical examples illustrate the theoretical developments.



2 Problem statement and preliminaries

2.1 Problem statement

Consider the singularly perturbed system G(g) with the state space equations:

z = Ale)z+ B(e)u (1)
g = U

where

SRR % O _ An A | _ | B L
zp and xy are the state components corresponding to the slow ’ ~a.nd fast dynam-
ics, respectively and ¢ > 0 is a small parameter. Let M(e), N (¢) be the nor-
malized left coprime factors of G (e), namely M (e), N (€) are stable, Ge) =
M-'(e) N (e) and M(e)M* () + N () N=(e) = I, M*(¢), N* () denoting the
adjoint, of M (¢), N (¢) respectively. Then the robust stabilization problem with
respect to NLCF consists in finding a controller K (g) stabilizing all perturbed sys-
— i, Po

tems Ga (g) = (Mf (e) + Aﬁ) (N (e) + Aﬁ) with Az; and Ay stable modelling
uncertainty such that “A 5r AF Hoo < r where r > 0 is an imposed robustness radius
(see e.g. 9], [17]).

2.2 Preliminaries

According to the results in [9] for the systems without singular perturbations, if a
solution of the robust stabilization problem with respect to NLCF exists then the
robust controller can be obtained in terms of the stabilizing solutions of the control
and filtering algebraic Riccati equations:

ATX 4+ XA - XBB"X +C"C =0 (2)

AY +Y AT —vC"CY 4+ BBT =0, (3)
respectively. In [9] it is also proved that the maximal robustness radius with respect
1 .
to NLCF is given by rpee = i, where v, = (14 p(XY))2, p(.) denoting the
spectral radius.
Throughout the paper the following assumption is made:
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Assumption A;: Ay, in the state space representation (1) is invertible.
Under the above assumption we can scparate according to the theory of singular
perturbations ([12]) the slow and the fast components of G (g), namely:

Ty = Auxy+ Bgug (4)
Ys = Csms + D sls
with:
A, = Ay — A12A§21A21
B, B; — ArzAz_lez
Cs e Cl = C'YzA;Ql A‘.Zl
Ds - iC2 ;ng‘Z 5
and
d
;g = Anvs+ Byuy (5)
Yr = 0237]’,

respectively, where 7 = £,

Then the following additional assumption is made:

Assumption Ay: the pairs (As, Bs), (A, Br)are stabilizable and the pairs
(Cs, As), (Cr, Ay) are detectable.

Let us denote by X, and Y the stabilizing solutions of the control and filtering
Riccati equations associated to the slow dynamics (4), namely:

ATX, + X, A; — (X,B, +CID,) S (Bl X, + DI'C,) + CTC, =0 (6)

AY, + YAl - (Y,CT + B,DI) R (C.Y, + D,BI') + B,BT =0, (7)

respectively, where R := I + D,DT S :=1T+ DTD,, and by X 7, Yy the stabilizing
solutions of the Ricecati equations corresponding to the fast dynamics:

ALX ;4 XpAgy — X;BoBY X4 ClCy =0 (8)
ApY; + Y AL - Y,CI Y, + ByB; =0, 9)

Recall that under assumption (Aj) these solutions exist and they are positive
semidefinite.
Then the following result proved in [12] holds:
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Proposition 1 o) Under assumptions (A1) and (As) there exists € > 0 such that
Jor all e € (0,¢€) the Riccati equation (2) associated with the system (1) admils the
stabilizing solution X (€) > 0 with the following asymptotic structure:
X | Ku©) Xn@ ] _ [ XteXnl)  eXntefole) ] 10)
ST Xia(e) X (e) eXh+ XL (e) eX;+e° X (e)

where

X]g = — (A;Xf -+ XSA.lg - XsBlBng —+ C;FCQ) (AQQ - Bng‘Xf) -

and l}?” ()] Lec< oo foralle € (0,8), 1,7 = 1,2. Moreover if A, i = 1,...,my

i
and Ay, j = 1,...,ny are the eigenvalues of A, — B,S™! (BSXS -4 DSTC'S) and Agpy —
By By X respectively, then for all e € (0,€) the matriz Ale) — B (e) BT (¢) X (¢) has
ny eigenvalues Ay, + O (€),4 = 1, ..., n1and ny eigenvalues 1A; +0 (), j=1,..,n9
where O (g) is a function such that lim._y, O (g) = 0;

b) There exists € > 0 such that for all e € (0,&) the filtering Riccati equation
(8) associated with the system (1) has the stabilizing solution Y (£) > 0 with the
asymptotic structure:

| Yiu(e) Yi(e) Y, +eVii(e) Vip+eVi(e)
T [’”z () Yo le) } B [%’Jrs?{é’ () (¥ +eVn(e))

} (11)

where
Yiz == — (AnY) + VoAl - Y.CTCY; + BiBY) (A%, — CFCoy) ™

If gyt =1,,m and py, j = 1,...,n9 are the eigenvalues of the matrices As —

(B;DI +Y,CI') R™C, and A;—Y;C} Cy respectively, then for alle € (0,&)the matriz A(e)—
Y (e) C7 (e) C (e) has nyeigenvalues p, +0 (e),i = 1,...,n1and ny eigenvalues é,ufj%—

0fe); = 1,00, 030

A direct consequence of the above proposition is the following corollary:

Corollary 1 If . (€) denotes the mazimal stability radius of G () with respect
to NLCF then

lm 7o (6) = min{(l +p (XSYS))_% L(1+p (Xfo))_%} .0 (12)

e—0,
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A similar result to Proposition 1 has been proved in [3] for game-theoretic Riceati
cquations; a modified version of this result, useful in the next section is the following
proposition:

Proposition 2 el

B Ay Ap | U Bu |, | Ba |
e = |t e me=[ 0 |ime =2 ],
G = {Cl Gg}
with Ay invertible and consider the slow dynamics:
Ay = Ay — ApAy Ay
By, = By ’4412/1;21321‘
CS =5 Cl —02A521A21
Diy = —CyA3 By, i=1,2.

Assume thal the game-theoretic Riccali equations associated to the slow component
above and to the fast dynamics, namely:

Al Zy+ Z,As — (Z,B,+ CTD,) 871 (BT Z, + DTC,) + CTC, = 0
and ' -
A% Zs + ZpAp + Zp BBy — BBy Z; + C1Cy =0
with

~ DT D,,— I DI D,
By:=| By, Bos|,Dyi=[ Dy D 9 = | Ly
[ s 25 | 3 s { 1s 2s ] 3 Dg;D]s D%;DQS
have the stabilizing solutions Zy > 0 and Zy > 0, respectively. Then there exists
€ > 0 such that for all e € (0,&) the game-theoretic Riccali equalion

AN Z+ZA(e)+ Z (Bi(e) BT (€) = B (e) BY (€)) 2+ CTC =0
has the stabilizing solution Z () > 0 with the following asymptotic structure:

[ Zi+eZyi(e) eZya + 52?12 ()

Z{e)= o 5
(¢) eZiy + €221y () eZ;+ €2 Zy (€)

(13)



where
Ly = = ((AZI + (BmBﬂ — BHBZII) ZS)I + ZSATQ + C;"Cz)
X (Agz + (BB, — BnBp) Zf)_1

and

Zii(e)| <e < oo forall £ € (0,2)

Moreover if Ag;, @ = 1,...,ny and Ay, j = 1,...,n9 are the eigenvalues of A; +
B,S-! (BsZy + DICy) and Apy+ (B BE, — ByyBL,) Z; respectively, then for alle €
(0,&) the matriz A(e)— (B () BY (¢) — Ba (e) B (¢)) Z (¢) has ny eigenvalues A+
O (e),= 1,...,n1 and n, eigenvalues 1Xs, + O (), j=1,..,n.0

The following result is proved in [14]:

Proposition 3 Consider the two-time-scale system::

.’13'1 = A]] (8) z1 -+ Alg (8) o +Bl (S) [
ety = Api(e)z+ An(e)za+ By (e)u
y = Ci(e)z1+Cole)as+ D(e)u
where A;; (), Bi () ,Ci (€}, D (g) are C' functions with respect to e. Assume that
Ay (0) s inwvertible and the malvices Agy (0) and Ay (0) — Az (0) Ay (0) Ay (0) are
stable. Then there exists an &€ > 0 such that for alle € (0,&) we have

a) The above system is stable;
b) If G (€) is the transfer matriz of the system and G° (¢) is the transfer malrix

of

the system

3.31 = AH (O) T —|—‘,412 (G) 9 +Bl (O)U
ety = A (0) z1 + A (0) zo + Do (0) U
Yy = Cl (0) T+ CQ (0) z9 -+ D (0) U

then there exists o > 0 such that
|G(e) -G (e)||, <ce

Jor all e € (0,8).0



Another useful result for the next developments is ([10]):

Proposition 4 Let T (g) be a two—time-scale systern with both slow and fasi com-
ponents Ty and Ty, respectively, assumed stable. Then:

lim (T (e) | = max {|Tullo » [ T7 [l } -0

e—0y

3 Robust controller with respect to the NLCF

The main result of this section is given by the following theorem:

Theorem 1 Under the assumplions (A1) and (As) for any v > v, where

Yo = [1+ max {p (X,Y), p (X ¥))))2 (14)
there exists an & > 0 such that for all e € (0,&) the two-time-scale controller:
K() : =(Ax(e),Br(e),Cy) (15)
- ([ A L] res an)
with:
Avi = Au-Y.CTC, - B (Bst 4 Bg“Zf;)
Ay = A —Y,C{Cy~ BB} Z;
Arat = Ay —Y;CyCy— By (B] Z,+ BI Z1)
Aoy = Ay~ Y;C5Cy — ByBY Z;
By = Y,Cf
By = Y;C5
Cpi = — (B;]’Zs + BgZ;I;)
Cwe = —-BjZ;
where
Z, == ((1-)T+XY,) 7" X,
Ziy = (=) (1) T+ X))
( Xip— (Xuyf + Xsile) (1—-)1 +Xfo)_-1 Xf>
Z; o == (- T+ X,Y5) 7 Xy,
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o 1 7
stabilizes all G (€) = (]W (e) + Aﬁ) (N () +A /\7) with A¢; and A5 stable mod-
elling uncertainty such that HAM A &”m <L

Proof It is a know fact (sce e.g. [9]) that the robust stabilization for a nominal
system G == (A, B, C) with respect to the NLCF can be reduced to an H*® control
problem corresponding to the following generalized system

¢ = Az — Huy+ Bu, (16)
C I 0
e R HE
Yo = C.'L—FZI]
where
H = =¥CT (17)

with Y denoting the stabilizing positive definite solution of the filtering algebraic
Riccati equation (3). Moreover, according to [1], a controller K is a solution to the
H® control problem for (16) if and only if it is also an H* controller for a certain
outer system (Theorem 3 in [1]) associated with the generalized system; in our case
this outer system has the following state-space equations:

i = (‘4 - 7“%HF1> z—v (v~ 1)7% Huy + Bu, (18)
y = —7 g
Yo = (C -+ 7~%FI) -+ (72 - 1)_ 23]

B3

with
Fio:=yi(y"-1)7 (C-H"Z) (19)
Fy : =—~v2B"Z7
Z: =((1-AI+Xx7)' X

where X and Y are the stabilizing positive semidefinite solutions of (2) and (3)
respectively.
When coupling the controller K = (Ay, By, Ck) to (18) one obtains the resulting

systenn:
T = (A— Af'%HF1)37+BC];J}k *—’}’("/2 - 1)_% HUl (20)
sk
Ty == B, (C -+ ’7_%}—11) Tk Akl’k s 7Y (72 w5 1) 2 Bk'u«]

.
1y = —y 2Bhr4 Gy,

g



where i denotes the state of the controller. We shall show in the following that for
all e € (0,¢) and for A, By, Cy given by (15) the system (20) is stable and its H*®
norm is less than .

In order to prove that (20) is stable let us consider the nonsingular transforma-

]

and denote by e (f) := z (t) — xx (¢). Then (20) can be written in the equivalent
form:

tion:

§ e (A —y HF, + BCk) - BCie+7 (72 —1)7? Hu, (21)
b e (A T3 (H 4+ By) Fy — ByC + BCy, — Ak) z— (BC, — Ax)e
—y (7% =1) 7% (H + By uy
Yy = (-’Y‘%Fz + Ck) z — Cye
According to Proposition 1, there exists £ > 0 such that for all € € (0,¢) the

stabilizing solutions X (¢) and Y (¢) of (2) and (3) have the expressions (10) and
(11), respectively. Then one obtains the following structure of H defined by (17):

#O=| 1m0 |- waog | 2

Similarly, direct algebraic computations give the following expressions for Fj ()
and F} (g):
Fi(e) = v (¥ =1)7 [C(I+YaZ) + Cy (Y3 2o + Yy 235) + O (e)
Co U +Y;Z;) + 0 (e)] (23)
Fy(e) = v 3 [ BIZ,+BIZL+0() BIZ+0()].
Let us denote

- [ Lu+0() Li+0()
L (€) .—H(S)F1(8)*[%L21+()(5) %ng—{—()(s) )

Then replace (15) in (21) together with (22)-(24) obtaining thus the following
two-time-scale structure for (21):

z1 = Anle)zn +Anle) n+Bi(e)wu

1 1 1 §
22 = E.Agl (5) z1 + ;Agz (8) 2y + gBQ (8) Uy (20)
1 = Cizi +Co(e) 2

(24)
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where 2; includes the slow components of 2 and e, 2z, incorporates the fast compo-
nents of z and e, and

An(e) = | Anmrihu = Bi(B{ Zo+ B Z%) + O(e) B (B{Z, + B] Z})
i O () An = Y.CTC
' [ Ay —~iLyp—BBIZ;+0() BBIZ |
A () = 1277 12 1 L g & f X
12 (€) I O (g) A — Y,CTC, (26)
Ao (o) — r Aoy — ’Y”%chl — By (B;I’Zs =8 BQ,Z'IJZ) +O(e) By (BTZS + B;Zﬂ)
L O (e) By ~— ’;C‘;Cl
Ay (g) = P Az — 7~%L22 N Bng’Zf +0 (5) BZB‘IZFZJ‘
o L O (6) A22 - YfC,zTCQ

B

By(e) = —v (72—1)_%[%%;(;)0(8) J

¢ = (BIZ+BIZL) [+ 1]
Cole) = ByZy [ (v'+1)I+0() 1]

The fast dynamics of (26) has the state matrix Ag (0) which is trlangular and
its eigenvalues are:

A (A(0)) = A (A =7 # Ly — ByBY Z7) UA (A — Y4CL ),

where A (-) denotes the spectrum of (-). Since v > 7,, Z; given by (15) is the
stabilizing solution of the game-theoretic Riccati equation ([9])

o “ o -1
ALZy+ Zi Ay — ZiBa Bl Z+ CJCo — (1= %) (I + Z;Y;) CIC, (I + Yy Z) =
which fact implies that the matrix

By —1 o P oy —1 i .
Ay —(1-3)7Y,C0C, - (BZBZ’ (1 — ) Ve CQYf) 7
is stable. Direct computations using (22), (23), (25) reveal that the matrix above is
just Agy — v 2Lgy — ByBYZ r and hence this matrix is stable. On the other hand,
according to the assumptions of the theorem, Y} is the stabilizing solution of (10)

and hence Ayy — Y;CF Cy is stable. Thus we conclude that Ay, (0) is stable.

11



Consider now the slow dynamics of (25) which state matrix is
As = A1 (0) — A2 (0) A5 Ay (0) . (27)

Using (26) one obtains that A, has the following asymptotic structure:

- A1 *
A= [ 0 Asz :’

where x denotes an irrelevant entry and
At = Au—772Ly - By (Bf 2, + B} Z}) (28)
- (Arz e ’}’_%Lm == 313521') (Azz = ’Y"%ng - BlBng)—1
X (/421 ~ 5Ly — By (B Z, + BzIfoz))
A = An = Y,CTC = (A +Y,CTGh) (An — YCTCh) ™ (A - Y;CFCy)

It is easy to check that A,y coincides with the slow dynamics of the two-time-
scale system having the state matrix:

M(e) = A(e) =y 2L(e) +7 2 B(e) Pz () - (29)

On the other hand, for e close to zero, the solutions of the Riccati equations (2)
and (3) have the asymptotic structure (10) and (11) respectively. Moreover since
Z (&) given by (13) is the stabilizing solution to the game-theoretic Riccati equation:

AT (e)Z (e)+Z () A(e) - Z(e)B(e) BT (e) Z (e) + CTC
~(1=-A I+ Z()Y () CTCI+Y () Z(e)) =0,

it follows that A(e) — (1 -¥?) 'Y (&) CT"C I +Y () Z(e)) — B(e) B" () Z (¢) is
stable. Using (19) one can check that this matrix is just M (¢) defined by (29)
which fact shows that M (e) is stable for all £ € (0,¢). Since X,,Y;, X;, Y} are
the stabilizing solutions of the Riccati equations (6), (7), (8) and (9) respectively,
it results that the limit of the slow modes of M (g) have negative real parts and
therefore Ay; is stable (for more details see [3]).

In order to prove that A is stable we notice that this matrix is just the state
matrix of slow dynamics of the system with the state matrix A (¢) + H (¢) C, which
fact results by direct computations. The asymptotic structure of the eigenvalues of

12



Afe) + H () C given in Proposition 1 shows that Ago 1s stable. Thus we proved
that the slow dynamics of (25) is stable.

Since the two-time-scale system (25) has both slow and fast components stable
we conclude, according to the Klimusev-Krasovski theorem that (25) is stable for
all e € (0,¢).

We prove now that K (¢) given by (15) is a v-attenuating controller for the gener-
alized system (18). To this end consider the modified controller K (e) = (Ax, Br, Cr)
where

A, = A+ H(e)C— BB"Z (¢) (30)
Ck = w-[)ﬂr‘Z (6)

with H (e) and Z (¢) defined by (17) and (19) respectively where X (e)and Y (e) have
the asymptotic structures given by (10) and (11), respectively. When coupling the
controller (30) to the system (18) one obtains the following two-time-scale resulting
system:

Er1 = Ar1 (€)@t + Ans (€) 2o + By (€) wy (31)
. 1 1 1
Tpy = EA’!‘QJ (e)zrm + EATQQ (e) Tra + gBr? (€) us

Yy = Crl (6) T Gr‘z (5) ZTry+ DT (5) g «

Direct computations show that the system obtained by coupling K (e) to (18)
has the state-space equations:

Zr1 = A1 (0)z1 4 Arga (0) 20 + B (0) g (32)
. 1 1 1
Ty = gAer (0)zm + gAnz (0) zpp + gBr‘z (0) uy

y1 = Cr(0)zp1 4+ Cry (0) 2pg + D, (0) ;..

Then according to Proposition 3 it results that for & small enough the H* norm of
(32) is less than +.

4 A particular case: the s-independent robust con-
troller

In the present section we consider an important particular case namely the situation
when the fast dynamics of G (g) is stable. We shall first investigate the robustness
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properties with respect to the NLCF in this case and then we shall describe a
procedure to determine an e-independent optimal robust controller.

4.1 The robustness radius with respect to NLCF of stable
two—-time—scale systems

The following result shows that if the fast dynamics is stable then one can stabilize
G () by using an e-independent controller which robustness properties with respect
to the NLCE are investigated . In fact this result extends of the result deduced in
115] where the case Cy (jwl — Ayy) ™" B, = 0 is considered.

Theorem 2 If the fast dynamics of G () is stable then any stabilizing coniroller
Jor its slow dynamics is also a stabilizing controller for G (g) fore — 0,. Moreover
in this case, the robustness radius of G (¢) with respect to the NLCI for is

lim Fouwe = min { (149 (X)) 72, (14 [G/l) '} (33)

where Gy denotes the fast dynamics of G (g).

Proof Let K, be a stabilizing controller for the slow dynamics of G (¢). Simple
computations show that by coupling this controller to the generalized system (18)
one obtains a two-time-scale resulting system which fast dynamics is

T; = (Ag, Y, CF ,Co, 1) . - (34)

Moreover the slow dynamics of the resulting system coincides with the dynamics
obtained by coupling the controller to the slow dynamics of (18). It follows that
under the assumptions in the statement both fast and slow dynamics are stable and
therefore the resulting two-time-scale system is stable; thus we conclude that K is
a stabilizing controller for G (¢) when ¢ — 0.

On the other hand if we denote by 7 (¢) and 7, the transfer matrices of the
resulting system and of its slow dynamics respectively, according to Proposition 4
it follows that

lim Fne = min {75 17705} (35)

£ -—>(L‘

From (34) it results that 7, = A“«i*l, where A 1 is the invertible factor from the

NLCF of G;. Then M;yM} + NyNi = I gives that [ + G(G5 = M; (JT/{’;I) and

therefore

M| =0T 6]l = 1416 e - (36)

oo
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Since the robustness radius of 7, equals (14 p (X‘S.Y;))"%, (33) from the state-
ment directly follows from (35) and (36) and the proof ends. [

Remark 1 Theorem 2 shows that if the fast component of G () is stable then one
can use an e-independent controller determined for the slow dynamics with

(LG -

Remark 2 Since the robusiness radius Tmax given by (33) corresponds to the case
when e-independent stabilizing controllers are considered, it results that T < ooy
Jore — 0, where v, given by (12) is obtained by two-time-scale controllers. Com.-

paring (38) with (35} one obiains that

L1

v > max {(1 + ol ALY

1
1+1Grll, = (L4 p(X5Y7))2 .

The above inequality Logether with (12) and (33) reveals in Jact the deterioration of
the robustness radius when e-independent controllers are used Jor the robust stabi-
lization of G (g).

Remark 3 Like a consequence of Theorem 2 we can mwestigate the influence of the
small time constants induced by the sensors and actuators delay upon the robusiness
radius of a given plant. Indeed, let G = (A, B,C, D) be a nominal system without
singular perturbalions and assume thal the sensors introduce a small delay € > 0,
that is their transfer function are Hyens (s) = 1/(es +1). Then the state equalions
of G Logether the dynamics of the sensors are
& = Az+ Bu (37)
ez = Czx— z+ Du.

The fast dynamics of (87) is G; = (—1,D,I,0); then from Theorem 2 it resulls
that the following two cases can occur:

a) If D=0 then ||Gy||., =0 and, according to Theorem 2 the robustness radius
with respect Lo the NLCF of (37) for e — 0, coincides with the one of G since in
this case Gy =0 and therefore

N

(14 p(X.Y) 72 < (L4 [IGyll) "

by If D # O the robusiness properties of (37) with respect to the NLCF can be
worse than the robustness properties of G; this happens if

1+ p(DTD) > (14 p(X,Y))3.



Remark 4 Another particular situation can appear when a loop-shaping procedure
s used.  Indeed, in order to improve the sensitivity and ils complementary per-
Jormances, the weighting funciions Wy (s) and W (s) respectively, are chosen such
thal the “shaped’ sysiem Gy, := WoGW, satisfies the desired loop shape ([9). Since
usually the magnilude of complenentary sensitivity is low ail high frequency, the
weighting function Wy (s) introduces a fast dynamics such that G, can be regarded
as a two-time-scale system. By choosing for example

Wy (s) = Cy (sI — Ay) "' By + Dy, with A, = —11 and e > 0,
e

and assuming for simplicity that Wi(s) = I, one oblains that Gy, = Wo@G has the
Jollowing state-space equations:

z = Ax-+ Bu (38)
w = B,Cx— 1—w + B, Du
y = D,Ca+ E'mw + D, Du
which denotes for small values of e a two-time-scale system with the fast dynamics
G;=(-1,0,Cy, D,D) = D,,D.

Thus it follows that if Dy, = 0 or D = 0 then Th. given by (33) equals
(14+p (XSYS))“% and therefore, according to Remark 1 the e-independent robust
controller wilh respect {o the NLCF for the slow dynamics of (38) is also a robust
controller for Ggy,.

4.2 An optimal robust controller with respect to the NLCF

According to Theorem 2, two situations may occur concerning the robustness radius
of G (&) with stable fast dynamics:

a) The case, when (14 p(X,Y,))72 > (1+|G f”oo)_1§ in this situation an op-
timal robust controller for G () when e — 0, can be obtained by determining the
robust countroller with respect to the NLCF corresponding to the slow dynamics Gy
of G (e) for v = 14 |G| . Such a controller can be determined since the maximum

1
robustness radius G equals (1 + p (X,Y5)) 2.
~1 , = .
b) If (1 +p(X,Y5)) 2 < (14 ||Gyll) , then (33) gives that

[MES

NI

h%l ";max = (1 ’I‘[) (‘X’Sy;))g ?
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Ly this case, when € — 0, the optimal robust controller for G (¢) coincides with
the optimal robust controller for G, . In order to determine such a controller for
G, one can use a known result proved in [9] which states that an optimal robust
controller with respect to the NLCF is given by K = UV~ where U and V are the
stable solution of the optimal one-block Nehari problem:

s Ul
- J [ Y } " [ v }

|

Different explicit solutions of this Nehari problem can found in [5] and [2).

(39)

o

5 A numerical example

In order to illustrate the results derived in the previous sections, consider the short-
period dynamics of the F-8 fighter at altitude A = 20000 ft and speed V = 620 ft/s
([4]) having the state-space realization (4, B, C, D) with

N ENPNE

~48 049 8.7
~16.17 0 2,12
e = [T [R0)

where the state are: a-the angle of attack and g-the pitch rate, the control is the
elevator deflection 8, and the measured outputs are the normal acceleration a, and
the pitch rate ¢. Assume that the dynamics of the accelerometer and of the gyro
are approximated by first order low-pass filter with the time constant £. Then the
short-period dynamics together with the sensors dynamics gives a two-time scale
system having the same structure as (37). The optimal level of attenuation given by
(14) is v, = 5.2039. Then using (15) we determined for y = 1.1+, the e-dependent
robust controllers corresponding to e = 0.01; 0.001; 0.0001. In order to evaluate the
robustness properties of these controllers we determined the generalized system (16)
corresponding to the two-time- scale system (37). The robustness radius provided
by these controllers is given by 7 = (||T},4, ]]Do)q where 7T, ,, denotes the transfer
matrix of the resulting system obtained by coupling the controller to the generalized
system. The values of ||T),,,, ] for different values of € are shown in Table 1.

Table 1: e-dependent controllers
£ 0.01 | 0.001 |0.0001]
5.8692 | 5.6802 | 5.6888 |

17,

i;
Yiul oo

17



Since in this numerical example the fast dynamics of the two time scale system is
stable we can determine an e-independent optimal robust controller with respect to
NLCEF. Numerical computations give that (1 + p (X,Y;))? = 5.2039 and 14||G il =
3.1200 and hence we are in the Case (b) discussed in Section 4.2. Then we determined
the optimal robust controller with respect to the NLCF for the slow component
by solving the one-block Nehari problem (39). This controller has the realization
(44;{,, B;;, Ck, D;\) where

A = —T6717; B, = [ 2.2854 —0.5244 |;

Cr = —0.0725; Dy = | —-0.1643 1.0323 ].
It stabilizes the generalized system (16) and the H* norm of the resulting system
for different values of € are given in Table 2.

Table 2: e-independent controllers
€ 0.01 | 0.001 | 0.0001

[Tar || | 60250 | 5.2909 | 5.2143

The above results show as expected, that for e — 0., an e-independent controller
provides a robustness radius of the two -time-scale system close to its optimum.

6 Concluding remarks

In this paper, the problem of robust stabilization with respect to the NLCF of
singularly perturbed systems has been studied. The construction of the robust
controller uses the stabilizing solutions of the Riccati equations associated with the
slow and fast dynamics of the nominal system, respectively; thus the computations
do not depend on the small parameter €. Based on these solutions, an upper bound
of the robustness radius is determined. It is shown that in the general case the
robust controller is also a two-time-scale system. If the fast dynamics is stable then
an e-independent robust controller can be determined. This controller is just this is
Just the controller corresponding to the slow dynamics which achieves a robustness
radius less or equal than min {(1 +p (XSYS))"% 1+ [[G’fﬂw)ul}

Numerical results show that the obtained controllers provide robustness proper-
ties close to the specifications particularly for small values of e, where in fact the
il conditioned computations appear when the usual formulae for the H* controller
are used. This feature is due to the fact that the constructions of the robust con-
trollers with respect to NLCF use asymptotic expansions for the solutions of the
Riccati equations involved.
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