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Abstract We prove that for bounded open sets 2 with continuous boundary, Sobolev
spaces of type Wé’p (Q2) are characterised by the zero extension outside of Q. Combining this
with a compactness result for domains of class C, we obtain a general existence theorem for
shape optimization problems governed by nonlinear nonhomogenous Dirichlet boundary
value problems of arbitrary order and with general cost functionals.

AMS Classifications : 49D37, 65K10

1. Introduction

The literature concerning existence theory for shape optimization problems is very rich.
There are several types of results: using regularity assumptions for the boundary of the
unknown domains (see Chenais [6], Pironneau [14]), using certain capacitary constraints
(Sverak [15], Bucur and Zolesio [3], Zhong [17]) or using the notion of generalized perimeter
and constraints or penalty terms constructed with it (Bucur and Zolesio [3], [5]). In the
second case, conditions on the dimension of the underlying Euclidean space have to be
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imposed in order to obtain the compactness of certain families of open sets with respect
to the Hausdorff-Pompeiu distance.

In this work, we study bounded open sets of class C, in the sense of Maz'ya [13] or,
equivalently, with the segment property, according to Adams [1].

In section 2, we prove a compactness result in this class of open sets. An announcement
result may be found in Liu, Neittaanmaki and Tiba [12], in a different context.

Section 3 extends the wellknown property for Sobolev spaces (see Henrot [7]): if z €
H{(D) and z = 0 quasieverywhere in D~ (where 2 C D are open sets), then z € H} Q).
Our results just assume that z =0 a.e. in D —Q and Q € C.

The last section discusses existence in shape optimization problems governed by arbi-
trary order nonlinear and nonhomogeneous Dirichlet boundary value problems and with
general cost functionals. Notice that the case of linear elliptic operators of order 2{, [ € N,
is a special case of our results. Moreover, our general setting allows nonuniqueness for the
solution of the nonlinear Dirichlet problem.

It is recognized in the literature that, in establishing the continuity of Lhe mapping
between an open set and the solution of some partial differential equation defined on it, the
convergence of the associated characteristic functions is a fundamental property. Our final
result discusses the necessity of this property, under certain supplementary assumptions.

2. Convergence of open sets

Let O be the family of open sets contained in a prescribed bounded domain D C
R™ meé€N.

The usual topology on O is given by the Hausdorff - Pompeiu distance between the
complementary sets (which are closed):

(21) P (Ql, Qg) = dist (-E\Ql, D—\Qz) 3 VQl, Qz 6 {7,

We denote by Hlim, the limit in the sense of (2.1) and it is wellknown that p has the
compactness property: if {2, C D, n € N, are open bounded sets, there is 2 C D, open,
such that 2 = Hlim Qy,, on a subsequence (see Kuratowski [9], Pironneau [14]).

Moreover, for any open subset K CC Q (compactly embedded) there is ng = n(K) € N
such that KCC Q, for n > nk. This is called the T' property and proofs may be found in
Pironneau [14], Liu and Rubio [11].

We say that an open set Q is of class C if there is a family Fq of contlnuous functions
g:S(0,kq) — R, with kg > 0 and S (0, kq) C R™1 being the open ball of center 0 and
radius kg, such that p

(2.2) 0= {(s,9(s)); s € S(0,kq)}.

geFa

Here, we have slightly modified the corresponding definition from Maz’ya [13], by im-
posing that all the local charts are defined on balls with the same radius, which i§ always
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possible. Furthermore, there is ro € )0, kg[ such that the ”restricted” local charts defined
on S (0,rq) also give a covering of 99 :

(2.3) =] {(s,g(s)); seS(o,m)}.

g€Fq

Open sets of class C have the segment property (interior and exterior), Maz'ya [13],
Adams [1]: for any local chart g € Fq, there are Yyg € R™, vectors of length one, and
aq > 0 such that the points

(2.4) (5,9(8) —tyy) €Q, t€]0,an, s€S(0,kq)

(2.5) (5,9(s) +tyy) e R™—Q, tel0,an[, s€ S (0, kq) .

Notice that the vector y, may be choosen as the ”vertical” axis in the local coordinate
system corresponding to the local chart g € Fq.

Let Qo = Hlim €, and Q,, n > 1 be some open subsets of class C. We denote by
kn,Tn,an > 0 the corresponding constants from (2.2) — (2.5).

Theorem 2.1  Assume that k, > k>0, r, <r <k, a, >a> 0, Vn > 1 and that
the family F = |JFq, is equicontinuous and equibounded. Then Qo = HlimQ,, is of
class C with ko, > k, rq, <, aQ, = a and the characteristic functions x,, associated
to Q, wn D,n >0, satisfy :

(2.6) Xn — Xo a.e.inD.

Proof
Denote by d,, : D — R the following distance type functions:

dist(z, D~ Q,), ©€Q,,
(27) dﬂ(x) = 0) . S ?_Qn,___
—dist(z, ), z€eD-Q,.

They are uniformly Lipschitzian in D and we may assume that d,, — d € C (D_),
uniformly. Let A = {.’L‘ € D: d (z) > 0} be a closed set, clearly nonvoid. Take Z € A with

d(z) = 0. Then d,, (Z) — 0, by the definition of d. By the definition of dn, as a distance
function, there is z, € 89, i.e. d, (z,) =0 and z, — 7. ,

By (2.3), there is g, € Fq, such that £, = (s,,9n (sn)), Sn € S(0,7,). Under our
assumptions, we may assume that s, = §€ S(0,r), and g, — § uniformly in S (0,k), g
being continuous and bounded, with the same modulus of continuity as the family F. We
have

(2.8) T =limz, =lim(s,, 9, (sn)) = (5,9(9),
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(2.9) dn (5,9n (5)) = d (5,5 (s)) =0, VseS(0,k),

by the uniform convergence of d,, g, and (2.7).

We show the segment property.

Take any ¢ €]0,a[ and consider the point (s,5(s) —¢) € R™, s € §(0,k). We have
that (s,gn (s) —€) = (5,9 (s) — €) and (s, gn (s) — €) € Q, by (2.4). Then dy, (s,gn (s) — €)
> 0 and, consequently, d(s,g(s) —€) > 0 for s € S(0,k),e €]0,a[, i.e. (s,5(s)—¢) €A
for such values of the parameters s, €.

For the outside segment property a sharper estimate is needed. By the equicontinuity
of gn, there is § > 0 (depending only on ¢ and independent of s € S (0,%) and of n € N)
such that

(2.10) |9 (t) — gn (s)] < -;— Vn, Vi€ S(s,0)NS(0,k).
2
Then, for ¢ < ga, we get

(2.11) dist [(s,gn (s) +€),00,] > min {g,é, a— %, dist (5,08 (0, k))}

Here, we use the uniform outside segment property (2.5), i.e. (s,9,(s) +¢) € R™ - Q
for any s € §(0,k), Ve €]0, a[l. The inequality (2.11) comes from (2.10) which simply
says that the cylinder

&

(S (0,K)N S (5,8)] x [gn () + 2

19n (8) +a— -;—}

cannot intersect 9¢2,, for any n. And the right-hand side in (2.11) is an estimate from
below of the distance between (s, g, (s) + &) and the boundary of this cylinder. Notice

that this point is inside the cylinder if € < ga. It yields

3
(2.12) dn (8,90 (8) +€) < —min {g-, 5,a— 56 dist (8,05 (0, k))} .
Inequality (2.12) is independent of n and we can pass to the limit to obtain

~ 3
(2.13) d(s,g(s) +¢) < —min {%,5, a- e, dist (s, 05 (0, k))} ,
2 2
that is d(s,g(s)+¢) <0, Vs e S(0,k), Ve € JO, ga{ and, consequently (s,3(s) + ¢)
¢ A for these values of the parameters s, €. By choosing a smaller § > 0, if necessary, we
1

can replace 23 by %, l € N and ;e by Z+Ts in inequalities (2.10) - (2.13). Finally, we
get that (s,g(s) +¢) ¢ Afor s € S(0,k) and £ € ]0, af. : ’
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Notice that estimates like (2.11), (2.12) can also be obtained for c,i\(s,ﬁ(s)—e),
s € §(0,k), e €]0,a[ , with the reversed sign. Then:

-~

(2.14) Q= {x € D; d(z) > 0}

is a nonvoid and open subset of A. Relations (2.8), (2.9) show that 69 = {x € D; c’i\(x)

= 0} and it has a local representation by continuous mappings with the same modulus of
continuity as the family F. Moreover, the above argument yields that ) satisfies (2.2) -
(2.5) with constants limited by k, r, a as required. We continue by

Lemma 2.2 D — Q is the Hausdor ff — Pompeiu limit of D — $li, Tkl 0= Q.
Proof

Ifz € Qo= lim dist (z,D-Q,) > 0= li_)m dn (2) > 0= d(z) > 0=z €.
n—r00

n—00
Conversely, assuming z € Q and z € D — Qp, then d (£) > 0 and there is z, €
D — Q,, z, — z. This means d(z) > 0 and d, (zn) < 0,2, — z. Finally, we get a
contradiction: d (z) > 0 and d (z) < 0, by the uniform convergence d, — d in D. We
conclude that QN (D — Q) = & and the Lemma is proved.

Proof of Theorem 2.1 (continued)

We have to show (2.6). We remark that meas (09,) = 0, n > 0, since 9O, can be
represented as a finite union of graphs of continuous functions, by the first part of the
theorem.

Consider H C R x R to be the maximal monotone extension of {he Heaviside mapping,

le.
0 y <0,
(2.14) H(y) = {[0, 1] y=0,
1 y > 0.

Notice that y, = H(dn),,\ n>1 x = H(c?), due to (2.14) and to the fac/t\ that
meas (082,) = 0, n > 0. If d(z) > 0, then d, (z) > 0 for n > n, (by d, — d ) and
Xnl{z)=H(ds(2)) = H (c/i\(x)) =xo(z)=1.Ifd(z) <0, we get similarly that x, (z) =
Xo (z) = 0 for n > n,. ‘

These two situations are valid a.e. in D and the proof is finished.

Remark Domains of class C may have cusps and infinitely many oscillations with van-
ishing amplitude (to preserve equicontinuity) are allowed. However, cracks or oscillations
dense in a set of positive measure are not permitted under assumptions of Theorém 2.1.

5



3. A property of Secbolev spaces

We start with a simple situation when the following ”global” representation is valid:
(3.1) Q:{(s,y)EINDSEU,y<g(s)}CRm,

where U C R™~! is a bounded open set, D = U x 10,0[ and g : U — R, is continuous
such that b> g (s) > ¢ >0, Vs € U, with b, ¢ some positive constants.

Proposition 3.1 Ifz € H} (f?) has compact support in D and 2=0 a.e. inD—
Q, then z € HL(D).

Proof

We denote by I' the part of 9 represented by g. According to (3.1), the segment
property (inside and outside ) is valid on T, with ”vertical” segments of length at least
c>0.

We define the ”translated” functions

(3.2) 2z (5,y)=Z(s,y+1t), ye]0,b[, t >0, seU,

. . .1, —
where Z is the extension by 0 of z to R™. If t < min {Edzst (supp zZ, BD) ,c}, then 2z

is well defined and z, € H} D) with supp z; C §). This follows by the observation that
0

z¢ = 0 a.e. in the interior band (to Q)
{(s9) € g(s) —t<y<yg(s)},
a translation of the exterior (to §2) band
{(s9) €R™; s €U, g(s)+t>y>g(s)},

both given by the segment propérty. Moreover, the interior band is neighbourhood of
Iy o= {w el dist (w, 85) > t}, in Q, again by the segment property.

Concerning 9€2 — I, there is a neighbourhood of it such that z; is null a.e. in this
neighbourhood, due to ¢ < ;—dz’st (supp i, 85) .

We conclude that z; € Hj (), V¢ > 0 sufficiently small. By the continuity,in the
mean of the translation, we get that tlh% zg =z in H' (Q), i.e. 2 € H}(Q). This ends the
.-_.)

proof.

Theorem 3.2 Let {2 be a bounded domain of classC. If z € HY(R™) and z = 0
a.e. in R™\Q, then z € H} ().



Proof

We may assume that 9 is covered by a finite number of local maps, denoted by O;:
k
(3.3) J 050060
j=1

Assume that A > 0 is the minimum length of the segments given by the segment
property in all the local charts, inside and outside Q. Let U; € R™~! be open subsets and
95 : Uj = Ry, continuous, be the local representation, in each Oy, of 0Q, such that the
local ”vertical” axis is given by the segments provided by the segment property.

We may take O;, j = 1,k, to be given by the union of inside and outside segments
from the segment property, which generate a neighbourhood of 922 N O;. By restricting
U, if necessary, we may assume that

‘ A
(3.4) max g (z) - ming (@) < 7,

due to the continuity of g;. Then, the system of local axes may be translated in the
"vertical” direction such that the cylinder:

A A
Vi=14(5,9) € R™; s € U; 0 =ming, (s — - <y<maxg;(z)+ >
j ) j 1 7 1

satisfies V; C O; and

k
(3.3)’ v, o o0.

=1

_ k

There is an open set Vy with Vi € Q such that U V; D Q. We consider a partition of
Jj=0

unity {\I!j}j:()—k, subordinated to the covering {Vj}j:ﬂ, such that ¥; € C° (V;),¥; >

0, 7=0,k, and

k
(3.5) U;(z)=1, z€q.
j=0 ’
We denote by z; = 2¥; € H} (V;). Then, (3.5) gives

(3.6) z(x)=) zj(z), ze€R™

.
Il M?r
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where Z; are the extensions by zero of zj to R™, j = 0,k and we use that z is zero a.e.
in R™\Q. Clearly, 2o € H} () and we show the same property for z;, j = 1,k. This
follows by Proposition 3.1, applied in each V; as D and with the obvious conclusion that
zj € Hi(Qj), Q; = {(s,y) € Vi; 0<y<g;i(s)}. As Q; C Q, the proof is finished by
(3.6).

Corollary 3.3 Let 2 be a bounded open set of class C in R™. If z € WhPp (R™),
leN,1<p<oo,and z=0 a.e. in R™\Q, then z € Wé’p (€).

Remark In case 99 is Lischitzian, trace theorems may be applied and Theorem 3.2 is
obvious. Weaker conditions of Holder type were considered by Pironneau [14], Ladyzen-
skaya and Uraltseva [10]. If z = 0 in R™ — Q quasieverywhere, similar results are known
and a recent survey with applications is Henrot [7]. Our assumptions allow cusps for 992
and use the Lebesgue mesure.

4. Existence in optimal design problems involving
Dirichlet boundary conditions

Let O be a family of open subsets of class C in the bounded open domain D c R™.
To each ©2 € O, we associate fo € L? () and hg € Wh? (©),1 < p < oo, assumed to be
bounded in the norms of their spaces, with respect to all Q in @. The functions fo may
be extended by 0 to the whole D or to R™ and we shall preserve the same notation and,
clearly, {fo} remains bounded in L2 (R™). This is not possible for the mappings hg, due
to the absence of regularity properties for Q € ©.

In D, we consider the partial differential operator

(4.1) Az = Z (—1)‘0"D°‘Aa (z,2,.. .,Dlz) , T €D,

laf<i

where z € W'? (D) and D*, D' denote derivatives in the sense of distributions, « is a
multiindex of length |o| <1 € N and A4, : D x RT — R (T is the number of partial
derivatives in R™ from the order 0 up to the order l) satisfy:

(4.2) A, are measurablein z € D and continuous in the other variables, denoted by ¢ €
BT,

(4.3) A (z,6)] < ¢ (|gf;;1 3 ,,L(;c)) , ze€D, £cRT ‘
with p€ LI(D), ¢ l+pl=1 p>1.

(4.4) Z (A (7,€) — Aq (z,7)) (€a = 7a) > 0,

ler|<i



for any £,n € RT and a.e. z € D. The nonlinear operator A, introduced above, is called
the generalized divergence operator or the Leray-Lions operator. Linear elliptic operators
of order 2/ are a special case of operator A, corresponding to p = 2. It is known that
A is maximal monotone in Wg? (D) x W—he (D), Barbu [2], Tiba [16]. If, moreover, the

coercivity assumption:

(45) Z AO! (IL', 6) E(x 2 c (15,{1]3{'1" + Cl) y € > 07 TE Da 6 & RT
lal<l

with ¢’ denoting the components of ¢ corresponding to the highest order derivatives (see
(4.1)) and their number being T”, is satisfied, then A is coercive in Wé’p (D) and onto and
its realization in L? (D) with domain

(4.6) ammAp):{zew@P@n;AzeL2an}

is maximal monotone and onto.
The assumptions and the definitions (4.1)-(4.6) are directly inherited by any Q € O for

functions in Wé’p (©2). Consequently, for any Q € O, the (nonlinear) Dirichlet boundary
value problem:

(4.7) AzZg = fq
has at least one solution Zg € dom (Ayz2), with homogeneous boundary conditions. Unique-

ness may be also proved if the inequality (4.4) is strict for & .
In the nonhomogeneous case, a weak solution z € WhHp () is defined by

(4.8) Z /D"Aa (=, ZQ,...,.DlZQ> D%vydzx = /vada:, Yv e Wé’p (Q),
Q

(4.9) 20 — hg € WP ().

The existence in (4.8), (4.9) follows by considering the shifted mappings ;{a(x,f) =
Aa(z,€+[ha(z) ,...,D'ha(z)]) for z € D, £ € RT. We associate to them the differential

operator A constructed as in (4.1) and acting in WP () x W14 (€2). We notice that for
any z € WhHP(Q):

Q

A, (z,2(z),...,D'% (1,))’qu ¢ (’z'zvg"’(ﬂ) + 1)




Z A, (z,2(2),...,D'%(z)) D*2(z)dz > ¢ ID’zliP(Q)»p +e¢1,¢>0
la|<t g

by (4.3), (4.5) and the Clarkson inequalities, Hewitt and Stronberg [8]. Here ¢, ¢; are
some generic constants, ¢ > 0, which may change from one relation to another. We
conclude that A is well defined in Wl’p (€2), it is maximal monotone and coercive. The
corresponding equation (4.7) has at least one solution zg € Wé’p (Q) and one can easily
check that zq = 2zg + hq satisfies (4.8), (4.9).

Notice that, in general, Zo, Zo have higher regularity properties expressed by (4.6) and
this remains valid for zq if hq satisfies extra regularity assumptions. Such results are
known in the literature, both in the linear and in the nonlinear cases.

To maintain a general setting, we assume

(4.10) ’thWHe,p(Q) <c¢

(4.11) |2l witen@) < € (fhﬂlwwrf‘p(sz) + |f9|L2(Q)) .

for some given € > 0 and with zg satisfying (4.8), (4.9).
It is our aim to study the shape optimization problem

(4.12) Mingeo /L (:U, 20y .- ,Dzzg) dz
Q

subject to (4.8), (4.9), where L satisfies (4.2) and

(4.3) 0< L(z,6) < c(Ef5r +€ (2)) with € € L} (D).

Theorem 4.1 Assume that O is as in Theorem 2.1 and conditions (4.2) — (4.5),
(4.10), (4.11) are fulfilled. Then, the shape optimization problem (4.12), (4.8),
(4.9) has at least one optimal domain Q* € O.

Proof

Let €2, € O be a minimizing sequence for the problem (4.12). We may find by Theo-
rem 2.1 some Q* € O, such that Q* = Hlim(Q,, and its characteristic function, y* satlsﬁes
Xn — x* a.e. in D and x, — x* strongly in L8 (D), V 3 > 1.

By the I'— property, for any K CC Q*, there is n (K) € N, such that K cC Q, for
n > n(K).

We denote shortly by Ay, fr, 2z, the corresponding data and solutions of (4.8), (4.9),
in Q. Hypotheses (4.10), (4.11) yield h, — h* strongly in W"? (K), 2, — z* strongly in
WP (K), fn — f* weakly in L? (D), on a subsequence again denoted by 7.

10



The mappings h*, z*, f* satisfy h* € Wh? (Q*), 2* € Wh? (%), f* € L2 (£2*) and are
constructed by taking an increasing sequence of open subsets of 2*, compactly embedded in
2", such that their union gives Q*. In each subset, such limit functions may be constructed
as above and it can be extended to larger subsets by taking further subsequence. The
regularity of h*, z*, f* is a simple consequence of a distributions argument in 2%, Liu and
Rubio [11].

We show that z* is the solution of (4.8), (4.9) associated to h*, f*.

We denote by y, = 2, — h, € Wé’p (©,,) and we extend it by 0 to the domain D,
Un € WEP (D) and 7, |0, = Yn. Clearly {7,} is bounded in W}® (D) and we may assume
that 7, — § € WP (D), weakly in WgP (D), on a subsequence. Notice that

o= [ rmdx=/(1—x*>fmd:c=nlggo/(1—xn>|yn|dx
* D D

by the strong convergences xn — x* and ¥, — 5 in LI (D), L (D), ¢~ ' +p~1 = 1. Then,
Yy =0ae. in D—Q* and Corollary 3.3 gives that y = J |g-€ Wé’p (©2*). On the other side,
y =2z*—h* in Q*, by taking the restriction to any K CC Q* by Yn = Zn — hp — 2% — h*
in WP (K). We conclude that 2*, h* satisfy (4.9).

To pass to the limit in (4.8), we use that {4, (2,204 ., Dlzn)} are bounded in L7 ($,,)
for any n € N and |o| <{. This is also valid in L9 (K), any K CC Q¥, for n > n (K). We
denote by ao € L7 (Q) the mapping constructed such that A, (+, 2 (-) , ..., D'z, () = aa
weakly in L9 (K), any K CC Q*.

This is again possible by taking an increasing sequence of open subsets of {2*, compactly
embedded in Q* and with their union giving Q*, as in the construction of z*.

By (4.11), (4.10), {2, } is strongly convergent in WhP (K), for any K cC Q. Then, we
get the a.e. convergence in K of z,, and all its derivates up to the order [ to z* ,D%z* D'2*,
.« +» respectively. The Caratheodory assumption (4.2) shows that A, (z,2,(z), ...,
D'z (z)) = Ao(z,2*(x), ..., D'2*(2)) ae. in K. ‘

Consequently, we have a, (2) = A4 (2,2 (z),...,D'2* (z)) a.e. in Q*, which identifies
the limits of the nonlinear terms in (4.8). Therefore we can pass to the limit in (4.8) and 2*
is the solution of (4.8), (4.9) associated to the domain Q* € O and to the nonhomogeneous
data h*, f*. At the last step of the proof, we show that Q* is optimal for the problem
(4.12). The same argument as above gives that

(4.13) L(z,2,(z),..., D'z, (z)) = L (z,2* (z),...,D'z* (z))

a.e. in any K CC Q% due to (4.2) (valid also for L) and to the strong convergence of {z,}
in Wh? (K). By assumption (4.3)" and the Vitali theorem, we get that the convergence in
(4.13) is true in L' (K), VK CC Q*.

We have:

ég%/L(x,zQ,...,Dle)da:::nl_iglo/l}(:C,zn,...,Dlzn)d:E’Z
Q Qn
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> liminf; o lim /L(z:,zn,...,Dlzn)d;r;

L —r 00O

G;

= liminfj_,oo/XGjL(;c,z*,...,Dlz*)dx =
Ql«

> /lim inf; 4o X, L (:L‘, z, .. .,Dlz*) g ==
Q)«

= /L (2,850, D%%*) du,

Q:u
where we have used the positivity of L and the Fatou lemma and G; CC §* are open

oo
subsets such that |J G; = Q*.
j=1
The above inequality proves the optimality of Q* in the open sets family @ and the

proof is finished.

Remark 1In proving the continuity of the application Q — 2o an essential step was the
convergence of the characteristic functions, associated to the corresponding open sets. The
next result shows that this property is also necessary, in certain situations.

We consider the simple case of the Laplace operator:

(4.14) ~Ayg =1in Q,

(4.15) ya = 0 on 012,

where 2 € O and yo € Hg (2) is the unique weak solution of (4.14), (4.15). Clearly, the
assumptions (4.2) - (4.5) are valid in this setting with p=2 and [ = 1, in arbitrary space
dimension m. If a cost functional is associated to (4.14), (4.15) satisfying (4.2), (4.3), then
Theorem 4.1 gives an existence result for this shape optimization problem which extends
the works of Sverak [15], Zhong [17].

Let us also denote by

(4.16) ya(z) = {ggc_); (z), . E %-— Q.

We have 7 € HO (D) since relation (4.16) may be reexpressed by 7 (z) = 7q (z) —
Yp-q (z), where Jo,yp_q are the extensions by 0 of yo € HE (Q), respectively yp_q €
H} (D -9Q).

Proposition 4.2 If the strong mazimum principle is valid in Q,, € (’) D — Q and
Yo, — Yo a.e.in, then xq, — Xq a.e. € D.
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Proof
We remark that, by (2.14), we get:
(4.17) xa(z) = H (ga (z)) ae. D,

for any Q € O, open subset. Here, we use that, by the strong maximum principle and
by relation (4.16), ga(z) > 0 a.e. in Q, Jo (z) < 0 a.e. in D — . Notice as well that
meas (0S2) = 0 since 00 can be written as a finite union of graphs of continuous functions
by (2.2). This gives that (4.17) is valid a.e. in D.

Moreover, if yo(z) > 0, than Fgo, (z) > 0 forn > n, € N and, consequently
H (¥a, (z)) = H(@a(z)) =1 for n > ng. If fo(z) < 0, then Yo, () < 0 for n >
ng and H (Yo, (z)) = H (Ja(z)) = 0. These two situations are valid a.e. in D as
meas (0Q0) = 0 and the proof is finished.

Remark Tt is possible to extend Proposition 4.1 to the case of unbounded domains of
class C since we use just that the boundary has zero measure. In the bounded domains
case, Theorem 2.1 gives the Hausdorff - Pompeiu convergence and the convergence of
characteristic functions, on a subsequence. The significance of Proposition 4.1 is that the
limit domain may be identified from the a.e. convergence of the solutions to differential
equations defined in these domains.
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