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Projections and approximate orthogonarization
for numerical solution of inconiistent

Ieast-squares problems

Constantin Popa, Faculty of Mathematics and Informatics, "OVIDIUS,
University Constanta , Romanial email : cpopa @ ovidius.ct.ro

Abstract' In a previous paper we described an iterative algorithm for numerical
solution of consistent linear least-squares problems. In the-present one we gen_
eralize it to the case of inconsistent probrems. This new algorithm is based on
an extension of the crassicar Kaczmarz's projections method (also obtained by the
author in a previous work) and an approximate orthogonalization technique due
to z. Kovarik. we prove that the new algorithm converges to any solution of an
inconsistent and rank-defficient least-squares problem (with respect to the choice
of the initial approximation).
AMS Subject Classification: 6bFt0, 6bF20.
Key words and phrases : Kaczmarz's iteration, approximate orthogonalization,
inconsistent and rank-defficient least-squares problems.

1 Preliminaries

Let A be a real rnxn matrix and D e IR . We shall denote by Ar,(A);,(A)j,
r(A),R(A),N(A),0; the transpose, f-th row,7-th column, rank, range, null
space of A and i-th component of D, respectively (all the vectors that appear
being considered as column vectors). The notations p(B), r(B) wil be used
for the spectral radius and spectrum of a (square) tnutri* a ,od ll ,a ll will
be the spectral norm of A defined by ll / 112= p1i,A1= p(AAt). i"(r) ;ilI
be the orthogonal projection ofc onto the vector subspace,g with respect to
the Euclideaa scalar product and the associated norm, denoted by < .,. >rnd ll ' ll, respectively. we shall consider the linear least-squares problem :
find c* € .8" such that

ll Ar. - b ll= minl ( 1 )
It is well known (see e.g. [t]) that the set of ail (least-squares) sorutions
of (1)' denoted by LSS(A;6) is a nonempty closed.oouu* subset of IRn
containing a unique solution with minimal norm, denoted by ,rs. More



than that, we have

x* e LSS(A;6) <+ AtAr* = Atb (z)

and if
b1= pqafb), (g)

then
LSS(A;b)  = S(A;b i ,  (4)

where by ^9(A;Da) we denoted the set of all (classical) solutions of the (con-
sistent) system

Ax : $o' (5)

We shdl also suppose that the rows and columns of A satisfy

( A ) ; # 0 ,  i = \ , . . . , m i  @ ) i  # 0 , j : I , . . . , t u .  ( 6 )

Then, we carl define the linear applications (matrices)

f;(A;b;r) : x (A);,, pi(A;y) = u-##i@y, (T)

K(A ;b ; r )  :  ( h  o . . .  o  f * ) (A ;b ;x ) ,  Q(A ;y )  =  (w  o . . .  o  p^ ) (A ;s ) ,  (8 )

P ' ; ( z ' ' - -  
< t ' ( A ) ; > '

)=x-  lGf f i (e) , ,  Q=Pt. . .P,o (9)

and ,B the real n x rn matrix of which i-th column (A)t is given by

(n)'= 
l|f*fito 

Pz"'1-{(A)) (10)

with Pe = / (the'nit matrix). The foilowing resurts are proved in [g].

Proposition L (i) We haue

K(A;b;r) = Qc * M, Q + n.l ,= I,  RU € n(A\, y y e IR^. (11)

(ii) N (A) and, R(At) are 'inxariant subspaces for e and

e : p N Q q D Q ,  p * V l l = Q p N @ ) _ 0  ( L z )

where Q ts the linear application defined by

Q = QPneq\. (13)



(iii) N(At) and R(A) are inaari,ant subspaces for e = e(,4; .) and

O = P1u,1a';0 6, PN(/,)6 = 6pry1,4,; = 0,

where.6 = .61a; .) is the linear application defined by

$ = OPn1.a).

(iu) The appli,cations Q and 6 sailsfy

(14)

l l8  <  1 , l l  . i  l l<  1 .

(15)

(16)

( i7)

(18)

(1e)

The following algorithm (described by the author in [J] and [+]) is an ex-
tension of the classical Kaczmarz's projections method lr"u Jslj', let a0 €I R n , U o  = b ;  f o r  k = 0 , 1 , . . . c o m p u t e

aktr = Q(A;yk),

g k * l  = b - Y k * t ,

ck+r  -  K(A;Bk+r ;xh) .

In [a] the following are proved.

Proposition 2 (i) Let G be the n x rn matrfu defined by

G = ( r - Q ) - t a . (20)

Then, for any matrir A sati.sfying (6), any b €. nm and, xo €. nn the
Ee4uence (roh>o generated with the a$orithm (r7) - (1g) conaerges and,

oqL rn = pN@)(f) + cno. (2r)

(ii) We haae the equalities

LS5(A;6) = {Pr,r(a;(ro) + Gba, a0 € B"}; xrs = Gbt. (ZZ)

Remark I Because the aboue steps (17) and (lg) consi,st on succesiue (or_
thogonal) projections onto the hyperpranes generated by the columns and
rows of A, faster uill fu the conuergence in these stepi (anil thus for the
w!'ole algorithm) if the angles between succesiue columns and rows will be
closer to 90 degrees (see e.s. [SJ).



Let now (o*)n>o be the sequence of positive rea,r. numbers

1 (zk)l
"n=  2 * f f i ,  & )o

and (96)611 a bounded sequence of positive integers, i.e. .

q * { N ,  V k > 1 .

A k + r = T * A * ,  & > 0

(23)

The following algorithms were proposed by Z. Kovarik in [2].Algorithm (A) Start with ,46 = L and recursively define the matrices .lT6
and 4611 by

Ht = I  -  AtAt* ,  l r  =  1 *  a1H1,+. . .  +  an, ,Ef , r ,

(24)

(25)

(26)

(27)

Algorithm (B) Start with ,46 = ,4. and recursively define the matrices K6and ,41a1 by

K* = 2(I + A4At)-1 _ t, Tt = I * K*

7nd A*a1as in (26), with I1 trom (27).
Let A* be the m x n matrix defined bv

A- = [(AAt)i ]+ A,, (28)
where by !+ we denoted the Moore-Penrose pseudoinverse of the matrix -B
(see e.g. lt]). We shall also suppose thar

l l  AA' l l= l l  AtAl l=  p(AAt)  <  r . (2s)
In [5J and [7] we applied the above argorithms (anaiysed in [2] for matrices
with linearly independent rows) to an arbitrary'rectangular matrix A. Thefollowing results were proved.

Proposition 3 (i) I! (2il and (pg) hord, then the sequence of matrices
(.1t)t:q generated with the algorithm (gS) - (e6) conaerges to A*.
(ii) If (29) holds, then the sequence oj mabices'(An)rro g"nemted, with the
algorithm (27) conuerges to A*.

Remark 2 If A has linearry independ,ent rows then we can reprace the pseu-
d,oinue.rse [@et1t1+ in erj by thl classicat ;"r",r"" 1(i*;"i:, and it can beprooed that A,o has in this case mutuaily orthogonii ,o*i ir"" [p]). This is



no longer true for a general rectangular A, but an improuement ,is obtai.ned
concerning the angles betuteen succes'iue rows of A by compari,ng them with
the angles between the rows of the initial matrb A;(see e.g. the namerical
etperi,ments from [5] and [Z]).

Remark 3 The condition (29) is not restricti,ue. It can be fuhfited by an
appropriate scalling of the elements of the matrin A.

2 Auxiliary results

In order to "mix" the above Kaczmarz and Kovarik algorithms and to prove
convergence of the new one so obtained, we need some preparatory results
which will be presented in this section. First of all we are interested in the
fulfiiment of assumption (6) for any matrix ,4e generated by one of the above
Kovarik's algorithms (A) or (B). This problem has been already anarysed
and soived in [6], thus we will only remind here the corresponding results.

Proposition 4 Let us suppose that (G) holds for A. Then it also holds for
any matrir Ap lenerated with the algori.thm (zs) - (p6) or the algori,thm
(27), i.e.

( A r ) ; # 0 ,  i =  I , . . . , f f i i  ( A r ) i  # 0 ,  j  =  1 , . . . , n ,  V  &  2  0 .  ( 3 0 )

Let now Fr, Lx be the matrices defined by (see (25), (27))

Fr = I - A'*Ax, L* : 2(I + AtrAp)-l - I

B r = I * a 1 F p + . . . + o n * F l o

or
B * : I + L I .  ( 3 9 )

The following resuit gives supplementary informations about the matrices
appearing in algorithms (A) and (B) and the above defined ones.

Proposition 5 Let us supryse that (Pg holds). Then
(i) the matriceslp, Jrom (25) or (27), and Bp, from (3p) or (SS) are sym-
metric and positiue definite ((SPD), for short);
(ii) the following equalities hold

tk(AkAtk) = (A1,Al,)11,; Bk(AtkAk) = (AtkAk)Bk, (84)

and

(31)

(32)



A k + r =  f 7 . , 4 s =  A t B * ,

Atklk = BnA'*,

Atk+t = B*A'x.

Proof. (i) In [b] and [Z] we proved that, under the assumption (2g),
matrices Hp and fi1 from (25) and (22), respectively, are (,SpD) and

r (Hx)C (0,11,  r (K*)C (0,11,  Ve > 0.

A*A'r - @rA')3 = Ar At* - (A*Ai)t.
Using simiiar arguments we can prove that

(35)

(36)

(37)

the

(38)
From (38), (29), (2b) and (27)it resurts that rp is (.gpD). similar argumenrs
tell us that f'6 and -[1 from (31) are (.gpD), 

\ '

r(F*) c (0, 11, ,(L*) c (0, 1J (3e)
and Bp from (32) or (33) is a.lso (SpD).
(ii) If rr, Bn are defined as in (2b) ana (rz;, respectively then the equalities
in (34) obviously hold. Let now 11 b" dehned as in (lz). Then, the first
equality in (34) holds from the following sequences of equivalences (the last
one being obviously true)

K6(ApApt) = (npAt)Kp <+ (r + AkADKk(At,Ai)U * A6Ai) =

= (1+ AkAb@kA,)xo(t + Ar,Al,) e
<+ (/ - AkAtk)(AkA'*)(t + A*Ai) = (1+ AkAD@hAL)e _ AkA") e
+ lApAtr - QqreilrlQ + AkAt) : [AkAtk + (AkAt)2](I _ AkAil e

Lk(AlkAk) _ (AtkAilLk

(40)

(41)
which ensures the second equarity in (3a) for 81, defined as in (33). we can
easilv observe that (96) and (32) hord from (rb) and (26). If f1 , 81 are
defined as in (2b) and (32), then (3b) easily holds by observing that

HnA* = (/ - A*At*)An : A*(I - Atxat) = A*Fx. (42)

Let now |'t, B* be given by (27) and (33), respectivery. we have the following
sequence of equivalences

KrA* = ArL* e (I+A1,At)KkAk(I+A'*Ar,) = (I+A*Art)AkLk(I+Aroeo) +



Q - A;ADA;Q + A1,A*) = (/ + .l.nato1l,u1t - .ttu,a,1,) +
no - ,+n,ltrApAtuAl, - 41, _ e,1r,+rui1rA,ru.e,,, (43)

Because the last equality is obviousry true, from (4J), (27) ..d, (33) we
obtain (35) in this case too and the proof is complete.

Proposition 6 If (2g) holds and (Ap)esg is the sequence oJ matrices defined
with the aboae algorithms (A) or (B),lhen

N(Ar): //(A), N(A'k) = -lf(,4'),

thus
P*(o*) : Pr,t(t), P*(oD : Pp1a,y, V fr > 0.

Proof. From (26) and (BZ) it directly holds that

(44)

(45)

(47)

N(Au)c i f ( .46a1) ,  N(Ar)c1r(Ai+1) ,  V&> 0.  (46)

Let z € /f(Aa+l). Then, from (26) and the fact that f7, is (SpD) (thus
invertible) we obtain that A1,z: 0, i.e. z e If (A;), thus

ff(Ar+r) c lr(,4k), V fr > 0.

In a similar way, using (87) we obtain that

N(Ar*+r)  c  f f ( ,41) ,  V/ r> o,

which together with (46) gives us (44) (thus (ab)) and completes the proof.

3 The Kaczrnarz-Kovarik algorithm

using the constructions and results from the previous sections we can define
our new algorithm as follows.
Kaczmarz-Kovarik algorithm: let co € Ro, Ao = A,60 = D and

H o = I - A o A L  o r  K s = 2 ( I * A o A L ) - 1  _ t .

Step 1. Compute .4111 and 6fr+1 by

Ak+t =l*A*,,  6&+1 = Ip6&, (48)



with f,r, from (25) or l1 from (27), respectively.
Step 2. Compute g*+1 and |k+t by

yk*r = iDe+t(At+r; 6e+1),

p k + t - 6 k * r _ y k + r .

Step 3. Compute the next approximation c&*1 by

nk+t  -  K(A*+t ;pk+t ; rk)

and update E5 or Kpto I/7641 or Kl+r by

Hk+r = I - Ap+Al,a1 or Kpql = 2(I + Ax+tA\,+r)-t - f .

(4e)

(50)

(51)

(52)

Remark 4 From Proposition / it results that the abue steps (19) and (51)
are well def,ned for any k > 0.

Remark 5 The step (/9) rneonE the succesioe application of Q(A6a;.)
(k + 1) - tdmes to the initial uector 6k*t, i.e.

o&+t(A*+r ;De+1)  = (a(A** ; . )  o  . . .  o  e( .47,a1; . ) ) (6&+t) .  (5a)

Remark 6 In fact, we defined two Kaczmarz-Kovarik algori,thrns which
corresponds to the two uersions (A) and (B) 

"f 
Kouarik's method: the first

one starts with Ho Jrom(/7), makes the computations in (/8) (and alter that
those in (49)-(51)) with tp from (25) and then updates Ep to Hpql as i,n
(52); the second, one starts with Ks from (17), then usesTp from (27) i,n
(48)-(51) and upd,ates Ka to Kpy1 as in (52).

The following result ensures us that the set LS 5(A;6), corresponding to the
initia,l problem (1) does not change during the transformations (48).

Proposition T We haoe

LS S(A*;bo) = t 'S S(A;b),, V & > 0. (54)

Proof. Using (2), (37), (34), (36) and the fact that the matrix .86 from
(32) is invertible, we can write the following sequence of equivalencies

x e LSS(Ar+r;6ft+t) # Aj,a1A1,sp = Al,*rb641 4)

Bl,Al,ApByn = B*At*lr6& <+ (Bp)2Al,Aps = (Bp)2A'rUn *



A t 1 , A p r , = A t x b k  < + r €  L S S ( A 1 , ; b u ) , v  & > 0 .  ( 5 b )
From (55) and the facr that Ao = A,bo - b, the equalities (5a) directly
result and the proof is complete.
Let now Q*,Q*,or,6r,,8,r, and Gi, be the matrices defined as in (g), (18),
(s)' (15), (10) and (20), respectively, bur with .41 from (4g) instead of ,4.
Then, as in the proof of Theorem 1 from [6] we obtuio.

Proposit ion 8 I f  Q*,6oo and Roo are the matr ices def ined as in (13),  (15)
and (10), respectiuely, but with A* from (pg) instead oy ,+, th",

l5'Qr = Q*, n|IL,in = 6*, *Lt nu - ft*. (56)

Following the ideas from [4] we can prove

Proposition g Let (ro)n>o be the sequence genemted, with the argorithm
(/7)-(52). rhen

PN@)(rr)  :  Px(q(rk) = Pr,r( ,q)(r0;,  V & > 0. (57)

Pro'f. we sha.ll use the mathematical induction. For ,t : 0, (57) is true.
Then, let ,t ) 0 be fixed. By using (11), (51) and (12) we obtain

xk+r - Qt+trk * R*+rTk+r = ptr(er*r1@k) + or+r(rk) * R*+r|k. (5s)

But, from (11) with A6a1 and.8111 instead of A and -8, respectively, and
(13) with .47.11 and Q*r,Q7,11 instead of A, e and. Q,weobtain

Rr+tgr € R(Atk+), 8n*r(rn) € a(,41+r).

From (58) and (59) we obtain pN6ar*S(r,t+1) - pr,r6u*S@&;. fne remain_
in€ equalities in (52) then hold rrom'(i+y 14b) and irr"'i'r."ri, compiere.
The last preparatory result before our main theorem is lhe folrowinj propo_
sition, concerning rhe sequence of "right hand sides" (bo)*>o rr"m (1b). 

-

PropositionLO kt (6e)r>o be as in (/g) and, for any & > 0

b\r -- P*(oilQk).

Then, the sequence (blo h>o i,s bound,ed.

(5e)

(60)



Proof. Let us suppose that the conclusion of our proposition is false. Then,
it would exist a subsequence of (bl*)420 (which, ftr simplicity we shall
denote in the same way) such that

.l im ll 61, ll= +*.
&-oo "  

^k  t l

From (5) and (60) it holds that

x € LS S(At r be) 1* A1,n = b\r. (62)

Let now n* e LSS(A;6). From (5 ) and (62) we obtain

A p x * = b \ o ,  V  f r > 0 .  ( 6 9 )

fbom Proposition 3 we have lim4** Ak = A*, which tells us that it exists
an integer &o ) 1 such that

l l A*r* ll S ll A_'. ll + t.
Let fu > fto ) 1 be such that (see (61))

l l b } , - l l > l l  , 4 . " r * l l  + t , v  f t >& r .
From (63)-(65) we then get a contradiction which completes our proof.
we are now able to prove the main result of the piper, concerning the
convergence of the sequence (reh>o generated with the above Kaczmarz-
Kovarik algorithm.

Theorem 1 For any ro e n" if (ro)r>o is the sequence genemted wi,th the
alsorithm (17) - ( 52), then

*!lg 'fr 
= P,v(.a)('o ) + eao. (66)

Proof. Let k ) 0 be arbitrary fixed and 6f e nm defined bv

6f = P.nrt,rit(6e).

Then, we have the orthogonal decomposition of 6& (see (60))

b k  = b \ r a o !

and, from [4] (Theorem 1 and proposition 1)

LSS(A* ;6e)  =  {p r1 , ro1( r0 )  *Gg\o ,xo  € . IR" } ,

(61)

(64)

(65)

(67)

(6e)

(68)



rLS = GrbXo - Gbe. (zo)
Let now to € IR be arbitra"ry fixed. Then, from (20), (4S), (11), (b1), (i2)
and (57) we succesively get

xk+r -(Protrl(ro) + Gid) = rk+t - (piv(au*,)(co) + cr1rafil, ) =

(Prvlau*,y(te) + 8n+r*k * Rr+ttk+t) - (pr(r**,;(rfr) * Gr1rbf;|lr) =

Qx+t*k * Rx+r7k+t * [(/ - 8r+r) + Q*+t][(I - Qr+r)-tR*+r]6xl.l, =

Qn+pk * R*+t|k+t - Rr,+rbfrl*, - Qn*rGr*rbt!, - Or,+tpr,r(ao*,;(ro) =

Q*,,lrr - (pural@o) + cor;1 * Rt +t(yk+' _ 611i, ). (71)
Now, from (50), (68), (49), (14) and (62) we obtain

Po+t-bX+;, = bk+r-yo*t-b111, - 6k+r-rt '11 - b&*1-o&+t(Ar+r;be+l) =

6f+t - [P,.o1e;*,y o 6r*r]u+t(6e+1) = 6k*1 -[p,.r1eg*,,€l (6*+r)e+1](6e+1) =

[bf*t - Pnlag*,y(b&+t)] - ('i*+r)*+t(bk+l) -

- (Qo+r)e+t{an*t, = -(6r+r)o*'(6X11, ) {72)
Let o* € IR be defined by ( see (66))

x* = Px(t)@o) + Goa. (zg)

Then, from (71) and (72) we obtain

xk+t  - r *  = ]x+ t ( rk  - * * ) -g r+r (6 r+r ) * * t (b l1 l , ) ,  V  &>0.  (24)

By iterating the equality (Za) we get

n k + r  - x *  = Q * + t . . . Q r ( x o  - o * ) -

l)80*' .. .8i*ra1o)i (Fo) - ,tr+r(6**r)o*'(65T1, ) (zb)
J - L

Then, by taking norms, from (75) it results

l l  'u+'  - ' .  l l  S l l  0*+'  l l  . . .  l l  4 '  l l l l  co -  o* l l  r

1 1



k

I(ll 0**' ll "' ll 8i+'lllltii llill Ri llllFoi ll)+ ;1 a**, llll .ir+, llo*'ll 61li, ll .

From (16) we obtain that

l l  8r l l< 1, l l  . ir  l l< t, v fr > 0, l l  g- l l< 1, l l  . i_ l l< 1.
Let then kg ) 1 arld, Mo > 0 be such that

(76)

(77)

l l  ar l l<l l  R* l l  + 1,
(such ks and M6 exist according
p , F e  ( 0 , 1 ) a n d  M > A  b e d e f i n e d

(78)

(7e)

Let now

1 = max{g p} e (0, t),

from (83) we obtain

l l ru*t - 
". l l< ?e+tfil ra _ a* Il +ar1*+ 1)), v ,t > 0.

From (84) and (85) we get

l l  d , l t<  
1+  l l  8*  l l  1+  l l  600  l l, ,  wtu, ,  -  

2 
(  1 '  l l  Or l l< : f i  < t ,

l lb i l : , l l s t ro ,v&>fro
to Proposition 10 and (b6)).
by

p = max{ l l  8,  11, , . . . ,11Qr, l l ,  tp} ,  (s0)

p = max{ l l  , i ,  11, . .  . , l l  6"-  r r .  1+ l l  6*  l l ,Plo  l l ' - -2  - j '  (81)

M - max{l l  A, 11,...  , l l  f ino l l , l l  a* l l  + r, l l  6X. l l , . . . , l l  6X,*, l l ,  Mo}. (82)
Then, from (76)-(82) we get

k

l l r**t - c. l l< pk+' ll ro - n* ll +ur1f,o*+r-i pi * pk+t),V & > 0. (8g)
J = 1

Now, by choosing 7 as

(84)

(85)

-,31 ll rk+t - o* ll: o

and the proof is complete.
As in [a] (see also proposition 2) the folowing conseguence of the above
theorem can be proved.

L2



corollary 1 In the rrypothesis of Theorcm 1, for any ao e mn the timitpoint (d6) of the Kacznzarz-Kouarilc sequence' (ck!n- " f,s a sorution of theproblem (1). More than that, its minimat ,or* ,oirrtio"-ris is obtained asa limit point in (06) d and, onty if ,o e n@\. 
- ---u

References

l1j A' Bjrirck, Numericar method,s for reast squares probrems, SIAMPhiladelphia, 1996.

[2] Z' Kovatik, Some iteratiue methods for improuing orthonormality,
SIAM J. Numer. AnaJ., z(B) (1970;, pp. SAO_i89. "

[3] C' Popa, Least-squarzs solution of ouerdetermined inconsistent lin-ear systems using Kaczmarz,s rclarat,i,on,,Intern. J. Comp. Math., Eb(1995), pp. 79-89.

[4] c. Popa, characterization of the solution set of inconsistent least_squares probrems by an extended, Kaczmarz argoritim, Korean J. comp.Appl. Math., 6(1) (1999), pp. b1_64.

[5] c' Popa, Ertension of an approrimate orthogonarization argorithm toarbitrary rectangurar matrices, preprint nr. 1g (1ggg), Institute ofMath. of the Romanian Academy, Bucharest.

[6] C' Popa, A fast Kaczmarz-Kouarik algorithm for least-squares problems,
submitted to B I 

", 
1999.

[7] c. Popa, An iteratiue method for improaing orthogonarity of rows ofarbitrary rectangutar matrices, submitted to cALioLo, 1ggg.

[8] I{. Tanabe, prvjection method for soruing a singurar system of rinear
equations and its appli,cations, Numer. Uath., ti ltlZti, pp. Z0J_274.

13


