
l l L  n ,

t v  ^ ' 6

5 l  -

i- -IF|n- A, 'J
f ^  I G 1  r F l  =

' /  - e

I M A R

INSTITUTI.JL DE MATEMATICA
AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

lssN 02503638

LINEAR QUADRATIC CONTROL AND
TRACKING PROBLEMS FOR TIMB_VARYING STOCHASTIC

DIFFERENTIAL SYSTEMS PERTURBED BY A MARKOV CHAIN

by

T. MOROZAN

Preprint nr.20/1999

BUCURESTI



LINEAR QUADRATIC CONTROL AND
TRACKING PROBLEMS FOR TIME-VARYING STOCHASTIC

DIFFBRENTIAL SYSTEMS PERTT]RBBD BY A MARKOV CHAIN

by

T. MOROZAN*

December. L999

'Institute 
of Mathematics of the Romanian Academy, p.o.Box l-764,Ro-70700,

Bucharest, Romania



LII\EAR QUADRATIC COI\TROL AI\D
TRACKII\G PROBLEMS FOR

TIN4E-VARYII\G STO CHASTIC
DIFFEREI\TIAL SYSTEMS PERTURBED

BY A MARKOV CHAII\

T. MOROZAN

Linear quadratic control and tracking problems, under a wide class of
admissible controls, for linear time-varying stochastic systems described by
differential equations with Markovian jumping and multiplicative white noise
are discussed. Some results concerning stochastic observability for such sys-
tems are also given.

1. NOTATIONS

The follorving notations will be used throughout this paper .R" is the real
n-dimensional space. IR1 is the set of nonnegative real numbers.

If x is a matrix (or a vector) x. is the transpose of X;lAlis the operator
norm of the matrix A. In is the identity matrix in R.

Rnxrn is the set of all real n x rrL matrices.
H > 0(H > 0) means that .I1 is a symmetric positive (semi)definite

matrix.
By 5" we denote the space of all zz x zz symmetric matrices.
In  th is  paper  D:  { I ,2 , . . . ,d } .BV S j  we denote  the  space o f  a l l  .F I  :

(H(1),  .  . . ,  H(d))  wi th f / ( i )  € 8, .

5j is a real Hilbert space with the inner product < H,G t: S rr@Q,)G(i,)),
where TrA ts the trace of ,4.



I f  H e Sl, lHl:  max{i1/(z) l ; i  e D} and.II  > 0(l /  )  0) means that
H(i) > O(H(i) > 0) for all i e 2. Obviously lI/12 S< H, H >< ndlHlz, H e
sl

By J we denote the element in 5j with -r(z) : /,, for all i e D. If
T : Sl -+ Sl is a linear operator, then ll"ll is the operator norm of ?
induced by the norm | . I on Sl. U ? is a linear operator on Sj, ?* stands
for its adjoint operator. A linear operator T : E! -+ Sl is called positive
(and we write 7 > 0)if H > 0 implies TH > 0. It is easy to see that if ? is
a linear positive operator then ll"ll : lTJl. If 11 e 5j sometimes we shall
write H;for I/(z) and if M : IR+ -+ 5f we shall write M(t) or M(t,e) for
M( t ) ( i ) , i  e  D.

A function M : R,, x D -+ Rnxnx is said to be continuous (bounded) on
IR+ if for every i, e D the function M(.,a) is continuous (bounded) on IRa.

A function M : IRa x D -+ E- is said to be uniformly positive definite if
there exists d > 0 such that M(t,i) >61* for all t € IR+ and, i, e D.

A function M : R ,, I S!^ is said to be uniformly positive definite if the
function M : R a xD -+ 5- defined ay M(t.,r) : Un(t) is uniformly positive
definite.

Throughout this paper {Q,f ,Pi is a given probability space; the argu-
ment a,l € CI will not be written.

E denotes expectation and Efrlq(t) : z] stands for conditional expecta-
Lion on the event rt(t) : t.

2. PRELIMINARIES

Throughout th is paper w(t)  :  ( r r ( t ) , . . . ,w,( t ) )* , t  )  0 is a standard
r-dimensional Wiener process (see [7]), and 4(t), t > 0 is a right continuous
homogeneous Markov chain with state space the set 2 and the probability

transition matrix P(t) - lpoi(t)l: eQt,t > 0; here Q : lq;i) with f. Qtj:
J = t

0,i e D and q;i > 0 if i, + j. It is known [2] that 
A* 

p(t) exists and p1;(f) > 0
for all I > 0 and i, e D. We shall assume that ri: P{rlQ): i} > 0 for all z.
Thus, from the elementary inequality P{rt(t): i} > npu(t) it follows that
P{q(t) : i} > 0 for all I > 0 and i eD.

For each t > 0 we denote Ft c f the smallest o-algebra containing all
M e F wilh P(M) : 0 and with respect to which all functions tu(s),3 (
s ( fa remeasurab le .



By 9t, f ) 0 we denote o-algebra generated by ri(r),0 S s < l.
Throughout this paper we assume that for every t > 0 the o-algebrafs is

independent of the o-algebra Q1.
?16 stands for the smallest o-algebra containing o-algebras Ft and Qt.
By L2r,r([to,m),R*),to ) 0 we denote the space of all measurable func-

tions u : [ts, oo) x Q + .R- with the properties: z(t) is ?lt r\ed,stlrable
r 6

('11;adapted) for every t) to and E 
Jro lu(t)l',dt < oo.

The space L\,,([to,T], R*),0 ( lo ( ?, is defined in a similar way.
By U(ts,m) we denote the space of all functions u : fts,oo) x Q -+ R*

with the property that u7 e Ltr,,([to,T], R*) for all T ] to, where u7 is the
restriction of u to the set [t0,7] x fl.

Further, let 0 < ts 1 T and o : [to,T) -+ Rnxr be a matrix valued
func t ion  w i th  the  co lumns o / t ) , . . . ,o , ( t ) ,op  e  L f , , . ( [ to ,T ] , ,R) ,7  1  k  1  r .

The stochastic integral z(t) : [' o$)d,w(s), t e lto,T]is well-defined (see[7])

because the o-algebras?lt,t jO have the properties used in the theory of
stochastic It6 iniegral, namely: ?lr, e 

'JLb if t1 1 t2, ?t C ?11 and, H1 is
independent of the a-algebra generated by {w(t+h) -w(t),h > 0} for every
, > 0 .

Thus (see l7)), z(t) is a continuous process, z € L\,.(lto,?],.R") and

( 1 ) t  u  t r 9  r  r  / ,  \  . l

lo i  \s ) l-  d,sl l \ to ) :  xl,

for all t e lts,?] and i eD.
lr{ow, let us consider a e L2r,.([to,Tl,R"). It will follow that

(2) o(s)du'(s), t € lto,Tl,

(with 16 e Rn) is a continuous process and n € Ltr,.([t0,7),R). rt r(t)
verifies (2) we write

dr(t) : a(t)dt + o(t)dw(t), r e lto,Tl, n(to) : ao

The following result proved in [3] will be often used in this paper.

PROPOSITION L. (A It6 type formula ) Let a and, o be as aboue and,
let u (t, r, i,) : r* K (t, i) r * 2k. (t, i,) r + ks(t, i), t e lto, Tl, r € Rn, i e D, where

r " t

E|z(t)l'lrrfto) - il : D Et | 
-

; - 1  t  e O

n(t) : ro* I ' ,og)as+ l ' ,



K  : l t s , T l x D  - +  5 , , k : l t s , T ) x D  - +  R  a n d k s :  [ t o , ? ]  x D  - + R "  a r e
Cr-functions with respect to t.

Then we haue

for all t e lto,Tl,i e D where r(t),t € [to,Tl uerif ies (2).

3. SOME STABILITY RESULTS

Consider the following linear stochastic systems

(3) d,r(t) : As(t,q(t))r(t)dt + i ou(r,rt(t))r(t)d,wfr (t), t > 0
k= l

(4) ry: Ao(t,q(t))r(t) , > o

where Aa: RaxD -+ R'*n,0 < f t  (  r  are cont inuous ort .Ba
By X(t,s), t > s we denote the fundamental random matrix of solutions

associated to system (3) and Ay TQ,s) we denote the fundamental (random)
matrix of solutions associated to system (4L Obviously if Ak(t,i) : 0,t e
IR+,, €. D,L < k S r then X(t, s) becomes X(t, s).

On the Hilbert space Sj we define the following linear operators Lk(t),t >
0 , 1 ( k ( 3 , b y

(LrQ) H)(i) : i Ak(t, i) H (i) Ai(t, i),
k=I

(Lr(t)H)(i,) :  (A1(t, i .) +rrour^)H(i) + H(i)(A6(t,t) +f,u,nr,)

(hQ)H) ( i , )  : tqnH( i l ,  ieD,  Hes l
J+t

Obviously Lt(t) 2 0, h(t) > 0, t > 0



Let us define

(5) L1t1 : L2(t) + Ls(t),L(t) _ E1t1 + Lr(t),r > 0

It is easy to verify that

(L. (t) H ) (i) : At (t, i,) H (i,) + H (i) Ao (t, i) + Di=t Aift , i) H (i) A k (t, i)
+ D!=t arlH (i1, i, € D, H e Sl.

On the space Sj we consider the linear differential equation

(6) q9: Lft)s(t),r ) o
dt

By S(t, to, H) we denote the solution of (6) with S(ts, ts, H) : II, H e S!.
By T(t,t6) we denote the linear evolution operator on Sj associated with

the equation (6), i.e. T(t,to)H : S(t,ts,H),H € Ef.
By T(t,t6) and Tz(t,to) we^denote the linear evolution operators on 5f

associated to linear operators L(t) and f,2(C) respectively.
It is obvious that if Ak(t,e) : 0, t ) 0, i eD and 1 < k < r then T(t,tol

becomes 71t,t01.
It is easyto show lhat: T(t,s)I(s, to) : T(t,t0),T(t,s) - (7(s, r))-t,

T(s,s) : J(J being the identity operator on 5i), and

d  n r ,  \  n / t \ F / t  r  
/

;'t \t, s) : L(t).T(t, s), frT. (t, s) : T. (t, s) L. (t),
(7) d't 

d

*7. ( t , t )  
:  -L . ( t )7 . (s , t ) ,  t  >  0

Also we check easily that

(8) (T;(t,t i lH)(i) -v;ft,tL)H(ilvlt,ts),i eD,H e El

where 7u1t,to1 is the fundamentai matrix of solutions associated with the
linear deterministic system

/ o \ 9 1\- , /  o i :  @o(t , i )  + 
- ruul") r ( t ) ,  

i  eD,t )  o

and

(10) Vo1t,to1 - sio',(t-tilXo1t,to1



where Xi(t,ti is the fundamental matrix of solutions associated with the
linear deterministic system

(11 )  99 :Ao( t , i ) r ( t ) ,  i eD ,
dt

From (5) it follows easily that

T(t,to1 :7(t,to) + [' 71t, r1tt(s)r(s, ts)d,s, t ] to
J to

71t,to1 : Tz(t,to) + [' Tz(t, s)Ls(s)i(s, ts)d,s, t ] to
J to

Hence

(12) T.(t,to1 :7*(t,to) + [. T*(r,ts)Li!)7-(t, s)ds
,t tO

(13) i.1t,to1 : T; (t,rr) * I:,7 G,ts)Li(s)7,;(t, s)ds

The next result has been proved in [3]
PROPOSITION 2. We haue

(7. (t, ti H) (i) : E[x* (t, ts) H (q (t)) x (t, t0) lq (t s) : i]

for all t ) ts,i eD and H e Sl.
From Proposition 2 it follows that T.(t,to) > 0,7*(t,to) ) 0 for all

t ) t o .
Thus, since Li(s) > 0,ri(t) ) 0, from (8), (12) and (13) we get

(14) T. (t,to1 > 7- Q,td > T; (t, ro) ) 0, t ) to

(15) l lT. (t,rr)l l  > l l7. ft,h)l l > l lT; (t,t l) l l , t ) to

In the time-invariant case ire. A*(!,i) : An(i),f ) 0,0 < ft 3 r,i e D,, the
linear operators L(t) : L, L(t) - L do not depend upon t and therefore

(16) T.(t,to) - eL*(t-to) )7"1t,t01 - "71t-to1



Definition 1. a) We say that the trivial solution of system (3) is expo-
nentially stable in mean square if there exist B ) 1 and a ) 0 such that

EllX (t, ts)rsl2lrt(ts) : zl S Be-"{t-to) lro l'
for all t ) toZ 0 and all a e D,xs e R

b) We say that the trivial solution of system ( ) is exponentially stable
in mean square if there exist B ) 1 and a ) 0 such that

E[17 Q, h)rsl2lq(ts) : i] 1 Be,-"(t-to) l"o l '
for all t )_ ts,rs e Rn and i e D.

From Proposition 2 the following result follows directly

PROPOSITION 3. The triui,al soluti,on of system (3) i,s erponentially
stable in mean square iff there erist B ) 7 and a ) 0 such that llT. (t,rg)ll S
Bs-a(t-to) for all t ) to.

The triui,al solution of system (/r) is erponentially stable i,n mean square
iff there erist B ) I and, a ) 0 such that ll7. ft,tr)ll < Bs-a(t-to) for all
t l t o .

The next result follows directly from (8), (15) and Proposition 3.

PROPOSITION 4. (i) If the tri,uial solution of system (3) i,s erponen-
tiallg stable'in mean square then the triui,al solution of sgstem (l) s erponen-
tially stable in mean squo,re.

(ii) Il the triui,al solution of system (il ts erponenti,ally stable in mean
square then for euery 'i e D, the triuial solution of system (9) is erponenti,ally
stable.

Remark /. From Proposition 3 it follows that the mean square exponential
stability of the trivial solution of system (3) is completely caracterized by
the matrices A1 and Q,0 < k ( r. Therefore we shall say that the system
(A0,At,...,A,,Q) is stable instead of "the trivial solution of system (3) is
exponentially stable in mean square".

A detailed study of stability of the system (Ao, Ar,. . . , A,, Q) is made in
[3]

PROPOSITION 5. Assume that Ap,0 < k S r are bounded onR"a. IJ
there erist r ) 0 and 6 € (0, 1) such that

E[X. (t + r,t)G(t + r)(rt(t + r))X(t * r,t) lrt(t) : i ] S 6G{t)



for all i, e D,t > 0, where G : IR1 -+ 5f is a bounded and uni,formly positi,ue
definite functi,on, then the system (Ao, At, . . . , A,,Q) is stable

Proof. From Proposition 2 we get T.(t * r,t)G(t + r) < 6c(t),t > 0.
Let fs ) 0. Since T.(t,tl) ) 0 for all I > fs w€ get by induction that
T.( to*nr, t1)G(to*nr)  < 6"G(to) < 06"J,n) I ,  wi th some 0 > 0t  Since
G is uniformly positive definite we can write

T. (to t nr,to)J < 016" J, l lT. (to * nr,fo)l l S g$ ,n ) r

But sup{llL.(t)ll;t > 0} < oo.
Thus, taking into account (7) one gets easily that there exists 0z > 0 such

that

l lT. (t,r) l l  S p2 if  o < t - s I r
Hence we obtain that ll7.(r, to)ll < Brs-a(t-to) for all t ) ts, with c : -] ln d.
Thus, by Proposition 3 the proof is complete.

4. STOCHASTIC OBSERVABILITY

Let C : IR-. x D -+ Wx" be a continuous function. d(t) e Sj is defined by
C,(t) _ C. (t, i)C (t, i). Jt the time-invariant case C(f , i) : C (i,),f ) 0, i, e D
ana e(l : C. (i)C Q);e e s!.

Defi,niti,on 2, a) Thesystem (C; Ao, At,. . . , A,,Q) is uniformly observable
(in the time-invariant case we say simple that the system
(C;A0,4t , . . . ,4, ,Q) is observable) i f  there P > 0 and r  > 0 such that

[ '* '  T.(r,t)e g)ds > pJ for alt,  > o
Jt

b) The system (C; Ao,Q) is uniformly observable (in the time-invariant
case we say that the system (C;40, Q) is observable) if there exists P > 0
and r > 0 such that l '+" T*(t,t)C(s)ds > PJ for all , > 0.

It is well known that the concept of uniform observability for time-varying
deterministic systems was established by Kalman [13]. If D : {I) the Defi-
nit ion 2 can be find in [15] and if An:0,1< k 1r Definit ion 2 is given in
[t0]. for time-invariant stochastic discrete-time linear systems the concept of
observability has been defined in [19]. The next result follows directly from
Proposition 2.



PROPOSITION 6. The system (C; Ao, Ar, . . . ,, A,,,Q) i,s uni,formly ob-
seruable iff there erist B > 0 andr > 0 such that

tt*r
EI I  X*(r,  t)C. (s,a(s))C(s, a(s))X(s, t)dslrt( t)  :  i )  < Ph,J t

for all t )_ 0 and i, e D.
By using (14), (8) and (10) we can conclude that the next result holds.

PROPOSITION 7a). If for euery i, e D th,e pair (C(.,i),A0(.,i))
is uniformly obseruable (see [13]) then the system (C; Ao,Q) it uni,formly
obseruable

(b) 1/ the system (C;Ao,Q) it uniformly obseruable then the system
(C; Ao, At,. . . , A,,Q) i,s uni,formly obseruable.

PROPOSITION 8. Suppose that As(t,i) : Ax(i),C(t,t) : C(i) for all
t ) 0,i € D,0 < k 1 r. Then the followi,ng assertions are equi,ualent

a) The system (C; Ao, . . ., A,,Q) it obseruable
b) There eri,sts r ) 0 such that

[' 
"t' 'e 

dt > o
Jo

c) There eri,sts r ) 0 such that Ko(r) ) 0 where Ko(t) is the soluti'on of
the di,fferenti,al equati,on on S!

K ' ( t ) : L . K ( t ) + e , t > 0

with Ks(O) :0
ProoJ. a) <===1 b) follows from (16)

Since Ko(t) : [' "'.{'-ie 
ds : [' "t"e 

d"s, t ] 0 it follows that c) <=a

b). The proof is .iflrp,.,.. 
Jo

THEOREM 1. Under the assumption of Proposi,ti,on 8 i'f the system
(C;A1,. . . ,A,Q) i t  not  obseruable then there er ist  f rs e Rn,ro *  0 and
i o e  D  s u c h t h a t

(i') C(is)rs : Q
(ii) qi ';C(i ')ro : 0 for all i '  eD
(ii i) C(ii l(As(i 's))^rs : 0 for all m 21



(i,u) q;oiqiiC(j)ro :0 for
(v) C(is)An(i i ro:0, 1

all i. I is, j
1 k  1 r

€ D

Proof. Suppose that (C; Ao,. . . , A,,Q) is not observable. From Propo-
sition 8 it follows that there exist rs € Rn,no l0 and is € 2 such

that z[ | lettel|s)d,trs - 0. Hence r6,kL.te)Us)rs : 0 for all r e" J o  .

[0, 1]. Since eE.t > 
"En*t 

> sLit (see (14)-(16)) one gets r6@e.'e\is)rs :
0,r[(eLitC)(ro)ro :0,t € [0, 1]. From the last equality we get C(6)eeo1o)tno:
0 , t € [ 0 , 1 ) .

Hence differentiating successively we have

(17)

(18)

(1e)

for all rn
Thus
Now,

r[((L.)^C)( is)16 :  0,  m ]  0

C(io)(Ao(io))-zo : 0, m ) 0

r;,((f.)^ e) (ro)ro : 0, ri,((Li)* e) Uolro : s

: r o @ie) Uo), o: t; t Ai(il) C. (is) C (i 's) At (i,s) r s
,t=1

and thus (v) follows
Further, by (19) we can write

0 : r[,(E.e16o1ro - n6@;e)(,0)ro + r[@iQ(,0)"0 :
: 4@ic)(ro)ro : ri E qi,1C.(j)C(j)rs

J77o

and since Qti 2.0 if i + j one gets (ii).
Also from (19) it follows that

o: r[,(L)'e)(zs)zr :
:4{((L;) 'z + qt;+ LiL;+ (Li) 'zlel( is)}rs :
-- r[l(LiLie)U,i + (LiL;q(,O) + (t;)'?e)$o)]ro

> 0
(i) and (iii) follow from (18)
from (17) and (19) we have

0: x6(L"e)(ro)"0 : r[,@ie)(ro)ro + r[(E.e)(ro)"0

10



But, by using (ii) we can write

rfi(LiLil)(io ) "o 
: 2r[lA[(io) + Iqaa I,] D qoo,C.(a) C (z) 16 : s

- i* io

r;,(t;Lid)(io)"0 :2ri Loo''r(AtQ.) + la6I^)C.(i)C(i)ro : 0

Hence one gets

0: 16((rl) 'e)(to)ro: rd I T,Q^tulc.( j)c(j)ro
xrlo J72

and since Q;otQtj ) 0 for i * io, j + i' one obtains qaflriC(i)ro :0 for all
i * io and j I i, and thus by (ii) it follows that (iv) holds and hence the
proof is complete.

COROIIARY 1. [Jnder the assumpti,on of Proposi'ti,on 8 i'f lor euery
i e D, rank M(i') : n, u)here

M ( i ) : l C . ( i , ) , A 6 ( i ) C . ( i ) , , . . . , ( A 6 ( i , r ) ) " - ' C . ( i o ) , Q n C * ( l ) ' . . . , q u C " ( d ) ,
A;(i)c. ( i),  .  .  . ,  A;(i)c. ( i) l

then the system (C; Ao, Ar,. . . , A,,Q) i,s obseruable'

THEOREM 2. Assume that A1,, 0 < k I r are bounded, on IR"'. If
the system (C;A0,...,A,,Q) it uniformly obseruable and i,f the followi'ng
d,ifferenti,al equati,on on El.

(20 )  K ' ( t )+L . ( t )K ( t )+e f t \  : s ,  t>0

has a bound,ed, and, positi,ue semi,d,ef'ni,te solutionTltl tt rn,
(i,) tl," system (Ao, Ar, . . . , An, Q) i's stable
(ii) K is uni,formly positi,ue defi'nite
(iii) The equati,on (20) has a unique positi,ue semi,defi,ni,te and bounded on

R"a solution
Proof. From (7) it follows that

(21) Kft) :  T.(r,t)K$) + [ '  T.(u,t)e @)d,u, s ) t
,,

1 1



Since 0 S 3K(s) S 0!J with some 0o > 0 and I(s,r) > 0 one gets

0 S l; T*(u,t)C(u)du S!(t) < \oJ for all s ) t ) 0
Hence the integral K(t) : If T*(t,t)C(s)ds is convergent and 0 (

R Q ) s p o t ,  r > o
Bv (7) it follows directly that K is a solution of the equation (2!)

Since (C;A0,...,A,,Q) is uniformly observable it follows that K is uni-

formly observable. Since T.(t + r,t)T.(s,t + r) : T*(s,f) we have

T. ( t+ r , f lR ( t+ r )

Hence T.(t + r)R(t+ r) < R(D - PJ s 0 - *)k(D,t > 0. Thus bv
PO

Propositions 2 and 5 it follows that the system (,40, . . ' , A,,Q) it stable'
Hence by Proposition 3, l l?-(t, t) l l  !te-"('] ' , t t t.

Taking s -+ oo in (21) one gets K(t) - K(t),, > 0 and thus the proof is

complete.

COROLLARY 2. Suppose that Ap(t,i) : A*(i),C(t,l) : C(i '),t
0 , ' i  e  D , 0  1 k  1 r

Assume that (c; Ao,. . . , A,,Q) is obseruable and the algebraic equat'ion
on S!

: l:,7*(r,t)e Ods:R1t1 - 
l, '*' T*(r,t)e g)as

=

(22)

has a solut ionf t  >-0.
Then :

(23)

L . K + C : 0

(1,) T!, system (Ao, At,. . . , A,,Q) it stable
( i i ) K > o
(ii,i,) The equati,on (ZZ) has a unique positiue semi,defi,nite soluti,on.

5. LINEAR QUADRATIC CONTROL PROBLEM

ON FINITE HORIZON

Consider the following linear control system

d,r(t) : lAy(t, q (t)) r (t) + B (t, rt(t))u(t)ldt+

+
&=1

t2



and the output A(t) : C (t, q(t))r(t) where A*, B and C are continuous func-
tions on IR...

If ,0 > 0 and rs € Rn and u e U(t1,m), by the standard procedure
of succesive approximations and by using the properties of the stochastic
integral, it is easy to see that there exists a unique solution xu(t,ts,rs) of
(23) defined for all t ) to, with the properties: nu(to,to,ro) : n0,r(.,t0,"0) €
U(ts,n);nu(t,t6,ze) is a continuous (with probability one) process.

Remark 2. From (1) and (23) one gets easily by the Gronwall Lemma
that for every T ) 0, there exists PQ) > 0 such that

E\r,(t, to,ro)l ' ln(to): i l  < Pg {lrol '+ E[t[ lu(t) l '?dtl
q(tl) : i]) for all 0 < ts .-T,t e [to,T],u e L\.,(lto,Tl, R^),

and  16  €  Rn , i  eD
If. Ap,0 < k ( r and B are bounded on IRa then there exists a function

7 : (0, oo) -) (0, *) such that

rs € Rn and all 0 ( to 1T,t e lto,T) and u €. L\,.(ltl,Tl,R^)
We associate the quadratic cost

where 0 ( lo 1 T,rs € Rn,i e D and u e L].(lto,Tl,R*) and -R(t,a) :
R.(t,i) is a continuous function with the property that R(t,i) > 0 for all
t  >  0 ,  i  € D .

From Remark 2 it follows that Vr(xo,ts,u,i,) ( oo. In this section we
solve the problem: Given arbitrary, but fixed 0 ( to < ? and re € Rn,
find 0 e L2r,,(lto,T),R^) such that for all i e D we have Vr(ro,ts,u,i,) )
Vr(ro,h,A,i) for all u e L1.,{t0,7),R^). If 0 has the above property we
shall write

min{77(zs , t0, ' t t r , i ) ;u e L\ . . ( l to,Tl ,  R^)}  :  Vr(ro,h,A, i ) , i  e D.

Ellr"(t, to, ro)l ' l r t(to) : i l  < 1g - to){f l" '1'+
+Etl[ lu(t)l2dtlrt(to) : ,]] for all ' i e D,

Vr (r o, ts, u, i,) : tt 
I tlC (t, rt (t)) r u(t, to,ro ) l' *

+u. (t)-R(t, q(t))u(t))dtlrt(tr) : ,1
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Let us consider the following Riccati type system

n
i x (t, i) + A6(t, i) K (t, i,) + K (t, t) As(t, i) +
d t  \ '  '

r

+ L Atr(t ,  i )  K (t ,  i )  Ak(t,  i )
(24) oi,

+ \ ui1 K (t, i) + C. (t, i)C (t, i)
j= I

-K  ( t , i )B( t , i l@( t , i ) ) - r  B .  ( t , i )K  ( t , z )  :  0 ,  t  >  0 ,  i  €  D.

If K : R+ x D -+ 5,, we define Fx(t,i) : -(R(t,i))-rB-(t,, i)K(t,z) and
L x (t, i) : K (t, i) B (t, i) FK (t, i).

With the above notations the system (24) can be written in the following
form on Sj.

(25)  K ' ( t ) :  G( t ,K( t ) ) ,  t  >  0

where  K( t )  -  (K( t ,1 ) , . . .  ,K( t ,d ) ) ,G( t ,K)  e  E l ,

G(t ,K):  -L.( t )K -  Lr( t ) , (AK(r))( t )  :  Lx(t , i )

If K(t,i),t e [to,T) is a symmetric solution of system (24), then applying
Proposition l for system (23) and u(t.,r, i): r.K(t, ' i)r, r € ff, i , e D,t e

Ito,,T) and taking into account the relations (24), t e lt1,Tl,i € D one gets

(26) Elri(T,ts,rs)K(t,q(T))r"(T,to, ro)|ry(to) : i ' l  - r[K(to,i)ro

: -vr (r o, ts, u,'i) + q 
f) 6(t) - F K (t, rt (t)) r'(t,t', r0) ).-R( t, rt UD @ft) -

- Fx (t, \(t)) r"(t, ts, rs)) dtlq(to) : ;l

for all t e lts,Tl,i e D,rn € Rn,u e L2r,,(lto,Tl, R*)
In what follows by Kr(t,i) we denote the solution of system (24) with

K r ( T , i )  : 0 , i e D .

THEOREM 3. For euery T ) 0, the soluti,on Ky(t,i') i's def'ned for all
t e [0, T), i, e D and has the properties:

(i) K.r(t,i) > o
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( i i )min{V7(*o, to,u, i ) ;u e Ll , . ( [ to,T] ,  R*)]  :  Vr(ro, to,Ar, i )  :  r iKr( to, i ) rs
fo r  a l lO (  to  <7 ,  i ,€  D,xs  e  R whereAT( t ) :  Fx( t ,q ( t ) ) i ( t ) , t  e l t ' ,T l
and i(t) being the soluti,on of system

dr (t) - [Ao (t, q (t)) + B (t, q (t)) F s, (t, q (t))]r (t) dt +

+i ao1t,q(t))r(t)d,wt (t),t e [to,T],
k=1

wi,th i(ts) : as
( i i i )  Kr,( t , i , )  < Kr,( t , i , )  for  a l lTr  <72 and, € [0,  T1], i  eD,
Proof . Let ts € [0, T) be such that the solution Ky is defined on [t6, T]xD.
From the relations (26) for the solution Ky one gets that (ii) holds and

therefore Kr(to,i) > 0. Moreover by Remark 2 we have rf,K7(ts,i)ro <
Vr(ro, ts, 0, i,) < 0 Q)lrol ' .

Hence 01 K7(ts,i) S BQ)l",i, eD. Since B(") does not depend on ts,
it follows that Kr is defined on [0, T] x D and thus it remains only to verify
(iii) .

Indeed let 0 < Tt 1Tz and t6 € [0,71].
We have by (ii)

rt K r, (t 6, i) r s - Vr, (, o, to, ttr, i) 2 Vr, (, o, t o, ur, i) 2 ri K r, (t s, i) r s

where u7, is the restriction of A7, to the interval [to,7t]. The proof is com-
plete.

6. TINEAR QUADRATIC CONTROL PROBTEM

ON INFINITE HORIZON

Throughout this section we assume that Ap, B,,C and R: R*,0 I k 1 r
are continuous and bounded on IRa and R(t, e) is uniformly positive definite.

Condsider the quadratic cost

+u- (t)R(t,rt(t))u(t)jd,tlq(ts) : ' i7,to > 0, ' i  e D, rs € Rn ,u € U(ts,m)

By l,l*(ts,z6) we denote the space of all functions u € U(ts,rn) with the
property that

V( ro , ts ,u , . i , )  (  oo ,  i  e  D

V (, o, ts, u, i,) : ul I I ttC (t, q (t)) r u(t, to,, o)l '  *
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Obviously lf u € Lf,,.([to,oo), R-) has the property that 2.,(., ts,rs) €
L2r,r(lto,*), R") then u €l/*(ts,rs).

In this section we solve the problem:
Given lo ) 0 and rs e E" arbitrary, but fixed, find d e U,n(t1,us) such

that V(rs, ts,u, i , )  )  V(rs,h, f r , i , )  for  a l l  i  eD and al l  u €U^(ts,rs)
If d has the above property, we shall write min{V (ro,ts,u,i,);u € U^(to,ro)} :

V( * r , t s , t l , i , ) ,  i  e  D.
I t  is  obvious that V(ro, ts,u, i , ) :  

;51 
Vr(no,t1, t r r , i ) , i  e D,u e U*(to,ro),ur

being the restriction of z to the set [fe,?] x A.

Defi,ni,tion 9. A continuous and bounded function F : R', xD -+ ft-*' is
said to be a stabilizing feedback gain if the system (Ao + BF, A1,. . . , A,,Q)
is stable.

Definition l. A bounded solution K : Ra x D -+ 5" of system (24) is
said to be stabilizing if Fr is a stabilizing feedback gain.

Defini,tion 5. a) The system (23) is stabilizable (or equivalently the system
(A0,Ar,...,A,,Q;B) is stabil izable) if there exists a stabil izing feedback
gain.

b) The system (C; Ao, Ar,.. .,, A,,Q) is said to be detectable if there exists
H : R.,, x D -+ -R'xp continuous and bounded such that the system (10 +
HC, 41, . . . , A,, Q) is stable

Remarlc 3. From Theorem 5.1. in [3] it follows that if u(t) - F(t,rt(t))r(t)+

f (t),t ) f6 where F is a stabilizingfeedback gain and f € L2,t,,Uto,oo),R*)
and r(l) verifies
(27)

dr( t )  :  { [Ay(t , r t ( t ) )  + B(t , r t ( t ) )F(t ,q( t ) ) ]n( t )  + B(t , r t ( t ) ) f  ( t ) ]dt+
* D[=r Ap(t ,q( t ) ) r ( t )dwp(t) , t  2 to,r( to)  :  ,o

then r,, e L\,,([to, *),.R") and therefore u €U^(ts,rs)

THEOREM 4. Suppose that the system (23) r's stabi,lizable
Then:
a) There eri,sts p > 0 such that Kr(t,i) S pI" for all i, e D,T > 0 and

, € [0,?]
t  ;Kr( t , i )  

:  K(t , i )  er i ,sts,  and K is a posi t iue semidefni te and

bounded onlP'.a soluti,on ol Qil
c) min{V(r0,t0,u,i,);u e l/^(ts,ro)} : V(ro,h,fL,i ') : rtK(to,i ')rs for

a l l t s 2  0 , r e  €  R , i ,  e  D ,  w h e r e i l ( t ) :  F B ( t , q ( t ) ) r ( t ) , t )  t s  a n d i ( t ) , t )  t s
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is the solution of the system

dr (t) : tA o (t, 4 ( r) ) + B (t, q (t)) F p (t, a (t)))r (t) dt +
r

+ D Ak(t, q(t))r(t)dw*(t),, t ) ts, i(ts) : rs
&=1

d) A in addition A*,B,C ryd R are ?-p?riodic functions with respect to
,  € IR+ for each i .  e D then K(t+0, i )  -  K(t , i , )  for  a l l t> 0, i  eD.

Proof. Let F be a stabilizing feedback gain and z(t) : F(t,q(t))r(t).,t /
0,7 verifying(27) with /(t) : 0,o(to) : ro

Since (Ao + 8F,A1,. . . ,A, ,Q) is stable there exists p > 0 suchthat
V(ro,ts,u,i,) < plr,ol2 for all ts ) 0, rs e Rn and i e D. Thus, by The-
orem 3 one gets r$K7(ts,i)*o < plryl2.

Hence 0 < K'r(t1,i) S pI",T > 0,r0 € [0,?] and i, e D.
Therefore from Theorem 3, (iii) it follows that fim Kr(t,z) exists and its

hmit f(r, i) is bounded and positive semidefinite.
Now,  le t  0  (  o  <  B  and T  >  P.  S ince  Kr ( t )  :  (Kr ( t , l ) , . . . ,Kr ( t ,d ) )

is a solution of the equation (25) 0 1 Ky(t,i) S pI" and the function G
is continuous and locally Lipschitz with respect to the second argument, by
the Gronwall Lemma one obtains that there exists ? > 0 depending only on
B - a s u c h t h a t

lKr"(t)- Krt(t)l S tlKr,(o)- Kr,(a)l for all t e [a, B] and allTz > Tt > 0.

Hence )im Ky(t,i l  :RQ,i), i e 2 uniformly with respect to t in every
?-+oo

compact interval lo,0l c IR1. Therefore R is a solution of system (24) and
0  <  K ( t , i )  1  p l , , t  >  0 ,  i  e D .

From (26) we have

Vr (, o, ts, i', i') : rik (t r, i), o - E[i. Q)fr g, rl gD r (n!l Q il : i]

Hence rf,K7(ts,i)ro < Vr(ro,h,fr, i,) S n;,RQ6,i)*o^
Taking ? -+ oo one obtainsV(ns,h,fl, i ,): rtK(to,i ')ro. On the other

hand we can write for u € U*(to,rs),V7(rs.,to*,i) > r$K7(ts,i ')ro
Taking ? -+ m one gets V(ro,ts,u,i,) > r[K(ts,i)rs and thus c) follows.
To prove d), let Ky : l},TlxD + 5" defined as follows K(t,i) : Kr+o(t+

0, i ' )

^ Obviously K7(t,e) verif grequations (24) fort € [0,?] and i eD andsince
Rr(T,z) :0 :  kr(T, i ) , i  eD from uniqueness i t  fo l iows thatR7ft , i ) :

L7



fu(t, i),t € [qf], i e D. Taking ? -+ oo in the above equality we get
K(t  + 0, i )  -  K(t , i ) , t  )  0,  i ,  eD and thus the proof is complete.

PROPOSITION 9. Suppose that the system (C; Ao,. ..,, A,,Q) i,s de-
tectable. Then euery positi,ue semidefi,nite and bounded on IR1 solution of
system (2/) is stabili,zi,ng.

Proof. Let K(t,i) be a positive semidefinite and bounded on IR1 solution
of Q$,

It is easv to see that

+ M.( t , i )M( t , i )+

: 0 , f  )  0

where

d

ho (r, il + AtU, i) K (t, i,) + K (t, i) Ao(t, i)

+ D Ai(t, i)K(t, i)Ak(t,q * f u;1K(t,i1
,k=1 j=L

Ao1t,t1 :  Ao(t, i )  + B(t, i )FK(t,z) and

M (t, i1 : ('''' ui'lrl; n,r, 
)

We shal l  prove fhat (M;A0,At, . . . ,A, ,Q) is detectable.  Indeed, let  H(t , i )
be a matrix valued function satisfying the assumption in Definition 5, b).

We take f i1t , t1 :  l -B(t , i )R-t t2\ , i )  H(t , i ) l
We have

Ao1t, t1 + fr 1t, i) M (t, i) : Ao(t, i) + H (t, i) C (t, i) .

Hence (Ao+f rM,Ar , , . . ,A , ,8 )  i s  s tab le .  Thus  (M;  40 ,Ar , . . . ,A , ,8 )  i t
detectable and therefore by virtue of Theorem 6.4 in [3] we can conclude
that (.4s, At,...,A,,Q) is stable; hence K is a stabil izing solution and the
proof is complete.

PROPOSITION LO. Suppose that (C; Ao, At,. . . , A,,Q) it uni,formlg
obseruable. Then i,f K i,s a positi,ue semi,defini,te and bounded on IR1 solution
of system (2/) we haue

(i) K i,s uniformly positiue defi,nite
(ii) K is a stabi,Ii,zi,ng solution
Proof. Let K be a positive semidefinite and bounded on IR1 solution of

system €4).
Let As(t,i) : Ao(t,i) + B(t,i)FK(t,z) and x(t,t l) be the fundamental

matrix solution associated with the linear system d,r(t) : Ao1t,rt1t1\r(t)dt+

D A*(t, q (t)) r (t) dw n(t)
,k=1
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Let r ) 0 and P > 0 verifying the inequality in Proposition 6.
Define

rt*r -
G(t, i)  -  6],  X*(t , t) [C-(s, a(s))C(s, r l (s)) + f?(r,  a(s))R(s, q(s)).

Fx(s,a(s))lx(s, t)aslq(t) : i l,t ) 0, i € D).

We shall prove inf {n.G(t,i)r;lnl = \,t ) 0,i € D} > 0. Suppose on the
contrary that for every e > 0 there exist r, €. Rn,lcul : I,tr) 0 and i, eD
such that riG(t,,i,,)r, 1€.

Let r,(t) : X(t,/")r, and u,(t) : Fx(t,q(t))r,(t)
Wb can write

e > xiG(t,,i,) 2 El['"*" ui(t)R(t,q(t))u,(t)d,tlrt(t,) : i,,]'Jt- c

> 6El!::*'lu,(t)l,dtlq(t,) : i,l

w i t h s o m e  d  >  0 .  B u t r " ( t )  :  X ( t , t , ) r , * i , ( t ) ,  t l t ,  w h e r e  i r ( t r ) : g
and

dfr , (t) - (Ao (t, rt ftD i, (t) + B (t, q (t)) u, (t)) dt + D A k (t, q (t)) t, (t) dw p (t)
lc=1

Hence, by Remark 2 there exists'Io ) 0 such that

Ella,Q)l'l,r(t,) : i,,J I ,rql:" W,(t)l2dtlTt(r,) : i,,l I 6p

Further, we can write

e > r!G(t,,,i,)r, > E[l::*' lC(t,q(t))r,(t)l2dtlq(t,) : i,]

: Eu::*' lc(t,q(t))x(t,t,)r, + c(t,rt(t))i,(t)l2dtlrt1t,1 : i,1

>, E t I : : 
*' lc (t, q (t)) x (t, t,) r,l2 d,tlrt (t,) : i,l

- El[:: *, lc (t, 11 (t))i,(t)12 dtlq(t u) : i u]

> * P - 5 2 € ,  e  > o

and thus we get a contradiction, since B > 0. Hence, there exists B1 )
0 such that G(t,i) 2 0J", t ) 0,i e D. Now we take in (20) u(s) :
Fx(s,a(s))X(s, f)r6 and we get

r;,ElV.ft * r,t)K(t + r,q(t + f)T(t * r,t)lrt(t) : ilro - r[K(t,i,)rs :
- r f ,G( t , i )xs ,  ,  >  0 ,  rs  e  Rn, i  eD
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Therefore

gr l ro l '<  r [K( t , i ) *o<  gr l ro l ' ,  f  )  0 ,  i ,  €D, rs  €  Rn

Thus K is uniformly positive definite and

alV. ft * r,t)K(t + r,q(t + r\V Q * r,t)lrrft) : i l  S (1 - !1x 1t, t1
p2

By virtue of Proposition 5, the proof is complete.
THEOREM 5. Assume:
(i,) the system (23) is stabilizable
(i,i) the system (C; Ao, At,. . . , A,,Q) i,s ei,ther detectable or uniformly ob-

seruable
Then the Ri,ccati type system (2/) has a unique posi,tiae semi,definite and

bounded on IR1 soluti,on. Moreouer this solution i,s stabi,li,zi,ng
Proof. It is know (see [ ]) that the Riccati type system (24) has at most

one symmetric stabilizing one bounded on lR-p solution. Thus by virtue of
Theorem 4 and Propositions 9 and 10, the proof is complete.

Remark l. From Remark 3 and Theorem 5 it follows that under the
assumptions of Theorem 5,the optimal control fr, defined in Theorem 4 has
the property that il, e L2r,r(lto, m),ft-).

In the case Ap(t,i) : 0, I < k ( r the results in this section have been
proved in [16]; in [16] one considers only admissible controls of the form
u(t) -- 9(t,r(t),rl(t)), where g(t,r,e) are continuous functions and Lipschitz
with respect to r.

For time-varying stochastic It6 systems, the linear quadratic control prob-
lem on infinite horizon has been discussed in [1] and [15].

For time-invariant linear differential systems with jump Markov pertur-
bations the linear quadratic control problem has been investigated in many
papers (see [11], [12], [18] and the references therein).

7. QUADRATIC TRACKING PROBLEM

Throughout this section, we also assume that Ap,B,C an R,0 < k 1r
are continuous and bounded on IRa matrix valued functions and R(t, e) is
uniformly positive definite.
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Given a continuous and bounded on IR..,. signal r(t,i,) we want to minimize
the cost

ra'--* ql',uc(',q(t))lr(t) - '(! 'tft)))l'+

+u. (t) R(t, q (t))u(t)\ dtlq (tr) : 11

in a suitable class of controls u(t).
For fixed fo ) 0 and rs e R we denote by U*(ts,rg) the set of all

u e Il(ts,rn) with the property that sup Elr,(t,to,ro)l '  < *
t)ts

Remark 5. From Theorem 5.1in [3] it follows that if u(t) : F(t,q(t))n(t)+
f (t),t ) fs where F is a stabilizing feedback gain and f e U(to,rn) with
supEl/(t)l '  < * and r(t) verif ies (27) then supElr(i) l '  < * and therefore
t)ts t)_ts
u e U^(ts,rs).

The quadratic tracking problem is to minimize in the class U^(ts,rs)

1

tqgT - t, 
wr(ro' ts' u' i)'

Wr (r o, t s, u, i) : ut 
I  ̂  tlc (t, 11 Q))lr u(t, t s,, o) - r (t, rt Q))ll2

+u. (t) R(t, q (t))u(t)I dtlq (tr) : 11

We shall assume the conditions in Theorem 5 are satisfied, hence the
system (24) has a unique positive semidefinite and bounded on IRa solution
K(t,i). Since K is stabilizing, from Proposition 4 it follows that the trivial

solution of the system 
# 

: A1t,rt1t11r(t) is exponentially stable in mean

square, where A,1t, t7 : Ao(t, i) - B (t, i,) p-r (t, i) B" (t, lK (t, l)
Therefore by virtue of Proposition 4 in [16] the following system

d d
(28) 4g(t , i l  + A.Q, i )g( t , i )  + t  g( t , i )qr i  -  C.( t , i )C(t , i , ) r ( t , t )  :  s

dt "  '  
'  

j= r

has a unique bounded on IR.. solution. We denote this solutionby i(t,i,).
Let h7(t,e) be the solution of the following system

(2e) d . .  . .  g
n n ( t , r )  + r Q 4 h ( t , i ) + m u 1 t 1  : 9 ,  t > 0 ,  i e D
I t b  : _ 1
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witlr h7(7,'i) : 0, i e D where

ffi,(t) : r* (t, i)c. (t, i)c (t, t)r (t, t) -
-i. (t, i) B (t, t) R-l (t, i) B. (t, i)g (t, i).

THEOREM 6. Under the assumpti,ons of Theorem 5 we haue

e uT(rtT,"o ) 
-lit*-* 

+ 
wr (r o' t s' u' i') =

fi -r-- -+ Wr (to, r s, u, i,)
1 - f , y

t  r "3: limr-*7 
;/ \F;fia(t)at, for all f6 ) 0, rs € Rn, i, e D
l v  j = L

where F :Wnil, F: [mr-*P(t) and,a(t): FV(t,r l f tDr(t) + f(0,f$):
-p-t(t,q(t))B.(t,q(t))j(t,q(t)) and r ueri,fi,es (27) corresponding to FV and,

fn(ti - ns.
Proof. Firstly we remark that by virtue of Remark 5,n € U*(to,rs) and

therefore sup Elr(t) l' < *.
t)to

Let ts ) 0, zs e Rn ,T ) to, and u e U*(ts, rs).
Consider the function. ur(t,r, i,) - r*K(t,i,)r + 2a.j(t, i ,) + h,r(t, i),,t >

0 , r €  f f , i , e  D .
Applying Proposition 1 to the above function a7 and to system (23) and

taking into account the equations for K,! and h7 one gets

Eluy(T,r,(T),q!Dlq(to) : i l  - u7(ts,ns,i,) :

-Wr (ro, ts, u, i,) + Ell[ {@(t) -
(30)

F v(t, n (t)) r "(t) 
- / (t) ) - n( t, q (t)) (u(t)

-Fv\,qft))r"(t) - f( |)\ai lq(to) :01, i  eD

where ru(t) : ru(t,ts, rs), t ) ts
From (30) we get

Wr (, o, ts, u, i,) : ur (t o, n o, i) - E[u7 (7, E (T), q (T))lrt (t 
") 

* l,]

Wr (, o, t s, u, i) 2 ur (to, r o, i) - E[u7 (7, r 
" 
(T), rt gD lrl (tr) : i,]



Since sup Blr,(l) l '  < * we have
t l ts

J*#aB{rr(r,n(r),q(r))l ' i(to)l 
- i l  - 0 -

: 
;5g 7\nfurQ,ru(T),ngDlrt(to) : tl

On the other hand IimT -*J , ,r(to,ro,e) : Ilmr- *^!-nr(to,l,)
I  - t o  f  - f , 0

Therefore we have to prove that

fi-'--+ h,(to,i) : m+ I,'*Ftiffi,1ft)at
Indeed,  le t  h7( t )  :  (h r ( t , l ) ,  .  .  . ,h r ( t ,dD ' . ,m( t )  :  ( f f i , ( t , l ) , .  .  . , f f i ( t ,d ) ) - .

From (29) one gets

Hence

1 T  1 T  -  1 T -
h7. ( to ) :  I  P( ' - t s ) f f i . (s )ds :  |  (P( r - t i l -P) f f i , (s )ds+ |  Pm(s)ds

J to  J to  J to

Since liml*-(P(1- t i l  - F) :0 and nz(t) is bounded we have

fi*-=+ hr(td: li'--+ [' F*1tyar.
T-+a'f '  -  f ,6 T+6 1 - tO Jto

But ffi(t) is a continuous and bounded on IR.. function. Thus it is easy to
verify that lim74-# fi Fmltlat : ii-m7-- + I{ Fffi,(t)dt and the proof is
complete.

Remarle 6. From Theorem 6 it follows that under the assumptions of
Theorem 5, the optimal value of the quadratic tracking problem does not
depend upon te and rs.

Remark 7.  I f  A; ,B,C,-R and r( t , i ) ,0 < k (  r  are asymptot ical ly
almost periodic functions (see [6]) then under the assumptions of Theorem 5
it follows from [4] that K and ] are asymptoticaly almost periodic functions,
hence ffi(t) is asymptotically almost periodic and therefore from [6] it follows
that

l i"q -,1 [ 'D1n,^dt exists for every i eD.
t-+@ f J0 7

hr(t) -- fr' "aa-tm(s)ds, 
T > t
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I f  Ak(t ,z)  :0,  I  < k {-r ,  t  )  0, i  € 2,  Theorem 6 has been proved in [16] ,
for u e U*(to,r6) only of the form u(t) : p(t,r(t),q(t)), with rp continuous
functions and Lipschitz in the second argument. For stochastic differential
equations different tracking type problems are discussed in [1], [5], [8]-[10].
[14] ,  [17] .
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