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Abstract. ay finite lattices of quasivarieties of comnmutative Moufang’s loops with the

niipotence class < 2 are described

Introduction

The presented paper is dedicated to the mvestigation of the problemn {ana-
logous to the problem of M.I.Kargapolov [3]) of the description of the lattice of
the quasivarieties of commutative Moufang’s loops with the nilpotence class < 2.
In [5] the author have investigated this problem for the commutative Moufang’s
loops with the nilpotence class 2 with exponent 3. 1t was shown there that the
lattice of subquasivarieties of any vatriety M of cornmutative Moufang’s loops is
finite or infinite but numerable and is finite if and only if M is generated by a fi-
nite group. In ths paper in the class Ny of commutative Moufang’s loops with the
nilpotence class < 2 are described all quasivarieties which possessis a finit num-
ber of subquasivarieties. It is presented in an evident form the list of all loops
(which are parts of cyclic groups and nonasociative loops generated by three ele-
ments} with the property that K C N, has only finitly many subquasivarieties
if and only if K is generated by a finite set. of loops of this list. In particular, if
the finitely generated commutative Moufang’s loop L with the nilpotence class 2
is not approximated by these descibed loops then the quasivariety generated by
the loop L contains a conmtinuum set of distinct quasivarieties. There are also
described some finite lattices and some of them are largly presented. It can be

observed that in the simplest cases these lattices are not modular.
§1. Notations and preliminary rezults.

The commutative loop Moufang (see [1]) is called the algebra I with the

unary operation ! and other binary one - in which for any z,y,z € L are valid
relations:

ry =yz,zy-zz = z(yz) z,z7 " 2y = y.
We introduce the following notations: F, = Fo(zy, ..., z,) is the free commut-

ative loop Moufang of rangul n gencrated by the free elements B g o s 5
Ny is the class of all commutative loops Moufang with the nilpotence class

< 2, defined by the identity

(zy - 2)(z-yz)" ' uw = ({ry 2)(x  yz2)



N, 4« is the variety defined in Ny by the identity
.3k
z® =1,

where the number & # 0 is natural;

Fo(M) = Fy (M 52y,...,12,) is the free commutative loop Moufang of the
rang n of the variety M C Ny;

(L) is the quasivariety generated commutative loop Moufang L

L M is the lattice of subquasivarieties of the quasivariety M C Ny;

T =0Q(3). Te = Q(F3(Nya));

A k] B is the M-free product of the loops A, B which belongs to the quas-
ivartety M C No;

Z,x 1s the cyclic group of ordinul puterea a & a numirului prim p; Z is the
infinit cyclic group.

As usual the elements of the commutative loop Moufang F,(z,, ..., 2,) are
called the word of the variables z;...,z, and the clements of F! are called
asoclative words.

We shall say that the loop L of the variety M C Ny has in M the reprezent-
ation

L=lIp(zy,...,zpf|]R=1),

L= Fy(M;z; ..., 2a)/R, where R is the normal subloop in £, (M) generated
by the set R C F,(M).

The loop is reflered as monolite if is finite generated and is not decomposable
i the direct product of two nonunit ssubloops of it.

The exponent of the commutative loop Moufang will be called the least com-
mon nmultiple of the orders of all its elements.

Let. M be a quasivariety of Ny, L be an arbitrary commutative loop
Moufang. The least normal subloop H of L for which L/H € M is denoted
by M(L) and is called the cvasiverbal subloop of the loop L corresponding to
the quasivariety M.

Let us agree that the expression ”the element a # 1 of the loop L is approx-
imated by the loop K” is equivalent to the expression ”there exists a morphism
of loops ¢ : L = K such that 2% # 17,

We shall need below the following criteria of belongness the proof of whicl

we can found in [6].
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The finutely generated commutative loop Moufang L belongs to the quasivari-
¢ly generated by the class K of commutative loops Moufang if and omly if the
nonunit elements of L are approvimated by the loops of K.

Let us recall some notions and rezults from (1] which in the sequel will be
used sometimes without mentioning them explicitly.

Let L be a commutative loop Moufang. The asociator [z, y, z] of the elements

.y, z € L are defined by the equality

[e,y,2] = (zy - 2)(z - yz)~".
The asociator L’ of the loop L is called the subloop generated by all asociators
of L. If X,Y,Z are nonvoid subsets of L then the notation [X.,Y, Z) means the
subloop of L, generated by all asociators of the formn [z,y,z], where z € X, y e
Y, 2€Z. Thesel Z(L)={z € L | [z,y,2] = 1 forall y,z € L} is called
the center of the loop I,. The subloop H of the cornmutative loop Moufang L is
called normal, if

z-yH =zy - H

for any x,y € L. The subloop and the normal subloop in L generated by the
elements ay,. .., a, are denoted by Ip(ay,...,a,) silp(ay, ... ,an)t respectively.
It is easy to observe, that the asociator L' and the center Z(L) of the loop L are
normal subloops and the factor-loop L/L’ is an abelian group. We can easily
convince ourselves that it is normal in 7, the subloop L™ generated by the powers
of m’s of all elements of L.

In any commutative loop Moufang are valid the identities
{1’.;1/,:]3:1, (1)

(z.y,2] =y, 2,2] = [y, ,2]7, (2)

and in the loops of the class Ny it is also valid the identity

(Theorem of Moufang) If the asociator of three elements a,b, ¢ of the com-
mutative loop Moufang L is equal to unit thenthe subloop generated by the ele-
ments a,b,c s a group. In particular, any two elements of L generales an
asociative subloop.

Here below we shall formulate some lemmas of the papers [5] and [6].




Lema 1.1 [5]. The nontrunal quasiidentity
& iy, Tn)=1—ulzy, ..  z,)=1

which 1s valid wn the commutative loop Moufang F3(Ng3) 18 equivalent in the

variety No 3 with quasiidentity

&zm:J ({3/3!—27 Ysi-1, Yalar = {yl Yo, yalay)

I

& H(y, o ya) =1 — {yl‘yz'ya}(ll =1,
where 3m < n, F3(Nas) E1(K(y.. .., Yn) = 1 — [y, 0, ¥3]ar = 1), Ip(ay,
co @) UH < Ap(lyi vy u) 1 1 << j <k <my (3,4, k) # (31-2,30-1,30),1 =
L...,m).

Lemma 1.2 [5- 6]. Let M be a nonasociative quaswariely from the arbitrary
N € {Ng, Ny, k=1,2,...}, A, B are loops of M represented in N such that

A=lplar,. .zl M(zy, ..., 20) = 1),

B=1p(y,....ymlIM(z1,...,2,) = 1),
where M, N are totalities of asociative words. If M is the normal subloop of
C=A4 '] B generaled by some asociators of the form [z;,2;,yx] or [z;, Yi» Y],
then C'/H € M.
Lemma 1.3 [6].

F3, (Nygx (resp,, Na)izi,...,z30)/ Ip([z1, 22, T3] [24, T5, 26] ... [Zan—>2,
L3n-1, '7:311]) = Tk (TﬁSp.,T)

The following lemma is proved in the same way as lemma { of [5].

Lemma 1.4. Let L be the Ny - free product of the loops F3,(Nyax respect-

wely, No); z4,...,25.).
=
with glued elements
n n
= H[icéi-ml"éf—ul‘éi] == i H[Iéx’—zvzfﬁ—lﬂ'zgi]'
i=l =1

Then the element a € L can be represented via a product of a number < n of

the asociators.




We introduce the notations of some commutative loops Moufangs which will
be used in the proofs.

f\“{:om@; = /73(/‘1“!}':);

Mrooo = lp(r‘y,: H .1'3r =1}k
Hyoo =lp(z,y, 2 Il 2 = y"j’ =1);
Heet = Ip(z,y. 2 || 22 =¢* =23 = )

(Hooe = Z3, Hooeo = Z, Hogo = {1}),
where 7,5, ¢ are integer numbers and 0 < r < s <4t
Ank (respectively A,,) = Ipla;j, 1 <i<m, 1 <j<3m+ 3) is a loop of the

variety Ny g« (respectively Nj)) which determinant relations are:

m+1 m-+1
(4) H [a13i -2, BB 1, 813 = o v = H [am3i-2, am3i-1,m3i),
f=il i=1
(5) (@i, k1, 0p, ) = Li# R Vit pVk £ p,3<jlr<3m+3;
Bimi = AL, x ... x A}nk (respectively B, = Al x ox AL} is the cartesian

product of ! instances of the loop A, (respectively A,,);

Cimk = Bimk/Ip(a'(a*)™!, 1 < i< 1) (respectively Cipm = Bim/lp(a'(a')~?,
I <4 < 1); where element a' is the copy in the loop A, (respectively Al of
the element

m+1
(6) a= H[013i~2,(1131‘—17al3i]

i=1
of the loop A,k (respectively A

As it was shown in [5], the subquasivarieties of N, 3 are characterised by the

asociator quasivarieties. We shall emphasize in Ny siin Ny, for k£ > 2,
those quasivarieties which have the same structure and are also characterised by
asoclator quasivarieties. We denote by N3 3¢) the subvariety of N, 3« defined

by the quasidentities

(7) PR RN [2.9:2] =1,
n

(R) JJ3 = H;_(«Zf;32'~2. 173,'_],:):‘31'] — ,1'3 =1,
i=1

s s

B o



for any natural number n. By N9, we denote the ¢ uasivariety of Ny defined by
! y Ngy 3 2 A

the quasiidentities

(9) =] — %= 1,
(10) =1 —zy =1
(11) =1 —a2=1,

for all prime numbers p # 3.

Lema 1.5 For any | > 1, the lattices of the nonasociative quaswarieties
Nz 3 and Ny

Proof. According to the quasiidentities (7), (8) (respectively (9) - (11)) the
determinant relations of any monolite nonasociative loop of N 31y (respectively
N[g)) are some equalities of some asociator words equal to unit (see lemma 5

of [6]). It is clear that the nonasocitive subquasivarieties of the quasivarieties
N 3, and Ny, are generated by monolite loops.

We establish a reciprocal correspondence between nonasociative monolite
loops of N(2,3) and monolite nonasociative loops of N() in the following way:
we consider that to the monolite nonasociative loop A! € N3y with the gen-
erators a},...,a, and the determinant relations (in Nioay) R(ah,...,a)) =1
corresponds the monolite asociative loop A4 € N2y with the gencrators ay, ..., a,
and determinant relations (in No) R(ay,. .. a,) = 1. We prove now the follow-
ing staernents:

1°. If the monolite nonasociative loop L = Ip(xy, ..., 2,) belongs to the
quasivariely Nyo 51y (respectively, Nyay), then Q(L/L') = Q(Z3e) (respectively,
QLI = Q(2)).

2°. Let A' =lp(dl,...,d ay,), B' = lp(b,... b ) are monolite nonasociative
loops of Ny g1 and A = lp(al, oy an), B =Ip(by, ... by) are coresponding loops
of Niz). If A" € Q(BY), then A € Q(B).

The proof of the statement 1° rezults from the fact that L/L' = Ip(z L) x . ..
x Ip(a, L') and every cyclic subgroup Ip(z,L') is isomorph with Z3 (respectively,
Z); 50 QL/L') = QIp(xiL’)) or Q(L/L") = Q(Z3) (respectively, QL/L) =
QU2)).

We prove 2°. Let u! be an arbitrary element of the loop A, If the correspond-

g element u ¢ A’ then u is approximated by the loop B because QUZ) CQ(B)



and according to 1°, Q(A/AY) = Q(Z). Let 1 # u € A Then u can be

represented in the form:

u = H [ai, a5, @] ¥o*,

1<i<i<k<n
where 0 < a5 < 3. Suppose the element u' = 1 [a‘ a al}“'l“ Is
e U s oy . pPpos -me = 1, @y, Qg s
1<i<j<k<n

approximated by the loop B! via morphism of loops ¢ : 4! — B!, defined by the
apph(,dnons (a})? = (6))Pvi ... (6L, Jmich 1 < < n, where 0 < Bii < 3,5 =
1

defined as:

m, ¢t € (BY. We investigate the morphism of the loops ¥ : A — B

ll

1 <2< n,

)

a? = bt .. Bl

s =
where 0 < v;; and Yji = B mod 3, for j = 1,...,m, and to the element ¢; € B’
corresponds the element ¢! € (B')’.

We verify if u! # 1. Firstly we observe that

)= T [af)*,(d")? (al)e)en,

1<i<j<k<n
¥ Y ¥ Lok
u¥ = [az,aj,ak] Ik,
1<i<j<k<n

We substitute in these equalities (al)e, al with the expresions b:,b; and applying
the identities (2) and (3), we obtain

W)= T (86,64,

1<i<j<k<n

u? = H {f)“bj,bk]g‘f""

1<i<j<z<n
Taking into consideration the equalities vij = Bi; mod 3 and the identity (1),
we obtain d,,k ==
f:5kmod3. Because B! and B have in their varieties the same determinant re-
lations and (u')?, u¥ are written with the same words of the corresponding
generators we obtain that u¥ # 1. The statement 2° is proved.
Now we establish a reciprocal corespondence between nonasociative subqua-
sivarieties of N, 3¢y and nonasociative subquasivarieties of N(g) in the following
way. Let N' be an arbitrary quasivariety of Ny 1y, so NY = {4l ie 1,

where A; is the monolite nonasociative loop of Ny 5. Then we consider that the



corresponding quasivariety N C N,y is generated by corresponding loops, i.e.
N = Q{A;, i€ I}, where A; is the monolite nonasociative loop of Ny cor-
responding Lo the loop AL From 2° rezults that the established correspondence
15 independent of the choice of generated loops, is reciprocal and conserves the
mclusion. Jhe lemma is proved.

Lema 1.6. form =1,2,..., we have Ay € Ty, Ay €T

Proof. 'The element a € A,x (respectively, A,,) is approximated by the
morphism ofloops ¢ : Ak — F3(Ngax; 2.y, z) (respectively,) A, — Fa(z,y.2))

defined by the equalities

¢ .
¥ i3 =4

B e g L s, 53
a’m, =2z, a‘1n2 ‘_y) am; — %y

af, =1, Vi, Vj>3.

Now we show that A /Ip(a) € Tk (respectively A,,/Ip(a) € T). According to
the lerama 1.3, the loops K; represented in N, 3¢ (respectively, Nj) as follows.

m+41
Ki =lIplaiy, ..., izmss || H [@izj-2, aizj-1, aiz;]=1]
b
are contained in Ty (respectively, T). Ani/lp(a) (respectively, An/Ilp(a) is a
free product in the variety Nj 3 (respectively, N(,)) of the loops A; factored
over the relations (5) and according to lemma 1.2 it belongs to the quasivariety

Ty (respectively, T). The lemma is proved.
§2. The first auxiliary rezult.

We introduce some notations of some loops of the variety Ny 5« (respectively,

N-_g) :

B = B(n,V, k) (respectively, B(n,V))=Ip(z,zy,...,23,) ||

-3} RETI Ban
[z, 2" .25, 2" . ..2507,

Qy ... 3y ,
eV)
< Bi..fom ) )



= H(n,V, z) (respectively, H(n,V) ) is the factor-loop of the loop B over

rel:ation
n

B H . .
= L-Bsi—zwl:si-l,-ll:'ﬁ]

1=l
H,,, 1s the factor-loop of the N-free product of the loops B and Ak (respect-
wvely, A,,) over relation

n
z® = [[lesiz2, 2321, 23i]a,

f=]
where a is defined by the equality (6).
Lema 2.1. H,, € Q(H).

Proof. The element a € H,, is approximatedd by the loop F3(Ny 365 u,v,w)
(respectively, Fs(u, v, w) ) via loop morphism ¢ : H,, — F3(Ny 3¢ ) (respectively,

H,, — Fy) defined by the equalities:

P — °
Ty U, Ty =, T4 = w,

T 0 _ _

z; ==, 08, = L% =1

¢ _ v v

an, = u,ah, =v,a5 =w,
a:-‘;-:l,i:1,...,m,j:4,...,3m+3.

Now we show that H.,/lp(a) € Q(H). Really, Hy/Ip(a) = M * (Ani /lp(a) )
(respectively, H * (Am /Ip(a)), where Ami/Ip(a) € Ty (vespectively, A, /lp(a) €
T). But Ty C Q(H) (respectively, T C Q(H) ), then in virture of lemma 1.2
we obtain Hy, /lp(a) € Q(H). The lemma is proved.

Lemma 2.2. The element £3% € H,,, where a # 0 mod 8, can not be

represented as a product of m — 1 asociator:.
Proof. Let

N :lp(l:l:z%'-')z3n1a11:a127013:a215a22»a23)-H»amlyam%amli,
[2,0i5,a), 1<ik<m, 4<j,1<3m+3)CH,

Then Hy, /N is a direct product with the reunion of the central subloops z3N =
aN of the cyclic group A = Ip(zH) and of the subloop D = Ip(ai; N, 1 =
L,...,m,j = lg,...,3m + 3). According to lemma 1.4 the element aN € D

10



can not be represented as a product of m — 1 asociators. Since the subloop A is
contained in the center of the loop H,, /N, results that a N can not be xcpu sented
as a product of m — 1 asociator and in the entire loop H,, /N. But 23 = g

“ can not written as the product of m — 1 asociators. The lemina

mod N, so 23
1s proved.
Lema 2.3. Let H3 be the set of all cubes of all elements of H,,. Then
Ho NH, = {23 0<a< 3}
Proof. Since the loop Moufang is diasociative and in any commutative Joop
Moufang is valid the identity (1), then it is easy to understand that HE iz a
subloop in H,, and is contained in the center of Z(Hy), so it is also normal in
Hm From here and from the construction of the loop H,, it is clear that the
nonunitary elements of the asociator H} which are contained in the subloop H3,

are 3. The lemma is proved.

Lema 2.4. Forr > 33’”6, m 2 n, we have Hy,, & Q(M,). >

Proof. Let v be an arbitrary morphism of loops of H,, in H,. According
to lemma 2.3 2% € H3 and 23 € H’, and from here (2%)¢ € H?, (23)° € H,
so (2°)¢ € H3 N H!. The element 23 » and subsequently (%)% according to the
construction of the loop H,, is represented as a preoduct of m+n +1 < r— |
asociators. But in virture of the lemma 2 the nonunitary elements of H3nH!
can not be represented as a preoduct of r— 1 asociators. Subsequently (z3)? = 1
and so H,, ¢ Q(H,). The lemma is proved.

Lema 2.5 ]fm > 3% 2n then H, ¢ Q(H,).

Proof. Let us denote

m+1

a; = H [ai3j2, aisj_1, i3], i=1,. coym.
12

We suppose thal the lemma is not true. Then for the element 23 exists an
morphism of loops ¢ : H,, — H, such that (z3)® # 1. Since the number of the
generators of the loop A, is 3r(r+1)+n+2 = t, and from the condition of the

lerama n < r we obtain
'[{:l S #F{/] — 3%t(t—])(l——2) S 3r5

Subsequently, taking into consideration the condition m > 337° we obtain that

for soine

11



r<m
Iplaiy, ... aizme3)® CUlplajn, ... ajames,d = 1, i—=Li+1,...,m)?.

Irom here on the foundation of the equalities of (5) the equality af = 1 is

deduced. Then
('L’a)w = ([-'L'I;l'z) 13] . [xSn—Z;xSn-—I::t(Sn]a)Lp =

([z1, 22, 23] . . . [Z3n-2, Zan—1, T3n][ai1, @iz, @i3])¥,
so the element (23)¢ € H3 N H! is represented as a product of n + 1 asociators.
Since the nonunit elements of H2 N H. can not be represented as a product of
r— 1> n+1 asociators we obtain (z°)¥ = 1, that can not be. The lemma is
proved.

Lemma 2.6 (The first auxiliary rezult). The lattice L,Q(H) is contin-
ous.

Proof. In virture of the lemma 2.1 Q(H) contains infinite many loops Hp,
where m takes the values of the set of natural numbers. We construct the
infinite sequence {m;,7 = 1,2,...} of natural numbers in the following way:
my = n+2 mg =3 +1fori>1 Now we shall show that different
subsets of loops of the set {My,,,i=1,2,...} generates different quasivarieties.

Let M = Q{Mp;,i € I},N = Q{Mp,;,j € J},] # J. Suppose that i € [
and 1 € J, so Mp,, € m. We show that M,,, ¢ N. Really, if it is not so then
the element 22 € M, is approximated by a loop Mm,,j € J. According to
the choosen sequence {m;,i = 1,2,...} and lemmas 2.4, 2.5, we obtained the

contradiction. Lemma 1s proved.
§3. The second auxiliary result.

Let L be a loop of the variety Ny 3 generated by a finite number of ele-
ments zy,...,Z,, and Ty (L) is its quasiverbal subloop which corresponds to the

quasivariety T; with elemeents uy, ..., u;.
3.1. The construction of the loops Li,.

According to lemma 1.1 for any u; € {u1,...,u,} there can be taken such
generators z1,, .. ., zn, of the loop L that the defining relations of the loop L have

the form

12



[311‘,32:7231‘]’01, == [231,—2,1'-,231,—1,i,231,,i]‘l’1i = U,

[{1(311;~->Zm') = 1:

where H; vy, ..., v ,; are contained in the subloop generated by the asociators:
(2ri, 251, 2pi), for all triplets (r,s,p) not contained in the set {(1,2,3),(4,5,6),
oy (3L = 2,30 = 1,3)).

In §1 the commutative loop Moufang B« have been defined. We take the
loop
Biin, = AL x. . .x .»45,‘11 and denote the generators of the subloop Afnl, 1<7 <,
in correspondence with aﬁ , a{;, oy a{ri,Bm-}—B' Now we define the loop Lfn as the
factor-loop of the Ny 3 - free product of the loops Biny and F, (Nag 2y, ...,

zni) over the relations:

(11) Hi(z1i, ..o yzni) = 1,

(12) [afy, aggy 2] = 15 = k= ¢ {35 - 2,35 - 1,35},

(13) (a7, 201, 20 = 1(p v g € {37 - 2,3 - 1, 3}),

(14), " [z1, 201, 23y = ... = a2z, a4, 231, -1,i231, i)V,

where ', ... a""* are elements of the loops AN, .. Al corresponding to the

element a (see formula (4) ) of the loop 4,,,. Fix the notation 7= ol (o, 2, 23i]v1;.

3.2. The properties of the loops Li .

Lemma 3.1. Lin € T,.

Proof. Let ¢ : L} — F3(N33) be some morphism of loops. Two cases are
possible:

L (@) =...=(d")? =1, 0 ([z14, 221, 23 Jv1;)? = ... =

([zat,-2,1, 231,14, 281, iJvf )

We denote N = Ip(a',... ,a"%) € L} . Evidently we have N C kere si

Ip(z15,...4,,i JNIN = L. Taking all these into consideration and also the fact

13



that [m 294, z3;]uy; € T (L) we deduced ([z“,zgz-,z;;i]v“)'*’ = 1. This means
that 27 = (al’)®. ([:1,-,;3,',23,'}1)1,')"’ =1,
2. (a?')¥ # 1 for some L1 <y<;
. matl : .
Suppose for simplicity j = 1. Since ! — [T [ei3i_g, albi 1, ali.] (see for-
=l
mula (4)), then, we suppose that [at l,aJ“Q,a”] # 1. In the commutative loop

Moufang F3(N33) is valid the universal formula:
T=([z1,20,23] #£1 & [z1,29,24) = 1 & [z1,23,24] = 1

& [9:2,:83,2:4] =1 [1‘4,2?5,.’1!6] = 1)

In the defining relations (13) of the loops Li, and in the relations of the loop

Bi,m, (see the construction of this loop) are the corresponding equalities:

(15) loth, als, 2] = 1, [al,ald, 2] = 1, [adhyal, 20] = 1
for all indices p ¢ {1,2,3%
(16) [allll)a%;)alzir] = 17 [ai;:aﬁha?;] - 1.‘ [a%)aié»am - 1!

forall 7,1 <7< 3m+3.

From the inequality [a aj},alh,ali]? # 1 and the equalities (13) on the basis
of the formula 7 we obtain [Z4,-,zs,,z6,]"" =1and uf; = I(ug; is a product of
asociators [z, y, z], where at least one of the variables z,y, z is a generator of the
form zy; for some p ¢ {1,2 ,3}). From the inequality [e}}, alh, adi)® # 1, from
the inequalities (15) and from the formula 7 reszults

2i 2 2 2%

[allval“ 0123] = 1’ v ![algmﬁ»l ) a’lém—i—?? a1§3m+3](p =1
Finally we obtain that in the first case z{ = 1. This means that we can conclude
that z7 = 1, for any morphism of loops ¢ : P A F3(N3y3). The lemma is

proved.
From the defining relations (12) - (15) of the loop Li, we observe that the
subloop
lp (]r,1<s<l,,1<]<m 1 <7< 3m+3)

is a subloop of the type Bi;m,. This subloop in the below lemmas will means the

loop By, yn1.
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Lemma 3.2. The clements of the normal subloop B, m, generated by Lhe
loop By m, s approzimated in L, by the loop F3(N,3).
Proof. Note N = Ip(z;, [z Zuis Zriy 2pi), a4, Tor any triplet (s, rp) € {(1,2,3),
(3L - 2,30 - 1,3l;) and any j > )¢ L.
From the defining relations of the loop L}, we observe that N N B =, o= 1
Then the lemma will be proved if we shall show that Li./N € T,. From the
defining relations of the loops Li. si L /N results that I /N represents a

cartesian product of /; isomorphic copies of the loop
A= (Am1 N, 34m, N, , F3(Nag; 21, 29, 23)) /lp(alz1, 23, z3])
[t remains to prove that A4 € T;. We show that A/lp(a) € T). Really,
A/lp(a) = A, /lp(a) ;qzyng(Ng,g;zl,23,23)/117([21,22,23]),

evidently
F3(Nas; 21,29, 23) /Ip([21, 22, 23]) € T},

and from the proof of lemma 1.6, Ami/lpla) € Ty, and then accordingly to

lemma 1.2 A/lp(a) € T;. Now we show that the elements of Ip(a) C A are

approximated by the loop F3(N33;2,y,z) via morphism of loops ¢ : A —

F3(Ny3;,y, 2) defined as:

Yo g L -
211 =2, a3 =Y, 013=1z2,

@ e P _ e _
421 =%, 33 =Y, axn =2z,

© L - L
Ay = x’a'mz =¥ 053 =2,

Y __ $ A8 |
3 =X, zyg =Y,23 =20,

a}'}:l, i=1,...,mj=45...3m+3.

So A/lp(a) € T) and the elements of Ip(a) are approximated by F3(Ngs;z,y,2)

from where we obtain A € T and lemma is proved.
Lemma 3.3. L € Q(L).
Proof results from the isomorphism L /BI m1 = L and lemma 3.2.

Lemma 3.4. The element z; € Li. is approzimated by the element ¢; =

a' = ... =d" of the loop Clim1.
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Proof. Evidently, that
Lfn/lp(z“, oy 2p) Ci,my.
Then as a result of composition of the morphisms of loops
Ly = Lin /1p(z14, .., 200) 5 5 Crom1.

we obtained what we need.

Lemma 3.5. The element z; € Li, can not be represented as a product of

m — 1 asocialors.
Proof. According to lemmas 3, 4, it is sufficient to show this for the element

11 L

CGi=a =...=a
of the loop Cj m, .
Let,
N = lp(aﬁ)a%i?’ aié‘l) a%‘i!aéé’a%g: sl e 1ar1rfl! a717i?’ar]7;.3' 8RR all11i’ a11'21>
4y, a5, 055, 455, ainh, abi, ) Chymy

According to lemma 1.3 the element ¢; N of the loop Cj;m1/N can not be
represented as a product of m — 1 asociators. So this is true also for ¢; in

Ciymy si z; in L} . The lemma is proved.
3.3. The construction of the loops L,,.

Let the loop L € N2 3 is generated by the elements 21,...,2n, and let
{u1,...,u.} be the set of nonunitary elements of the quasiverbal subloop Ty(L).
As it was shown in p.31 for any element u;, 1 <7< t,is chosen the system of

generators zy;, ..., z,; of the loop L such that the relations hold
[#16, 201, 23i]vii = ... = (231, 2,6, 231, 1,0, 231, s Jur i = ui, Hi(zy, ... 204) = 1

If we would consider that the loops L(zy,...,2,) si L(z1i,...,25;) are dif-

fernt, this would means that there exists the isimorphism ¢; : L(zy, . .. \Zn) —
L2435 54 5 y20g) Suich thiat

P _ _ . .

U, = [215,221',23;]1111' =...= [231.-—21 1,231,—1:‘,‘31.-2]01.-:',

16



1‘[(21,. . .,Zn)w’ = H(Zli ,,.,Zm').

[n a natural way we have the isomorphism of the loops

ViDL /Bl S L, ),

liml

Since the elements zf*, ... 2%+ generates the loop L(21i,.. ., 24i) the conjugable

! Loy

1 , 1
classes z7, pesy Tt generates the factor-loop L;l/B[’l’,';;l‘ In each of these

conjugable classes we choose one instance of z4,..., 2} such that I zl, €
Ip(z14,. .., 22i) C L, Then L} = Ip(z, .. 25, Bi.m1). Now denote for simpli-
city

Bi = Bi,m1, zj :z;...z; € L,ln X...x L.

At the begining for an arbitrary numeration of the elements uy, .., u € Ty (L),

we define the commutative loop Moufang L, (1,...,s in the following way:
Lm(l,..o8) =Ip(er, .., 20, Bsi=1,...,8) C L x ... x L:

[t is clear that L,,(1,... ,8) is the subdirect product of the loops B ..., B,
Now we choose the numeration of the elements uy, ..., u, and the number s such

that the conditions are verified:
a)lim(1), Lm(1,2),. e Lm(1,...,8) € Ty;
b)Lm(1,...,s,k) € Ty pentru toti k, s<k<lI.

Such choice is possible because by lemma 3.1. Lm(l) = L}, & T,. The
loop Ly, is now understanding that it is the loop Lim(1,...,s) that verifies the

conditions a) si b).
3.4. The properties of the loops L,,.

Lemma 3.6. L, € Q(L).

The proof results from the definition of the loop Ly, (it is a subdirect product
of the loops L! ) and lemma 3.3.

Lemma 3.7. Ty(L,,)N(By x ... x B,)tm =1

Proof. There are to show that every nonunit element of

(Bi x...x B)tm = Blm x . x Bim

17



is approximated by the loop F3(Ny3). To do this it is sufficient to investigate
the nontrivial projection of the element onto the component 7 and to use lemma
352,

Lemma 3.8. T (L) C {1, i fio.us fe} for some fi,... f, € (B x

X Bt c L, and u; = ui(zy,...,2,) € Ty(L(xy,.. o Za))

Proof. Let a € T1(Lm). The correspondence 2i(By X ... % By)rm s
Zj ¢ 2; Is extended up to the isomorphism of the loop Ln/(By x ... x
B,)tm ~ Lizy,...,2p) 2 L(zy,.. -vzn). That is why, according to lemma 3.7,
a = ug(zy,...,2,) f, where u; € {ur,...,w}, f € (B x... x By)Em . Sup-
pose that lemma is not true, i.e. k > s, and construct the commutative loop
Moufang Lin(1,...,s,k) = Ip(y1,. .., ym, Bi,i = l,...,8,k), unde y; = z;z%.
Now we consider that the initial generators 21,...,z, ai buclei L are chosen in

; ko
correspondence to the loop L i.e.

uk(zl)-")zn) == [21,Z2,2'3)'Ul =...=

(17) (231, -2, 280, -1, 231, Jvai, Hi(z1,...,2,) =1

Then in the projections of the loop Lm(1,...,s,k) onto each component Li, we

have the equalities
18 2}, 25, 2i)vi = = [ i 4 i d Bin
(18) 21,29, 23/ = ... = 231, a0 F31, _y 0 231, [V, Mmod B

In particular in the projection on the component k according to the definition

we have
k ok kv 1k _ [k k k Iy k
(19) 21,25, 25Jvia™* = ... = [131,:_97231k_,1231k}”lka "
where a'% .. a0k ¢ B% . In projections of the first s components, by multiply-

ing of the equalities (18) we obtain
(20) (21,22, 230101 = ... = [z31, -2, 231, _, sz, Ju, bi,

where by,..., b, € Bfn.
It is clear that b can be taken as equal to f), and then a = [z1, 22, z3]v1 0.

Finally in the loop L,(1,...,k) we have the equality

(21) [v1,y2, ysJvibra’* = ... = (Y31 _s U3le_ Y31, Jur, by, @'
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We denote by
2= [y, 92, yslvi bra’k € La(1,... 5, k)

and show that z is not approximated by the commutative loop Moufang
F3(N23). Let A: Ln(1,... 8, k) — F3(Nj33) be some morphism of loops. The
following cases are possible:

1) (a?*)X # 1 for some J. For simplicity let j = 1. Then by formula 7 (see the
proof of the lemma 3.1) and from the defining relations of the loop L, we deduce
the equality (®)* and from the defining relations of the loop L (1,...,s, k) we
deduce the equalities vy =1, V4, 5, ys]* = 1, by = 1. This means that z* = 1.

2) (@™)* =1 for all J=1,...,ls. We denote

N=lp(a* j=1,.. 1), A=1py1, .y, B, B C L1, . s, k).
Then evidently the application 8 :
yjN~—)1:j, j:l,...v,n, bN—)E, b € B;, EEF{,

where B; is the same loop B;, but from L(1,...,s), b is the corresponding
element to b, is extended up to an isomorphism between AN/N and L(1,... ,8).

Let the following application is given X : AN/N — F3(Ny3) such that
(y]\/)I = yx forany y € 4. Xis a morphism of loops, since N C kerN.
This means that Ag-1 . Bl 58) — F3(Ny3) is a morphism of loops. Since
a€ T(L(1,...,s)) we have

L=t % = ([331,5&‘2,173]11151)6_IA = ([y1, v2, ys)uiby N)* =

-1

([y1,v2, y3Jurby)* = (v, y2, yslurbya'*)* = 22

So, 2* =1 for for any morphism of loops A : Lm(1,...,5,k) — F3(Njy3).
Subsequently, Lin(1,...,8,k) ¢ T4, which contradicts the minimality of the
number 5. According to obtained contradiction results that the statement of the

lemma is tru.

Lemma 3.9. The loop L, = Lin(1,...,5) is approzimated by the loops
vz o Clymy . M particular, the element v, f; € Ti(Lm) C {1,u, fi, ...,
uy [y} is approzimated by the element ¢; = (a¥ = .. .a''y of the loop Cy, 1, .

Proof. 1t is sufficient to investigate the projection of the element u; fi onto i

projection and to apply lemma 3.4,
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Lemma 3.10. The nontrual element of T\(L,,) can not be represented in
the product of m — 1 asociators.
Proof. By lemma 3.9., the element 1 # a € T (L,,) is approximated by the

element ¢; € Cy,,,. We investigate the normal subloop
N =lp(al},aly,aly, 1<j<l, 1<r<m)
of the loop.
Crion, = lp(all,1 <<, 1< 7 <m 1< g<3m+3)

It is easy to see that N is such subloop of C,,, that the factor - loop Cj,m, /N
and the element ¢; N € Cy,n, verifies the conditions of lemma 1.4. Subsequently,
by this lemma 1.4 the element ¢; N can not be decomposed as the product of
m — 1 asociators in the loop Ci,m, /N. This means that this is also true for ¢; in
Cim, and a in Lp,.

Lemma 3.11. Ty(L,) C N = p(lp(y1,.. - ¥a),a?i = 1,...,8,j =
L. k)

Proof. Denote A = L[Ny B =1p(Biy: .., By )NIN,C =lplyss s yn)N/N.
Evidently that C' € T. Using the same rationaments of 2) of lemma 1.6 there
can be easily also understand that B € Ty, A is the factor - loop of the Ny 3 -

free product of the loops B and C pover relations:

[N, ye N,uN] = 1,[al) N, ak; N,y N] = 1

for the totaly of indices j,,7,¢,k,p,t,e indicated in the defining relations of the
loops Li si Ly,. According to lemma 1.2 A € T;, where from Ti(Ln) €N

Lemma 3.12. Let m > 3%°. Then |Lm| < 3™

Proof. Denote by I(A) the number of generators (independent modululo A’)
of the loop A € Ny 3. Then

|A’ < IFI(NQ,B) < 3l+él(l—-1)(l—2) < 3[3’
where [ = [(A). We shall use this formula. Since
Li<n<m, l(L)y=n<m, s<|Ty(L)]<|L|<3rtsr-10-2)

l{Amy) = m(3m 4+ 3) = 3m(m + 1),
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results that
(L ) = I(L) + I(Bl) + ...+ [(B‘,) = l(L) + I(Aml)l]—{-

A UAm) s <m A 3mE(m+ 1) < m*

where from we have
12

L) < 377 = 3m

With this the proof of lemma is completed.

Lemma 3.13 Let m > 3", Then every element of L, can be represented
as a product of m® asocialors.

Proof. 1f the commutative loop Moufang A € Ny 3 is generated by | elements
then we in a simple way can understand that any element of A’ can be written
as a product of a number < I? of asociators. Taking this into consideration and

the equality [(Lm) < m* we conclude that lemma is true.

Lemma 3.14. Lete m > 3" r > 8m 1 #u € Ty(Ly). Then u is not
approzimated by the loop L,.

Proof. Suppose the contrary, i.e. there is the mofrphism of loops ¢ : Ly, —
Ly, such that u? # 1. It is clear that w® € T1(L,). According to lemma 3.13
the element u and this means also that u¥ in L, can be written in the form of
a product of m® asociators. On the other hand, according to lemma 3.10 u¥
can not be represented in L, in the form of a product of v — 1 asociators. But

r—1> 3> m8, that can not be. The lemma is proved.
Lemma 3.15. Let m > 3" r > 3n° 1 #u € Ty(Ly). Then u is not

approximated by the loop L,
Proof. According to lemma 8.11,

U= H (aft)ouiy,

1=1...8
F= vy

where 0 < a;; < 3,y € lp(yy, ..., yn) and for every ¢ = 1,...,m we have
§i i

JF o Tadt Ji o Ji i Ji i Ji
g = [QQI 1 @g2; aq3][aq< 1 Bgy s a%] ce [aq,3m+1 ’ aq,3m+2’ aq,3m+3]

Denote [ = {(i,7) : oij # O},g{]‘ = [all, abi,all]. .. [aéi,sm+1’aq,3m+2) aé":}m 13
Now suppose the contrary, i.e. there is the morphism of loops ¢ : L,, — )

such that u® # 1. Two cases are possible:
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1) There cxists a pare (7,1) € I, such that (gg")“’ =1 for every
g € {1....,m}. Since /' ¢ By x ... x By, and in the defining relations

; { )
Byx ... xB, are (recall that B; = Al 5 see also the definition of the loop
=1,

j
A, )) the equalities

[azz,a;ft,,af]f,t,,} =1, for all (j,1,q,t) # (7.7 ¢, ) or (4, i,9,8) #

("2, 0", ), or (5,4, 4/, # (5,8, ", ) if 1,007 > 3,
Lhen the order of the subloop lp((ggi)“’,q =1,...,m) C L, is grealer than m,
this means that 1t is greater than the order of the loop L. itself, because according
to lemma 3.12 and to the condition |L.] < 37" <m

2) For every pare (j,i) € I there erists an g €{1L,...,m} such that ()P =
1. Using again the relations of the loops By x ... x Bs,Bi and A, ,u® can be
written in the form:

u¥ = [H(a.gi)kpaij,(agi)‘/” (aéi)w]yw
(1.9)
Since y?(y € Ip(yy, . . ¥ = (v v ) 1<i<j<k < n) can be written in
the form of the product of n? asociators, than u® is represented as the product
of n?4+1< 3" < r asociators. We obtained the contradiction with lemma 3.10.
The lemma is proved.

Lemma 3.16 (The second auxiliary result). Let [ is g finite loop of the
variely ONy 3. If L ¢ T, then Q(L) contains a continuous number of different
subquasivarieties. -

Proof.  Accoding tom lemma 3.6. the quasivariety Q(L) contains an infinite

of commutative Joops Maufang L,,, where m takes the values
3 15
my = 3r yMiyp1 = 3m

for i > 1. Analogically, as it was explained in the proof of lemma 2.6, using
lemmas 3.14 si 3.15, we obtain that different subsets of this subsequence of loops
generates different quasivarieties. The statement of lemma now follows,

§4. The basic result.

Theorem. The lattice of subquasivarieties K of commutative loops Moufang
with the nilpotence class < 215 finite if and only if the quaswariety K is gener-
ated by a finite set of loops of the type Heowsos , B so 0o Hisoo, Hrgty Zym , where
Lhe prime number p # 3.
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Proof. Sufficiency. Let £ be the set of all loops of the indicated types in
the formulation of the theorem, and L be the direct product of a finite number
of loops of £. Evidently, K = Q(L) containes only a finite number of loops,
each of them is generated by three elements. So it is sufficiet to show that
every subquasivariety in K is determined by loops generated by three elements.
According to the aparness criteria this will be true if every finitely generated
loop B € K is approximated by itself subloops which are generated by three
elements.

We show that it is really the case. If b € B and b ¢ B, thon it is obvious b
Is approximated by a cyclic subgroup. Let b € B’. Since Hests Hooss, Hopoot,
Hoooooo are respectively approximated by the loops Z3: x F3(My3), Z3 x Z x
F3(N33), Z3e x Z x F3(Njy3), Z x F3(Ng3), then b is approximated by the loop
F3(N33). Let the application ¢ : B — F3(N33;2,y,2) be a morphism of loops
such that 6¥ = [z,y,2]. Then B/B'Kery is a product of 3 cyclic subgroups
of order 3. According to thje theorem 8.1.1. of [2], there can be taken such
generators by B’, ... by, B’ of the loop B/B’ that: '

B/B' = Ip(bB') x ... x Ip(by B),

Kerg- B'|B' = Ip(5;B) x Ip(b3B') x Ip(b3B') x Ip(b4B') x ... x Ip(b, B')

We denote C' = Ip(bs,. .. ybm) C B and show that
lp(bl,bg,bs),nCB =1

Obviously that Ip(by, by, b3)% = F3(Ng3,3) and (CB)» C F3(Ny3)'. Then Ip(by,
by, b3) N CP C Kere - Ip(by,ba, b3)". This means that every element z €
Ip(by1,b2,b3) N CPB can be represented in the form z = ylbs, ba, b3]® for some y €
Kerp and a < 3. Since z € Ip(by, ba, b3) si Ip(by, by, b3) NKerp = Ip(by, by, b3)3,
it results y = 23 for a fixed z € Ip(by,be,b3). So z = 23[by, b5, b3]*. Be-
side of this, taking into consideration that commutative group B/B’ is the
direct product of the cyclic subgroups Ip(b; B'),i = 1,...,m, we observe that
Ip(by,by,b3) NCP C B'. In particular, 2 € B’.

Then according to quasiidentities (8) (evidently they are true in any loop of
the set ), we have z3 = 1, and subsequently [61,b2,b3]* € B'NCE Kerep.
But [by, 64, 53] € Rery only in the case when o = 0, since as it was observed
[bl,bg.bg]“" # 1. It means that lp(ar,az,a3) NCP = 1, what was to show.

23



Since 0¥ = [z,y,2] si (b1,69,63]7 = [£,y, 2)P, B # 0 mod 3, results that
b= 1[b,b2,63]" mod Keryp for some y # 0mod 3. Then b=![b;, ba,b3]" € Keren
B'. But from the representation of the group B/B' and from the inequality

[01,02,63]® # 1 it can be seen that
Kere N B = Up(lbi, by ], 1 <1< 5 < k< m,(i,3,k) # (1,2,3))  CE.

We obtain
b= by, b2,b3)" € CB si b= (b1, b2, b3]"modCE.

[t remains to investigate the natural morphism of loops 9 : B — B/CP. We

have

b = ([by, by, b)) = [b1,bs,b63]CP £ CB,

1.e. the element b is approximated by the loop Ip(b;, by, b3) C B, what was to be
shown.

Necessitation. Let K be the quasivariety which contains only a finite number
of subquasigroups and by absurdity we suppose that K is not generated by a
fibite set of finite nonisomorphic loops of £. It is clear that K contains only a
finite number of nonisornorphic loops of the set ©. This meanbs that there is a
finitely generated loop L € K such that the quasivariety Q(L)is not generated
only by loops of ¥. In this case we shall show that Q(L) C K contains continuous
many different subquasivarieties and so we obtain the contradiction.

Consider the choosen L such that in K there are no such loops as I with
number of generators less than the number of generators of this loop L. this is
why if L is finite L can be considered with the exponent equal to the power of
the number 3 (ie. Lisa 3 - loop). We investigate the cases.

1. For some elements a, by, . .. ,b3n din L

n

a® = H[bsi—z, bai—1,b3] # 1

1z1

Denote by V' the set of matrices of the form

a; a3...ap
B BBy )
which verifies the condition

[a, 07" ... 0537, 60" .. 45" = 1,
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where

0<ea;,<3and 0 < 3i < 3, and investigate the commutative loop Moufang
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B = B(n,V,k) (respectively, B(n,V)) = Ip(z,u, ... ysn i

n

3 :

= H[y(}i—?)y.’ii—l-
Hi=5]

ay,...,a:
N R Y Y . Y ( g g ) ev),
1y, P3n

where 3% (respectively 0) is the exponent of the loop L (and the relations are
given in the variety Ny 5« (respectively, N2)). We show that the loop B € Q(1).
Denote

T = Ip(z3, [z,y,2], for all elements ¥,2 € B) C B.

Any element of the subloop T is approximated by L via morphism of loops of B
in I defined by the applications

Toay b, i=1,.. 3n.
B/T = Z5 x D, where

23 =Ip(zT),D = Fzn (Ny g

n
(respectively, Ny);y, .. -;y3n)/lp(H[y3i—-2yy3i-1)yS:'])-
i=1

Obviously Z5 ¢ Q(L), and according to lemma 1.3 D ¢ Q(L), This means that
B/T € Q(L). Where from following the criteria of apartness we have B € Q(L),
what was to be proved. In virture of lemma 2.6 there are a continuous different,
subquasivarieties in Q(B), so this is true also for Q(L).

2. In L there are valid the quasiidentities

n

A 3 _ _

z *”[331‘—211331'—1,-”33i]~>r =1, n=12...
=1

The elements of the asociator L’ are not approximated by the loop F3(Ny 3).

Really, if this is not so then according to the apartness criterion
L (S Q(L/L, X F3(N2’3)),

which contradicts the supposition. subsequently not all elements of L’ are ap-

proximated by the loop F3(Ny 5).
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According to the theorem 8.1.1. din [2], the loop L in the variety Ny can be

represented as
L=lp(zy,.. 2, || 2" =r; i = Lo hr=1j=1+ L..iym),

where r; € Fn(xl,...,mn)’, and s; are some convinient numbers. We shall
show that for every ; < I the number s; is devided via 3 and according to the
quaslidentities of the condition 2, % =1andr = 1. Really, let in the
contrary, for some i < [ s, is not devided via 3. If r; = 1, than according
to the identity (1), z; € Z(L) si Ip(z;) NL' = 1. It results from here that
L =1p(z;) x lp(z, ... 1Zi-1,Tit1,...,%,) that can not be. Let now ri # 1, then
according to identities (1) and (3) we have

[-’L‘i,%z] = [xf',y,z] or [.’Ei,y,l] = [zslyy,z]_l

for any y,z € L. Where from we obtain that z; € Z(L). According to the
Dik’stheorem [4] the application z; — THZi = T3] #4,5=1,...,n, is extended
up to an morphism of loops ¢: L — L. Since z; € Z(L), results that Kerp =
Ip(z?). But zf can be excluded from the set of generators of the loop L?. Since
pE})NL =1and L/1 = Ip(zi L) x ... x Ip(z, L") € Q(L) we obtain that
is approximated by the loop L¥ x Ip(z; L"), which contradicts the choice of the
loop L.

So the numbers s;,; = L,...,1, are devided by 3, so the loop L has the

representation
L =lp(z,,... 2, | 2" =1,49=1,i= Lysonndioy = Li=i+1,...,m)

We investigate the commutative loop Moufang represented in the variety Ny 3«
(respectively, N, ) as

B =lp(zy,...,z, || v = Li=1,...,m).

It is clear that B ¢ Q(L) and not all elements of B' are approximated by
the loop F3(Ny3). According to lemma 1.5, the lattice of subquasivarieties of
Q(B) is isomorphic to the lattice of subquasivarieties of Q(B/B3). According to
lernma 3.16 Q(B/B3?) continuous many different subquasivarieties. Subsequently
Q(B) and so also Q(L) contain continuous many different subquasivarieties. The
theorem is proved.
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According to the apartness criteria it results from the theorem the following
Corollary. Let L be a finite generated commutative loop Moufang with the
class of nilpotence 2. Then the lattice of the subquasivarieties of L,Q(L) s
either finite or continuous, but Lo@Q(L) s finite if and only if L is the subdirect

product of some loops belonging to the same finite set of loops of L.
§5. The desciption of the lattice L,Q(Z3x x F3(Nj3)).

As it was observed, any quasivariety M generated by the commutative loop
Moufang with the exponent 3%, which contains finitely many subquasivarieties,
is contained in the quasivariety Q(Zzx, F3(N23)) and M = Q(H, 5.0, -,
Hy, s.t,) for some r;, s;, ;.

We introduce the notations:

T ] .o T
51 89 wes Sy
ty, ta ... i, :Q(Hr,.n!p'-')HTnSntn)’

era =¥ =1 & ¥ =1 & P =15[ey=1)1<r<s<t.

Proposition 1. The quasiudentily ¢,5; is true in the commutative loop
Moufang Hyis if anf only if at least one of the inequalities fullfils r < 1’5 <
sht<t.

Proof. Really, let ¢, is true in H,/4s and suppose that r > r/,s > 't > ',
Then in H,,,0 the identity is true B = 1, so also the identity [z,y,z] = 1 do,
that can not be.

Let now be true one of the inequalities r < 77,5 < s',¢t < ¢/, for instance
r < 7', and let for £ = a,y = b,z = ¢, where the elements a,b,c belongs to
the loop Hyige = Ip(z,y,z || 2 = l,y3'l = 1,z3'l = 1), the left side of
the quasiidentity ¢,,, is true, so a® = 1,6%" = 1,¢3 = 1. Since a,b,¢ can be

represented by the form
a=z% PNy b=z Py o= g cyPaz%

where
0< <3 ,0<h <3 ,0<y <3 a ¥ c€Hp

We obtain the equalities

Loqr r ar
Za,d :1] az3 — 1, 33 =1.

X
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and from here
013" = 0mod3” | 33" = 0mod3™ ,a33" = Omod3" .

Taking into consideration the inequality r < 7' we have at the same tine
a1, as, a3 are divisible via 3, so the elements ¢!, %2, %3 belongs to the central

subloop H?1,, C Hyrgipr. Then we have
1

£’y
[ayb,c]::[r01yﬂ1201’x02yﬁ2202’waayﬁazaﬂ —
[yﬁxzax’yﬂzzaa yﬁazas]:zl

Subsequently we can conclude that ¢4 is true in H,ryy. The proposition is
proved.

Proposition 2. If the subquasivariety M is contained in Q(Zsx, F3(N33))
then

rn Te ... Tp
§1 82 ... 8p
M=l t; ty ... t,
for some r;, s;,t; < n the condition is verified ry < ry < ... < 7, and one of the
following:
ri < (S)rig1,
a) 8; < (<)siv1s
ti >ty
s <, Pidd s
b) si > (>)siv1,
ti > (>)tiy1s
ri < (S)riy1,
C) 8i > Sit+1,

- i < (<D
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Proof. As it was observed

where r;,5;,1; are not determined in a unic way. We consider the system
{Hrs.t,,1=1,...,n} those posible system which contain the least number of
nonasociative loops. It is clear that we can suppose that r; <7, < ... < r,, also
we observe that the choosen system contains a single cyclic group H,o, = Zs.
if the exponent of the quasivarieties M is greater than the exponent of each
nonasociatice loop and in the contrary case the system does not contain groups.

To prove that r;,s;,1; verifies the condition a), or b), or ¢), is sufficient to
show that that in each of these conditions there can not be two equalities but
two inequalities impluies the third. We verify this fact for the condition a)
(analogically it is verified for conditions b), ¢)).

Suppose that r; = Ti+1,8 = Sig1. f 0 =r; = r;; |, we obtain the contradic-
tion with the number of groups of the system. Let 0 # r; = 7it1, then

Q(Hrihtn H"i+1 ,8.‘+xl‘+|) = Q(Hri.!,min.(z",t,-+\); Hao max t,-)
1

contradicts the condition of minimality of the number of nonasociative loops of

the system.

Also there can not be the equalities
Ti = Tignti = tipr sau s = si4,¢ = lit1
We prove now that is true the implication
Ti<rigr & s <sipp oty > Lit1
(The implications

i S Tig1 & S8 < Sip1 1 > ti+1,

T < Py & t; > tigy1 — s; < (<)S,‘ +1

are proved analogically.
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Really, if ¢;4, < t;, then

Q(Hr,s‘t, ) Hr,+|s,+1t,+,) = Q(Hr,n,L, ) ]{OOI,_H)

contradicts the minimality of the number of nonasociative loops. The proposition

1s proved.

Proposition 3. The quastvariety

s contained in the quasivariety

if and only if max(rl,s!,t}) > maz(ri,s;,4;) and for every r; # 0 there is a
1 1
triplet
r
g
si |, such that r; > r5>0,8 > s and t; > t.
1
j
Proof. The sufficiency . For every ¢ and j(7),

Hrs1i € Q(Hr;,;_,;,me,(,;,,:,n)

ifr;#0

The necessitation. maz(rl,s},t}) > maz (ri,si,1;) is obviously true since
the exponent of the first quasivariety is not greater than the exponent of the
second. Suppose that that the second condition is not fulfiled, i.e. for some
i <nandsomej<mornr < r} or s; < 8j,0rt; < t;-. Then the quasiidentity
©r,s,t, 15 false in H sty and is true according to the proposition 1, in the loop
H’;’;";‘ The proposition is proved.

Corollary. If

’ /
"o T, ... 1
/ /
S1 ... 8y S .. S,
7 7
ty ..ty = 1 e 1y,
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then the matrices

8] Tn T'l T'n
N / o
$1 Sn si s'1 sy,
/ <l

11.‘.ln r’l""”n

cotncide.

Proof. Really, accoding to the condition we obtain

ma:c(r,-,s,-,ti) = TTL(I.:E(?‘j,Sj,tj).
1 J

If r; # 0, according to proposition 3,

ri <rhysi < s}, ¢ <t

7 ! ’
T Srk,sj Ssk,tj < itk

for some indices j, k. Where from we obtain the inequalities

m Sty s <okt < g

which are true, according to the proposition 2, only in the case when i = &.
Subsequently

Let N a quasivariety defined by the identities of (i), (ii) and quasiidentities
of (iii) - (v) and suppose that N # Q(F3(Ny 3¢)).

/

/
Ty =7r; g

181 = s},t,- =
what was to be proved.

Observation 1. For k > 1 the quasiidentities of the loop F3(Ny 3¢) has the
following basis

(i) 23" = 1,

(i) lf2., 2], 0] = 1,

(iii) the asociator quasiidentities of the loop F3(Nj3),

3 _

n
(iv) 27 = [T[zai—2, 2301, 23] > 23 = 1,n = L . S
i=1

(v) 2 =15 [z,y,2] = 1.

Proof. Let N be a quasivariety defined by the identities of (1), (ii) and
quasiidentities of (iii), (iv), (v) and suppose that N # Q(F3(Ny3x)). We in-
vestigate a finitely generated loop L € N,L ¢ Q(Fs(Ns3)). Suppose that
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L=F,/H. Let M = F. N H. Then there is such element u € F! and u ¢ M,
which is not approximated by the loop F3(Ny 3c). Subsequently the quasiiden-
tity M =1 — u=11s true in the loop F3(N33) and is false in F./M. But this
Is not true since in F, /M there are true the quasiidentities (iii).

Corollary. The quastvariety L generaled by a finite commutative loop Moufang
contains a continuous set of subquasivarieties if and only if in some 3 - subloop
of L s false one of the quasiidentities:

a) Xs:H[X3i_2,X3i__],X3i]'—)X3: 1)’: 1727"‘)
i=1
b) theasociator quasiidentities ofthe loop F3(N33).
Observation 2. For k 2 2, the lattice L,Q(Z3i x F3(N23)) is not modular

Really that is the case since we easily convince ourselves that the quasivari-
eties

Q(Z32 x F3(Na3)), Q(F5(N2.5), Q(23:), Q(Zs)

formed in the lattice L,Q(Zs x F3(N23)),k > 2, a nonmodular sublattice of
five elements.

Below we illustrate the aspect of the lattice Lq(Q(Z3r x F3(Na3)) for k =
1,2,3.
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o(Z x 5Ny 0)) is

Observation 3. For any natural number k the lattice |

Ji

nite, nonmodular and has the aspect:
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