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A DISTRIBUTED CONTROL PROBLEM

FOR MICROPOLAR FLUIDS

RuxaNnR,q, StavRp

Abstract. A control problem for micropolar fluids is considered. The purpose

of this paper is to determine a viscosity coefficient which gives a desired field of

microrotation velocity. The existence of an optimal control is obtained; then, the

first order neces:ary conditions of optimality are derived.

1. INTRODUCTION

The theory of microfluids was introduced by Eringen in [1]. A subclass

of these fluids is the micropolar fluids. Animal blood, liquid cristals, fluids

containing certain additives may be represented by the mathematical rnodel

of micropolar fluids. This model can be found in [2]. From the physical point

of view, micropolar fluids are characterized by the following property: ffuid

points contained in a small volume element, in addition to its usual rigid

motion, can rotate about the centroid of the volume element in an average

sense, described by the gyration tensor, ar. Since for a micropolar fluid the

gyration tensor is skew-symmetric (ro, : -trrr&)r it is possible to replace the

gyration tensor by a vector function d for a 3D flow and by a scalar function



u for a 2D case, function called rnicrorotation velocity. We shall study in

this paper the 2D case. Let O C R2 be an open, bounded, connected set,

with 0O of class C2 and T a given positive consiant. Taking into account the

constitutive equations for micropolar fluids given in [2J, the noqr stationnary

flow of such a fluid is described by the following coupled system

( 1 . 1 )

d + (d. V),t - 0t + x)A o-+ Yp - yratu = / in O x (0,?),

j r '  + jd.Vw * 1 Lw *Zyu - yrotd* 9 ia O x (0,f) ,

d i v d : 0  i n O x ( 0 , 7 ) ,

, i :  d ,  u :0  on EO x (0 ,?) ,

d(r,O): d, ,(r ,0) :0 in O,

where X, F, j, 'f arc positive given constants associated to the properties of

the materi al, i, g are given external fields and o', u, p arethe unknown of the

problem: the velocitS the microrotation and the pressure of the micropolar

fluid, respectively. In section 2 we give the variational formulation of (1.1)

and we establish existence and uniqueness results. Section 3 deals with the

control problem. Since the viscosity coefficient X has a special semnification

for the system (1.1) (for X: 0 this system decouples), we took as control

variable this coefficient. We want to determine the coefficient X which realises

a desired field of the microrotation velocity. The necessary conditions of

optimality are deduced in the last section.

2. THE VARIATIONAL FORMULATION OF THE PR,OBLEM

The proof of the existence and uniqueness of weak solutions is, for mi-

cropolar fluids, similar to that for Navier-Stokes equations. Some results

concerning existence and uniqueness of the solutions for micropolar fluids

can be found in [3], [ ]. ,
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For obtaining the variational formulation of the problem (1.1) we shall

need the following spaces (for their properties see, e. g. [5])

I u - {ti e (n}(o))2 ldivd,: o},
t '

(2 1) {  n :  { i l  € (rr(o))2 ldivd,:0, r?. dl ," :  o},
I
I py(0, T LX' ) : {u e L2 (a, T ; x) / u, e L2 (0, T ; x, )},x-Hilbert space.

The following notations will be used throughout the paper

(.,.) the scalar product , | . I the norm in I2(O) or (,12(n))2,

((.,.))o the scalar product , ll . ll the norm in I$(O) or (//;(O))2,

(.,.)x',x the duality pairing between a spare X and its dual X',

B'(d,6): (d.V)d, Bz(i l ,e):d.Ys Yd,de (r|(o)),, p € f/;(o).

Taking the regularitv ie L2(0,7;V'), g e L2(0,f;I/-l(O)), thu varia-

tional formulation of the problem (1.1) is given by

d e W(0,7;V,V'),  u eW(o,f; f l f  (O), H-t(O)),

('7(t)' 4r,,, + 0'+ xx(d(4, 4)o + (81(d(t),d(t)),flv,,v

+Zy(w(t),() - x(rotd(t),(): (g(t),()r-1(a),r;(n) VC € II01(O),

d(o) : d, r.,(o; : g.

THEOREM 2.1. The problern (2.2) has a unique solution (i,r). More-

oaer, there exists p e 2'(Ox(0,7)), uni,que up to the addition of a distribution

in (0,7), which satisf,es, together with (i,w), the systern (1.1).

Proof. The main steps of the proof are similar to those of [5], for Navier-

Stokes equations, so we shall skip them. Analogously as in [5], the proof is

based on the properties of Br and Bz.
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3. THE DISTRIBUTED CONTROL PROBLEM

We consider the control problem

Find X* € [0, r] such that

J(x*) - min{,/(x) /x e [0,r]],

in fi(Afi and r an arbitrarily large constant.

(3.2) t (x) : ,  
[^  

(wr-wa)2dxdt,  J:  [0,m) r-+ R
o  J { l r

with (dy, r.rr) the unique solution of (2.2), dlr : O x (0, T), wa a given function

a

We want to determine the viscosity coefficient X so that the corresponding

microrotation velocity of the fluid, c.r' have a desired configuratiorr, {i4.

THEOR,EM 3.1. The control problem(3.l) Das ot least a solution.

Proof. We shall prove that the function "/ is continuous; the assertion of

the theorem will follow, by using a classical theorem of Weierstrass.

Let {X,,},.6p be a convergent sequence to an element X € [0, r]. We denote

by (r7,, a.,.) the unique solution of (2.2)corresponding to X,, a,nd by (d, cu) the

solution oI (2.2) corresponding to X. We shall prove that (d,., uo) + (d' ,)

strongly in .L2(0, T;V) x If (0,f;Hj(O)), when n -) oo.

Subtracting the equations of (2.2) corresponding to X,, and X, respectivel5

taking i: d"(t) - d(t), (, : u"(t) - ,(t) and adding the equations we get

l (l d"(t) - 6(t) l' + i l r"(t) - u(t) l')' + 0' + il lld''(q - a(t)ll8 +

tllr.(t) - ,(4113+ 2yl u"(t) - u(t) lLx(rot(cu"(t) - a,(t)),d.(4 - a(4)+

x@ "U) 
- r (t),rot(d, (t) - r-(t) )) - (Br (?t" (t) - d(t)' d(t)), d"(t) - d(t)| n,,,

-j(Br(d.(t) - 6(t),r(r)), r*(t) - u(t)l+(x^- xx-((d"(fl,d',(t) - d(t)))o

r{rott,,.(t) ,d*(t) - d(4) -Z(w.(t),6"(t) - r7(t))+(ar,(t) - w(t),rotu-"(t))).

Using the property of 81 (see [5], Lemma 3.4., P. 292), which can be obtained



also for 82, and majorizing the right-hand side of the above equalit5 we get

( | d"(r) - d(t) l' + i l r"(t) - r(t) l' )' + 0' + illld"(4 - a(4il3+

tllu"(t) - u(t)llro!,a,(rxl d"(4 - d(t) 12+jlr"(t)-r(t) lr)+(x"-xw^(t),

with .4 (r) - zmax(&lld (ilil]o+ ffiil" (t)lll + Y; $ | I "{t) ll 3 + ffi), E ̂(t) -

2 | -((d"(t), d"(r) - d(t)))o * (rotr,r"(t),6"(t) - d(t)) - 2(w"(t),d"(t) -;(4) +

(w"(t)-u(t),rotd"(t)) | . Integrating the inequality from 0 to T it follows

(l d "g) 
-i Q)12 + i lu "(r) 

- w (r dllzlze,r;v)
(3.3)

+ 1 llu " 
- w 1121, 1s $ ; n I lnll < 2 (x.

')l')"*p?fi(t)dt)+r
to  

rT
- x)"*p(- 

/o 
A(t)d

()lht"-
T

E"(t,

+x

I,'
0t+
't) I )dt

The system (2.2) written for X: Xn with z-: d"(t)' ( * u"(t) gives the

boundedness of the sequence {(t7,,, u",)},,ex in ,L2(0, f ;V) x L2(0,f; fsl(O));

hence, from the definition of E"(t) we obtain the boundedness of the sequence
1T

{ I E"(t)dt}"en and the proof of the theorem is achieved.
J O

PROPOSITION 3.2. The function J is d.ifferentiable onl0,,rl and

r
(3.4) J'(X1)(X- Xo): | (r. -,,,0X,.,0 - wa)drdt, YX1,X € [0,r]

J ftr

where (t,a.) is the unique solution of the system

(3.5)

6- e W (A,T:V,V'), u. e W (A,T; Hi(CI), H-l(O)),

(.t'(t), 4r,,, + (p + xo)((tr(t),4)o + (81(fr(t)',io(t)), 4r',n

+(81(?10(r),fi(t)), 4u,y - Xo(rotr.r* (t),4 - (i(t), 4u,,u - (x - xo)

((r'o(t), 4)o+ (Bt(u's(t),do(t)), 4n,,n + (x - xsxrotrrs(t),flYi eV,

r(r-'(tX)s-'1n;,ao,1n;*r((r.(t)'())a+i(Bz(do(t),4,'-(t))()s-r1o1,ror1n)

+j (B 2(dr (t) -,70 ( r), r( t ) X ) r - 1 (n),11; (o ) + 2 ys(u- (t) {) - xs ( rott} (t) f )

:(g(t),()r-,(n),a;(or k-xi\(ro(t),() - (rotrTe(t)f)) VC € I/d(n),

fr(0) - d, c.r-(0) :0,
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and (ri6, ru6) is the unique solution of (2.2) corresponding to X: X0 ,

Proof. The existence and uniqueness of (or, r.r*) follow with similar tech-

inques as those of Theorem 2.1. Let a € (0,1) and let (Eo* a.,rl be the

unique solution of (2.2) corresponding to Xo * a(y - X0). We introduce the

functions io : (do* * 6a)lo * dai a, : {aq. - ,o)o * aro. We shall obtain

the problem satisfied by (d*, aro) computing ((2.2) for y - Xo * a(y - X0) -

( 2 . 2 ) f o r X :  X o ) l o + ( 2 . 2 ) f o r y - -  X e ;  t a k i n g  i : 6 . ( t ) , E :  u . ( t )  i n  t h e

obtained system, adding the two equalities and using the same technique

as the one of Theorem 3.1. we obtain the boundedness of {(d,, r^ua)}oe(0,1)

in .L2(0, f ;V) x L2(A,7; /{j(O)),then the convergence of. {(ri,, rr,rc)}a61o,r; in

W(0,7;V,V') xW(A,f; Hf (O), //-t(O)). Finally, using this convergence, we

obtain (3.4). Let Xs be a solution of the control problem (3.1) and (do, u,o)

the corresponding solution of (2.2). Then (3.4) yields

(3.6)
fn 

(r.-r6)(ar6-c,.'a)drdt ) o-

Ler xe be an "illlilTiffi";Tffi':il" so,urion ot (22)
corresponding to X: Xo.We consider the following adjoint problem

h eWlO,TiV,V') ,  Po €W(0,?; I /01(O),  / / - t (O)) '

-(4(4, 4v,,, + (p + xoX(4(t), 4)o + (Br(i,,to(4)' &(t)lr',v
- (81 (d0 (t), rio (t) ), 4 r,,, - j (Bz(i,ro (t) ), ps (t))r-' 1o),s01 (n)

(4.1) {  *xs(rotpe(t),4 :0 Yi eV,

- j Vo(t),( ) s - r 1oy,rj 1oy +r( (ru (t), ( ) )o -r ( B 2 (ds(t),po (t) )' () r -',s;

8x0(p0(t), () +xo ('ot?ig (t), () : (tus (t) -, a(t),C) V( € /4 (CI),

il{g) - d, po(T) = 0.



PROPOSITION 4.1. The system (.I)'has a unique solution (iln, pr).

Proof. For obtaining the existence, the uniqueness and the regularity of

(rio,po), rse use the same remark as the one of the proof of Theorem 2.1.

The last result ov this paper states the optimality conditions associated

to a. solution Xo of (3.1).

THEOREIU'{ 4.2. let ys be an optimal contral. Then there exist the

unique elements (do, ,o), (do, po) eW(0,7;V,V')xW(0,?;Hj(O), f l-t(CI))

and the distributions p0,'n0 eD'(Qr), unique up to an additiae distribution

i.n (A,T), satislying the followi,ng problern

system (1.1) for X: X0 and the unknowns i : 60, u) : k)0, p = po

-W -Q, +xo) A da- jpoVwo +(vd6)r h - B{do, &) +V,ro

-X6 ro tp6 -0  i nO7 ,
? P o  A  . n t 4  \ . n-iZ;- I L n- i8z(60, po)*2xopsfx6rotrie :u0 -urd, in O1,

d iv rTo:g  inOa,

d o : d ,  P o : 0  o n 0 f , 1  x ( 0 , T ) ,

h ( * ,T) :6 ,  p ( t ,T )  :0  in  O,
- f

(xo - x)l(do 'rotr.re -psrotis*Zuopo *Vdo'Vti6)dcdt>0Vxe [0,r].
J {lr

Proof. The first assertion of the theorern has been already proved. The

existence of a distribution zrs is obtained as in [5], for Navier-Stokes equations.

We have to prove next the inequality of the system (a.2). This inequality

without contraints replares the inequality (3.6). '

Taking adequate test functions in (4.1) and in (3.5)-(2.2) and using the

equality

(rotar, d) : (rotd, w) Yw e I4(O), d e (fj1O;;'?,

we get

(4.2)
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t,

(r- (t) - wo(t),a1(t) * ud(t)): (Xo -'xX2(ro( t), nQD* (rotr76(t), p0(4)) i
- j(nz@(t)- d0(t),"'o(t)), po(t))a-,tn),rj1o1* xs(rot(d(t)- o'o(t)), po(4) 

':'

*1s(rot(t76 (t),w.(t) - ,o(t)) : (Xo - xxd0(4, rot&rq(t)) - (po(r), rotri6(t))

+2(ws(t), po(t)) - ((do(4, &(r)))o)

Integrating the previous equality from 0 to ? and using (3.6) we obtain the

inequality $2)s and hence, the proof is achieved.
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