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LINEAR QUADRATIC CONTROL AND
TRACKING PROBLEMS FOR
TIME-VARYING STOCHASTIC

DIFFERENTIAL SYSTEMS PERTURBED
BY A MARKOV CHAIN

T. MOROZAN

Linear quadratic control and tracking problems, under a wide class of
admissible controls, for linear time-varying stochastic systems described by
differential equations with Markovian Jumping and multiplicative white noise
are discussed. Some results concerning stochastic observability for such Sys-
tems are also given.

1. NOTATIONS

The following notations will be used throughout this paper R" is the real
n-dimensional space. R, is the set of nonnegative real numbers.

If X is a matrix (or a vector) X* is the transpose of X;|A] is the operator
norm of the matrix A. I, is the identity matrix in R™.

R™™ is the set of all real n x m matrices.

H > 0(H > 0) means that H is a symmetric positive (semi)definite
matrix.

By &, we denote the space of all n x n Symmetric matrices.

In this paper D = {1,2,...,d}. By S¢ we denote the space of all H =
(H(1),...,H(d)) with H(i) € S,.

d
S is a real Hilbert space with the inner product < H,G >= Y, Tr(H(i)G(:)),
i=1
where TrA is the trace of A.



If H € §},|H| = max{|H(:)|;i € D} and H > 0(H > 0) means that
H(i) > 0(H (i) > 0) for all 7 € D. Obviously |H|> << H,H >< nd|H|%, H €
52

By J we denote the element in S¢ with J(i) = I, for all 1 € D. If
T : 8 — 8% is a linear operator, then ||T|| is the operator norm of T
induced by the norm |- | on S If T is a linear operator on S% T* stands
for its adjoint operator. A linear operator 7' : S¢ — S¢ is called positive
(and we write T' > 0)if H > 0 implies TH > 0. It is easy to see that if T is
a linear positive operator then ||T|| = |TJ|. If H € 8§ sometimes we shall
write H; for H(i) and if M : R, — S? we shall write M;(t) or M(t,1) for
M(t)(i),7 € D.

A function M : Ry x D — R™™ is said to be continuous (bounded) on
IR, if for every i € D the function M(-,4) is continuous (bounded) on IR..

A function M : Ry x D — S,, is said to be uniformly positive definite if
there exists § > 0 such that M(t,7) > ¢I,, for all t € R, and i € D.

A function M : Ry — 8% is said to be uniformly positive definite if the
function M : Ry X D — S,, defined by M (t,4) = M;(t) is uniformly positive
definite.

Throughout this paper {Q, F, P} is a given probability space; the argu-
ment w € ) will not be written.

E denotes expectation and E[z|n(t) = ] stands for conditional expecta-
tion on the event n(t) = 1.

2. PRELIMINARIES

Throughout this paper w(t) = (wi(t),...,w,(¢))*,t > 0 is a standard
r-dimensional Wiener process (see [7]), and 7(¢),t > 0 is a right continuous
homogeneous Markov chain with state space the set D and the probability

d
transition matrix P(t) = [p;;(t)] = €9, > 0; here Q = [g;;] with ¥ ¢ =
7=1
0,7 € Dand g;; > 0if s # j. It is known [2] that tlggo P(t) exists and p;;(¢) > 0
for all ¢ > 0 and 7 € D. We shall assume that m; = P{n(0) = i} > 0 for all 4.
Thus, from the elementary inequality P{n(t) = i} > m;p;(t) it follows that
P{n(t)=1i} >0forallt>0andie€D.

For each ¢ > 0 we denote F; C F the smallest o-algebra containing all
M € F with P(M) = 0 and with respect to which all functions w(s),0 <

s < t are measurable.



By Gi,t > 0 we denote o-algebra generated by 7(s),0 < s < ¢.

Throughout this paper we assume that for every ¢ > 0 the o-algebraF, is
independent of the o-algebra G;.

H, stands for the smallest o-algebra containing o-algebras F; and G;.

By L2 ,([to, 00), R™),ty > 0 we denote the space of all measurable func-
tions u : [tp,00) X 2 — R™ with thoc; properties: w(t) is H; measurable

(Hi-adapted) for every t >ty and E/ [u(t)|?dt < co.
t

The space L2 ,([to, T], R™),0 < t, < T, is defined in a similar way.

By U(to,m) we denote the space of all functions u : [ty,0) X  — R™
with the property that up € L2 ([to, T], R™) for all T > to, where uz is the
restriction of u to the set [to, 7] x 2.

Further, let 0 < ¢, < T and o : [tp,7] — R™" be a matrix valued
function with the columns 0,(t), ..., 0:(t), 0x € L2, ([to, T],R"),1 < k < 7.

t
The stochastic integral z(t) = / o(s)dw(s),t € [to, T] is well-defined (see[7])
t

because the o-algebras H;,t > 00 have the properties used in the theory of
stochastic It6 integral, namely: H; C H;, if ¢t; < to, F; C H; and H; is
independent of the o-algebra generated by {w(t+ h) — w(t),h > 0} for every
t > 0.

Thus (see [7]), 2(t) is a continuous process, z € L2 ,([to, T], R") and

M) Ee0Pt) =) = 3 Bl loy(s)Pdsint) =1,

for all t € [tp,T] and i € D.
Now, let us consider a € L2 ,([to, T], R*). It will follow that
t t
(2) z(t) =xz0+ [ a(s)ds+ [ o(s)dw(s), t € [to, T,

to to

(with 2o € R") is a continuous process and z € L2, ([to,T], R"). If z(t)
verifies (2) we write

dz(t) = a(t)dt + o(t)dw(t), t € [to, T], z(to) = o

The following result proved in [3] will be often used in this paper.

PROPOSITION 1. (A Ité type formula ) Let a and o be as above and
letv(t, z,1) = " K(t, 1)z +2k*(t, 1)z +ko(t,4),t € [to, T],z € R*,1 € D, where
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K : [to,T] XD — Sn,k : [to,T] xD — R" and ky : [tO,T] XD — IR are
C'-functions with respect to t.
Then we have

t Efu(t,z(t), n(t))In(te) = 1] — v(to, 20,1%)
:E[/t {27(s) K" (s,m(s))z(s) + 2[K' (s, 1))z (s) + ko(5,7(s))
)

+2[z*(8)0K(8,77(8))+k*(8,n(8))]a(8)+T7“( “(s)K (s,71(s))o(s))
+ 3421 0(s, 2(5), §)ay(s); HdsIn(to) = i]

for allt € [ty, T),1 € D where z(t),t € [to, T] verifies (2).
3. SOME STABILITY RESULTS

Consider the following linear stochastic systems

(3) dz(t) = Ao(t,n(t))x(t)dt + i Ar(t,n(t))z(t)dwi(t), t >0

(4) dfi(tt) ~ At n@)z)  t>0

where A : Ry x D — R™™,0 < k < r are continuous on R,

By X(t,s),t > s we denote the fundamental random matrix of solutions
associated to system (3) and by X (t, s) we denote the fundamental (random)
matrix of solutions associated to system (4). Obviously if Ax(¢,7) = 0,¢ €
R,,i € D,1 <k <r then X(t,s) becomes Y(t,s).

On the Hilbert space S¢ we define the following linear operators Ly (t),t >
0,1 <k<3 by

( ZA/C t ’L Ak<t ’L)

(E(O) (@) = (Ao(t,1) + gqﬁznw(z') +HE) (A1) + 0T

(Ls()H) () = > q;iH(j), i€D, HeS:
J#1
Obviously £1(t) > 0,L3(¢t) > 0,t >0



Let us define

~

(5) L(t) = La(t) + Ls(2), L(t) = L(t) + La(t),¢ 2 0
It is easy to verify that

(L*(t)H)(i) = Aj(t,9)H (1) + H(5)Ao(t, ) + Yh_, AL(t, 1) H (i) Ax(t,5)
+5¢ 1 q;H(j), i € D, H € SZ

On the space S¢ we consider the linear differential equation

(6) ) =L()S(t),t >0
dt

By S(t,to, H) we denote the solution of (6) with S(ty,to, H) = H, H € 8¢

By T (t,t0) we denote the linear evolution operator on S¢ associated with
the equation (6), i.e. T(t,%0)H = S(t,t0, H), H € S°.

By 7 (t,t) and T5(t,t,) we denote the linear evolution operators on S
associated to linear operators £(¢) and Ly(t) respectively.

It is obvious that if Ak(t,4) =0, t > 0,7 € D and 1 < k < r then T(¢,1o)
becomes T (t, to).

It is easy to show that: T(t,s)7 (s, t0) = T (¢t,t0), T(t,s) = (T (s,¢))7},
T (s,s) = J(J being the identity operator on S¢%), and

d d % * *
T (0,8) = LOT(, ), =T (t,5) = T (£, 8)L7(),

(7) d
ET*(s,t) =-L't)T*(s,t), t>0
Also we check easily that

(8) (75 (t, ) H) () = X; (t, t0) H()) Xi(t, to),i € D, H €

where )?,-(t,to) is the fundamental matrix of solutions associated with the
linear deterministic system

d 1
(9) Ef = (Aolt, i) + 3aaln)a(t), i€D,t>0
and

(10) X;(t, to) = e2%0=10) X, (¢ 4))
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where X;(t,1t) is the fundamental matrix of solutions associated with the
linear deterministic system
dz(t)

(11) 2 = Aolt,9)alt), i€ D.

From (5) it follows easily that

s -
Tt te) = T(tto) + | Tt 8)Li(s)T (s, t0)ds, >t

to

~

3 A
T(t,to) = Tat,to) + | Talt,s)Ls(s)T (s, to)ds, t>to

to
Hence
" t A
(12) T (%) = T"(tt0) + | T(s,00)L3(s)T (8, s)ds
- t .
(13) T (tt0) = 77 (1) + | T*(s,t0) L3(s) T3 (¢, 5)ds

The next result has been proved in [3]
PROPOSITION 2. We have

(T*(t,t0)H)(3) = E[X*(t, to)H (n(t)) X (t, o) In(to) = 1]

forallt > ty,2€D andHES,‘f. ~

From Proposition 2 it follows that 7*(¢,t0) > 0,7*(t,to) > 0 for all
>t

Thus, since L£3(s) > 0, L3(s) > 0, from (8), (12) and (13) we get

(14) T*(t,t0) > T*(t,t0) > T3 (t,10) >0,  t>t

(15) 1Tt > 17 )l 2 1T (8 0l t >t

In the time-invariant case i.e. Ag(t,i) = Ax(2),t > 0,0 < k < 7,0 € D, the
linear operators £(t) = £, L(t) = £ do not depend upon ¢ and therefore

(16) T*(t, t) = €54 T*(t, 4) = e£ (=)



Definition 1. a) We say that the trivial solution of system (3) is expo-
nentially stable in mean square if there exist 5 > 1 and a > 0 such that

E[|X (¢, to)zo|*n(te) = 1] < 563_0‘(t_t°)|37<)|2

forallt >ty >0and alli € D,z; € R*
b) We say that the trivial solution of system (4) is exponentially stable
in mean square if there exist § > 1 and o > 0 such that

E[|X (¢, to)zol*|n(to) = i] < Bemlt=10)| |2

for all t > ¢y, 290 € R™ and 7 € D.
From Proposition 2 the following result follows directly

PROPOSITION 3. The trivial solution of system (8) is exponentially
stable in mean square iff there exist § > 1 and o > 0 such that | T*(t, 1) <
Be~t=t0) for all t > t,.

The trivial solution of system (4) is exponentially stable in mean square
iff there ezist B > 1 and a > 0 such that ||T*(t,t)| < Be~*t=%) for all
> t,.

The next result follows directly from (8), (15) and Proposition 3.

PROPOSITION 4. (i) If the trivial solution of system (8) is exponen-
tially stable in mean square then the trivial solution of system (4) s exponen-
tially stable in mean square.

(i) If the trivial solution of system (4) is exponentially stable in mean
square then for every i € D, the trivial solution of system (9) is exponentially
stable.

Remark 1. From Proposition 3 it follows that the mean square exponential
stability of the trivial solution of system (3) is completely caracterized by
the matrices Ay and Q,0 < k < r. Therefore we shall say that the system
(Ao, Ay,..., A, Q) is stable instead of “the trivial solution of system (3) is
exponentially stable in mean square”.

A detailed study of stability of the system (A, 4;,...,4,, Q) is made in

3].

PROPOSITION 5. Assume that Ax,0 < k < r are bounded on R,. If
there exist 7 > 0 and § € (0,1) such that

EX*t+rt)GE+7)(nt+7)X({E+7,8)|nt) =1] < 6G;(t)
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foralli € D,t >0, where G : Ry — 82 is a bounded and uniformly positive
definite function, then the system (Aq, Ay, ..., A,, Q) is stable

Proof. From Proposition 2 we get 7*(t + 7,¢)G(t + 7) < 6G(t),t > 0.
Let to > 0. Since T*(t,t5) > 0 for all ¢ > ¢, we get by induction that
T*(to + n7,10)G(to + n1) < 6"G(ty) < B6™J,n > 1, with some B > 0: Since
G is uniformly positive definite we can write

T*(to + nr, to)J S ﬁlénz], ”T*(t() + nr, to)“ S ﬂlém,n Z 1

But sup{||£*(t)||;t > 0} < oo.
Thus, taking into account (7) one gets easily that there exists 8, > 0 such
that
Tt <Bif0<t—s<T

Hence we obtain that ||[77*(t, to)|| < Bse~*(¢~%) for all t > t,, with @ = —21nd.
Thus, by Proposition 3 the proof is complete.

4. STOCHASTIC OBSERVABILITY

_ Let C : Ry xD — RP*" be a continuous function. C(t) € 8% is defined by
Ci(t) = C*(t,1)C(t,4). In the time-invariant case C(¢,¢) = C(z),t > 0,i € D
and C(i) = C*(1)C(3); C € S84

Definition 2. a) The system (C; Ao, Ay, . .., Ay, @) is uniformly observable
(in the time-invariant case we say simple that the system
(C; Ao, A1, ..., A, Q) is observable) if there 8 > 0 and 7 > 0 such that

t+7 -
/ T*(s,8)C(s)ds > BJ for all t > 0
i

b) The system (C; Ag, Q) is uniformly observable (in the time-invariant
case we say that the system (C; Ag, Q) is observable) if there exists 8 > 0
and 7 > 0 such that [/*" 7*(s,t)C(s)ds > BJ for all t > 0.

It is well known that the concept of uniform observability for time-varying
deterministic systems was established by Kalman [13]. If D = {1} the Defi-
nition 2 can be find in [15] and if Ay = 0,1 < k < r Definition 2 is given in
[16]. For time-invariant stochastic discrete-time linear systems the concept of
observability has been defined in [19]. The next result follows directly from
Proposition 2.



PROPOSITION 6. The system (C; Ao, A1, ..., Ay, Q) is uniformly ob-
servable iff there exist B > 0 and 7 > 0 such that

B[ X (5,00 (5,m($))Cls, (o) X s, )dsl(t) = 1] < A1,

forallt >0 andi € D.
By using (14), (8) and (10) we can conclude that the next result holds.

PROPOSITION 7a). If for every 1 € D the pair (C(-,1), Ao(:,1))
is uniformly observable (see [13]) then the system (C; Ao, Q) is uniformly

observable
(b) If the system (C; Ay, Q) is uniformly observable then the system
(C; Ag, A1, ..., A, Q) is uniformly observable.

PROPOSITION 8. Suppose that A(t,1) = A(3), C(t,1) = C(3) for all
t>0,2€ D,0 <k <r. Then the following assertions are equivalent

a) The system (C; Ao, ..., Ar, Q) is observable

b) There ezists T > 0 such that

/T eLtCdt > 0
0

c) There exists T > 0 such that Ko(7) > 0 where Ko(t) is the solution of
the differential equation on S%

K'(t)=LK@)+C,t>0

with Ko(0) =0
Proof. a) <= b) follows from (16)
t - b oy s
Since Ky(t) = / ef' =90 ds = / e“"*Cds, t > 0 it follows that c) <
0 0
b). The proof is complete.

THEOREM 1. Under the assumption of Proposition 8 if the system
(C; Ao, ..., Ar, Q) is not observable then there erist T € R",zo # 0 and
10 € D such that

(11) ¢;,iC(3)zo = 0 for alli € D

(iii) C (ig)(Ao(%0))™zo = 0 for allm > 1



(ZU) qioiqijC(j)l‘o =) f07‘ all 1 §£ io,j €D
(v) Clio) Ax(io)o =0, 1 <k <r

Proof. Suppose that (C; Ay, ..., A, Q) is not observable. From Propo-
sition 8 it follows that there exist zo € R",zg # 0 and 79 € D such

1o s
that a:(’;/ (e“"tC) (ip)dtzo = 0. Hence z}(e"*C)(ig)zo = 0 for all ¢t €
0 o o~ ~
[0,1]. Since et > e£m't > L3t (see (14)-(16)) one gets z5(e“*C)(5p)zo =
0, z2(e%3*C) (ig)zo = 0,1 € [0,1]. From the last equality we get C (ig)eo(0)tzy =

0,t €[0,1).
Hence differentiating successively we have

(17) i ((L)™C)(ig)ze =0, m >0

(18) C(lo)(Ao(Zo))mibo = 0, m Z 0

(19) z5((L7)™C) (i0)mo = 0,33((£3)™C) (i0)z0 = 0
forallm >0

Thus (i) and (iii) follow from (18)
Now, from (17) and (19) we have

0 = z5(L*C) (ig)zo = z5(L3C) (d0) o + z5(L*C) (40) 20

= 20(L;0) io)o = 7§ kz A3(i0)C (i0) C o) Ax io) e

and thus (v) follows
Further, by (19) we can write

0 =

z5(LC)(io)zo = 25(L3C) (fo)z0 + 5(L3C) (d0) w0 =
(LBO)( )xO = l'o Z QZOJC (])C(])xﬂ

O* O-)(-

J#io0

and since g;; > 0 if ¢ # j one gets (ii).
Also from (19) it follows that

*)2C) (io)zo =
.’ES )~+ E*ﬁ* + E E* (£ ) ] ](’Lol}iL‘o =
= z3[(L3L5C) (Go) + (ﬁ*ﬁ C) (o) + ((£3)*C) (50)]zo

10



But, by using (ii) we can write

$8(£§£§C) (’LO)‘TO - Q‘TO[A* (’LO + onzo Z qzmc’* IO =0
_ 1#1g
25 (L3L5C) (d0)zo = 213 ; Gioi (A3(8) + 34 1,)C* (1) C (1) zo = 0
i#ig

Hence one gets
0= zS((ﬁg)zé)(io)wo = 13 Z Z QioiQi;‘C*(j)C(j)on
i#ig J#1
and since g;,igi; > 0 for ¢ # 1g,j # @ one obtains ¢;,iq;;C(j)zo = 0 for all

i # 1o and j # 1 and thus by (ii) it follows that (iv) holds and hence the
proof is complete.

COROLLARY 1. Under the assumption of Proposition 8 if for every
i € D, rank M (i) = n, where

M(i.) = [C’*(z), AB(i?C*(i), ooy (A (30))"1C* (40), g1 C*(1), - . -, i C*(d),
AT (5)C* (), - -, A7 () C* (3)]
then the system (C; Ao, A1, ..., Ar, Q) is observable.

THEOREM 2. Assume that Ay, 0 < k < r are bounded on Ry. If
the system (C; Ao, ..., Ar, Q) 1s uniformly observable and if the following
differential equation on S9.

(20) K't)+ LK) +Ct) =0, t>0

has a bounded and positive semidefinite solution K (t) then:
(i) the system (Ao, Ay, ..., An, Q) is stable
(1i) K is uniformly positive definite
(i) The equation (20) has a unique positive semidefinite and bounded on

R solution
Proof. From (7) it follows that

(21) K@) =T (s K +/7“ut \Clu)du, s>t

11



Since 0 < ~f(’d(s) < BoJ with some By > 0 and 7(s,t) > O one gets
0< [T (u, t)C(u)du < K(t) < Bo foralls >t >0
__ Hence the integral K(t) = [° T*(s,t)C(s)ds is convergent and 0 <
K(t) <pBoJ, t20

By (7) it follows directly that K is a solution of the equation (20)

Since (C; Ay, . . ., Ar, Q) is uniformly observable it follows that K is uni-

formly observable. Since T*(t + 7,t)7*(s,t +7) = T*(s,t) we have

—

7ﬂmwﬁ?u+ﬂ=Aiﬁ@ﬁé@m:KM—[MT%ﬁé@@

+

Hence T*(t + 1)K(t+7) < K(t) —8J < (1 - ﬁﬁ)f(t),t > 0. Thus by
0
Propositions 2 and 5 it follows that the system (Ao, ..., A, Q) is stable.

Hence by Proposition 3, [|T*(s,t)]| < ve™et79,s > t.
Taking s — oo in (21) one gets K(¢) = K(t),t > 0 and thus the proof is
complete.

COROLLARY 2. Suppose that Ax(t,i) = Ag(i),C(¢t,1) = C(i),t >
0,i€D,0<k<r ’

Assume that (C; Ao, ..., Ay, Q) is observable and the algebraic equation
on 8¢

(22) LE+C=0
has a solution K > i
Then :
(i) The system (Ao, A1, ..., Ar, Q) is stable
(1) K >0

(iii) The equation (22) has a unique positive semidefinite solution.

5. LINEAR QUADRATIC CONTROL PROBLEM
ON FINITE HORIZON

Consider the following linear control system
dz(t) = [Ao(t,n(t)z(t) + B(t, n(t))u(t)]di+

(23) + 3 At n()e(t)dwi(t),  t>0
k=1

12



and the output y(t) = C(¢,7(t))z(t) where Ay, B and C are continuous func-
tions on R..

If t, > 0 and 2z € R and u € U(ty,m), by the standard procedure
of succesive approximations and by using the properties of the stochastic
integral, it is easy to see that there exists a unique solution z,(t, %, zo) of
(23) defined for all t > tq, with the properties: z.(to, to, Zo) = Zo, Z(, to, Zo) €
U(to, n); zu(t, to, To) is a continuous (with probability one) process.

Remark 2. From (1) and (23) one gets easily by the Gronwall Lemma
that for every T' > 0, there exists (7)) > 0 such that

Bllzu(t, to, 20) PIn(to) = 1] < B(T) {|zol?® + EUT lu(t)Pdt|
n(to) =]} for all 0 < ¢ < Tt € [to, T), u € L2, ([to, T], R™),

and g € R*,1 € D
If A;,0 <k <7 and B are bounded on IR, then there exists a function
v : (0,00) = (0, 00) such that

E[|zu(t, to, 2o)[*In(to) = 1] < Y(T — to){[lzo*+
—I—E[ftf lu(t)|?dt|n(to) = 1]} for all i € D,

Ty € R™ and all 0 L idp < T,t € [to,T] and u € L%’w([to,T], Rm)
We associate the quadratic cost

Ve(aosto,u,i) = BL[ {10 n)ault,to ) P+

+ur(8) R(¢, n(t))u(?) bdt|n(to) = 4]

where 0 <ty < T,zp € R*i € D and u € L2, ([to, T], R™) and R(t,i) =
R*(t,1) is a continuous function with the property that R(¢,7) > 0 for all
t>0,:€D.

From Remark 2 it follows that Vi(zo,%o,u,7) < co. In this section we
solve the problem: Given arbitrary, but fixed 0 < ¢y < T and zy € R",
find @ € L ,([to,T), R™) such that for all i € D we have Vr(zo,t,u,%) >
Vir(2o, 10,4, 1) for all w € L} ([to, T], R™). If @ has the above property we
shall write

min{Vr(zo, to, u,1); u € Lg’w([to,T],Rm)} = Vr(zo, to, T, 1),% € D.

13



Let us consider the following Riccati type system
d
EK(t’ i) + A§(t, ) K (t,1) + K(t,1)Ao(t,4)+

+ 57 Ap(t, 1)K (8,1) Ak (8, 1)
(24) k=1

d
+ Z gi; K (t,7) + C*(t,1)C(t, 1)
_K(t,0)B(t i) (R(t,8)) - B*(t, ) K(t,i) = 0, ¢ > 0, i € D.
If K: R, xD — S, we define Fg(t,i) = —(R(¢,1))"'B*(¢,1)K (t,) and
Ag(t, i) = K(t,1)B(t,1) Fk(t,1).

With the above notations the system (24) can be written in the following
form on S¢.

(25) K'(t) = G(t, K(t), t>0
where K(t) = (K(4,1),...,K({t,d),G(t K) € S¢,
G(t,K) = —L* (K — Ak (1), (Ax () (@) = Ak(¢,7)

If K(t,i),t € [to,T] is a symmetric solution of system (24), then applying
Proposition 1 for system (23) and v(t,z,:) = *K(t,4)z, ¢ € R",i1 € D,t €
[to, T and taking into account the relations (24), ¢ € [to, T],7 € D one gets

(26) E[z% (T, to, o) K (t,n(T))zy (T, to, zo) |n(to) = 3] — 25K (to, 7)o

= —Viwo,to,u,) + B[ (ult) ~ Fi(t,n(e))za(t,to 20))" Rlt,n(e) (u(t)-

to
—Fx(t,1(t))zu(t, to, o)) dt|n(to) = 1]
for all ¢ € [to,T),% € D,zo € R*,u € L2 ,([to, T], R™)
In what follows by Krz(t,i) we denote the solution of system (24) with
Kr(T,i) = 0,i € D.

THEOREM 3. For every T > 0, the solution Kr(t,1) is defined for all

t €10,7], ¢ € D and has the properties:
(i) Kr(t,3) > 0

14



(Z’L) min{VT(xo, to, u, Z), U € L%,w([to, T], Rm)} = VT(I(), t(), ﬁT, 'L) = IIIaKT(to, 'L)CL'O
for all0 <ty < T, i € D,zy € R™ where Ur(t) = Fk(t,n(t))Z(t),t € [to, T
and Z(t) being the solution of system

dz(t) = [Ao(t, n(t)) + B(t,n(t)) Fiy (, 1(t))]z(t)di+

+ > Ar(t, (1) (t)dwi(t), t € [to, T,
k=1
with Z(ty) = o

(iii) K1, (t,1) < K1, (t,%) for all Ty < Ty and t € [0,T1],4 € D,

Proof. Let ty € [0,T) be such that the solution Kr is defined on [tg, T'| xD.

From the relations (26) for the solution K one gets that (ii) holds and
therefore Kr(to,7) > 0. Moreover by Remark 2 we have z{K7(to,1)zo <
VT(CL‘(), to, O, 7,) S ﬁ(T)IIII()l?

Hence 0 < Kr(to,1) < B(T)I,,7 € D. Since B(T) does not depend on %o,
it follows that K7 is defined on [0,7] x D and thus it remains only to verify
(iii).

Indeed let 0 < 77 < T3 and to € [0, T3]

We have by (ii)

25 K, (t0, 1) 0 = Vi, (w0, to, Gy, 3) > Vi (w0, to, umy, 1) 2> 25K, (0, 1) 20

where ur, is the restriction of 4, to the interval [t,71]. The proof is com-
plete.

6. LINEAR QUADRATIC CONTROL PROBLEM
ON INFINITE HORIZON

Throughout this section we assume that Ax, B,C and R=R*,0<k<r
are continuous and bounded on Ry and R(%, ) is uniformly positive definite.
Condsider the quadratic cost

V(zg, to, u, 1) = E[/t:o{lC(t,n(t))xu(t,to,x0)|2+

+u*(t) R(t, n(t))u(t) }dt|n(te) = 1],t0 > 0,1 € D,zo € R, u € U(to, m)

By U,,(to, zo) we denote the space of all functions u € U(to,m) with the
property that
V (2o, to, u, 1) < 00, 1 €D

15



Obviously if u € L;?‘,,w([to, 00), R™) has the property that z,(-, o, o) €
L, ([to,00), R") then u € Up(to, Zo)-
In this section we solve the problem:
Given t; > 0 and zo € R™ arbitrary, but fixed, find u € U, (o, zo) such
that V(CL'Q, to, ’LL,'L) Z V(.’Bo,to,ﬂ, Z) foralli € D and all u € Z/{m(to,IO)
If & has the above property, we shall write min{V/(zo, to, u,%); u € U (to, Z0)} =
V(.’Eo, to, ’lj, 'L), 1 €D,
It is obvious that V' (zg, to, u, ) = ]11_{{.10 Vr(zg, to, ur,1),1 € D,u € Up(to, To), ur

being the restriction of u to the set [tg,T] x 2.

Definition 8. A continuous and bounded function F': Ry xD — R™ " is
said to be a stabilizing feedback gain if the system (A + BF, Ai,..., A, Q)
is stable.

Definition 4. A bounded solution K : R, X D — &, of system (24) is
said to be stabilizing if F is a stabilizing feedback gain.

Definition 5. a) The system (23) is stabilizable (or equivalently the system
(Ao, A1,..., A, Q; B) is stabilizable) if there exists a stabilizing feedback
gain.

b) The system (C; Ao, Ay, ..., A, Q) is said to be detectable if there exists
H : R, x D — R™? continuous and bounded such that the system (Aq +
HC, A, ..., A, Q) is stable

Remark 8. From Theorem 5.1. in [3] it follows that if u(t) = F'(t,7(t))z(t)+
f(t),t > to where F is a stabilizing feedback gain and f € L2 ([to, 00), R™)
and x(t) verifies
(27)

da(t) = {[Ao(t,n(t)) + B(t, n(t))F(t,n(t))=(t) + B(t,n(t))f(t) }dt+

+ Ykt Akt n(t))z()dwi(t), T 2> o, z(to) = o

then z, € L2 ,([to, 00), R") and therefore u € U (to, Zo)

THEOREM 4. Suppose that the system (23) is stabilizable

Then:

a) There ezists p > 0 such that Kr(t,i) < pl, for alli € D,T > 0 and
t€[0,T]

b) hm Kr(t,i) = K(t,5) ezists, and K is a positive semidefinite and
bounded on R, solution of (24)

¢) min{V (zo, to, u, 1); u € Up(to, Zo)} = V (20,0, %, 1) = 2t K (to, 1)z for
allty > 0,79 € R™,i € D, where @(t) = F(t,n(t))Z(t),t > to and Z(t),t > to
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18 the solution of the system

da(t) = [Ao(t,n(8)) + Bt n(6) F(t,n(0)Jo(t)de+
+ kgl Ap(t,n(8)z(t)dwg(t), t > to, T(to) = zo

d) If in addition Ay, B,C and R are 0-periodic functions with respect to

t € Ry for eachi € D then K(t +0,4) = K(t,7) for allt > 0,i € D.

Proof. Let F be a stabilizing feedback gain and u(t) = F(t,n(t))z(¢),t >
0,7 verifying(27) with f(¢) = 0,Z(to) = 2o

Since (Ay + BF, Ay,..., A, Q) is stable there exists p > 0 suchthat
V(zo,t0,,1) < pl|zo|? for all tg > 0,20 € R™ and 1 € D. Thus, by The-
orem 3 one gets 2} Kr(to,4)zo < p|Tol?.

Hence 0 < Kr(to,1) < pl,,,T > 0,ty € [0,7] and ¢ € D.

Therefore from Theorem 3, (iii) it follows that Ill_r){.lo K7(t,1) exists and its

limit K (t,4) is bounded and positive semidefinite.

Now, let 0 < a < 8 and T > . Since Kr(t) = (Kr(t,1),..., Kr(t,d))
is a solution of the equation (25) 0 < Kr(t,4) < pl, and the function G
is continuous and locally Lipschitz with respect to the second argument, by
the Gronwall Lemma one obtains that there exists v > 0 depending only on
B — a such that

|K1,(t)— K1, (t)| < v|K1,(a)— K1, ()| for all t € [o, 8] and all T, > T > B.

Hence Tlim Kr(t,7) = K(t,4),7 € D uniformly with respect to ¢ in every
—00

compact interval [a, 5] C R,. Therefore K is a solution of system (24) and
0< K(t,3) < pl,,t >0,i€D.
From (26) we have

Ve (20, to, 1 5) = T3 K (t, §)m0 — E[& (T)K (T, n(T))&(T)In(to) = i]

Hence .Z’EKT(to, Z)IL'Q < VT(.’L'(), to, ﬂ, Z) S I'ij\(to, l)CEQA

Taking T — oo one obtains V(zg, to, U, 1) = 25K (to,1)zo. On the other
hand we can write for u € Un (to, 7o), Vr(zo, to, ¥, 1) > 25K (t0, )0

Taking T — oo one gets V'(zo, o, u,%) > 23K (to, 1)z and thus c) follows.

To prove d), let Kr : [0, T]xD — S,, defined as follows K (t,7) = Kryg(t+
0,1)

Obviously Kr(t, i) verif y equations (24) for ¢t € [0,T] and 4 € D and since
Kr(T,i) = 0 = Kp(T,4),i € D from uniqueness it follows that Kr(t,i) =
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Kr(t,i),t € [0,T],7 € D. Taking T — co in the above equality we get
K(t+0,1) = K(t,i),t > 0,1 € D and thus the proof is complete.

- PROPOSITION 9. Suppose that the system (C; A, ..., Ar, Q) is de-
tectable. Then every positive semidefinite and bounded on IR, solution of
system (24) is stabilizing.

Proof. Let K(t,1) be a positive semidefinite and bounded on IR, solution
of (24).
It is easy to see that

%K(t, i)+ A2t K (4 1) + K (46) Ao (t, §) + M (8, §) M (t,5)+

d
+ ¥ Ap(t, ) K (t,9)A(t,8) + ¥ ¢ K(t,§) =0, >0
k=1 1=1

where Ay(t,1) = Ao(t, i) + B(t,1)Fx(t, i) and

M(t,i) = ( R”?(g(it)%(t, i) )

We shall prove that (M; Ag, Ay, ..., Ar, Q) is detectable. Indeed, let H(t,14)
be a matrix valued function satisfying the assumption in Definition 5, b).
We take H(t,i) = [-B(t,i)R™Y2(t,5) H(t,1)]
We have

Aot i) + H(t, i) M(t,3) = Ao(t,1) + H(t,1)C(t,1).

Hence (Ag + HM, As,..., A,,Q) is stable. Thus (M; A4y, Ay,..., 4,,Q) is
detectable and therefore by virtue of Theorem 6.4 in [3] we can conclude
that (/To,Al, ..., A, @) is stable; hence K is a stabilizing solution and the
proof is complete.

PROPOSITION 10. Suppose that (C; Ag, Ay, ..., Ar, Q) is uniformly
observable. Then if K is a positive semidefinite and bounded on IR solution
of system (24) we have

(i) K is uniformly positive definite

(11) K is a stabilizing solution

Proof. Let K be a positive semidefinite and bounded on IR, solution of
system (24). N

Let Ao(t,i) = Ao(t, i) + B(t,4)Fk(t,i) and X(t,to) be the fundamental
matrix solution associated with the linear system dz(t) = Ao (t, n(t))z(t)dt +

> At n(t))a(2)dwi (1)
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Let 7 > 0 and S > 0 verifying the inequality in Proposition 6.
Define

t+1

G(t,7) = E[/t X*(5,0)[C"(s,n())C(s,m(s)) + Fx (s, n(s)) R(s,1(s))-

—

Fr(s,7(s))]X (s, t)dsln(t) = i],¢ > 0, i € D).

We shall prove inf{z*G(t,?)z;|z| = 1,t > 0,5 € D} > 0. Suppose on the
contrary that for every € > 0 there exist z. € R",|z.| =1,t. > 0and i, € D
such that z;G(t,, i.)z. < e.

Let z(t) = X (t,t.)z. and u(t) = Fx(t,n(t))z.(t)

We can write

te+T
e > 61G(teyie) > B[ wORE n(0)uedtln(t.) = i
by
> SE[fT luc(t)Pdtn(te) = i)
with some § > 0. But z.(t) = X(¢,te)ze + Z.(t), t > t. where Z.(t.) =0
and

dZ.(t) = (Ao(t,n(1))Zc(t) + B(t,7(t))ue(t))dt + i Ag(t,7(8))Z (1) dwi (2)

k=1

Hence, by Remark 2 there exists 7y > 0 such that
tet+7
B2 0P In(t) = i) < B[ [w(OFdtingt.) = i < re

Further, we can write

e > 2:G(te, ic)ze > E[[FT|C (8, n(t)z. (1) Pdt|n(te) = ic]

= E[[FF7|C(¢, (1) X (¢, te)ze + C(t,1(t))Z(t) [Pdt|n(te) = il
> LB |C(t, n(£) X (¢, t)xc Pden(te) = ic]

— B[ |C(t, n(t)) 3 (1) [Pdt|n(te) = ic]

> 18— by, €>0

and thus we get a contradiction, since § > 0. Hence, there exists §; >
0 such that G(t,i1) > fil,, t > 0,i € D. Now we take in (26) u(s) =
Fx(s,n(s))X(s,t)zo and we get

e B[R (¢ 4+ m K (¢ 4 7om(t + 1) X6 + 7, )[0(8) = 0 — 55K (4 )30 =
—z3G(t,1)z9, t>0,z90€R"1€D
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Therefore
ﬁlll‘olz S .’IIBK(t,Z).’II() S 52|$0|2, t 2 O,'I/ € D,SL‘Q € Rn

Thus K is uniformly positive definite and

E[Y*(t + 7, )K(t+7,n(t+ T))y(t +7,t)n() =1 < (1 - &)K(t,i)

By virtue of Proposition 5, the proof is complete.

THEOREM 5. Assume:

(1) the system (23) is stabilizable

(ii) the system (C; Ao, A1, . .., Ar, Q) is either detectable or uniformly ob-
servable

Then the Riccati type system (24) has a unique positive semidefinite and
bounded on IRy solution. Moreover this solution is stabilizing

Proof. It is know (see [4]) that the Riccati type system (24) has at most
one symmetric stabilizing one bounded on IR, solution. Thus by virtue of
Theorem 4 and Propositions 9 and 10, the proof is complete.

Remark 4. From Remark 3 and Theorem 5 it follows that under the
assumptions of Theorem 5,the optimal control %, defined in Theorem 4 has
the property that @ € L2 ,([to,00), ™).

In the case Ag(t,i) = 0,1 < k < r the results in this section have been
proved in [16]; in [16] one considers only admissible controls of the form
u(t) = ¢(t, z(t), n(t)), where ¢(t, z,%) are continuous functions and Lipschitz
with respect to z.

For time-varying stochastic It6 systems, the linear quadratic control prob-
lem on infinite horizon has been discussed in [1] and [15].

For time-invariant linear differential systems with jump Markov pertur-
bations the linear quadratic control problem has been investigated in many
papers (see [11], [12], [18] and the references therein).

7. QUADRATIC TRACKING PROBLEM

Throughout this section, we also assume that Ax, B,C an R,0 < k <r
are continuous and bounded on IR, matrix valued functions and R(t,1) is
uniformly positive definite.
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Given a continuous and bounded on IR, signal 7(t,7) we want to minimize
the cost

Tz 1 106 n)la(t) =t )]+

+u” (1) R(t, n(t))u(t) }dt|n(to) = 1]
in a suitable class of controls u(t).

For fixed tp > 0 and zo € R™ we denote by U, (to,zo) the set of all
u € U(ty,m) with the property that sup E|z,(t, to, zo)|> < 00
t>to

Remark 5. From Theorem 5.1 in [3] it follows that if u(t) = F(¢,n(t))z(t)+
f(t),t > to where F is a stabilizing feedback gain and f € U(tg, m) with
sup E|f(t)|? < oo and z(t) verifies (27) then sup E|z(t)|* < co and therefore
>t t>t0

’LL_E Um(to, .’L'o).
The quadratic tracking problem is to minimize in the class U, (%o, zo)

lim Wr (2o, to, u, 1),

Wr(zo,to, ;1) = B[ {IC(n)laut to,0) = r(t, n(e)])

+u*(8)R(2, n(t))u(t) }t|n(to) = 1]
We shall assume the conditions in Theorem 5 are satisfied, hence the

system (24) has a unique positive semidefinite and bounded on R4 solution
K(t,i). Since K is stabilizing, from Proposition 4 it follows that the trivial

. ~
solution of the system Zi% = A(t,n(t))z(t) is exponentially stable in mean

square, where A(t,3) = Ao(t,1) — B(t,i)R™1(t,1)B*(t, i) K (¢, 1)
Therefore by virtue of Proposition 4 in [16] the following system

d

(28) %g(t, ) + (1, )0(6,0) + 2 906, 9)as — O (6, )C (6 I (69) = 0

has a unique bounded on IR, solution. We denote this solution by §(t, ¢).
Let hz(t,1) be the solution of the following system

d d
(29) (6,6 + 3 ah(t,5) + () =0, £20,i€D
j=1
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with hp(T,1) = 0, i € D where

mi(t) =r*(t,9)C*(t,9)C(t,1)r(t,1)—
—g*(t,9)B(t, )R (t,9)B*(t,4)3(t,4).

THEOREM 6. Under the assumptions of Theorem § we have

— 1
min lim —Wr(xg, to, u, 1) =
u€Um (to,z0) T—}OOT — 1y T( 0570 )

- 1 .
hmT——-)oomWT(tm T, U, 1)

S 1 rdé
= limT_,oo?/O Z;ii”?ﬁ](t)dt, fOT‘ all to Z O, Ty € Rn, 1€D
j=1

where P = [py;], P = limyo0 P(t) and T(t) = F(t,n(t))z(t) + f(¢), f(2) =
—R7t,n(t)) B*(t,1(t))3(t,n(t)) and T verifies (27) corresponding to Fy and
fT(to) = Xy.

Proof. Firstly we remark that by virtue of Remark 5, @ € U, (to, zo) and

therefore sup E|Z(t)|? < oco.
t>to

Let tg > 0,29 € R",T > tg, and u € Uy, (to, Zo)-

Consider the function vr(t,z,4) = z*K(t,i)z + 22*§(t,5) + hr(t,5),t >
0,z € R*,i € D.

Applying Proposition 1 to the above function vr and to system (23) and
taking into account the equations for K, g and hr one gets

E[UT(Ta xu(T)an(T))!n(tO) = 7’] - UT(tO’ xOvi) =
—WT(.'E(), to, u, l) + E[ftf{(u(t)—

(30) -
Fr(t,n(t)zu(t) — £(2)* R, (1) (u(t)

—F(t,n(t))zu(t) — f(8)}diln(t) =0, i€D

where z,(t) = z,(t, to, Zo), t > to
From (30) we get

Wr (2o, to, %) = vr(to, 70,1) — Elvr (T, Z(T), n(T))In(ts) = il

Wr(xo, o, u, 1) > vr(to, To,1) — Elvr(T, 2. (T), n(T))In(to) = i
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Since sup E|z,(t)]* < oo we have

t>to

Jim 7L Blop(T,2(T), 7(T))ln(to)] =1 = 0 =

= jm 7o Elvr (T, 2.(T), n(T))In(to) = ]

On the other hand HT_,OOIT}—Z— r(to, Tg, 1) = hmT_,ooi,l—hT(to, i)
Therefore we have to provg tlgat

— 1
hmT_)oo T—j{(;h to, hm / pz] mJ

Indeed, let hp(t) = (hp(t, 1),. .., he(t, d)*, m(t) = (Mm(t, 1), ..., m(t, d))*
From (29) one gets

T
he(t) = /t Q- (s)ds, T >t

Hence

hr(to) = /T P(s—ty)m(s)ds = /T(P(s —ty) — P)m(s)ds + Tﬁ?ﬁ(s)ds

to to to

Since limy_,e0(P(t — tg) — P) = 0 and 7(t) is bounded we have
1 ‘s

hT(to) hm Pm(t)dt.

Tim
Tooo T — 0 tO

But m(t) is a continuous and bounded on IR, function. Thus it is easy to
verify that limg_, o7y ST Pri(t)dt = imp—eo Jy PTi(t)dt and the proof is
complete.

Remark 6. From Theorem 6 it follows that under the assumptions of
Theorem 5, the optimal value of the quadratic tracking problem does not
depend upon %, and x.

Remark 7. If Ay, B,C,R and r(t,i), 0 < k < r are asymptotically
almost periodic functions (see [6]) then under the assumptions of Theorem 5
it follows from [4] that K and g are asymptoticaly almost periodic functions,
hence 7(t) is asymptotically almost periodic and therefore from [6] it follows
that

t—o00

1 /T .
lim T/ > bijm;dt exists for every i€ D.
0 =
J
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If Ag(t,7) =0, 1<k <r, t>0,i€ D, Theorem 6 has been proved in [16],
for u € Un(to, o) only of the form u(t) = p(¢, z(t),n(t)), with ¢ continuous
functions and Lipschitz in the second argument. For stochastic differential
equations different tracking type problems are discussed in [1], [5], [8]-[10].
[14], [17].
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