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Abstract We prove that for bounded open sets CI with continuous boundary, Sobolev
spaces of type Wl'o (O) are characterised by the zero extension outside of O. Combining this
with a compactness result for domains of class C, we obtain a general existence theorem for
shape optimization problems governed by nonlinear nonhomogenous Dirichlet boundary
value problems of arbitrary order and with general cost functionais.
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1. Introduction

The literature concerning existence theory for shape optimization problems is veiy rich.
There are several types of results: using regularity assumptions for the boundary of the
unknown domains (see Chenais [6], Pironneau [14]), using certain capacitary constraints
(Sverak [15], Bucur and Zolesio [3], Zhong [17]) or using the notion of generalized perimeter
and constraints or penalty terms constructed with it (Bucur and Zolesio [3], [5]). In the
second case, conditions on the dimension of the underlying Euclidean space ha'fe to be



imposed in order to obtain the compactness of certain families of open sets with respect
to the Hausdorff-Pompeiu distance.

In this work, we study bounded open sets of class C, in the sense of.Maz'ya [13] or,
equivalently, with the segment property, according to Adams [1].

In section 2, we prove a compactness result in this class of open sets. An announcement
result may be found in Liu, Neittaanmaki and Tiba [12], in a different context.

Section 3 extends the wellknown property for Sobolev spaces (see Henrot [7]): if z €
Hl@) and z:0 quasieverywhere in D-O (where Ct c D are opensets), then z i ff;1Cr).
Our results just assume that z: 0 a.e. in D - 0 and Q e C.

The last section discusses existence in shape optimization problems governed by arbi-
trary order nonlinear and nonhomogeneous Dirichlet boundary value problems and with
general cost functionals. Notice that the case of linear elliptic operators of order 2l,, I e N,
is a special case of our results. Moreover, our general setting allows nonuniqueness for the
solution of the nonlinear Dirichlet problem.

It is recognized in the }iterature that, in establishing the continuity of the mapping
between an open set and the solution of some partial differential equation defined on it, the
convergence of the associated characteristic functions is a fundamental property. Our final
result discusses the necessity of this property, under certain supplementary assumptions.

2. Convergence of open sets

Let O be the family of open sets contained in a prescribed bounded domain D c
R * , m € N .

The usual topology on (9 is given by the Hausdorff - Pompeiu distance between the
complementary sets (which are closed):

(2 . r ) p (fir, CIz) : dist (D\CIt, D\frr) , vflr, Q2 
'e (2 .

We denote by Hli,rn, the limit in the sense of (2.1) and it is weilknown that p has the
compactness property: if O4 c D, n € N, are open bounded sets, there is Q c D, open,
such that Q: HIi,m f)rr, on a subsequence (see Kuratowski [9], Pironneau [14]).

Moreover, for any open subset K CC fl (compactly embedded) there is na : n(K) e N
such that Kcc f,),., for n )- nx. This is called the f property and proofs may be found in
Pironneau [14], Liu and Rubio [11].

!&:gylhat an open set f) is of class C if there is a famiiy Fa of continuous functions
g:,S(0,&cr) + ft, with ko > 0 and 5(0,ko) C R*-r being the open balt of center 0 and
radius ,t9, such that ,

(2.2) Ef i  -  U  { ( r ,g ( r ) ) ;  r  €  s (0 , f tn ) } .
gefa

Here, we have slightly modified the corresponding definition from Maz'ya [13], by im-
posing that all the local charts are defined on balls with the same radius, which i5 always



posg!]g:_Srthermore, there is re € ]0, ksI such
otr S (0, 

"eJ 
aho give a covering of df) :

(2.3) 0 O :  U
geFn

Open sets of class C have the segment property (interior and exterior), Maz'ya [18],
Adanrs [1]: for any local chart g € Fa, there arc ys € R*, vectors of length or., uo]
ae ) 0 such that the points

(2.4)

(2.5)

(2.7)
( dtst(r,,D - e,), r e {t,,,

d " ( " ) :  {  0 ,  ne \e , , ,
| -dtst(r,dn), r €D - n"

( s ,g (s )  - t y )  ee ,  t  €  ]0 ,as [ ,  s  € ,S (0 ,&o)

( " , g ( " )  t t a ; €  R -  - O , ,  €  ] 0 , o r , [ ,  s  e , S ( O , k c , ) .

Notice that the vector As may be choosen as the "vertical" axis in the local coordinate
system corresponding to the locai chart g e fn.

Let f)e : Hl'i,m f,),, and Qn, fr ) 1 be some open subsets of class C. We denote bv
kn,rn,ar, ) 0 the corresponding constants from (2.2) - (2.b).

Theorem 2-1 Assume that kn > ,t > 0, rn 1r 1k, an) a ) 0, vn ) L and, that
the famity F : Ufs- is equi,conti,nuous and equi,bound,ed,. Then oo : Hlimen is of
class C wi,th kso ) k, roo 1 r, aeo 2 a and the characteri,stic functions yn, associ,ated,
to Qn i,n Drn ) 0, satisfy :

(2.6)

Proof

X" 1 Xo a.e. i,n D.

Denote by dn:D -+ fi the following distance type functions:

that the "restricted" local charts defined

--)
s € , 9 ( 0 . r . , ) f .- - '  

){ ( ' , o (")) ;

They are uniformly Lipschitzian in D and we may assume that d,n -+ 3 e C @),
uniformly. Let A - 

{" 
eD; i(r)> o} Ue a closed set, clearly nonvoid. Take f € A with

i(t):0. Then d*(i) -+ 0, by the aefinit ion of i.gv the definit ion of d,n, asa distance
function, there is rn € Of,),r, i.e. dn(rn):0 and r, --+ fr.

By (2.3), there is g,, € fsl. such that r,r: (srr, g*(s.)), s, € S10,rJ Uoie, ou,
assumptions, we may assume that E", --) 3 e S (0, r), and gn -l f uniformly in ^g (0, k), A
being continuous and bounded, with the same modulus of continuity as the family f . W
have

i  -  I imrn  :  I im ( tn ,gn(s , ) )  :  (eA(O) ,

3
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(2.9) dn (s,9" (s)) -+ d (s, 0 (s)) : 0, Vs € ,S (0, k) ,

by the uniform convergence of dn, g' and (2.7).
We show the segment property.
Take any s €]0,a[ and consider the point (s,?(s) -r) € R*, s € .9(0,k). We have

that (s,g" (s) - e) -+ (s,?(s) - e) and (t,gn (r) - u) € f,}," by (2.4).Then dn(s,g, (s) - e)
) 0 a n d , c o n s e q u e n t l y , d ( r , ? ( " )  - e )  ) 0 f o r s € , S ( 0 , k ) , e e ] 0 , a [ ,  i . e .  ( s , f ( r )  - e )  e  A
for such values of the parameters s, r.

For the outside segment property a sharper estimate is needed. By the equicontinuity
of gn, there is d > 0 (depending only on e and independent of s €,S(0,/c) and of n e N)
such that

( 2 . 1 0 )  l s , ( t ) - s * G ) l  .  ; , V n ,  V  t e  S ( s , d ) n S ( 0 , e ) .

2
Then, for e ( 

5a, 
we get

(2 .11) d,i.st l(s, g, (s)* u), af),1 > *'i" 
{}, 

o, o - +, d,i,st (s,as (0, k))}

Here, we use the uniform outside segment property (2.5), i.e. (s, g"(s) +e) e R" -A
for any s € ,5 (0, k), V e e ]0, o[. The inequality (2.1i) comes from (2.10) which simply
says that the cylinder

[,s(0,ft) ns(",d)] " ls*(') + i,g" (s) * " 
- 

; l
cannot intersect O{l.,,, for any n. And the right-hand side in (2.11) is an estimate from
below of the distance between (t,gr(r) +e) and the boundary of this cylinder. Notice

that this point is inside the cylinder if e . 
i". 

It yields

(2.12) dn (s, g, (s)+ e,) < -mcn 
{;, 

u, o - 
},r, 

d,i,st (s,E,s (0, *))} .

Inequality (2.I2) is independent of n and we can pass to the limit to obtain

(2 .13) i ( r ,?(s)  + e)  1 -m, in {Z,o,o -  * r ,d, i ,s t  (s,as (0,  f t ) ) }  ,
\ t  

/ ;  
)

that is i(r,O(s)+e) < 0, V s € ,S(0,k), Ve € 10,?tf u.ra, consequenrly (s,! '(s) +e)
J .1 L

f A for these values of the parameters s, 6. By choosing a smaller d > 0, if necessary, we
1  g  ,  F  - ?  ,  l + 1

can replac" 
iOt i , r ,  

N and 
i rO, 

- ,  e in inequal i t ies (2.10) -  (2.13).  Final ly,  we
get t l rat  ( r ,?(r)  +r)  f  A for  s e ^9(0,k)  and e e ]0,o[ .



ifi

l

Notice that estimates like (2.11), (2.12) can also be obtained for f(s,f'(s) _e),
s e 5(0, k), e e ]0, o[ , with the reversed sign. Then:

CI: {" e l; f1"; > o}(2.14)

is a nonvoid and open subset of A. Relations (2.g), (2.g) show that 00 : 
{* e n; i 61

: 0) and it has a local representation by continuous mappings with the same modulus of
continuity as the family f. Moreover, the above argument yields that 0 satisfies (2.2) -
(2.5) with constants limited by k,r,0, as required. we continue by

Lemma 2.2 D -Orr theHausd,orf f  -pompei,ut i ,mitaf  D-o, ,  i .e.  0:cro.
Proof

I f  r €oo  = )  
n \a * t ( r ,D  

- f r " , )  >  0+J *d " ( " )  >o=+ f1 " ;  >  0=+ "e  O .
conversely, assuming 

" 
e O and r e D -f,)e, then i(r), 0 and there is rr, €

D -{ln, tn ).r. This means i(r) ,0 and dn(r,) 1 0,r,n -+ r. Finaly, we get a
contradiction: f(r) > 0 and i(*) s 0, by the uniform convergence d,n - i'ioD: w.
conclude tbat Cl n (D - Oo) : (D and the Lemma is proved.

Proof of Theorem 2.1 (continued)

We have to show (2.6). We remark that meas (Een) : 0, n > 0, since dO,. can be
represented as a finite union of graphs of continuous functions, by the first purt of th"
theorem.

Consider H c R x,R to be the maximal monotone extension of the Heaviside mapping,
i .e.

(2.14) H (v)
y  < 0 ,
U  : 0 ,
y > 0 .

: {F,"
Notice that yn : H (d") , n 2 L, Xo : HQ), due to (2.I4) and to the fact that

r n e a s ( O o ' ) :  g ,  n )  O . } 4 @ )  )  0 ,  t h e n  d , * ( * )  )  0 f o r  n )  f r *  ( b y  d ,  - + f  ;  u o a
x^@) -  H (dn("))  :  n ( i f .S\  :  xo(*) :  1.  I f  i ( r )  .0,  we get s imi lar ly thar X^(r) :
X a ( n ) : 0  f o r  n 2 ' n r .  

\  '  

" /  

/ v e  \ - - /  - ' - -  * \ * /  v  b v u  u t ' ' ' @ r  

'

These two situations are valid a.e. in D and the proof is finished.

Remark Domains of class C may have cusps and infinitely many oscillations with van-
ishing amplitude (to preserve equicontinuity) are allowed. However, cracks or oscillations
dense in a set of positive measure are not permitted under assurnptions of Theordm 2.1.



3. A property of Sobolev spaces

We start with a simple situation when ihe foliowing "global" representation is valid:

(3 .1) 0  :  
{  G , i l  e  f i  s  e u ,  u  1 g ( ' ) }  C  R * ,

where U c R*-1 is a bounded open set, D:U x ]0,b[ and g :(J -+.81 is continuous
such that b2 g (") ) c ) 0, vs € [/, with b, c some positive constants.

Propos i t ionS. l  l f z€u l (o )  hascompactsuppor t in  f r  and,  z :0  a .e . i ,n f r -
{ l , , t h e n z e H } ( Q .

Proof

We denote by I the part of Ofl represented by S. According to (3.1), the segment
property (inside and outside ft) is valid on f, with "vertical" segments of length at ieast
c ) 0 .

We define the "translated" functions

(3.2) z t ( s , A ) : V ( s , y + t ) ,  g € ] 0 , b [ ,  f  > 0 ,  s e  { / ,

where 7 is the extension by 0 of z to &n. If , < *m{!a*, (ruro r,Afi\,"}, th"r, ,,
\ L  \  /  

)

is wel] defined and z1€ .F/; (;) ritf, supp z1c Q. This follows by rhe observation that
zt: 0 a.e. in the interior band (to O)

{ ( " , s ) e  C I ;  g ( " )  - ,  < a < g ( s ) } ,

a translation of the exterior (to O) band

{ G , a ) € R * ;  s € U ,  g ( s ) + t > y  > g ( s ) } ,

both given by the segment property. Moreover, the interior band is neighbourhood of
fr - 

{'u 
€ t; dist (*,an) r t}, in CI, again by the segment property.

Concerning Af, - f, there is a neighbourhood of it such that zl is null a.e. in this
neighbourhood, due to t . 'Uan",  ( ruro " ,AD).

We conclude that zt € Ht (O), V t > 0 sufficiently small. By the continuity.in the
mean of the translation, we get that liq zt : z in f/i (CI), i.e. z e Hl,(0). This ends the
proof.

Theorem 3.2 Let a be a bounded domain of class c. If z € Ht(R*) and, z : 0
a.e. i,n .R*\Q, then z € //01(CI).



ProoJ

We may assulne that df,) is covered by a finite number of local maps, d,enoted" by 05:

/c

(3.3) U ct, ) ar,.
j :1

Assume that .\ ) 0 is the minimum length of the segments given by the segment
property in ail the local charts, inside and outside f,). Let Ui C Rm-l be open subsets and
li : Ui * ft+, continuous, be the iocal representation, inbach Oi, of 0f), such that the
locai "vertical" axis is given by the segments provided by the segment property.

We may take (9i, j :7,k, to be given by the union of inside and outside segments
from the segment property, which generate a neighbourhood of EO o Oi. By restricting
Uj if necessary, we may assume that

(3.4)
*?in,@) 

-

due to the continuity of gr'. Then, the system of local axes may be translated in the
"vertical" direction such that the cvlinder:

v , :  {@,v )  e  R* ;'  t '
satisfies Vi C 05 and

(3.3)',

#:iln,(") s i,

s € (fi,O : min,gj (r) - + < A < rn;xgif"l + f)

There is an open set % with 7s C O such that lj Vy

unity {VJi=o*, subordinated to rhe coveri"s {yrilL,
A,  j  :0 ,  & ,  and

k

Uv, ) ao.
j = l

k
\---a _

L v i ( c )  - 1 , r € f ) .

h
/  \  \ a -  ,  tz ( r ) : L V i @ ) ,  r € R m

j=o

I fl. We consider a partition of

such that vi e cf; (v5),vi 2

(3.5)

(3.6)

, :0

We denote by zi: z,Ui € HtV).Then, (3.S) gives



yhg* Vi are the extensions by zero of zi to R1n, j : VE and we use that z is zero a.e.in -R-\o. clearly, vo e Hi(f)) and we show the same property for vi, i :TE. Tl;
foilows by Proposition 3.1, applied in each Vi as D and with the obvious conclusion that
i t  f  

H6(Qr) ' ,  Q j :  { ( t , v )  ev i ;0<a < i iG) } .  As  e i  c  o ,  rhe  proo f  i s  f in ished by(3 .6) .

corollary 3.3 Let a be abound,ed, open set of class.c ,in R*. If z €wr,p(R*),
I  e N, I  <p (  oo,  and z:0 a.  e.  in R*\e, ,  then z eW!,p 1Ay.

Remark In case 0Q is Lischitzian, trace theorems may be applied and Theorem 3.2 isobvious' Weaker conditions of Hirlder type were considered by-pironneau [14], Ladyzen-
skaya and Uraltseva [10]. If z : A in R* - CI quasieverywhere, similar results are known
and a recent survey with applications is Henroi l7]. Our assumptions allow cusps for dOand use the Lebesgue mesure.

4. Existence in optimal design problems involving
Diriehlet boundary conditions

Let 0 be a family of open subsets of class C in the bounded open domain D c R*.
To each Q e o,we associate,fo e 12 (n) and he € wt,p(CI), 1 a ; a*, ur.u-.d to be
bounded in the norms of their spaces, with respect to all Q in 0. The functions /e may
be extended by 0 to the whole D or to R* and, we shall preserve the same notation and,
clearly, {/r2} remains boundedin L2 (R*).This is not possible for the mappings hs2, due
to the absence of regularity properties for e e O.

In D, we consider the partial differential operator

A z  :  f  ( - i ) i " l  D " A o ( r , r , . . . , D , r )  ) ,  r  €  D ,
l o l< l

whgre z e WI'p (D) and Do, Dt denote derivatives in the sense of distributions, o is a
multiindex of length l"i S I e Jt/ and Ao: D x RT -+ R Q is the number of partial
derivatives in R* from the order 0 up to the order l) satisfy:

(4]) A' are measurable in r € D and continuous in the other variables, denoted by { epr.

(4 .1 )

(4 3)

w i t h p € L s ( D ) ,

(4.4)

l A o ( r , { ) l  { " ( t e l o a ' ' + p ( d ) ,  r € D ,  € e R r
q - r  + p - r  : 1 ,  p >  r .

|  {a" (r ,{)  -  Ao(",?)) (€, -  ?*) )  o,
l o iS t



for any €,n e Rr and a.e. r e D. The nonlinear operator A, introducecl above, is called
the generalized divergence operator or the Leray-Lions operator. Linear elliptic operators
of order 2l are a special case,o_f operator -4, corresponding to p - 2. It is known that
A is rnaximal monotone in w|o (D) x w-I,e (D), Barbu 121, rila [16]. If, moreover, the
coercivity assumption:

f  r " @ , , € ) € o ) c ( l { ' l o o " , * c r )  , c ) 0 ,  t e  D , € e  R r
l a l< l

with {/ denoting the components of { corresponding to the highest order 6erivatives (see
(4.1)) and their number being ?/, is satisfied, then A is coercive inW!,e (D) and onto and
its realization in L, (D) with domain

d,om (A7") : 
{" € W;,, @); Az e f, 1o'}

(4.5)

(4.6)

(4.7)

(4.8)

(4.e)

is maximal monotone and onto.
The assumptions and the definitions (4.1)-(4.6) are directly inherited by any 0 e (? for

functions_in l4li'e (ft). Consequently, for any f,) € (?, the (nonlinear) Dirichlet boundary
value problem:

ATst - fs

has at least one solution ?s € dom (A""), with homogeneous boundary conditions. Unique-
ness may be also proved if the inequality ( . ) is strict for { I q.

In the nonhomogeneous case, a weak sorution ze e wt,p (o) is d.efined by

D, I 
Do Ao (r, rn, . . ., o, rn) Doud,r : 

I fnran, vu € wl,p (e) ,
l o l< t  6  a

za - ha € wl'e (o) .

The existence in (4.S.), (4.9) follows by considering the shifted mappings 7o1*,Ey:
Ao( r ,€+ [hr l ( r )  , . . . ,D tha( r ) ] ) fo r  re  D,  teRr .  Weassoc ia te to themthed i f fg ren t ia l
operatoriconstructed as in (a.1) and acting inW!,e (ff) x W-t,q(g2). We noticethat for
any z € W:,P(Q):

I  lU" (r, z (r), .  .  . ,  D' rf")) I '  d,r 1 c (l" l ir: , ,rn,
o



T, I 
A. (*,, (*) ,.  .  . , ,  DI, (r)) D'z(r)d,* >- clDt zlp",rrr, * c1, c ) 0

l " lSr  5

by (4.3), (4.5) and the Clarkson inequalities, I{ewitt and Stronberg [8]. Here c, c1 &re
some generic cgnstants, c ) 0, which may change from one relation to another. We
conclude that ,4 is well defined in Wl'p (CI), it is maximal monotone and coercive. The
corresponding equation (4.7) has at least one solution Va e W|'p (O) and one can easily
chcck that zs2 :Va* hs satisfies (4.8), (4.9).

Notice that, in general, ?n,7n have higher regularity properties expressed by (4.6) and
this remains valid for zs if he satisfies extra regularity assumptions. Such results are
known in the literature, both in the linear and in the nontnear cases.

To maintain a general setting, we assume

(4.10) lhalw,*, , , (n;  5 c,

for some given e ) 0 and with zs satisfying (4.8), (4.9).
It is our aim to study the shape optimization problem

(4 .11)

(4.12)

l ralw,*, ,o(oy S c ( lnnl1a,,*. ,o1o; * l /nlr ,1n;),

f
Minege 

J 
t  @, z{ t t . . . ,  Dtzs) d,r

f)

subject to (4.8), (4.9), where tr satisfies (a.2) and

( 4 . 3 ) '  0 < L ( r , € )  S r ( l { l o n , + { ( " ) )  w i t h {  e  L r ( D )

Theorem 4.L Assume that o i,s as i,n Theorem 2.1 and cond,it ions (4.p) - (4.s),
Q.10),  ( l r . l t )  are f  u l f i , l led, .Then, the shape opt imizat ion problenl  (4.12),  (4.S),
U.9) has at least one opti,mal domai,n O* e O.

Proof

Let f,),, e O be a minimizing scquence for the problem (a.12). We rnay find by Theo-
rem 2.1 some {l* €O, such that {l* : Hliml},, and its characteristic function, 1* satisfies
Xn ) X* a.e. in D and Xn 11* strongly in LF (D), V P > 7. I

By the l- property for any K CC f,)*, there is n (I{) € N, such that K CC (l),, for
n 2 n ( K ) .

We denote shortly by hn, fn, zn the corresponding data and solutions of (4.8), (4,9),
in f,),,. Hypotheses (4.10), (4.11) yield h,, -+ h* strongly inWt'p (K), ,* -+ z* strongly in
Wt'p (K), ln -+ /* weakly in L2 (D), on a subsequence again denoted by r1.

10



The rnappings h*, z*, f* satisfy h* €Wt,p (f)*), z* €.Wt,p (fr-), f* e L, (f)*) and are
constructed by taking an increasing sequence of open subsets of f)*, compactly ernbedded in
f,)*, such that their union gives O*. In each subset, such limit functions may be constructed
as above and it can be extended to larger subsets by taking further subsequence. The
regularity of h*, z* , f 

* is a simple consequence of a distributions argument in f)*, Liu and
Rubio [1t].

We show that z* is the solution of (.a.8), (4.9) associated to h*, f 
*.

We denote by an - zn - hn € Wi'o (a; and we extend it by 0 to tlie domain D,
i, eWl'' (D) and in la^: y,,. Clearly {i,} is bounded inW!,p (D) and we may assume
lhat {n -+ i € wi'' (D), weakly in w!'e (D), on a subsequence. Notice that

by the strong convergences Xn -+ X* and /n -+ { in Lo (D), Lo (D), q-L + p-r :1. Then,
i:0 a.e. in D-o* and corollary 3.3 gives that y:g lc,-ewl,o (f,)-). on the other side,
i :  z *  - h *  i n  O * ,  b y t a k i n g t h e r e s t r i c t i o n t o  a n y  K  C C  O *  i y  A r l  r n - h n 1 z *  - h *
inWt'p (A'). We conclude that z*., h* satisfy (4.g).

To pass to the limit in (4.8), we use that {,4o (r, rn, . . . , Dt rn)} are bounded in Ln (e*)
for any n e N and lal < /. This is also valid in Ln (K), any K ct o*, for n ) ri(lr). we
denotebyao€rq(c l . )  themapp ingconst ruc tedsuchtba tA. - ( . , r ^ ( . ) , . . . ,D \Zn( j ) )  *o*
weakly in Lq (K), any K cc (-)*.

This is again possible by taking an increasing sequence of open subsets of f)*, compactly
embedded in f,)* and with their union giving f)*, as in the construction of z*.

By (a.11), (4.10), {2"} is strongly convergent inwl,p (K), for any K cc CI. Then, we
get the a.e. convergence in .If of zn and all its derivates up to the order I to z* , Do z* , Dt z* ,
. . . , respectively. The Caratheodory assumption (a.z) shows that Ao (r, zn(r), . , . ,
DI z"(r))  + Ao(r ,  r*  ( r ) , .  .  . ,  DI 

"*  
(z))  a.e.  in K.

consequently, we have ao (r) - Ao (r, z. (r) ,. . . , Dt z* (r)) a.e. in o*, which identifies
the limits of the nonlinear terms in (a.S). Therefore we can pass to the timit in ( .S) and. z*
is the solution of (4.8), (4.9) associated to the domain g* e (9 and to the nonhomogeneous
data h*, f *. At the last step of the proot we show that f,)* is optimal for the problem
(4.12). The same argument as above gives that

L ( r , z n ( * ) , . . . , D | r n ( " ) )  *  L ( n , 2 "  ( " ) , . .  . , D t z .  ( r ) )

a.e. in any K CC f)*, due to (4.2) (valid also for tr) and to the strong convergence of {2,,}
in WI'p (Jf ). Bv assumption (4.3)' and the Vitali tleorem, we get that the converg€nce in
(4.13) is t rue in,Lt  (K),  VK cc CI*.

We have:

f . f . f0 -  |  l a l d r : l ( 1  - x - )  l i l d * : _ t i l !  l o _ x ) l i . l d rJ  J  n _ + @ J
D-O '  D  D

(4 .13)

f  - ,  '  \  f
i n f  I  t  ( r , z a . . . . , D t r a ) d . r :  l i m  I  r , ( * , z n t . . . , D t z n ) d , r >

ae? J n-+m y
o f)*

1 i



) l im inf3-roo l im I t @, zn,. . . , Dt zn) d,r"  n - + a l  v

r
:  l iminf3*-  |  xcr l ( r ,  z*, .  .  .  , ,  DI z*)dr )

J
C' i

t

> 
/ lim inf i-+xXG,L (r,, z*, . . ., DI z*) dr -

J
f)*

f:  
J  

t  ( * , r * , . . . , D t 2 * ) d , r ,
(?*

where we have used the positivity of L and the Fatou lemma and G; cc o* are open
subsets such that U 

", 
: O*.

j : t
The above inequality proves the optimality of f)* in the open sets family (? and the

proof is finished.

Remark In proving the continuity of the application CI 1 za an essential step was the
convergence of the characteristic functions, associated to the corresponding open sets. The
next result shows that this property is also necessary, in certain situations.

We consider the simple case of the Laplace operator:

(4.\4) -Agro : I i,n {1,

(4.15) 9o : 0 on 0{t,

where Q e 0 and ge € Hot (O) ir the unique weak solution of (4.L4),, (4.1b). Clearly, the
assumptions (4.2) - (4.5) are valid in this setting with p : 2 and I : L, in arbitrary space
dimension m. If a cost functional is associated to (4.14), (4.15) satisfying (4.2), (4.3)', then
Theorem 4.1 gives an existence result for this shape optimization problem which extends
the works of Sverak [15], Zhong [17].

Let us also denote bv

(4.16)

We have 0a e H](D) since relation (4.16) may be reexpressed bv 0o (*) : i*Al -
io-g(r), where Tn,in-a are the extensions by 0 of Aa e H[(f)), respectively Ao-a eH 3 @ - o )  .

Propositi on 4.2 If the strong marimum principle is uali,d i,n Qn €. o, D - f,ln and,
0a- -+ 0a o.e. ' in , then ys. + Xa a.e. € D.

12



Proof

We remark that, by (2J$, we get:

(4.r7) x7(r) :  H ( ]a(r))  a.e.  D,

for any {l e O, open subset. Here, we use that, by the strong maximum principle and
bv relation (a.16), 0n(*) ) 0 a.e. in f,), 0a(*) ( 0 a.e. in DlO. Notice as well rhat
n7eo,.s (0O; : 0 since 00 can be written as a finite union of graphs of continuous functions
by (2.2). This gives that (4.12) is valid a.e. in D.

Moreover, if ia(r) ) 0, than fin.(r) ) 0 for n ) n* € ff and, consequently
H (0a,(")) : H (fin(r)) : 1 for n > nr. If 0n(r) < 0, rhen ta,(r) < 0 for rz !n, and H (ta* (r)) : H (ia(r)) : o. These two situations are uulid 

"... 
in D as

n'Leas (Of,}) : 0 and the proof is finished.

Remark It is possible to extend Proposition 4.1 to the case of unbounded domains of
class C since we use just that the boundary has zero measure. In the bound"ed domains
case, Theorem 2.1 gives the Hausdorff - Pompeiu convergence and the convergence of
characteristic functions) on a subsequence. The significance of Proposition 4.1 is that the
limit domain may be identified frorn the a.e. convergence of the solutions to differential
equations defined in these domains.
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