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ABSTRACT

In this paper we consider linear controlled stochastic systems subjected
both to white noise disturbance and Markovian jumping.

Our aim is to provide a mathematical background in order to give unti-
fied approach for a large class of problems associated to linear controlled
systems subjected both to multiplicative white noise perturbations and
Markovian jumping. First we proof an Itd type formula. Our. result
extends the result of [24], to the case when the stochastic process z(t)
has not all moments bounded.

Necessary and sufficient conditions assuring the exponential stability
in wean square for the zero solution of a linear stochastic system with
multiplicative white noise and Markovian jumping are provided.

Some estimates for solutions of afline stochastic systems are derived and
necessary and sufficient conditions assuring the stochastic stabilizability
and stochastic detectability are given.

A stochastic version of Bounded Real Lemma is proven and several
aspects of the problem of robust stabilization by state feedback for a
class of linear systems with multiplicative white noise and Markovian

jumping are investigated.



1 INTRODUCTION

The control of stochastic systems with multiplicative white noise received
much attention in the last four decades. For the results concerning the sta-
bility for stochastic systems with state dependent noise we refer the readers
to [1, 5, 21, 22, 23] and the references therein. The linear quadratic problem
associated to a linear stochastic systems with multilicative white noise was
investigated in [6, 16, 35, 36].

Robust stabilization for this class of stochastic systems with multiplicative
white noise was intensively investigated in [8, 12, 17, 18, 28, 31].

There exists also a great number of papers in which the controlled systems
with Markovian jumping are studied. Such systems can be used to represent
many important physical systems subject to random failures and structure
changes such as electric power systems [37], control system of a solar thermal
central receiver [34], communications systems (2], aircraft flight control (26},
control of nuclear power plants [33] and manufacturing systems [3]. For the
results concerning the stability -and optimal stabilization problem. we refer
the readers to [27, 20, 29, 25].

The robust stabilization problem for linear systems with Markovian. jumping
was studied in [30, 32, 9] and the references therein.

In this paper we consider linear controlled stochastic systems subjected both
to white noise disturbance and Markovian jumping.

Such class of systems was considered in [24], where the problem of the ex-
istence of the bounded solution was discussed and in [15] where sufficient
conditions concerning stability and boundedness of the solution are given
and in [15] where the infinite horizon optimal control of linear stochastic
systems with quadratic cost integrand is studied.

Our aim is to provide a mathematical background in order to give unified
approach for a large class of problems associated to linear controlled systems
subjected both to multiplicative white noise perturbations and Markovian
jumping. The problem of exponential stability in mean square is investigated
in connection with a class of linear positive operators which are defined on a
finite dimensional Hilbert space adequately associated.

The paper is organised as follows:

The section 2 contains the list of notations used throughout the paper while
the section 3 contains the proof of an Itd type formula. Our result extends
the result of [24], to the case when the stochastic process x(t) has not all
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moments bounded and this is the case when the process x(t) is a solution of
a system of stochastic differential equations whose inputs are non-anticipative
stochastic processes which are in L*([ty, T] x §2).

In section 4 we prove several results containing necessary and sufficient con-
ditions assuring the exponential stability in mean square for the zero solution
of a linear stochastic system with multiplicative white noise and Markovian
jumping.

In section 5 we derive some estimates for solutions of affine stochastic sys-
tems and in section 6 some necessary and suflicient conditions assuring the
stochastic stabilizability and stochastic detectability are given.

A stochastic version of Bounded Real Lemima is given in Section 7, while in
section 8 we investigate several aspects of the problem of robust stabilization
by state feedback for a class of linear systems with multiplicative white noise
and Markovian jumping.

2 NOTATIONS AND PRELIMINARY RE-
MARKS

The following notations will be used throughout this paper.

A. R" is the real n-dimensional space.
R., is the set of nonnegative real numbers.
R™*™ is the set of all real n x m matrices.
I, is the identity matrix in R".

If X is a matrix (or a vector) X" is the transpose of X; if A is a matrix
|A| is the operator norm of A and T'rA is the trace of A.

In this paper D = {1,2,...,d}.
If H is a matrix, then H > 0 means that H is symmetric positive
semidefinite.

B. By S, we denote the space of all n X n symmetric matrices and by S?

we denote the space of all H = (H(1), ..., H(d)) with H(i) € S,
S¢ is a real Hilbert space with the inner product

d

(H,G) =3 Tr(H(i)G()).

i=1



The norm induced by this inner product is |[|H|ll = (H, H)'Y? for
all H € 84 On 8¢ we consider also the norm |H| = max{|H (i)
1<i<d},H eS8 We have

[H| < [|H]|| < Vnd|H]|. (2.1)

If T : 8¢ — 8% is a linear operator, then ||| is the operator norm of
T induced by the norm |- | on 4. If T is a linear operator on st ™
stands for its adjoint operator. If H € 84, we say that H is positive
and write H > 0 if H(i) > 0 for all i € D.T : S& — S} is called positive
operator if H > 0 implies TH > 0. It is easy to see that if T": St — 8¢
is a linear positive operator, then

T =1TJ]| (2.2)

where J € 83, J(i) = L,,ie D. T H: I — S? we shall say that H
is uniformly positive if there exists 6 > 0 such that H(t) > 8J for all
ted.

Lemma 2.1 If T : 8¢ — 8% is a linear posilive operator, then T*
is linear posttive operator.

Proof: Let H € S4,H >0 and T'H = H = (HQ1), H(2), ..., H(d)).
Let i € D be fixed and = € R" arbitrary. We take G € 8¢ where
G = (G(1),G(2), ...,G(d)) with G(k) = 0 if k # i and G(k) = zz* if
k=4,

We have z* H(i)z = (H,G) = (T*H,G) = (H,TG) =¥i, TrH(1)G(3),
where TG = (G(1), ..., G(d)). Since T is a linear positive operator then
G(i) > 0. Since H(i) > 0 it rcmains to prove that TrS,;S; > 0, if
Sk € Sn,Sk > O,k = «}, 2 IfsS >0 then §7 = 2_7;:1 Aj@j@} where
\; > 0 are eigenvalues-of S and e;,7 = 1,...,n is an orthonormal basis
of orthonormal eigenvectors of S;. We have

T”'SlSZ o= ZT’I‘X](-?JB;SB = ZAJ€;S2€J 2 0
j=1 j=1

and the proof is complete. V74

. By M2, we denote the linear space of A = (A(1), A(2), ..., A(d)) where
A(i) € R¥™. On M¢ , we introduce the norm |A| = max;ep{|A(i)|}-

Thus, (M¢,,|-|) is a finite dimensional Banach space. Sometimes
Mg, will be denoted M¢&. Obviously 85 C M.
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D. Throughout this paper {2, F,P} is a given probability spaée; the ar-
gument w € §) will not be written.
E[z|H] denotes conditional expectation of z with respect to the o-
algebra H,H C F and Elz|n(t) = i] stands for conditional expectation
on the cvent 7)(t) = i; Ex stands for expectation of random variable .

As usually, two random vectors z and y are identified if z = y a.e.
(almost everywhere).

w(t) = (wi(t), .., w ()t € Ry is a standard r-dimensional Wiener
process on the given probability space (sce [13]).

Throughout the paper n(t),# > 0 is a right continuous homogeneous
Markov chain with state space the set D and the probability transition
matrix P(t) = [p;;(t)] = e%,t > 0; here Q = [g;;] with Yiia; =0,i€
D and g; > 0if i # J.

Assume that P{n(0)) =14} > 0, for all i € D.

For each t > 0 we denote F, the smallest g— algebra F; C F, containing

all sets M € F with P(M) =0 and with respect to which all random
vectors {w(s),0 < s < t} are measurable.

By G, we denote the o—algebra generated by 7(s),0 < s <.

Throughout the paper we assume that o—algebra G, is independent
of g—algebra F; for-all t > 0. 'H, stands for the smallest o—algebra

containing o— algebras F; and G;.

By L2 ([t ), R'), %, > 0 we denote the space of all measurable func-
tions u : [to,00) x © — R with the properties: u(t) is H;-measurable
for every t > t; and

Bl /t°° lu(s)*ds|n(to) = i] < co,i € D.

Since for every ¢ > 0, H, contains all sets M € F with PM)=0itis
not difficult to verify that Lf)’w([to, c0), R") is a real Hilbert space with
the inner product

d 0
<uv>=Y B /to u* (o (t)dtn(te) = i)- (2.3)

The space L2, ([to, T}, R!),0 < t; < T is defined in a similar way.



3 ITO TYPE FORMULA

Let o : [to, T] — R™" be a matrix valued function with the columns o1(t)sees
o.(t), ox € Lf]‘w([t(,,T],R”). The stochastic integral

2(t) = /t: o(s)dw(s), ¢ € lto. T)

is well-defined (see [Friedman]) because the o—algebras H,,t > tg have the
properties used in the theory of stochastic Ito integral: ie. My C Hy, if
t, < to, F;, C H, and M, is independent of the o-algebra generated by {w(t +
h) — w(t),h > 0} for every ¢ > 0.

Hence, from Theorem 2.5 and Theorem 3.2 in [13], chapter 5, it follows, with
probability one, that z(t) is a continuous process, z(t) is Hi-adapted process,
E[z(t)lHio] = 0’

BlleP 4] = B loAFdslHul.t € o T (3-1)

and we conclude that z € L2, ([to, T], R").

Let us consider a € L2, ([to, T),R") and a n-dimensional random vector &
H,,-measurable with E[¢[* < co.

It will follow that
o(t) = £+ /t:.a(s)ds + ]tt o (8)dw(s), ¢ € lto, T} (32)

is continuous with probability 1 and z € L2 ,([ts, T}, R?). If z(t) verifies (3.2)
we write '

dz(t) = a(t)dt + o (t)dw(t)
t € [to, T) and z(to) = &.
Theorem 3.1 (A Ito type formula). Let §,a and o be as above and let
v(t,z,i) = = K (t,i)z + 2K (¢, i)z + ko(t, 1)

where K : [to,T) x D — &,k : [to,T] x D — R", kg : [to,T] x D — R are
C1-functions with respect to t. Then we have:

E[(v(t, 2(),n(t)) — v(to, €, 1)) ln(to) = i]
= E[fio (2 (5) K (s,(s))2(5) + 2k*(s,1(s))(5) + ho(s:(s))
12" ()K (s,n(s)) + k' (s,m(s))a(s) + Tr(o* (s)K(s,n(s))o(s))

d
+ 2 U(S’ m(s)vj)qq(s)j}dsl'r](to) = 'l] (33)
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for all i € D.t € [tg,T] and for the stochastic process z(t).t € [to, T},
which verifies (3.2).

Proof: The proof consists in three steps:

Step 1: Assume that &, a,o satisfy the assumption in the statement and
additionally £ is a bounded random vector a, o are bounded on [tg, T] x €2,
and a(t), o(t) are, with probability one, right continuous functions on [tg, T}

Under these assumptions, applying Theorem 6.3 in [13], we deduce that,

sup Elz(t)|* < oo,
télto,T]

for all k € N,k > 1. We can write:

v(t + h,z(t + h), n(t+ h)) —v(t, x(t),n(t))
= o(t + h,z(t + k), n(t +h)) — v(t,z(t),n(t + h)) + v(t, z(t),n(t + h))

—v(t, z(t),n(t)) = ?_‘éan(thh):j(?”(t + h,2(t + k), §) — v{t,2(t), 7))
] ot z(t), (t + h)) — o(t 2(8), 1),
where yy is the indicator function of the set M.
For each fixed j € D, we can apply the It formula (see [13]) and obtain
t+h
w(t + hy ot + 1), 5) — v(t, 2(£),5) = /t m;(s)ds

12 [ (@ (K5, 3) + (5.0 (5)du)

where m;(s) :az*(s)f{(s,j)m(s)+21§*(s,j)a;(s)+k'0(s-, §)+2z*(s)K (s, j)als)+
2k*(s, j)als) + Tr{o* (K (s,3)o(s)). 7 € .

Using Lemma 1 in {24], we deduce that
tth ) .
Blxenes [ (6K (s.3) K (5, )0 (s)du(s) ] = 0.

Hence Biyns (@ (9)K (s,5) + k(5. 9)o(s)dw(s)n(to) = il = 0 and
finally we deduce

E((v(t + h,z(t + h),n(t + h)) — v(t, z(t),n(t + h))|n(te) = 4]

d t+h
=3 Bl [ mile)dsttte) =i (34)
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Tt is obvious that m;(s) is, with probability one, right continuous and hence

we have:
t+h

- .
}}{%E t m;(s)ds = m;(t), t € [to.T).j € D.

Since 7(t) is right continuous we can write:
1 t4h
o = Xo(e )= [ m;(8)ds = Xoy=5715()- (35)

On the other hand, since sup,cy, ) Ele(t)|* < oo we obtain that there exists
B > 0 (not depending upon t, h) such that:

1 t+h
El 4 te+)=3 /t m;(s)ds|” < 5.
Thus, from (3.4) and (3.5) it follows:
1
lim - B[(v(t + A, 2(t + k)t + h)) — v(t, 2(8), n(t + 7)) n(e) = il

= ZE[X,,@)_]NL]( Yn(te) =i] = Elm@)nlt) = .t € [to, T),i € D. (3.6)

where

m(t) =o' (K (8, n(®))a(t) + 25" (&, n(®))z (@) + kot n(2))
+2[z* (4K (8, n(t) + k' (&, n()]a(t) + Tr(o” (K (&n())o (1)

Further, we can write:
E[(v(t, (t), n(t + h)) — v(t, 2(£), n(£)))In(to) = i]
d
= (Y. xnem=sv(t, 2(8), 5) — v(t, (@), n®))In(to) =1 (3.7)

=1
d
S Blo(t, a(t), 1) Bl ol Ml lntto) = i) — Blolt, (2, n(e)) nlto) =
7=1
Since o-algebra F, is independent of G, for all ,s € [to, T it is easy to verify
that:
Exoen=i e = Eluesn=i1G = Elxnem=3n(t)] = Powyi(R).  (3.8)
Hence from (3.7) and (3.8) we have

B((v(t, (1), n(t + k) — v(t, z(t), n()))In(te) = 1)
= B[} (olt, z(t),5) — v(t, @(£),0(£)))Paey; (R) In(te) = i).

J#at)



Recall that P(h) = [p;(h)] = e h > 0 with }__:;1_:] ¢; = 0. Applying
Lebesque’s Theorem we obtain that

i - B{(0(t,2(6), (e + ) = v(t.2(t) n(O) i) = (3.9)

d
=" Elo(t, z(t), )ay0;) 1nte) = 1.
j=1
Combining (3.6) with (3.9) we conclude that

fm 1 Bl(0(6 + 1) (¢ -+ B n(t-+ ) — ol o(e) 1O nfta) =

= B[(m(t) + 3 v(t, 2(t), 3)gnw1)1n(to) = .

Denote
Gi(t) = Elv(t, z(t),n(t))In(te) = il.i € D

and

d
hi(t) = E[(m(t) + Z v(t, 2 (t), 3) gy 10 (o) = 1.

j=1
Since sup,eg, ) Z(M(t) + Xja v(t, 2(t), §)qnw;)? < oo it follows that hi(t) is
right continuous and therefore

1 ft+h
lim— [ hi(s)ds = hi(t), t € [to, T)-

aN\O h Jt

Hence
1 t+h

lim = (G;(t + h) — Gi(t) — / hi(s)ds) = 0,t € [to, T),i € D.  (3.10)

hN\O t
Since the process 7(t) is continuous in probability (see [7]) it follows that
v(t, z(t),n(t)) is continuous in probability.
Having suptE[tO,T]Elv(t,:::(t),77(t)){2 < oo it follows that Gi(t),i € Dis a
continuous function and thus from (3.10) we conclude that

Git) — Gilto) = /t ‘hi(t)dt,t € [to. T)i € D

and so the equality (3.3) holds.
Step 2: Assume that & is Hy-measurable and Fl¢|* < oo, and a,0 are
bounded on [ty, T] x Q,a(t), o(t) are H,-adapted. Let

& = EXzks

ap(t) = k/t a(s)ds,

maz{t— %,to}

1
oult) = / o(s)ds.
ax{t—%to}

m



Tt is obvious that a; and oy are continuous (with probability one), bounded
on [tg, T] x 2, and H-adapted. From Lebesgue’s Theorem it follows that

lim [ (lag(t) — a)f + low(t) — o))t = 0

k—o0 Jt,

and applying the Lebesgue bounded convergence theorem we have

k—o0

lim E’/:(lak(t) — a(t)|* + |ow(t) — o(t)*)dt = 0. (3.11)
From Lebesgue’s Theorem it follows that
lim Elg, — £ =0.
It is casy to verify that sup;ey, 7 Blz(#)]* < oo and
T
sup Bloat) ~ a(®)F < 3Bl — &P + (T —t) [ lau(t) ~ a(t)'ds
i€fto,T] to
T
+r /t lox(£) — o ()],
k > 1, where ) )
T = §k+/t ar(s)ds +/t. ar(s)dw(s).
Applying the result of Step 1 for each k > 1 we obtain
E(v(t, m(t), n(8)) — vlto, &, 1))t} = i] =
B Toi(s)K (s, m(s)ms(s) + 28 (s, () i(s) + ol ()
+2(z}(s) K (5,1(5)) + k" (5,n(5)))ar(s) + Tr(ai(s) K (s, 0(s))or(s))

d
+ };1 v(s, z(8), ) ue)ildsln(to) = i}. (3.12)

Taking the limit for kK — oo we conclude that (3.3) holds.

Step 3: Consider now that §,a,0 verify the general assumptions in the

statement. Define
ax(t) = a(t)Xja()|<k

k(t) = o (D)X o)k

Applying Lebesque’s Theorem it follows that @, and & verify a equality of
type (3.11). On the other hand it can be proved that

sup E|#e(t) — o(t)P < 2| /tOT(T ) (@) — a(®) + rlo(t) — o(t)|dd

tefto, T

40



where Zi(t) = & + f,to ax(s)ds + fzio ak(s)duw(s).

Now, applying the results from Step 2 for £, ax, o, Zx we obtain an equality
of type (3.12) with &, a, ok, 2 replaced by §, a, ok, Tx.

Taking again the limit for kK — oo we conclude that (3.3) holds and the proof
is complete.

Remark In [24] was also proved a It type formula as (3.3) for a class of
nonlinear functions v(t, z,{) which contains as a particular case the functions
which are quadratic in & while the process =(t) is a solution of a system of
stochastic differential equations with Markovian jumping, z(to) = o, %o €
R™, z(t) satisfying sup{E|z(t)|?,t € [to,T]} < oo for every p > 1 and all
T >t > 0. In this case, the It6 type formula follows easily by using the
reasoning in the first step of the proof of Theorem 3.1. The particular case
of the function v(t, x, i) considered in Theorem 3.1 was choosen in order to
be sure that the reasonings in steps 2-and 3 of the proof are valid, when the
process z(t) is in the general situation described in (3.2).

4 STABILITY OF LINEAR STOCHASTIC
SYSTEM DESCRIBED BY DIFFEREN-
TIAL EQUATIONS WITH MARKOVIAN
JUMPING AND MULTIPLICATIVE
WHITE NOISE

A. Consider the linear system:

dz(t) = Ao(t, n(t))=(t)dt + XT:Aj(t, n(t))z(t)dw;(t). (4.1)

=1
Throughtout this section we suppose that A;(-,1),0<i<rare bounded on

R. and continuous matrix valued functions.

By the standard procedure of succesive aproximation and by using the prop-
erties of stochastic integral, it is easy to obtain the existence and uniqueness
of the solution x(t,ty,To),t > to > 0,20 € R” of system (4.1) having the
properties z(tg) = xg, (-, g, To) € L%,w([to,T],R”) for all T > to, z(-, to, Zo) is
continuous with probability one. Moreover, it can be proved that

sup E|z(t, ty, 20)|* < oo,
tefto,T]

forallpe N,p>1.

11



By ®(t,s),t > s we denote the fundamental random matrix of solutions
associated to system (4.1).

Hence, x(t.tg, zo) = (L, to)mo. t > 5. Let $(t,49).¢ > to be the fundamental
random matrix solution associated to the stochastic differential equation:

dz(t) = [~ Ayt () + D (ALt () )2(8)dt — Y ALt n()=(8)dwi(t).
k=1 k=1
Using the Jt6 formula (see [13]) we obtain:
B(t, o)D" (B, t0) = " (¢, o) O(t, t0) = In,aet 20

hence the matrix ®(t, o) is invertible and ®7'(t, %) = (¢, to)-
B. On the Hilbert space S¢ we define the linear operator L(t) : 8¢ — &2 by

r d
(L(t)H) (i) = Ao(t,1)H (i) + H () A (2, 1) +k§_:Ak(t, i) H (1) A (¢, i)+'2_: g;:H (7),

HcS83,ieD,t>0.

On the space 8¢ we consider the linear differential equation

ds(t) ‘
= L05(). (4.2)

By S(t,to, H) we denote the solution of the equation (4.2) with the initial
condition S(to,to, H) = H,H € 2.

Let T(t,to) be the linear evolution operator associated to the equation (4.2).

We have S(t,to, H) = T(t, t)(H). It is easy to see that T(t,s) = (T(s,t)) .
T(s,s) = J (J being the identity operator on the Hilbert space S%).

We have also

d

;l;tT(t,s) = L({t)T(t.s)
%T*(t,s) = T*(t,s)L'(t) (4.3)
%T*(s,t) — LT (s,0).

It is not difficult to check that

r d
(L' (£)H)(3) = Ag(t, 1) H(i)+H (1) Aot i)+k§_: Ap(t, ) H () Ag(t,9)+) a5 H (),

7=1

12
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HeSieD.t>0.

Remark. If Ai(t,i) = Ai(i),k € {0,1,..,r},i € D,t € R, we say that
the system (4.1) is “in the stationary case”. In this case the operator L :

S¢ — 8¢ does not depend upon ¢, and the linear evolutiou operator defined

by the equation (4.2) is T(t,ty) = e2(-1%) where elt = 352, (LZ, , the sum is

convergent uniformly with respect to ¢ in every compact subsets. It is easy
to see that T*(t,ty) = el '(t"%),

Lemma 4.1 We have
(T (t,t0) H) (i) = E[2*(t, to) H (n(t)) 2(t, 0) In(to) = i]
for allt >t >0,H € 8%,i € D.
Proof: Let U(t, 1) : S¢ — S¢ be defined by
(Ut ) (D)) () = B (¢, o) H(n(8) @(¢, t) (k) = i,
HeS%ieD,t>t.
Take H € 8%, we define v(t, x,1) = 2" H(i)z,x € R"i € D,t > 0.
Applying Theorem 3.1 to function v(t, z, 1) and to equation (4.1) we obtain

2 (U, o) (H)) i)z — =" H(i)z = 2 [ (U(s,t0) (L*(s) H))(i)dsw.

Hence
d

Ut to) = U(t, o) L7 (£)-
Since U(to, to) = T*(to,t0) and using (4.3) it follows that
Ut,s) =T(,s)
t > s and the proof is complete. 27
Combining the results of Lemma 4.1 and Lemma 2.1 we get:

Corollary 4.2 The evolution operator T(t,s) and its adjoint operator
T*(t.s) are positive operators on 82 for everyt > s> 0.

Proposition 4.3 Under the considered assumptions, there exists v > 1

such that
0 J > T (t,40)J > e 70T

for allt >ty > 0,where J € 8%, J(i) = I,,,i € D.

Proof: Applying Itd type formula (3.3) for the function v(t, =, z) |2,
t >0,z € R",i € D and the equation (4.1) we obtain for all i € D

B{9(t, to)nolln(te) = i ~ leof? = BL [ g(s)dslnlta) =
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t > ty, where
g(t) = 25 @' (¢, to)[Ag(t, n(t)) + As(t, 1(2)) +ZA,'C(t,1/(t))Ak(t, 1(t))] D (¢, to)zo-
k=1

Since A(t,i) are bounded functions it follows that there exists v > 0 such
that |g(t)] < 7|® (¢, to)zo[>. On the other hand,

d . :

2 Bl o)l = i = Bla(Olu(to) =
t>t, 1€ D,

VB[ (2, to)zolInte) = 1]

d .
— B{|®(t, to)wo|*n(te) = 1]

dt
P “WEH‘I’(tto)wo!zlﬂ(to) — 'L}

Vv

t > t;. Hence,

) go? > B8 (2, to)aolln(to) = i] > € aol’, ¢ > to,i € D.

The conclusion follows from Lemma 4.1,

C. Let us consider A; : I € R — MZ (I being an interval) which are
supposed to be continuous functions, k = 0,1,..,r,Q € R¥¥ is a given
_constant matrix whose elements-satisfy the condition ¢;; > 0, if i # j. The
system (Ag, A1, ..., Ar; Q) defines the linear operator L(t) : 8¢ — 8¢ by

(L(t)H) (i) = Ao(t, 8 H (i) + H(i) 45(t, 1)

¥ d
+ 3 Ap(t, i) H(@) AL 0) +D_auH ()i €D (4.4)
k=1 =1
for all H = (H(1),H(2),...-H(d)) € 81,
Consider the linear differential equation on S:

d

ES(t) = L(t)S(t) (4.5)
where L(t) is given by (4.4). Let T(t,1o) be the linear evolution operator on
S¢ defined by the differential equation (4.5).
We show that the results of Corollary 4.2 and Proposition 4.3 still hold also
for the operator T'(t, o) and its adjoint operator T*(t,to), even if the operator
L(t) in (4.4) is not associated with a system of differential stochastic equation
with Markovian jumping.
Proposition 4.4 If T(t, 1) is a linear evolution operators on S¢ defined
by the linear differential equation (4.5) then the following hold:

14



(i) T(t.to) > 0,T(t,ty) >0 for all t >ty t.tg € 1.

(ii) If t — Ai(t) are bounded functions, then there exist & > 0,7 > 0
such that:

T(t,to)J > 66*’7(1__10)']’ T (t,to)J > 6e~'y(t—to)J

for all t > ty,t,ty € 1.

Proof. To prove (i) we consider the linear operators Lyi(t) : 8¢ — S, L(¢) :
S 8¢ by

LOME = Woleed) + SLIHO) + HOM0) + 0l
EOME) = Y AEITOHED+ D HG)i€D
k=1 j=1,j#i

H=(HQ), H2),..,H(d) e S5, t € I.

It is easy to see that for each ¢ € I, the operator L(t) is a-positive operator
on S%. Let us consider the linear differential equation

ds(t)
B — Lwse (456)

and denote T)(t,%,) the linear evolution operator on S¢ defined by (4.6). By
direct calculation, we obtain that

(T (¢, to) H) () = Pi(t, to) H() i (¢ o)
for all t > to,i € D, H € S? where ®,(2, to) is a fundamental matrix solution
of the deterministic differential equation on R"
d B oo, 1 I et
520 = [Ao(t 1) + S gilu]a( )-
It is clear that for each t > to, Ti(t,to) > 0. Since the linear differential
equation (4.5) is written as

%aazmuww+iwﬂﬂ

we may write the following representation. formula

T(ti tO)H = T} (t, t())H + /; Tl(t, S)E(S)T(S,-tQ)HdS

15



for all H € St > t,.t.¢, € I.
Let H € 8% H > 0 be fixed. We define the sequence of Voltera approxima-

n?

tions Si(t), k > 0,t > £, by
So(t) = Th(t, to) H
t ~
Sie1(t) = Tyt to)H + | Ti(t, s)L(s)Sk(s)ds k= 1,2,...
to

Since T3 (t, to) is a positive operator on S¢, we get inductively, that Si(s) >0
for all s > to,k = 1,2, .... Taking into account that lim; .. Sk(t) = T(t,to)H
we conclude that T'(,to)H > 0, hence T(t, o) > 0. By using Lemma 2.1 we
get that the adjoint operator T*(t,%o) > 0, is positive.

(ii)  Firstly, we show that there exist 6 > 0,7 > 0, such that

T(t, to) H| > e~ H]|
IT* (¢, to) H| > 6| H| (4.7)

for all H € 8%,t > to,t, 1 € 1.
Let us denote v(t) = |||T( t)HI|P = 3T, to)H,T(t,to)H). By direct
calculation, we obtain

-C%v(t) = (L{)T(t, to)H, T(t, to)}H), t = to.

Under the considered assumptions there cxists 4 > 0 such that

| o)l <M I,

d
|Zo@)] < 2v(t),  E2 %

Further we have
—(—{v(t) > —2yu(t), t=>t
dt
or equivalently
d
dt
for all t > t,. Hence the function ¢ — v(t)e?"® %) is not decreasing and
v(t) > e 2 ly(ty). Considering the definition of v(t) and using (2.1) we
conclude that there exists 6 > 0 such that

[v(t) eZV(i—te)]_ >0

|T(t, t0) H| > se~7¢0)| H|

which is the first inequality in (4.7).
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To prove the second inequality (4.7), we consider the function
5(s) = 1/2|||T* (t,s)H|||>. H € S%.s < t.s.t € I.

By dircct computation we obtain
d .
EU(S) = —(L'(s)T*(t,8)H,T"(t,s)H).

Further we have P
— () < o]
|-3(6)] < 240(s)
and
d
ds

thus we obtain that the function s — 9(s)e’"®~* is not increasing and there-
fore #(s)e® =) > §(t) for all s < ¢ hence

—[8(s)e” ) <0,

T (¢, ) HII[P 2 e H|P

Using again (2.1) we obtain the second inequality in (4.7).

Let z € R%i € D be fixed; consider H € 8% defined by H(j) = 0 if
j i, H(j) =az* if j = 1.

We may write succesively

o' [T(t,t0)J)(D)z = Trlee’(T(E, to)J)(z)} (H,T(t,t)J)

= (T*(t,to)H, J) = ZTTT"(t o) HJ(9)

> Ed: T*(t, o) H)(i)] > max |(T" (¢, to) H) (i)
= ;‘ T*(¢,to) H| > 67|
Since z € R is arbitrary we get
[T(t, to) J)(i) > e "L, (V)i € Dt >t >0
or equivalently (T'(t,t0)J) > §e~1(t=%) J Wt > to. The second inequality in (ii)

may be proved in the same way.

D. Definition 4.5 We say that the zero solution of the system (4.1) is
exponentially stable in mean square, or that the system (4.1) generates
a mean square exponentially stable evolution, if there exist > 1,a >0
such that

E[®(t, to)zo[*|n(to) = i] < Be™ 7 |zo|?

17



forallt >t >0,z € R",ieD.
Now we prove:
Proposition 4.6 The following are equivalent:

(i) The zero solution of the system (4.1) is exponentially stable in mean
square.

(i) There exist 3> 1,a > 0 such that

T (¢, to)|| < B¢
for allt > t; > 0.
(iii) There exists § > 0 such that

Bl [ 1ot to)uPalntio) = ] < BleaP

A
for all tg > 0,z € R*,i € D.

(iv) The Liapunov type equalion on Sé
K@) +L'G)K@E)+J=0 (4.8)

has a bounded on R, and uniformly pozitive solution.

(v) There ezists a C' function K : R, — 8¢ uniformly positive and
bounded with its derivative bounded which verifies the following linear
inequality on S2

9@ + K@) <0 (19)

uniformly with respect tot € Ry.

Proof: From Definition 4.5 and Lemma 4.1 it follows that (i) < (ii). It is
easy to see that (i) = (iii). We show now that (iii) =(iv). Let

R(t) = /t (s, 1) Jds.

From (iii) and Lemma 4.1 it follows that 0 < K(t) < 6J,t > 0. Using
Proposition 4.3 we obtain that K(t) > %J, t>0.
From (4.3) it follows that K is a solution of the differential equation (4.8).

(iv) = (v) follows immediately since a uniformly positive and bounded solu-
tion of the equation (4.8) is also a solution of the inequality (4.9).

14
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We prove (v) =(iv). If Kt = (I;’(tl)lz(tQ),f((t d)) is a uniformely
positive and bounded C'-function with bounded derivative which solves (4.9)
uniformely with respect to t € Ry, we define

M(t) = —%R’(t) — L'()K(t). (4.10)

M(t) = (M(t,1), M(t,2), ..., M(t,d)). It follows that there exist pr > 0,0 >
0,k = 1,2, such that

und < M) < ppd wd < K@) <] VEER.. (4.11)
By using (4.3) it follows that
R(t) = T (s, ) K (s) + / P (u, 6) M (w)du, s>t (4.12)
t

Hence

" / " (u, 8) Jdu < / P, )M (u)du < K (1) < md, s>t
i 1

Hence A -
Kt) = ] T* (u, 8)Jdu < v3J
1
and solves the equation (4.8). Thus (v) = (iv).
(iv) = (ii).
Let K () be a uniformly positive and bounded solution of the equation. (4.8).
Using (4.3) we may write the representation

R(t) = T"(s.0K(s) + [ T(r.8)Tdr

Also there exist fiy, fiz- > 0 such that jind < Kt < figJ for all t > 0.
Since T*(s,t) is positive, we have T*(s,t)J > 0, and T*‘(s,t)IE' (s) > 0 hence
0< [FT(r.t)Jdr < I:.’(t) < jigJ for all s > 2> 0. Therefore is well defined
the function t — Ky(t) = [ T*(7,t)Jdm : Ry — L.

Applying Proposition 4.3 we deduce that there exist jiz > 0 such that fi3J <
Ko(t) < fipJ for all £ > 0.

Let t > to > 0; define G(t) = T*(t,to) Ko(t). Since T*(t,t) is positive we get
fsT*(t.to)J < G(t) £ faT* (¢, t0)J.
Taking into account that T (7,t)T" (r,t) = T"(7, to) we deduce that

G(t) = /t (7, o) Jdr.
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Hence G'(t) = —T'(t.t)J and G'(t) < —iG(t) which leads to G(t) <
e UG (ty) for all t >t > 0, (a = =),

Further we write

Tt to) < —G(t) < P2eotw g,
I3 H3

1T (¢, to)l| = [T (£, o) J| < B2
U3

and hence (ii) holds and the proof is complete.

Remark. a) From Proposition 4.6 (i) <> (i) < (iv) < (v) follows that the
exponential stability in mean square of the zero solution of the system (4.1)
is completely caracterized by the matrices Ax(t,4),i € D,k = 0,1,2, ... and

Q. Therefore we will say that the system (Ao, A1, ..., As; Q) is stable instead
of "the zero solution of system (4.1) is exponentially stable in mean square".

b) The equivalence (i) «+ (i) in Proposition 4.6 is a Datko type condition
for exponential stability for the stochastic differential equation by type (4.1).

In the case when the functions Ay are defined on the whole real axis, we may
introduce the following definition.

Definition 4.7 We say that the system (Ao, A1, ..., Ar; Q) is stable if there
exist B> 1,a > 0 such that ||T(t,t,)|| < Be ot (V) ¢ > to,t,t € R.

The results of Proposition. 4.6 show that when the coefficients of the system
(4.1) are defined only on Ry, then the type of “stability” introduced by
Definition 4.5 is equivalent to the “stability” stated in Definition 4.7.

Proposition 4.8 The following arc cquivaleni:
(i) The system (Ag, Ay, ..., A,; Q) is stable.
(i) For each H : Ry — 8% continuous, bounded and uniform positive,

the linear differential equation on S¢:

%K(t) + L'(#)K(t) + H(t) =0 (4.13)

has a bounded and uniform positive solution K :R, — 82

(iii) For each H : Ry — 8¢ continuous and bounded, with H(t) > 0,t e
R, there ezists a C'-function K : R, — 8¢ uniform positive bounded
with bounded derivative which verifies the linear inequality on &%

d

SR+ L'OR @) +HE) <0 (4.14)
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uniformly with respect tot € R ..
Proof: (i) =(ii).
From the proof of the implication (iii) =(iv) of Proposition 4.6 it follows

that

K@) = / T (s, 8) H(s)ds (4.15)

i

is well defined and we have »nJ < K (t) S wvaJ for all ¢ > 0, for some positive
constants vy, v,. Using (4.3) we deduce that K () is a solution of the equation
(4.13).

(ii) = (iii) follows easily, since a bounded and uniform positive solution of
the differential equation

CK@ + L (OKE) + @)+ =0

is a solution of the inequation (4.14).
The proof of (iii) = (i) is similar to the one of (v) = (iv) of Proposition 4.6.
The proof is complete.

Remark The proof of Proposition 4.6 (see (v) = (iv) = (i) and the equality
(4.13)) shows that:

a) If the linear differential equation (4.13) with H satisfying (ii) has a bounded
solution '

) K(t) = (K(t,1),K(t,2),..., K(t,d))
where K (t,i) > 0,i € D, we may consider the function

v:Ry xR* xD — R,v(t,z,i) = K(t,i)z.

Applying the Ité type formula (3.3) to the function v and to the system (4.1)
and taking into account the equation (4.13) we deduce:

Ble* (K (¢, n(t)z(t)n(te) = ] ~ 5K (to,)ay
— B[ o (s)H(s,n(s))a(s)dsn(te) = (416)
x(t) = D(t,ty)zo,t > to > 0. Hence
B[ ol dsllte) = i) < 5K (o, )0

v1 > 0 being such that 1 J < H(t).
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It follows that E[[° [x(s)Pdsln(te) = i] < 8lxo|” for all £, > 0,79 € R™

By using (iii) = (i) of the Proposition 4.6 and using Lemma 4.1 we conclude
that -
K(tai) = [ (T"(s,t0) H(s))(i)ds.

to

Hence K (t) = K(t), where K (t) is given by (4.15). Therefore if the equa-
tion (4.13) with H verifying (ii) has a bounded solution K (t) > 0, then
(Ag, A1, ..., A,; Q) is stable, the solution K (t) is uniform positive and it is the
unique bounded solution of the equation (4.13) with this property.

b) In the same way we can prove that if the system (Ag, A1, ...y Ar; Q) is stable
and if H : R, — 8% is continuous and bounded, then the linear differential
equation (4.13) has a unique bounded solution K : R, — 82 which is given

by (4.15).

Corollary 4.9 Suppose that Ai(t) : Ry — Mik=0,1,..,r,H: R, — 5@
are conlinuous and 0-periodic functions. If the system (Ag, Ay, .. A Q)
is stable, then the unique bounded and symmetric solution of the cqua-
tion (4.13) is @-periodic function.

Further we have:
Proposition 4.10 The following arc equivalent:
(i) The system (Ao, As, ey Ay Q) is stable.

(ii) There ezist a > 0,4 > 1, such that IT(t, t0)l] < Be ot=%) for all
£> 1 > 0.

(#i5) There exists 6 >0 such that
/A
0< / T(t,s)Jds < 6J,
to

for allt > to > 0.

Proof: (i) < (ii). If the system (A, A;, ., A3 Q) is stable, then from the
Proposition (4.6) ((i) = (ii)) we deduce that there exist B > 1,01 > 0 such
that || (¢, to)|] < fre~ 0Vt > 5 > 0.

On the other hand from (2.1) we get
Tt )] < cllIT(E )]l = enllIT* (&, t)lll < el |T7 (2, o)
and finally wc obtain
IT(t, to)]] < cofre™ ™),

for all £ > to > 0 and some ¢y, ¢3 > 0.
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(i) = (iii). It follows immediatelly from the inequality 0 < T(t.8)J <
[IT(t, 8)]|J.t > s> 0.

Let H : R, — 8% be continuous and bounded function. It follows that there
exist the real constants &1, 8, such that §J < H(s) < é,J forall s€ R;.

Since T'(t, s) is a positive operator defined on 82, we deduce 6;T'(t,s)J <
T(t,s)H(s) < 8T(t,s)J for all t > s > 0. Hence

t t t
&/T@Qﬂkng@@H@@g&/T@ﬂMs
0 0 0
for all ¢ > 0. Thus, if (iii) holds we deduce that there exist the real constants
61, 65 such that
- ¢ .
mJg/T@@H@mg@J
0
for all ¢ > 0 which shows that t — f; T(¢, s)H(s)ds is bounded on R for all
continuos and bounded function H(s).
Applying Perron’s theorem (see [14]) we deduce that there exist the constants
B >1,a > 0 such that
IT(, s)l| < Be oVt >s5>0

and thus the proof is complete.

Proposition 4.11 Assume that the system (4.1) is in the “stationary
case”. Then the following are equivalent:

(i) The system (Ao, A1, ..., Ar; Q) is stable.
(ii) For all H = (H(1),H(2),...H(d)) € S¢, H(i) > 0,i € D the algebraic
linear equation on S2.

L'K+H=0 (4.17)

has a unique solution K = (K(1),K(2),..K(d)) € S5, K(i) > 0,i € D.

(iii) For each H = (H(1), H(2), ..H(d)) € 8% H(i) > 0,i € D the linear
inequality

L'K+H<O0 (4.18)

has a solution K = (K(1), K(2), ..K(d)),K(i) >0,i€D.
(iv) There exists K > 0 satisfying L'K <0.
(v) For each H € S3,H > 0, the linear equation on Se

LK+H=0 (4.19)

23

NETROPRITE



has a unique positive solution K = (K(1), K(2), ...K(d)).
(vi) For each H € 8¢

n

H > 0 the linear inequality
LK+H<O0 (4.20)

has a solution K > 0.
(vit) There exists K > 0 satisfying LK < 0.

Proof (i) = (ii). From the equivalence (i) «» (ii) in Proposition 4.8 we get

that the equation

d
ZK(#)+ L'K(t) + H =0

has a unique bounded and uniform positive solution K (). Moreover K (1) is
given by

- oL

K(t) = / el -0 ds.

t
We have K(t) = [&° et *Hds = K(0), for all t > 0. Hence K(t) is constant
and it verifies the equation (4.17).
(ii) = (iii).

(ii) implies that the equation L'K + H +J = 0 has a solution K > 0. Hence
K verifies (4.18).
(iii) = (iv) follows immediately (taking H = J).
(iv) = (i) follows from Remark a).
(i) = (v).
Let H > 0. Therefore fJ < H < $,J and with 8, > (2 > 0. Since
le¥] < Be ,t > 0 for some 8 > 1,a > 0 the integral K = 2 eltHdt is
convergent and since e is a positive operator we have according Proposition
4.4 . 3

BT < B [ eMIdt <K <SP

0

Further, we can write
2 © d Lt
LK:/ L (P H)dt = —H
o dt

and thus the proof of (i) = (v) is complete.
(v) = (vi) follows by using the same reasoning as in the proof (i) = (iii).
(vi) = (vii) follows immediately (taking H = J).

(vii) = (i).
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Tt H=—LK. Thus LK + H = 0 with H > 0 and K > 0. Since K is a-
constant solution of the equation K'(t) = LK(t) + H we have

t
K=K 4 / S Hds t > ty.
Ity
Since et is a positive operator and H > «J with some v > 0 we can write

t t
o9 T S/ L gds < K < 8J.

o
1o to

Thus, by Proposition 4.10 the proof.is complete.

Remark From the proof of Proposition 4.11 it follows that:

a) If there exist H > 0 and K > 0 such that L'K+H =0 then the stationary
system (Ag, Ay, ..., A,; Q) is stable and K = K = [ e Hdt.

b) If there exist H > 0 and K > 0 such that LK+ H = 0, then the stationary
system (Ag, A1, ---, Ar; Q) is stable and

K=K-= foo et Hdt.
0

5 Affine systems
Consider the system
da(t) = [Ao(t,n(t))x(t) + fo(E)ldE + Z.[Ak(’f, n(8)(t) + fult)ldwi(t) (5.1)

where A (t,1),0 < k < r are bounded on R4 and continuous matrix valued
functions. Denote

u(t) = (f6(8), (@), . F{B)"

If t¢ > 0,20 € R™ and fi € Lf})w([to,T],R"),O <k <rforal T > t
by standard procedure of succesive aproximations and using properties of
stochastic integral, it is easy to obtain that there exists a unique solution
x,(t, 0, 2g) of the system (5.1) with 2o (to, to, To) = To and (-, ty, o) €
Lfbw([to,T], R™), T > t,.

Remark. If we denote

Ry (t, to, .'130) = Q_l (t, tO)xu(ty th 130)



®(t,1o) being the fundamental (random) matrix solation defined by the linear
part of the system (5.1), then, using the Ité formula, we deduce that:

zu(t.’to’.‘llo) = .)"g—*—/ (O3 (8 tg fo ZAI: S, 7](3 fk(s)]
s /t O 1(s, o) fuls)dun(s)
k=10

for all t > t,.

Thus, we obtain the following representation formula of the solution of system
(5.1):

2ot to, 7o) = Bt to)ao + Bt o) /tt o\ (s, to)lfols)  (5.2)
— Z Ai(s,n(s)) fe(s)lds + i (t, o) /t & 1(s, to) fr(s)dwi(s)
k=1 k=1 to

for all £ > t;. This is. the stochastic version. of the well known variation
constant formula in the deterministic framework. Unfortunately the above
formula cannot be used to obtain some useful estimates for solutions of system
(5.1) as in the deterministic case. Such estimations are obtained in an indirect
way using some techniques based on Liapunov functions.

Theorem 5.1: Assume that the system (Ag, Ay, ..., Ay; Q) is stable. Then:
(i) There exists ¢ > 1,a > 0 such that

Blloult,to, o)t =4] e ae Y B[ N As)dslatto) = )

for allt >ty > 0,70 € R*i € D and all fi € L} ([to,00), R"),0 < k< .
(i1) There exists § > 0 such that

E[/Oo |7 (£, to. o) PIn(te) = &} < B(lmo]* + iE[/tw | fi(s) Pdsln(te) = i)
k=0 Jlo

to

for all tg > 0,20 € R™, fi € L2, ([ts,o0), R"),0< k< ri€D.

(i17) limy_o E|z,(t,t0, 20)|* = 0 for allty > 0,20 € R, fr € L%,w([to’ x),R"),
0<k<r.
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Proof: Since (Ag, A, ..., 4,;Q) is stable then by Proposition 4.6 the Lya-
punov type equation (4 b) has a unique bounded on R, and uniformly posi-
tive solution K (t) = (K (t,1), . .. K(t,d)). Therefore there exist a; > 0,2 >

0 such that )
(1’1.] _<_ I{(t) S C!QJ, 4 Z 0.

Let z,(t) = z.(t,%,0),t > to. Applying the Ito type formula (3.3) to the
function v(t,=,4) = 'r*K(f i)z and to the system (5.1), taking into account
the equation (4.8) for K (t) we obtain:

Blu(t, zu(t), n())In(te) = ] / {~lwu(s)* + 22L(s)[K (5, 1(5)) fo(8)

+ZAk(6 n(s)) K (s, 11(s)) fi($)) +ka 8) K (s,1(s)) fi(s)}dsln(to) = il-

We denote

ha(t) = Blo(t, z(8), 1)) In(te) = il,i € D
ma(t) = yEllzu(t)PIn(ts) = il.1 € D

g:(t) = \lZD (O Pn(t) = i,¢ € D.

We may write
H)(£) = E[{~le.(O) + 2, ()[K (£ n(t)) fo(?) +ZA (&, (&) K (& n(t)) fi(t)]
+ k}_:l FL@E (8, () () (ko) = i]

ae. t Z t(),i c D.
Since A, K are bounded, there exist v > 0, & > 0 such that

Ri(t) < —m; 2(t) + y[ma(t)g:(t) + g 2(t)] < —%m (t )+6g,( 8

Since o I, < I?(t,n(t)) < vo I, we have

aymi(t) < hi(t) < aymz(t).
Hence hi(t) < *i;hi (t) + 6g2(t). Since hi(ty) = 0 we obtain

aymi(t) < hy(t) <6 mats) g2 (s)ds, t > to,i €D (53)

tg
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with a = 5;11—1 On the other hand

2ot t0, T0) = Tu(t, o, 0) + D(t, to) 0. (54)

Combining (5.3) and (5.4), (i) is proved. (ii) follows by (i) and Fubini theo-
rem. We prove now (iii). Since

d

SB[ Y. 1) Fatint) =1 < oo,

i=]

it follows that for every & > 0 there exists t. > to such that
d  ro
}:/ g (t)dt < e.
i=1 7t

For cach t > t, we have
[ e gs)as = e [*entg o)+ [ et s)ds
< emoltt) /;O g2(s)ds +e.
From this inequality and (5.3) we conclude
lim Efje(t,to, 0)[*|m(te) = &] = 0.
Finally, using (5.4) we obtain
Lim Ef|x, (¢, to, zo)|*In(to) =] =0

and the proof is complete. 7

Remark. If we do not know that the system (Ag, 41, ..., 4;; Q) is stable then
the estimation from Theorem 5.1 (i) is not uniform with respect to t,ty € R
In general we may prove that for any compact interval [ty,#;] there exists a
positive constant ¢ depending upon ¢; — ¢y such that

T tl
Bllay(t, to, 20) " [1(ta) = 4] < c(jol* + 3 E{/t |fils)Pdstn(to) =) (5.8
k=0t
for all t € [tg,t1], 70 € R*,i € D and all f; € L%yw([to,tl],R"),O <k<r. To
this end we remark that since Ai(t,%),0 < k < r,i € D are bounded on Ry,
from (5.1) and (3.1) it follows easily that there exists an absolute constant

~ > 1 such that for all ¢ € [t, 1], € D we have

B[l (t, 0, mo) P|n(te) = i} < v{|wol* + E /t: |2 (8. to, o) "ds|n(te) = &)((t1
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Tt Z‘Eﬁ/t:l [ fels) Pdslntto) = (8 — o) + 1)}

By using the Gronwall Lemma we get

sup B[z, (¢, to, z0)|Pn(te) = i) < c(|mo)® + i E{/tt1 [f(s)Pn(te) = i]),i € D

ty <<ty

where ¢ > 0 depends only on £; — ;.

6 STOCHASTIC STABILIZABILITY AND
STOCHASTIC DETECTABILITY

Consider the linear controlled system described by

dot) = [Ao(tsn(®)od) + B n@)ulld+ Y At n(®)adun(t
k=1
y®) = Cltu(t))et) (6.1)

where 4; : Ry = M%, B:R;, — Mﬁ,m, C:R;— Mg,n are continuous
and bounded functions.

Definition 6.1 We shall say that the triple [A,B;Q] (where
A = (Ag, Ay, .., A,)) is stochastically stabilizable (or equivalently the
system (6.1) is stochastically stabilizable) if there exists a continu-
ous and bounded function F : Ry — M3, such that the system (Ao +
BF, Ay, Ay, ..., A; Q) is stable.

The function F with the above property will be termed as a stabilizing feed-
back gain.
Definition 6.2 We shall say that the triple (C, A; Q) is stochastically de-

tectable if there exists H : Ry — M p continuous and bounded function
such that the system (Ag+ HC, Ay, ..., A,; Q) is stable.

The function H with the above properties will be called “stabilizing injec-
tion”.

Remark If the system (6.1) is in "stationary case" then the stabilizing
feedback gain and the stabilizing injection are supposed to be of the form
F = (FQ),..,F(d),H = (H(1),..., H(d)).

Based on the result of Proposition 4.11 we get the following result which can
be used to verify the stochastic stabilizability and stochastic detectability,
respectively.
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Corollary 6.3 If the system (6.1) is in the stationary case the following
arc equiavalent:
(i) The triple (A, B;Q) is stochastically stabilizable.

(ii) For each H = (H(1), H(2), ... H(d)) € 85, H(i) > 0,i€D the system
of linear equations:

A(D) X+ X A (i) + Z Ar(1) X AL (9)

k=1

d
+3 ¢ X;+BE () +T (@) B (i) + H (i) =0 (6.2)
=1
i€ D has a solution (X,T),X = (X,,...X4) € ST = (I(1),....T'(d))
e Mg . X(i)>0,ieD.
Morcover, F = (F(1), ..., F(d)) with F(i) = T(i)X;",i € D, is a stabilizing
feedback gain.
(iii) For each H = (H(1), H(2), ., H(d)) € 8§, H > 0 the system of
lincar incqualitics

Agli) Xt XA (0) 3 AWK AL ()
k=1

+Zd: qj,-Xj‘+B(‘z')I‘(,i)+I‘*(Az')_B*(,i)+H(_i)_ <0 (6.3)

i € D, has a solution (X,T),X € 8, X > 0,T € M;,. Moreover
if (X,T) is a solution of the system (6.8) with X > 0, then F =
(F(1), F(2),..,F(d)) with F(i) = I'(1)X;',i € D, is a stabilizing feed-
back gain.

Corollary 6.4 If the system (6.1) is in the stationary case, then the
following are equivalent:

(i) (C, A; Q) is stochastically detectable.
(ii) For each H = (H(1), H(2), . H(d) € 8¢ H > 0 the system of linear

equations:

d

1=

AL X+ X Ao(i) + 30 A () XiAw(0) + 3 g X+ TiCit CIT] +H () =0 (6.4)
k=1 1

i € D has a a solution X = (X; X5..Xy) € §§,X >0,T = (T; Th..Ty) €
Mfw. Moreover if (X,T) is a solution of the system (6.4) with
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X > 0, then K = (K(1), K(2),...,K(d)) with K(i) = X 'F; is a sta-
bilizing injection (here C; = C(i)).

(iii) For each H € S¢ H > 0 the system of linear inequalitics

r d
AL (X AX A (i)Y AL X ALY gy X ACAC T (1) < 0, (6.5)
k=1 -1
d X > 0,T € M3, Moreover, if
(X,T),X >0 is a solution of the system (6.5) then K = (K(1), K{(2); cns
K(d)) € M2 _ with K(i) = X[ 'T;,i € D, is a stabilizing injection.

n,.p
Now we prove the following theorem, which extends a well known result from
the deterministic framework:

i € D has a solution (X,T),X € S¢

Theorem 6.5 Suppose:
(i) (C, 4;Q) is stochastically detectable.
(ii) The differential equation

4 k@) + 1 OKE+ 0B =0 (6.6)

has a bounded solution K : Ry — 83, K(t) = (K (t,1), ..., Kt d), K,i) >

e

0.t >0.i c D where C(E) = (Gt 1), ..., Ct, d)), C(t, i) = C* (£, 1)C(t, 9.
Then the solution of the system (4.1) is mean square exponentially
stable (or equivalently the system ((Ag, A1, .-y Ar); Q) s stable.

Proof: Consider v: R, x R* x D — R, v(t, x,1) = ' K (t,i)z. Let o(t) =
z(t, to, 7o) be a solution of the system (4.1).

Applying the identity (3.3) to the function v and to the system (4.1) and
taking into account the equation (6.6) we get for allt>tyand i €D

Efo(t, 2(t), () Inte) = |-z K (o, )20 = —E[/f: |C(s,m(s))=(s)*dsin(to) = i].
Hence
Bl /t Oo |C(t,n(t))2() Pdt|n(to) = i] < oHK (to, )20 < Vol’ (6.7)

to > 0,20 € R%i€D.

We may write:
dz(t) = {[Ac(t,n(®)) + H(t,n())C(t,n(t))z(t) + folt)}dt
+ Y Ax(t, n(8)) e (t)dwe(t)
k=1
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where fo(t) = —H(&,n(t))C (¢, n(t))(t).

Since the system (Ag + HC, A;...A; Q) is stable and fo € L2 ,([to, o0) x R")
(see (6.7)) we may use the Theorem 5.1 (ii) to obtain;

E[[;w I(I)(t, t0)$0l2dt|77(t0) = Z] < 6“:)30]2 1 E[v/t‘m IfO(t)l2dtl77(tO) _ Z] < 5!130'2

for all ty > 0,z € R",1 € D.

Using Proposition 4.6 we conclude that the system (Ao, A1, ...4;; Q) is stable
and the proof is complete. V4

7 STOCHASTIC VERSION FOR BOUNDED
REAL LEMMA

7.1 Input-output operators

Let us consider

do(t) = [Aot,n(t)z(t) + BLE, n(t")')f'u(t)ld’t“rgx‘ik (8, (8)) (£ 8)
y(t) = C(t.n(t)a(t)+ Dit,n(t))u(?) - (7.1)

t > 0, with the input u € R™, the output y € R? and the states z € R".
The coefficients 4; : Rt - M% k=0,1,..,r,B: R, — Mﬁvm,C Ry —
MéE..D: R, — Mg are bounded and continuous functions. For each
u e L2 {[to,T],R™},0 <ty < T we denote x(t,tp,u),t € [to, T] the solution
of the system (7.1) which verifies the initial condition z(to, s, u) = 0.

The stochastic process z(t,to,u),t € [to,T] depends linearly upon
u e L2 {[to.T], R"}. Moreover, using (5.5) we obtain that there exists ¢ > 0
(depending upon T — tp) such that

T d T .
E| /t (22, to, w) Pdtin(to) = i] gc;E[ /t lu(8)dt|n(to) = .

d
=1

It follows that the system (7.1) defines a bounded linear operator from the
space of stochastic processes u € L2 ,([to,T],R™) to the space of stochastic
processes y € L2 ,([to, T], R?) by

(Toru)(8) = C(t,n(t))2(t, to, w) + D2, 7(2))u(t).
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The lincar operator Ty, r will be termed "the input-output operator" defined
by the system (7.1) on the interval [ty, T} and the system (7.1) will be called
"a state space realization" of the operator Ty, .

If the zero solution of the system (7.1) with u(t) = 0 is mean square exponen-
tially stable we can deduce (by using the theorem 5.1) that the system (7.1)
geﬁnes a bounded linear operator Ty, : L2, ([ts, 00), R™) — L2, ([ts, o), RF)
Yy
(Tyu)(t) = C(t,n(t))z(t, to, u) + D¢, a(t))ul?)
for all ¢ € [tg, 00),u € L%, ([to, 00}, R™).

17,

Remark It is obvious that the space L2 ,([to, T]; R™) may be identify as the
subspace of L2 ,([ty, 00), R™) consisting in the processes u € L} ([to, 0),R™)
with the property u(t) = 0 if ¢ > T. Under this convention we may
write: L2 ,([to, T, R™) C L2, ([ts,0), R™) for all T > to. It is easy to
verify that if the system (A, Ai, ..., A,; Q) is stable, then we have Ty r =
Ty, Tey |22, (0,1 Rem) Where Ik p L2 ([to,0), R?) — L2 ,([to, T}, R”) is the
canonical projection.

B. Concerning the product of two input-output opcrators it is casy to prove:

Proposition 7.1 Let T} 1 : L2, ([to, T],R™) — L (Its, T}, R?) and T ¢
L2 ,([to, T], RY) — L%, ([to, T}, R™) be the input output operator having
the state space rcalizations:

doi(t) = [Ad(t, () (t) + B () (t)]dt’ré:Ai(f, n(t))a’ (£)dwy(£)

y(t) = Cit,n()a’(t) + DI(t,n())(t),5 = 1,2

then a state space realization of the linear operator Ty T3 r 8 given

by
di(t) = [Aq(t,n(t))E(t)+B(t, 11(t))u2(t)]dt+}i: A, n(2))Z(t)dwi(t), t € [to, T

§(t) = C(t,n(t))E () + D¢, n(t))u*()
where

(A BGOCED) . 5. AL 0
R G S s IO G )

= B(t,i)D?(t,i
k=1,2,...,r,B(t,z)=( (Bg)(tz-)( )>,

G(t,6) = (CMt,i)  D'(t,i)C%(t,i)), D(t i) = D'(t,§) D’(t,i), & = ( :: ) .
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Concerning the invertibility of a input-output operator we can prove:
Proposition 7.2 Assume that for the system (7.1) the number of the
inputs equal the number of the outputs and infiey, o) |detD(¢, )| > 0,1 € D,
then the corresponding input-output operator Ty, : L,Zhw([to,tl],Rm) —
L% ([t t1), R™) is invertible with bounded inverse.

A state space realization of the operator T}, is given by:
du(t) = {[Ao(t,n(t)) — B(t,n() D~ (t,n(t))C (¢t n(t)))=(t)
+B(t,n(6)) D7 (¢ 0(5)y(8)}dE + k}; Ag(t, (t))(t)dwi(6)(7.2)
u(t) = —D7'(tn(t)C(,n(t))a(t) + D7 (tn(E)y(t)-

Moreover if infis,, [detD(t,1)| > 0 and the system (Ag—BD™1C, Ay, ... A5 Q)
is stable then the input output operator Ty : L2 ([, 00),R™) —

L%, ([to, o0), R™) is invertible with bounded inverse and a state space

realization of the operator T} is given by (7.2).

C. It is clear that if 0 < ; < ¢; and if u € L2 ([t2, 00); R™), then

a(t) ={ u(t()) :les{tj’z)z (7.3)

belongs to L2 ,([t:,00); R™). .

Thus, (7.3) defines a cannonical injection iy, : L ,([t2,00),R™) —
L% ([t1,00),R™). We remark that if L% ([t;,00),R™),k = 1,2 is endowed
with the norm generated by the inner product (2.3) then the injection iy,
is not an isometry, as it happens when on L2 ,([ts,0),R™),k = 1,2 the
standard L2-norm is considered. However, we point out that for the devel-
opments in the next sections it is essentialy to consider the norm generated
by the inner product (2.3) (see [28]).

Under these remarks it follows that ¢y — |[Ty]| is not a decreasing function
as in deterministic framework or in the case when the system is subjected
only to the white noise perturbations. At the end of this subsection we prove:

Proposition 7.3 Assume that the zero solution of the system (7.1) for
w = 0 is ezponentially stable in mean square and |Tol <~. Then there
exists gg > 0 such that:

(72 — )1, — D*(t,4)D(t,i) > 0

for all (t,i) € RT x D.
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Proof. Our proof is based on some ideas of Hinrichsen and Pritchard in [16].
We choose o such that || Toll(y? — €2)/? and denote 4 = (v — €2)'/2

We show that 421, — D*(t,i)D(t,i) > 0 for all (,i) € R* x D. If this is not
true, then there exist o > 0,1y € D, up € R™, |ug| = 1 such that
’ué(’??[m - D*(to, io)D(to, io)’U{) =-2a <0

for some a > 0.

Since D(jio) is a continuous function then there exist & > 0, such that
u(')ﬁzlm - D*(t, iO)D(t’ z0)]“'0 <-«

for all t € [to, %o 4 60}, 6 € [0, &) and define the stochastic process %(t) defined

by
0 if te[0,2) Ut + 6 00)

Vi(t) = )

60 { UoXn()—io if t € [to,t0+ 0]

Obviously vs € L2,((0,00); R™). Let z4(t) be the solution of the system
97.1) corresponding to the input v5(0) = 0.

Let T' > to + & be fixed and K(t) = (K(t,1),K(t,2),...,K(¢,d)) be the
solution of the equation (6.6) which verifies K(7,4) = 0,i € D. Applying
the Ité type formula (3.3) to the function v(t,,i) = «*K(¢,i)z and to the
system (7.1) and taking into account the equation (6.6) we obtain easily:

B[ (s ~ o)t (0) =1 =
B[ 2N nE))es(s) - oA A s} tin(0) =

¢ € D where

ys(t) = C(t,n(t))zps(t) + D(t,n(t))vs(?)
N(ti) = K(ti)B(ti)+C'(t.i)D(t.i)
A(t, i) I, — D*(t,1)D(t, ).

I

Further we may write
B[ (2N n(0)0lt) — 5 OAEAO)eu(8)diin(0) = ] =

B[ (oW )i~ w1 o0 -on(0) = ] =

§ d
E| /to ! S {2w5 ()N (¢, 5 1o — u§A(E, 5)t Ixntr=iXnw=i0@t(0) = §] =
i=1
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to+6
E[/to {225 ()N (E, 10)11.0 — ubA(t, i0) 140} X(y=io @0 (0) = i] =
+6

19+ 10+6
2E| ]to B3 ()N (8, o) o Xy —ia1(0) = i] — /t ub A, io)uopi, (£)dt
Hence
B ) - Aes(OPYein©) =1 >

to+6 to+6 . . .
o [ (@)t = 28] [ b (N Eio)uoxor-wdt0) = i

On the other hand using (5.5) we deduce that there exist ¢; > 0 not depending
upon & such that

sup Bllas(®Pn(©) =1l < GBL[ los(Pdein(0) =] < s

0<t<T

Thus we conclude that there exists ¢, > 0 not depending upon ésuch that
d ' §
> E| fo {lys@)? — 4°|vs(t)|*}dtln(0) = 4] >
i=1
d. rtoté
“Z/ Pijo(t) — c26V8.

Since p;, ;,(t) > 0 for all t > 0 and t — p;, ;,(¢) is a continuous function (see[6])
we deduce that there exists § € (0,8) such that

Diosio(t) 2 Pto io(ta) > 0, (M)t € [to, %o +6].

Hence
Epzo w(t) 2 P, W(t) 2 Pto,%o(tﬂ) > 0, (V)t € [to, to + 4]

Thus we get that for § > 0 small enough we have
d T
SB[ a0 — ¥lvana(t) PYdtln0) =
i-1

Q
> 5[*2‘Pio.io(t0) — V6] >0

On the other hand, we write
0 < |ITovsl* — #llusll?

d d
= 38 [ weoPatn©) = i -4 LB L[ los(t)Pdtln(0) = i

v

d T
S (s = #lee() eehn() = 1> 0
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which is a contradiction and thus the proof is complete.

Remark. The result proved in the Proposition 7.3 allows to prove the
stochastic version of the Bounded Real Lemma of the system (7.1). However
for the sake of simplicity in the next subsection we’ll consider only the case
when D(t,i) =0, (¢,i) € Ry x D.

7 9 Stochastic Version Of Bounded Real Lemma

A. Tn this subsection we establish a necessary and sufficient condition assuar-
ing that the norm of input-output operator defined by the system

dot) = [Aolt,n(®)a(t) + B, n(®)u(®)]ds + gAk(t,vx<t>>w(t>dwk(t>
y(®) = Clt.n(®)e() (7.4

ig less then a prefixed level v.

We extend the result of [28] and [29] to the case when the controlled system
is subjected both to "white noise” perturbations and Markovian jumping.

We associate the following system of Riccati type differential equations
parametrized by «.

L X0) + A0,0)X40) + X Aalt ) + gAz(t, )X, () At ) +

i g%, (8) + 72X () B(,) B (¢, ) Xi(t) + C'(4,4)C(t4) = 0,i € D. (7.5)
j=1

When D = {1} (7.5) was considered in [?, 29] for time-varying case and in
[16] for time-invariant case. For Ai(t,i) = 0,k = 1,2,...,r system (7.5) was
intensively investigated in [28].

A Clfunction X : Ry — S4,X() = (Xa(t), Xaft),...Xu(t)) is called
stabilizing solution of the system (7.5) if it verifies (7.5) and additionally, the
zero solution of the linear system

die(t) = (Ao(t,n(t)) + B(E, n(0)F (£, n(£)) X (£)dt + g:‘Ak(t, 0(t)) X (£)dwi(t)

is exponentially stable in mean-square, where

F(t,i) =y 2B"(t, 1) Xi(t). (7.6)
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Let v > 0.0 <ty < t),zy € R*,i € D be fixed. Consider the cost functions
V’7(t0ﬂtlam03 iw ) : Li,u:([tﬂatl]va) — R

Vf,(to, oC, Ty, ’i, ) i Li’w([to, OO), R,m) — R
defined by:

V’r(tﬂv &1, Zo, i, u) = E[/t:l(lyu(t’ thxO)lz - 7'2!u(t)12)dtln(t0) = i]

V,(t0,00,0,i,0) = L[ (b 0,20 = ult)tin(ta) =
where
Yu(t, to, 7o) = C(t, n(t))zu(t, to, o)
being the solution of the system (7.4) determined by the input u.
Directly, by Theorem 3.1 we obtain:

Proposition 7.4
If X : [to,t1) — S2 is a solution of the system (7.5),

X(t) = (X1 () Xa(t))
then we have

V'y(t(h t19 g, ia 'LL) = $84¥;(t0)170 - E["L';(tl)‘Xn(tz)(tl)wu(tl)‘n(t()) = 1‘]

B[ fult) - Fe. a0 dintto) =
for alli € D,zy € R",u € L2 ([to, 11}, R"), zu(t) = ., (t, to, o) and X (t,i) =
Xi(t), F(t,i) defined as in (7.6).
With the same techniques as in the Proof of Proposition 3 in [28] we obtain:
Proposition 7.5

a) Assume that
supyepon) Tl < -

Then there exists a positive constant p depending upon to, 11,1 —1ty such

that
V»,(to, t1, To, ia ‘U,) < plxolz

for allu e L?”w([to,tl], Rm),illo € R”.
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b) If the system (Ag, Ay, ..., A;; Q) 18 stable and -
sup ||T,]] <«

7>0

then there exists p > 0 not depending upon ty,
Vy(tm 00, Ty, ’i, 'U,) < p]wﬂlz

for allu e Lg)w([to,oo),Rm),zo eERMt>0,i€D.

B. The next result is a stochastic version of the Bounded Real Lemma for
a linear system described by stochastic differential equation with Markovian
jumping on a compact interval [tg,%].
Theorem 7.6 The following arc cquivalent:
(%)

sup ||T.{l <%

TGlto,tlj

(i1) the solution X, (t) = (X(-1),..,X(-,d)) of the system (7.5) which
verifies the conditon X, (t,i) = 0,i € D is defined on the whole interval
[to, 1]

Proof: Follows directly applying Proposition 7.4 and Proposition 7.5 (a).
Remark:

The statement of (i) of Theorem 7.6 differs by the corresponding result in
deterministic framework since 7 — ||T,|| is not a decreasing function.

C. In the same way as in [28] we can prove
Proposition 7.7

Assume that:

(i) The system (Ag, Ai, ..., Ar; Q) is stable
(ii)

SrggllTTH <7

Let Xp(t) = (Xr(t,1)  Xr(t,2)...Xr(t, d)) be the solution of system (7. 5)
which verifies the condition Xp(T,i) = 0,i € D.

Then we have:
a) The solution Xr(-) is defined on the whole interval [0,T].

b) There exists p > 0 independent of T\t such that 0 < Xr(t,i) < pl,,
forall0<t<T,ieD.
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¢) For each ty € [0,T) we have:

7710,56{))7 (to, T, x9, 1, u){u & L?i’w([to, T}, Rm)} = :L‘BXT(to, 'I:)xo
V’Y (th T’ Lo, 'é, UT)

i

where
ur(t) = Fr(t, n(t))er(t),

zp(-) is the solution of the problem
da(t)- Ao (¢, n(t) +-B(t, n(t)) Fr(t, 1)(t))]w(t)dt+§: At n(t))x(t)dwi(t) (7.7)

t> tg,iET(to) = ¥g.

Pr(t,1) = v 2B*(t,i) Xr(t, ). (7.8)

d)
0 < Xn(4i) < Xny(2,4)

forall0<t<Ti < Tpi€cD.

The main result of this subsection is:

Theorem 7.8 The following arc cquivalent:
(i) The system (Aq, Ay, ..., A,; Q) is stable and

sup Tl < 9. (7.9)

(i) The system (7.5) has a unique bounded on R, and stabilizing solu-
tion X(t) > 0. Moveover if Ac(-),k = 0,1,..r, B(:),C(") are 8-periodic
functions then the stabilizing solution of system (7.5) is also a 8-
periodic function.

Proof: (i) = (if). From the Proposition 7.7 it follows that the function
X(t) =(X(¢1), X(t.2),..X(td)is well defined by

X(t,i) = Jim Xz(t,) (7.10)

£>0,i€D.

By standard argument we get that the function X () defined by (7.10) is
a solution of the system (7.5). Applying again the Proposition 7.7 (c), we
deduce that 0 < X(t) < pJ.

The fact that X (¢) is the unique bounded stabilizing solution of the system
(7.5) may be obtained in the same way as in the case when the system is
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only subjected to Markovian jumping (see proof of Theorem 1 in [28]) and
we ommited it for shortness.

Assume now that Ay(-), B(-),C(:) are f-periodic functions. Let Xr(t) =
(Xf[‘(t, 1), ceey X'_(‘(t, d)) defined by X;p(t, ‘t) = X]'+0(t + 9, l), (XJ(T, l) = 0,'& €
D).

By uniqueness arguments of the solution of the system (7.5) we deduce that
Xr(t, 1) = Xr(t,i) for all t € [0,7],i € D.

Hence we have

X(t) = Jim Xp(t) = lim Xr ot +0) = X({t+6),teR,,i€D.

This shows that if the coeflicients of the system (7.5) are 8-periodic functions
and if (i) in the statement holds, then the unique stabilizing solution of (7.5)
is f-periodic function.

(ii)==(i). To obtain that the system (Ag, A;, ..., A,; Q) is stable we use The-
orem 6.5. To this end we remark that the system (7.5) can be written into a
compact form:

S X()+ LX) + 60 =0 (711)
where _ B .
&(t) = (G, 1), ... G(t, )
with
C(t,i) = C*(t,4)C(t,4)
where

O, i) = ( 7B c(*t(tz)jf (t,9) ) t>0,i€D.

We have to check that the triple (é’, A Q) is stochasticallyAdetectable,A where
A = (Ag, Ay, ..., A,;). To this end we take H(t) = (H(t,1), H(¢,2),..., H(t,d))
with H(t,i) = (v ' B(t,1) 0),t>0,ieD.
We have o 3

(AO + HC, Ala '“Ar; Q) = (AO + BF’ A'h ey Ar; Q)
which is stable.

Applying Theorem 6.4 to the equation (7.11) we deduce that the system
(Ag, Ay, ... A;; Q) is stable.

The inequality (7.9) is obtained in the same way as in the case when the
system is subjected only to Markovian jumping (see proof of Theorem 2 in
[28]). Thus the proof is complete.
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Corollary 7.9 The following are equivalent:
(i) The system (Ao, Ay, ..Ar; Q) is stable and sup .y ||'T-|[ < 7.

(i) Therc exists a bounded C'-function X : Ry — Sd uniform positive
which is bounded with bounded derivative and verifies the system of
matriz differential inequalities.

%X(t §) + A6 )X (£, 6) + X(t,6) Ao(t,i) + ,:S;‘A;(t, i) X (t,1) Ax(t, 1)

+ Z 0, X (t,5) + 772X (t,9) B(t,6) B’ (8,6 X (¢,4) + C' (£,1)C(¢,4) < 0(7.12)

uniformly with respect to t > 0,1 € D.

Moreover if the coefficients of the system are 8-periodic functions and if
(1) holds then there ewists a uniforin posttive C'-function X:R,;— 89,
which is @-periodic and solves (7.12).

Proof: (i) = (i) It follows applying Theorem 7.8 to the augmented system
described by

mwwwmmmmm+wammw+§m@mmmeﬂ

%w=(c““”)a)

where § > 0 is sufficiently small.

To prove (ii) = (i), firstly we observe that from (7.12) and Theorem 4.6
it follows that (Ao, Ai,...,Ar; Q) is stable. Further by using again (7.12)
and reasoning as in the proof of Theorem 2 in [28] one concludes that
sup,s [T+ || < oo and thus the proof is complete.

D. For each ty > 0 we denote I'(ty) = {y > 0] the system (7.5) has a bounded
and stabilizing solution X : [tg, 00) — S¢},

A{to) = ‘iggHTrH-

The next result can be proved in the same way as in the case of the system
containing only Markovian jumping (see [28]).

Proposition 7.10 a) For each t, > 0, we have T'(to) = ((to), ).

b) If the coefficients of the system (7.4) are B-periodic functions, then
[(to + 6) = (o) for all tg > 0 and to — 4(ts) is constant.
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c) If the system (7.4) is in "the stationary case " then,
T} = [[Tol]

for all > 0.

The next result is the stochastic version of the bounded real Lemma for
the system (7.4) in the stationary case.

Corollary 7.11 Assume that system (7.4) is in "the stationary case™.
Then the following are cquivalent:

(i) the system (Ao, A1, .., Ar; Q) is stable and ||Tof| < 7.
(ii) The system of algebraic Riccali type equations

r d
Aoi)X: + XoAoli) + 3 AL KAL) +3 0%, + 7 XBHB ()X,
k=1 =1

j
+C*(i)C(i) =0, ieD
has a unique stabilizing solution X = ()2'1 X,.. X)) € 5;3,)2',. >0,ieD.

(i1i) The system of matriz inequality

Li(X) XiB(i) .
( B()X; —1I. <0, 4P
has a positive solution X = (X, X, ., Xy) € S8, where

LX) = A§())X; + X; Ao(d) + iy AL(8) XeAi(5) + Y41 4;X; + Cr(i)C(i).

8 ROBUST STABILIZATION OF
STOCHASTIC SYSTEMS WITH
MARKOVIAN JUMPING

In this section we shall study the problem of stabilization by state feedback
of a linear stochastic system with Markovian jumping with parametric struc-
tured uncertainties.

8.1 The Stochastic Version Of The Small Gain
Theorem

Using the notation of the previous subsection, we prove:
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Theorem 8.1 Assume that the zero solution of the system (7.4) (for
u = 0) is exponentially stable in mean square, the number of inpuis
equals the number of outputs, and

sup || T, || < 1. (8.1)
>0
Under these conditions the zero solution of the system
die(t) = Ag(t, n(t))e(B)di + ) Aclt, n(t))e(t)dwi(t) (8.2)
k=1

is exponentially stable in mean square with
Ag(t,i) = Aq(t,i) + B(t,i)C(¢,9).

Proof: Using Corollary 7.9 (i) == (ii) for v = 1, we deduce that there exists
a C" uniform positive function X : Ry — 84, X (t) = (X1 (8), ..., Xa(®)), X:(t) >
0 bounded with is derivatives bounded, which verify the linear differential
matrix inequalities. (7.12)

By direct calculus we get

X () + At ) Ri(t) + K0 Aolt, i) + 3 AL DK, (t)Ak(t i)
k=1

+§:q,-j)?j(t) + [F(t,i) — C(t,9)]'[F(t,i) — C(t,i)] < 0,i € D, t 2 0

=1
where we denote Ag(t,) as before, and F(¢,i) = B*(t, ) X:(t).
Hence
X (8)+A5(t, ) X (8)+Xi(8) Ao (t, 1) +Z AL(t, ) X (8) Ax(t z)+z g;X;(t) < 0
k=1
uniformly with respect tot > 0,i € D.

Applying Proposition 4.6 (v) == (i) we deduce that the zero solution of the
system (8.2) is exponentially stable in mean square and the proof is complete.

Remark. Combining Theorem 8.1 and Proposition 7.2 we obtain that the
operator I — T, is invertible with bounded inverse Vi 2 0 and a state space
realization of its inverse is:

de(t) = [Aolt,n(t))=(t) + B(t,n(t))y(t)lds
+ Y Awlt, () () dw(t)

k=1
u(t) = C(t,n(t))z(t) + y(t).
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Lot us consider the controlled systems described by:

dolt) = {Aou,n(t»w(t)+B(t,n(t»«u(tndt+§Ak(m<w>w(t>dwk<t>
y(t) = Cltn)a() (8.3)

de(t) = [As(t,n(t»f(t)+Bc<t,n<t>)u°<t>1dt+kiAut,n(t))wf(t)dwk(t)
) = C(tn(t)a(e) + DUt n()us(e) (8.4)

z € R*,z° € R™ (are the states), u € R™u° € R? (are the inputs), y €
R?,y° € R™ (the outputs) and matrix coefficients. When coupling the system
(8.3) with the system (8.4) by taking u(t) = y° and u® = y(t) we obtain the
following closed-loop system:

dzg(t) = Agalt, n(t))za(t)dt + gAk,d(t, n(®)ea®)dws®)  (85)

where

[ Aglt,i) + B(t,§) D°(t,1)C(t,5)  B(t,1)C(t,)
Aﬂ,d(t,t%( Be(t,§)C(¢, 1) A%(t,4) z )

Apalt,i) = ( AKg’i) zgf» i) ) '

The following result is a stochastic version of the Small Gain Theorem [10].
Theorem 8.2 Assume that

a) the zero solution of the system (8.3) and the system (8.4) for u =
0,u¢ = 0 respectively are exponentially stable in mean square.

b) If {T+}r20,{T5} are families of input-oulput operators associated to
systems (8.8), (8.4) respectively, we assume

sup T[] <7,
sup || T[] < v

for some v > 0.

Under these assumptions the zcro solution of the closed-loop system
(8.5) is exponentially stable in mean square.

5



Proof: Let us consider the controlled system with the input i and the output

Y.

dz(t) = [fig(t, n(t))Z(t) + é(t, n(t))a(t))dt + i Ag(t, () (t)dwi(t)
k=1

§t) = C(t,n(t)z() (8.6)
o Ao(ti) B@,C() \ A, o [ BlODU, i)
Ao(ta z) - ( 0 Ac(t,i) ) ’B<tat) - ( Bc(t, i) ) 3

O(t,i) = (C(t,4) 0),& = ( 5 ) A(t,5) = Apalt,i)-

It is easy to see by using Theorem 5.1 that the zero solution of the system
(8.6) for & = 0 is exponentially stable in mean square. On the other hand if

T,: Lz,w{[fr, ), RP} — Li’w{[r, o), R*}
is the input-output operator associated to system (8.6) then

T, = T, T¢.

Hence, from b) we have suprzoll'i‘,n <1

The conclusion follows applying Theorem 8.1 to system (8.6) and the proof
is complete.

If in (8.4) C°(t,i) = O for all £ > 0,i € D, then the operator Tt becomes
(‘Tew)(t) = De(t, n(t))u(t). In this case the corresponding closed-loop system
becoes

da(t) = [As(t,n(t)) + B, n(t)) D, 1(t))C (¢, n(t)l=(t)dt
3 Anltn(0)2(Bdun (0 (8.7)

Corollary 8.3

(i) Assume that the system (Ag, A1, ..., Ar; Q) is stable and sup,»o T, || <
v

(i)

sup max | D°(,1)| < 77t (8.8)

>0 1€

Then the zero solution of the system (8.7) is exponentially stable in
mean square.

e



Proof: It is easy to verify that

c < g c N < & . -1
Tl < S |De(7,4)| < S;ggqul? <y

The conclusion will follow from Theorem 8.2.

Remark: Since D¢ : Ry — M2, the inequality (8.8) may be written as:
sup, s | D°(7)} <771, | - | being the norm in ME

8.2 Estimates For Stability Radius

Let us consider the following stochastic linear system with Markovian jump-
ing:

dee(t) = [Ao(t,n(t)) + B(t,n() AL, 0(6)C(t,n(2))J=(t)dt
+3 7 At n(t))o(t)dwe(t) (8.9)

k=1

where 4 : Ry — Mk = 0,1,..,nB : R; — M;{jm,C’ Ry — Mﬁm
are continuous and bounded functions which are supposed to be known,
A : Ry — M?  arc continuous functions which arc unknown and modclled

the uncertainties in the system.

The system (8.9) will be called "the perturbed system" of the following nom-
inal system:

doft) = Aalt,n(B)o(E)de + 3 Aultn(B)o(E)dun() (8.10)

and the pair (B(t,1), C(t,)) describe the structure of the uncertainties. Let
us denote A, the set of the functions A : R* — M2, which are countinu-
ous and sup;s |A(t)] < 00,] - | being the norm on Mé,

On A pp we define the norm HA|| = supyg [A(B)]-

If the trivial solution of the nominal system (8.10) is exponentially stable
in mean square, it is natural to ask if the trivial solution of the perturbed
system (8.9) is still exponentially stable in mean square. Thus we can define
the stability radius for the perturbed system (8.9) p(4, B,C; Q) = inf{p >
0]3A € A, with ||A|| = p such that the zero solution of the system (8.9) is
not exponentially stable in mean square. }

Based on the small gain theorem we shall obtain a lower bound of the stability
radius p(4,B,C;Q). In [ 28] respectively, were provide estimations of
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stability radius for the case when the nominal system is subject to the white
noisc type perturbations and Markov perturbation respectively.

To the perturbed system (8.9) we associate the following fictitions controlled
system:

de(t) = [Ad(t,n(8))=(t) + B(£ n(t))u(t)]dt +

r

4 kZ Ax(t, (1)) (t)dwi(t) (8.11)
=]

y(t) = C(tn(t))=(?)

and denote {T,},s0 the family of the input-output operators corresponding
to the system (8.11).

Theorem 8.4 Assume that the zero solution of the nominal system
(8.10) is exponentially stable in mean square. Then the stability radius
of the perturbed system (8.9) satisfies

P4, B,C;Q) 2 (sup [T+

Proof: We denote 79 = sup,zoﬂ’i‘,”. Let A € A,,, be arbitrary with
1Al <~

Consider the linear bounded operator

Tar: L:,",([T, OO),RP) -3 B ([T’ oo),Rm)

7,0

(Taxv)(t) = At n(t))v(t),t 2 T

We have
ITaql < [|A]]

T T T —
do(t) = [Ao(t,n(t)=(t) + B(t, n(t))At, n(t))v(t)]dt
£ Al 1) 2(t)dui(t) (8.12)
y(t) = C'(kzlﬂ(t))w(t)
having the inputs v € R? and outputs y € R,

It is easy to see that the input output operator of the system (8.12) on the
interval [r,00) is Ty = Tr - Ts.

We have 3
sup || T;|| < sup |[T-||sup |[{Taq|| < 1.
>0 720 >0
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Applying Theorem 8.1 to the system (8.12) we deduce that the zero solution
of the perturbed system

do(t) = [Aoltn(t)) + Bt, n®)AL 7O n(t))e(t)dt
F Y Adtn(@)e(dul?)

k=1
is exponentially stable in mean square.

Thus we conclude that

lAll < p(A, B, C; Q)

Since A is arbitrary with |[|A < 45" it will follow that p(A, B, C;Q) > v’
and the proof is complete.

8.3 Robust Stabilization By State Feedback Of a Lin-
ear Stochastic System With Markovian Jumping

Let us consider the perturbed system:

dz(t) = {[Ao(t,n(t)) + Bi(t, n(£) At n(D)Ci(tn(2)z(e)
+  By(t,n(t))u(t)}dt + ,,E_: At m(2))z(t)dw,(t) (8.13)

where u € R™ is a control and © € R™ is the state, Ag : R, —» Mk =
0,1,.r,B; : Ry — M¢, ,j =1,2,Ci : Ry = Mj,, arc bounded and
continuous functions which are supposed to be known and A: R, — Mﬁq #
are continnous functions which are unknown. The function A modelled the

parametric uncertainties of the nominal system:
da(t) = [Ao(t, n(t))z(t) + Balt, p(t))yu(®))dt + Y Axlt, n(t))z(t)dwi(t).
k=1

The problem which we wish to solve consists in finding a stabilizing feedback
gain F : R, — M3, which is bounded and continuous function such that
the control u(t) = F(t,n(t))z(t) stabilizes the perturbed system (8.13) for
all perturbation A with ||Al| < p for a prescribed level p > 0.

The corresponding closed loop system is:

de(t) = [Ao(t, () +Ba(t, n()) F(t,1(0)+Bi (&, () At n(®)) Cr &, n(t)))e(t)dt

X



.
+ 57 At n(E))z () dwi(t).
k=1
To this system we associate the following auxiliary system:

do(t) = {[Ao(t,n(t)) + Bo(t,n(t) F(t,n(D]e(t) + Byt n(t))w: ()} dt
+Y ) Ag(t, n(8))m(t)dwy (t)

k=1

v = (S )0 (814

and denote

Tf : Lyzl,w([Ts OO), le) — L2 ({T,OO)’ Rmﬁ—pl)

nw

the input-output operator on the interval [r,00) defined by the auxiliary
system (8.14).

Directly, by Theorem 8.4 (taking instead of A, A = (A 0), we obtain:
Proposition 8.5 Suppose that (Ag + BoF, Ay, ..., A Q) 18 stable. If

sup |[TE | < ¢~ (8.15)

then the control u(t) = F(t,n(t))z(t) stabilizes the perturbed system
(8.13) for all A with ||Al] < p.

The next result provides a necessary and sufficient condition which assurcs
the existence of a stabilizing feedback gain which verifies the inequality (8.15).

Theorem 8.6 The following are equivalent:

(1) There exists a stabilizing feedback gain F : Ry — M@, bounded
and continuous which satisfies (8.15).

(ii) There ezists a C'-function X : R, — 8¢ uniform positive which
is bounded with bounded derivative and solves the following system of
differential inequalities:
£ X(0,1) + 436X (00 + X (DA
r d
+ 57 Ayt 4) X (1) Ax(ts 1) +3_guX (8,9) (8.16)
k=1 =1
LX(4,1) 0B (¢, 8)B} (8, §)-Ba(t, 0)B5 (¢, )X (¢, OG5 (£, £)C) (t,i) <0

uniformly with respect to t 2 0,i€D.
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Proof: (i)==(ii)

Applying Corollary 7.9 to the fictious system (8.14) and the parameter vy =
p~ ! we deduce that there exists a C) function X : R, — 8¢ uniform positive

which is bounded with bounded derivative, verifying the system of differential
inequalities:

%X(t, i) + [Ao(t,3) + Ba(t, i)F(t, 1)) X (£,4) + X (£, §)[Ao(#,9) + B2 (¢, i) F(t,1)]

r d
+ 30 AL DX (@) AR ) + 3 g X (3,5) + 0 X (¢, ) Ba (8, 8) Br (89X (¢, i)

k=1 i1
+C(t,1)Ci(t, 1) + F*(t, §)F(t,i) <0
uniformly with respect to t > 0,i € D.

Further we may write:

%X(t, §) + AL ) X (83) + X (&) Ao(t, ) + S AL(E )X (8 1) Axlt, )
k=1

gi; X (t,5) + X (t,9)[0° Ba(t, 1) By (¢, ) — Ba(t, i) B3 (£, )] X (8,4)

d
+

=

+C(t,8)Cu(t, ) + (F(t,4) + By (8, )X (¢, ) (F(t,) + B;(t,4)X(t,4)) <0
which shows that the functions X (t,) solve the system (8.16). |
(i6) = ()
Let X(t) = (X(t,1), X(t,2),.... X (t,d)) a uniform positive solution of the sys-

tem (8.16) which is bounded with its derivative. Let F(t,i) = —Bi(t,i) X (t,1),
t>0,ieD.

It is casy to scc that we have:

g—t}l’ (£, 1) + [Aolt, i) + Bo(t, ) F (£, )] X (¢, 4) + X (¢, 1) [Ao(t, 1) + Balt, i) F(t,i)]

r d . 5 -
+ 30 ALt )X (8, 6) Ax(t, 1) + D g X (65) + X (t,i)By(t,4)B; (¢, ) X (,%)
k=1 j=1

+C; (4, 8)C1(8,4) + (4, i) F(t,i) <0
uniformly with respect to ¢ > 0,1 € D.

Applying Corollary 7.9 (ii)==(i) we deduce that F(t) = (F(t, 1), F(t,2), s
F(t,d)) is a stabilizing feedback gain and additionally (8.15) holds. Then
the proof is complete.
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Corollary 8.7 If Ai(t 4+ 0) = Ai(t),k = 0,1,..,7,B;(t + 0) = B;(t),7 =
1,2,Ci(t + 6) = Ci(¢) for all t > 0 then the following are equivalent:

(i) There exists a stabilizing feedback gain F(t) = (F(t,1),F(t,2), ..,
F(t,d)) which is a 8-periodic function and in addition (8.15) be fulfilled.

(ii) There exists a C* function X : Ry — 8¢ which is uniform positive
and solves the system of differential inequalities (8.16).

Corollary 8.8 Assume that : Ai(t,i) = A(i),k = 0,1,..,n"
Bj(t,'i) = B,-(i),Cl(t, ’L) = Ol(t) fO'I‘ all Z 0,2 e D.

Under these conditions the following arc cquivalent:

(i)There exists a stabilizing feedback gain F = (Fy, By, .., Fy) € M2,
such that
INTFll <o

(ii) The system of algebraic nonlineor inequlities

r d
AH(E)X (6) + X (D) Ao(d) + 3 AL X () Ax(é) + 2;:1 4 X (§) + X () [p*Bi(i) B (9)

k=1
—Bay(8) By (i) ] X (8) + C1 (i) Ch(3) < 0
i € D has a positive solution X = (X (1), X(2), ..X(d).

References

[1] L. Arnold, Stochastic differential equations; theory and applications,
Wiley, New-York, 1974

[2] M. Athans, Command and control (C2) theory: A challenge to control
science, IEEE Trans. Automat. Control, 32, (2), (1987), 286-293.

[3] E. K. Boukas, Q. Zhang, G. Yin, Robust production and maintenance
planning in stochastic manufacturing systems, IEEE Trans. Automat.
Control, 40, (6), (1995), 1098-1102.

[4] H. Bunke, Gewdhnliche Differential-gleichungen mit zufélligen Parame-
tern, Academie Verlag, Berlin, 1972

[5] R.F. Curtain, Stability of stochastic dynamical systems, Lecture Notes
in Math., vol 294, Springer Verlag, 1972

[6] J.L.Doob, Stochastic processes, Wiley, New-York, 1967

52



[7] V.Dragan, T. Morozan, Global solutions to a game-theoretic Riccati
equation of stochastic control, Jornal of Diff. Eq., 138, no.2, (1997),
328-350

(8] V.Dragan, T. Morozan, Game-theoretic coupled Riccati equations asso-
ciated to controlled linear differential systems with jump Markov per-
turbations, Stochastic Analysis Appl., (to appear).

[9] V. Dragan, A. Halanay, T. Morozan, Optimal stabilizing compensator
for linear systems with stable dependent noise, Stochastic Analysis and
Applications, 10, 5, (1992), 657-572.

[10] V.Dragan, A. Halanay, A.Stoica, A small gain theorem for linear
stochastic systems, System and Control Letters, 30, (1997), 243-251.

[11] V. Dragan, A. Halanay, A. Stoica, The y-attenvation problem for sys-
tems with state dependent noise - Stochastic Analysis and Applica-
tions, 17, 3, (1999), 395-404.

[12] A. Friedman, Stochastic differential equations and applications, Aca-
demic Press, vol. I, 1975.

[13] A. Halanay, Differential equations, stability, oscillations, time lag, Aca-
demic Proess, New York, 1966.

[14] A. Haurie, A. Leizarowitz, Overtaking optimal regulation and tracking
of piecewise diffusion linear systems, SIAM J. Control and Optimiz.,
30, 4, (1992), 816-837.

[15] U.G.Hausmann, Optimal stationary control with state and control de-
pendent noise, SIAM J. Control and Optimization, 9, (1971), 184-
198.

[16] D. Hinrichsen, A.J. Pritchard, Stochastic H*, SIAM J. Control and
Optimization, 36, (1998), 1504-1538.

[17) D. Hinrichsen, A.J. Pritchard, Stability radii of systems with stochas-
tic uncertainty and their optimization by output feedback, SIAM J.
Control and Optimization, 34, (1996), 1972-1998.

[18] A. Ichikawa, Dynamic programming approach to stochastic evolution
equations, SIAM Journal Control and Optimization, 17, 1, (1979),
153-174.

52



(19] Y. Ji, H. J. Chizeck, Controllability, stabilizability and continuous time
Markovian jump linear quadratic control, IEEE Transactions on Au-
tomatic Control, 35,7, (1990), 777-788.

[20] R.Z. Khasminskii, Stochastic stability of differential equations, Sythoff
and Noordhoff Alpen aan den Ryn, 1980

[21]) H. Kushuer, Stochastic stability and control, Academic Press, New-
York, 1967

[22] G.S.Ladde, V. Iakshmikantham, Random differential inequalities, Aca-
demic Press, New-York, 1980

[23] M. Lewin, On the houndedness recurrence and stability of solutions of
an It6 equation perturbed by a Markov chain, Stochastic Analysis and
Appl., 4, 4, (1986), 431-487.

[24] K. A. Loparo, Stochastic stability of coupled linear systems: a survey of
methods and results, Stochastic Analysis Appl., 2, (1984), 193-228.

[25] D.D. Moerder, N. Halyo, J.R. Braussard, A.X. Caglayan, Application
of precomputed control laws in a reconfigurable aircraft flight control
system, J. of Guidance, Control and Dynamics, 12, (3), (1989), 325-
333.

[26] T. Morozan, Optimal stationary control for dynamic systems with
MArkov perturbations, Stochastic Analisys and Applications, 1, 3,
(1983}, 299-323.

[27] T. Morozan, Stability and control for linear system with jump Markov
perturbation, Stochastic Analisys and Applications, 13, 1, (1995),
91-110.

[28] T. Morozan, Parametrized Riccati equations for controlled linear differ-
ential systems with jump Markov perturbations, Stochastic Analisys
and Applications, 16, 4, (1998), 661-682.

[29] T. Morozan, Parametrized Riccati equation and input-output operators
for time-varying stochastic differential equations with state dependent
noise, Studii si Cercetari Matematice, nr.1, 1999.

[30] Z. Pan, T. Basar, H*_control of Markovian jump systems and solutions
to associated piece-wise deterministic differential games, Annals of the
International Society of Dynamic Games, Birkduser, 3, (1995), 61-
94

54



[31] D. Petkovski, Multivariable control system design: a case study of robust
control of nuclear power plants, Fault Detection and Reliability, 9,
(1987), 239-246.

[32] D.D. Sworder, R.O. Rogers, An LQ- solution to a control problem as-
sociated with a solar thermal central receiver,JEEE Trans. Automat.
Control, 28(8), (1983), 971-978.

[33] W.H. Wonbham, Random diferential equations in control theory, Prob-
abilistic Methods in Applied Math.,2, (A.T.Barucha-Reid, Ed.) Aca-
demic Press, New-York, (1970), 131-212.

[34] J.L. Willems, J.C. Willems, Feedback stabilizability for stochastic sys-
tems with state and control dependent noise, Automatica, 12, (1976),
277-283.

[35] A.S. Willsky, A survey of design methods for failure detection in dynamic
systems, Automatica, 12(5), (1976), 601-611.



