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Abstract. In a previous paper we described an iterative algorithm for numerical
solution of consistent linear least-squares problems. In the present one we gen-
eralize it to the case of inconsistent problems. This new algorithm is based on
an extension of the classical Kaczmarz’s projections method (also obtained by the
author in a previous work) and an approximate orthogonalization technique due
to Z. Kovarik. We prove that the new algorithm converges to any solution of an
inconsistent and rank-defficient least-squares problem (with respect to the choice
of the initial approximation).
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1 Preliminaries

Let A be a real m X n matrix and b € JR™. We shall denote by A%, (A);, (A),
7(A), R(A),N(A),b; the transpose, i-th row, j-th column, rank, range, null
space of A and i-th component of b, respectively (all the vectors that appear
being considered as column vectors). The notations p(B), 7(B) will be used
for the spectral radius and spectrum of a, (square) matrix B and || A4 || will
be the spectral norm of A defined by || 4 2= p(AA) = p(AAY). Ps(z) will
be the orthogonal projection of z onto the vector subspace S with respect to
the Fuclidean scalar product and the associated norm, denoted by < -, >
and || - ||, respectively. We shall consider the linear least-squares problem :
find z* € IR™ such that

|| Az™ — b ||= min! (1)

It is well known (see e.g. [1]) that the set of all (least-squares) solutions
of (1), denoted by LS55(A;b) is a nonempty closed convex subset of JR™
containing a unique solution with minimal norm, denoted by z75. More



than that, we have

z” € LSS(A;b) & A'Az™ = A% (2)
and if
by = PR(A)(b), (3)
then
LSS(4;b) = S(A;b,), (4)

where by S(A;b4) we denoted the set of all (classical) solutions of the (con-

sistent) system
Az = by. (5)

We shall also suppose that the rows and columns of A satisfy
(A)i#0,i=1,...,m; (AY#£0,j=1,...,n. (6)

Then, we can define the linear applications (matrices)

fi(Asbia) = a—= zh((AA);f”; bi(A)z-, ei(Asy) = :t/—-i”y(’T()fi-)ljl—;-(A)ﬁ (7)
K(Abz) = (fro...o fm)(A;bi2), (A1) = (pr0...00,)(4;1), (8)
R =2- S22, @=h.E, (9)

and R the real n X m matrix of which i-th column (R)’ is given by

T 1 A .
(RY = g PP Pea((4)) (10)

with Py = I (the unit matrix). The following results are proved in [8].
Proposition 1 (1) We have
K(Ajbjz)=Qz+ Rb, Q+ RA=1, Rye R(A"),Vye R™  (11)
(i) N(A) and R(A) are invariant subspaces for Q and
Q=Pyay®Q, Pyuy@=QPyy=0 (12)

where Q is the linear application defined by

Q = QPR(At). (13)
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(i1i) N(A') and R(A) are invariant subspaces for ® = ®(4;-) and
® = Pyiany ® 9, Pyiany®=8Pys =0, (14)
where & = ®(A;-) is the linear application defined by
@ = &Py (15)
(iv) The applications Q and & satisfy
le<yje|<u. (16)

The following algorithm (described by the author in [3] and [4]) is an ex-
tension of the classical Kaczmarz’s projections method (see [8]) : let z° €
IR™,y° = b; for k = 0, 1,... compute

v = o(4;45), (17)
B = b — gttt (18)
H1 = K(A; g5 2). (19)

In [4] the following are proved.

Proposition 2 (i) Let G be the n X m matriz defined by
G=(I-Q) R (20)

Then, for any matriz A satisfying (6), any b € R™ and z° € R™ the
sequence (:r.k)kzo generated with the algorithm (17) - (19) converges and

kli}]{.lo 2k = PN(A)(.’EO) + Gby. (21)

(ii) We have the equalities
L5S(A;6) = {Pnay(a®) + Gba, 2° € B™}; 215 =Gby.  (22)

Remark 1 Because the above steps (17) and (19) consist on succesive (or-
thogonal) projections onto the hyperplanes generated by the columns and
rows of A, faster will be the convergence in these steps (and thus for the
whole algorithm) if the angles between succesive columns and rows will be
closer to 90 degrees (see e.g. [8]).



Let now (ax)r>0 be the sequence of positive real numbers

1 (2)!

ap = 22/&?W’ k Z 0 (23)
and (gx)k>1 @ bounded sequence of positive integers, i.e. »
<N, VE> 1 (24)

The following algorithms were proposed by Z. Kovarik in [2].
Algorithm (A) Start with 45 = 4 and recursively define the matrices Hj
and Ag.; by

Hy=1—AvA, Tp=TI+aHy+...+aq HP (25)

A1 =T1Ax, k>0 (26)

Algorithm (B) Start with 4y = A and recursively define the matrices K}
and Ag,q by

Ky = 2(1 + AkAZ)_l I, Ty =1+ K, (27)
and Agy; as in (26), with 'y from (27).
Let A, be the m x n matrix defined by

Ao = [(AAYF]* 4, (28)

where by Bt we denoted the Moore-Penrose pseudoinverse of the matrix B
(see e.g. [1]). We shall also suppose that

| 44% [|=]) A*A [|= p(44%) < 1. @)

In [5] and [7] we applied the above algorithms (analysed in [2] for matrices
with linearly independent rows) to an arbitrary rectangular matrix A. The
following results were proved.

Proposition 3 (i) If (24) and (29) hold, then the sequence of matrices
(Ak)k>0 generated with the algorithm (25) - (26) converges to A.,.

(i) If (29) holds, then the sequence of matrices (Ar)r>o generated with the
algorithm (27) converges to A,,. -

Remark 2 IfA 1has linearly independent rows then we can replace the pseu-
doinverse [(AAY)2]* in (28) by the classical inverse [(AAY)2]! and it can be
proved that A, has in this case mutually orthogonal rows (see [2]). This is
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no longer true for a general rectangular A, but an improvement is obtained
concerning the angles between succesive rows of A by comparing them with
the angles between the rows of the initial matriz A;(see e.g. the numerical
experiments from [5] and [7]).

Remark 3 The condition (29) is not restrictive. It can be fullfiled by an
appropriate scalling of the elements of the matriz A.

2 Auxiliary results

In order to "mix” the above Kaczmarz and Kovarik algorithms and to prove
convergence of the new one so obtained, we need some preparatory results
which will be presented in this section. First of all we are interested in the
fulfilment of assumption (6) for any matrix Ay generated by one of the above
Kovarik’s algorithms (A) or (B). This problem has been already analysed
and solved in [6], thus we will only remind here the corresponding results.

Proposition 4 Let us suppose that (6) holds for A. Then it also holds for
any matriz Ay, generated with the algorithm (25) - (26) or the algorithm
(27), i.e.

(Ap)i 20, i=1,...,m; (AY #0,5=1,....n, Yk >0. (30)

Let now F, Lj be the matrices defined by (see (25), (27))

Fo=1—- AZA}C, Ly = 2(I + AiAk)_l -1 (31)
and
' Bk:I+a1Fk+...+aqu,f" (32)
or
B, =1+ L. (33)

The following result gives supplementary informations about the matrices
appearing in algorithms (A) and (B) and the above defined ones.

Proposition 5 Let us suppose that (29 holds). Then

(i) the matrices T'y, from (25) or (27), and By, from (32) or (38) are sym-
metric and positive definite ((SPD), for short);

(ii) the following equalities hold

Fk(AkAi = (AkAi)Fk; Bk(AZAk) = (AiAk)Bk, (34)
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A1 =T Ap = A4B,, (35)
AZPk = BkAt ) (36)
Af .1 = BrAL. (37)

Proof. (i) In [5] and [7] we proved that, under the assumption (29), the
matrices Hy and K} from (25) and (27), respectively, are (SPD) and

7(Hy) € (0,1], v(Kx)C (0,1], V& > 0. (38)

From (38), (23), (25) and (27) it results that Ty is (SPD). Similar arguments
tell us that F; and Ly from (31) are (SPD),

T(Fy) C (0,1], 7(Lx) C (0,1] (39)

and By from (32) or (33) is also (SPD).

(ii) If T, By are defined as in (25) and (32), respectively then the equalities
in (34) obviously hold. Let now I'; be defined as in (27). Then, the first
equality in (34) holds from the following sequences of equivalences (the last
one being obviously true)

Kr(ArAy') = (AR ADK & (I + ArAL) Kr(ArAL)(I + ARAL) =
= (I + AR AD(ARADER(T + AxAL) &
& (I = ApAR)(Ae AL + AgAL) = (I + AR AL)(ARALY(T — Ap4}) &
& [Apdl — (Ap L)) + ApAL) = [AL AL + (AxAL)II — ApAL) &

Ardl — (ARA})® = ARAL - (4, AL)°. (40)
Using similar arguments we can prove that
Lp(ApAr) = (AL Ap) Ly (41)

which ensures the second equality in (34)'for By, defined as in (33). We can
easily observe that (36) and (37) hold from (35) and (26). If T , By are
defined as in (25) and (32), then (35) easily holds by observing that

HiyAp = (I — ApAf) Ay = Ay(I — ALAL) = ALF,. (42)

Let now I'y, By be given by (27) and (33), respectively. We have the following
sequence of equivalences

KipA, = AL, & (I—}—AkA;C)KkAk(I—}-AiAk) = (I-I—AkAi)AkLk(I-{-AZAk) <
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(I = A AR AT + ALAL) = (T + A AL AT - ALAR) &
Ap — A AL AR AL AR = A — ARALALALA, (43)

Because the last equality is obviously true, from (43), (27) and (33) we
obtain (35) in this case too and the proof is complete.

Proposition 6 If (29) holds and (Ak)r>o is the sequence of matrices defined
with the above algorithms (A) or (B), then

N(Ak) = N(A)7 N(A;:) = N(At), (44)

thus
Pr(ay) = Pneay, Pnias) = Pugay, V k>0 (45)

Proof. From (26) and (37) it directly holds that
N(Ak) C N(Akt1), N(A}L) CN(AL,,), YE>o0. (46)

Let z € N(Ag41). Then, from (26) and the fact that T is (SPD) (thus
invertible) we obtain that Az = 0, ie. z € N(Ag), thus

N(Ak+1) C N(Ak), Vk>0.
In a similar way, using (37) we obtain that
N(Afy1) CN(AL), V>0,

which together with (46) gives us (44) (thus (45)) and completes the proof.

3 The Kaczmarz-Kovarik algorithm

Using the constructions and results from the previous sections we can define

our new algorithm as follows.
Kaczmarz-Kovarik algorithm: let 2% € R®, A, = A, 8° = b and

Ho=1— AoAf or Ko =2(I+ AgAl)™' —I. (47)
Step 1. Compute Agy; and 511 by

Agt1 =T Ag, bFt! = Dok, (48)



with T’y from (25) or I'y from (27), respectively.
Step 2. Compute y**! and g5*1 by

Y= @M (A Y, (49)
BRHL = phHl k41 (50)
Step 3. Compute the next approximation z5*1 by
P = K (A B4 04) 6
and update Hy or Ky to Hyyq or Kjyq by
Hppr =1— A Abyy or Kiyq =21+ AgpAfL) 1 = I (52)

Remark 4 From Proposition 4 it results that the above steps (49) and (51)
are well defined for any k > 0.

Remark 5 The step (49) means the succesive application of ®(Agy1;-)
(k+ 1) - times to the initial vector b**1, i.e.

SR (App; 0541 = (®(Aggr; ) 0. . 0 B(Agyr;-))(0FTD). (53)

Remark 6 In fact, we defined two Kaczmarz-Kovarik algorithms which
corresponds to the two versions (A) and (B) of Kovarik’s method: the first
one starts with Ho from({7), makes the computations in (48) (and after that
those in (49)-(51)) with Ty from (25) and then updates Hy to Hiyy as in
(52); the second one starts with Ko from (47), then uses I'y from (27) in
(48)-(51) and updates K}, to Kyyq1 as in (52).

The following result ensures us that the set LSS(A;b), corresponding to the
initial problem (1) does not change during the transformations (48).

Proposition 7 We have
LSS(Ag;b%) = LSS(A;b), V k> 0. (54)

Proof. Using (2), (37), (34), (36) and the fact that the matrix By from
(32) is invertible, we can write the following sequence of equivalencies

z € LSS(Aks1;051Y) & AL Appiz = AL 0 &

By AL Ap Bz = B ALT O & (By)?Ab Az = (B )2 ALY &



ALAge = ALY* & 2 € LSS(Ak;bF), ¥V k> 0. (55)

From (55) and the fact that Ay = A,5° = b, the equalities (54) directly
result and the proof is complete.

Let now Qg, Qx, ®x, 1, Ry and G be the matrices defined as in (9), (13),
(8), (15), (10) and (20), respectively, but with Ay from (48) instead of A.
Then, as in the proof of Theorem 1 from [6] we obtain.

Proposition 8 If Qo ®o, and R are the matrices defined as in (13), (15)
and (10), respectively, but with As, from (28) instead of A, then

lim Q¢ = Quo, lim & = &, lim R, = R.,. (56)
k—o0 k—o0 k— oo
Following the ideas from [4] we can prove

Proposition 9 Let (xk)kzo be the sequence generated with the algorithm
(47)-(52). Then

Priay)(e*) = Py(ay(a*) = Pyay(°), V k> 0. (57)

Proof. We shall use the mathematical induction. For k — 0, (57) is true.
Then, let k > 0 be fixed. By using (11), (51) and (12) we obtain

oF = Qpiaa® + By B! = Pr(ayy1)(25) + Qrpr (aF) + Ry (58)

But, from (11) with A4, and Ry, instead of A and R, respectively, and
(13) with Agzyq and Qk+1,Qr41 instead of A, Q and (), we obtain

Ri18% € R(Ai:-i-l)v Qk+1(l'k) € R(AZH)- | (59)

From (58) and (59) we obtain P4y ,,)(&F1) = PN(AHI)(zk). The remain-
ing equalities in (57) then hold from (44)-(45) and the proof is complete.
The last preparatory result before our main theorem is the following propo-
sition, concerning the sequence of "right hand sides” (bk)kzo from (48).

Proposition 10 Let (bk)kzo be as in ({8) and, for any k > 0
b, = Pria(05). (60)

Then, the sequence (bik Jk>o0 is bounded.



Proof. Let us suppose that the conclusion of our proposition is false. Then,
it would exist a subsequence of (bﬁk)kzo (which, for simplicity we shall
denote in the same way) such that

Jim | 6%, ||= +oco. (61)
From (5) and (60) it holds that
T € LSS(Ag:0%) & Agz = b . (62)
Let now ¢™ € L5S5(A;b). From (54) and (62) we obtain
Agz* =05, V k>0, (63)

From Proposition 3 we have lim;_,., A; = Ao, which tells us that it exists
an integer kg > 1 such that

[ Ake™ || < || Asoz™ || + 1. (64)
Let k1 > ko > 1 be such that (see (61))
85, > [ Ao® [+ 1,V &> . (65)

From (63)-(65) we then get a contradiction which completes our proof.

We are now able to prove the main result of the paper, concerning the
convergence of the sequence (xk)kzo generated with the above Kaczmarz-
Kovarik algorithm.

Theorem 1 For any 2° € R™ if (xk)kzo 18 the sequence generated with the
algorithm ({7)-(52), then

Jim 2* = Py(4)(2°) + Gba. (66)
Proof. Let k£ > 0 be arbitrary fixed and b* € JR™ defined by
bE = Py(at(b%). (67)
Then, we have the orthogonal decomposition of b* (see (60))
b = bk @bk (68)
and, from [4] (Theorem 1 and Proposition 1)

LSS(Ak;b") = {Py(a, () + Gably, 2% € B"}, (69)
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s = Gkbﬁk = GbA (70)

Let now 2% € IR™ be arbitrary fixed. Then, from (70), (45), (11), (51), (12)
and (57) we succesively get

2 — (Pray(2°) + Gba) = 2" — (P, 1y (2°) + Grprblft! ) =

(PN(ary) (") + Qrpr2® + Ryyy 84HY) — (PN(gy1) (") + Gk+1bf4til) =
Qr412° + Rip1 854 — (T = Qryr) + Q)i - Qk+1)_1Rk+1]bﬁﬁz =
Qr1* + Ryyr B4 - RyabH — Qr1Grblit! = QrirPra,, ) (2°) =

Qrr1le” = (Py(ay(z°) + Gba)] + Ryy1 (B5F! — Wi, )- (71)
Now, from (50), (68), (49), (14) and (67) we obtain

,Bk+l —b_lf{H = pFt1 _yk+1 b

+1 _ k41 k+1 _ k41 k+1 crk+1y
L = Bf1—yF T < gt 4y, bR =

e
B = [Prvia, ) © Bupa 1 (5547) = pft1 - [Prag,,) & (Brsa (0 =
(B = Prgag, ) (0FF)] = (Braa )41 (054 =

— (@pp1)FFI(BFHY) = —(‘i’kﬂ)kﬂ(bﬁﬁl) (72)
Let ¢* € IR™ be defined by ( see (66))
" = Prn(4)(2°) + Gby. (73)
Then, from (71) and (72) we obtain
gF 1 _ 2* = Qppq(af - z*) — Rk+1(<§k+l)k+1(bﬁﬁl), V kE>0. (74)=

By iterating the equality (74) we get

gFHl g = Qk+1 . -'Ql(mo —z")-
E . U -
> Qrt - Qi+ Ri(25) (6 ) = Riega(®par) (051 (75)
Jj=1

Then, by taking norms, from (75) it results

e =2 <N Quaa Il Nl @a Il 2° = 2™ || +
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k
Z(H Qe [l -1l Qsa Il &; 1) B; 1] Gay IDF 1| Brg (Il &ps [1541] WAt

(76)
From (16) we obtain that

FQkII< 1, 118k <1, VE>0, || |I< 1, I ll<1.  (77)

Let then %o > 1 and Mgy > 0 be such that

N [P .1 S,
| Rell<l Boo |+ 1, WAL 1< Mo, VES B (10)

(such ko and My exist according to Proposition 10 and (56)). Let now
P>t € (0,1) and M > 0 be defined by

p=wax{|| G |-, ]| G, |, E L2 lly (50)
b= max(]| by ..., | &y |, LB Iy (81)

M = max{” Rl “’ 7” Rko ”a ” Roo ” .3 17 “ 6940 ”’ ’” bfioko HaMO}' (82)
Then, from (76)-(82) we get
k
F2* =™ [[< M1 20 — o || 4 MA(S phti=i +u*), Yk > 0. (83)
J=1
Now, by choosing v as
Y= max{p, /J‘} € (07 1)3 (84)
from (83) we obtain
25 = a® < 9" 2 = o™ | + M7k + 1)), vE> 0. (85)
From (84) and (85) we get
klim | 51 — 2% ||= 0

and the proof is complete.
As in [4] (see also Proposition 2) the following consequence of the above

theorem can be proved.

12

Il



Corollary 1 In the hypothesis of Theorem 1, for any z° € IR™ the limit
point (66) of the KaczmarzKovarik sequence (z%)r>0 is a solution of the
problem (1). More than that, its minimal norm solution z1g is obtained as
a limit point in (66) if and only if 2° ¢ R(AY).
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