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ON THE MICROSTRUCTURE VIODELS
OF POROUS MEDIA

HORIA I. trNE

Using ihe homogenization method we shall discuss several clases of double-

porosity models. We introduce the modei of partially fissured medium in which

there is some fluid flow directly through the cell structure. The intensity of the

direct diffusion will give at the macroscale different equations.

1.. INTRODUCTION

Every attempt to model laminar flow through highly inhomogeneous me-

dia Ieads to singular problems of partial differential equations with rapidly

oscillating coefficients.
A partially fissured medium is a fissured medium in rvhich there are a

substantial paths directly joining the cells in addition to the predominant

connection rvith the surrounding fissure system. That means that the cells

are not completely isolated from one another by the fissure system, and the

matrix is somewhat connected.
The classical example of such flor,v is the parabolic system

( 1 . 1 )
, +  -V  .  (A  V  u r )  *  H (u1 -  uz )  :  f

not

b?# -V . (B y uz) - H(u, - uz) : f

introduced by G.i.  Barenblatt,  I .P Zheltov and I.N. Kochina [1]. Here u1

represents the density of fluid in one material and u2 the densitf in the

second. The coefficients a(z) and A(r) are the porosity and permeability of

the first material, respectively, whereas b(r) and B(r) are the corresponding
property of the second material. Both of these equations are to be understood



macroscopically. The third term in each equation is an attempt to quantify
the exchange of fluid between the two components.

In order to obtain a mathematical proof for such a model introduced by
heuristic justification, we refer to [2] [3] in which the derivation by homoge-
nization of the distributed microstructute model of a totally fissured medium
was made. For a general approach, by homogenization, of the problems of
flow through porous media we indicate the book [ ]. An extensive disscusion
of different microstructure models of porous media was given in [5].

The aim of the present paper is to determine the diffusion from the system
of fissures to the matrix of porous cells. The order of magnitude of such a
transfer by diffusion gives rise to very diferent models at the macroscale.
One of them is preciselly the model described by the system (i.1). Note also
there exists four other different models.

In section 2 we introduce the diffusion model and we discuss the bound-
ary conditions. The homogenization technique will be applied in section 3.
Concluding remarks are given in section 4.

Remark 1.1. For historical reasons the di,stri,buted mi,crostructure model
wi,ll be presented in the framework of a diffusion problem. Clearly it has
a meani,ngful analog for the analogous problems of heat conducti,on or ab-
sorpt'i,on of a dissolued chemi,cal i,n a fi,uid fiawing through a, porous medi,um.
Note also that the problem of conuection-diffusi,on will be treated i,n the san'Le
rnanner, and we refer to the book [6].

2. THE DIFFUSION MODEL

We must consider a porous medium composed of two interwoven and con-
nected components. The first one is the system of fissures and the second is
the matrix of porous cells. The two components were periodically distributed
in space. Note that such a construction is impossible in IR2.

Let Q be an open, bounded set of IR3, composed by the two parts de-
scribed before. We denote by

0"o : {r e fl; r e eYo} a: I,2

s u c h t h a t g - O r , U O r z .
At the microscale we search for ur: (urL,ur2) solution to:

^0u.,
o ' ;  - V . ( A ' V u , t ) : f  i n  f , ) u 1(2 .1 )



A ^ ,

(2.2) b'" :?'  -  V. (B' v u,z) :  f  in Qu2
iJt

The boundary and initial conditions are as follows:

(2.3) A'  V u, t . i - -  B'  V u,z ' i  on f ,

(2.4) -A' V u,f i: eqh'(u4 - u,z) on f,

( 2 . 5 )  u e L : Q  u r r :  0  f o r  f  :  0

The notation g'@) : ge) means that the microscopic coefficients are
rapidly oscillating. If we denote by Y the cell of periodicity and introduce the
microscopic variable A : 7, we must understand that a function eG) : p(y)
is Y periodic.

Remark 2.1. The boundary condi,tions (2 3) (2 il nleans that uu i,s not a
continuous function. If we rewrite (2.3) and (2.1) as

-) -+

\ /Uy u: Yuz u

-  V u ' i :  h(u -  ur)

i,t i,s clear that for h -+ oo we obtain uL : 1)2' Note also that the case h : 0
gi,ues rise to a completly issolated medi,um, with no diffusion fl,ur between the

two components.
In order to describe such situations we rescale the boundary condition

(2.4) by ep. Following the different values of p we obtain very different

equations at the macroscale.
We must suppose that h'(r)) : h(? is a Y-periodic function in the vari-

able gr : f , and that its mean value over the bundary f between the two

components is

(2.6)

3. HOMOGENIZATION

We assume that our medium is strictly periodic. Than we are in the
classical framework of the homogenization methoa [a][S][0].

I n@)a' + o
./l



We search for an asymptotic expansion of. uu of. the form:

( 3 . 1 )  u , o ( t , r )  :  u i ( t , n , y )  +  e u r " ( t , r , y )  *  . . .  y  : : , a :  L , 2
e

where u!(t,r,y) arc Y-periodic functions in y.
The method consists in incorparating expansions (3.1) into the equations

(2.1)(2.2), indentifying the similar powers of e and solving a set of boundary
value problems in a characteristic cell Y. In the computation we must take
into account the fact that r and g should be considered as independent
variables and that the derivation operator is now expressed by

(3.2) V11, : V,uu *t^ ro u,
E

We also introduce the mean value of a function p(y) by

(3.8) a: h I,v(ilau
The homogenization process, 6 -+ 0, produces a set of equations satisfied

by zo, which in fact represents the macroscopic behaviour of our porous
medium.

There are two critical values of p: p * -1 and p = I.

3.1 The case p - -1

In this case we obtain ui(t,r) = ui(t,r):  u(t,r).  That mean at the
macroscale we have only one diffusion equation:

( 3 . 4 )  
" T - v . ( n y u " )  

: ;  i n o

where:

(3 b) u: 
,LrrL,a@)da 

+ l,,u1y1as1
and the macroscopic permeability A is given by:

1  ( f  ,  ,  0 w , , -  |  E r r * , ,  \(3 6) Aij : -,,^ | | (au + Ap#)da + | .(Bu + a* n )oa I' 
lr | \.ty, oAj Jyz oUi /

. . . . .
; t  i l l : : i : l



with the auxiliary functions ur,;, and wqk, lhe Y-periodic solutions of the cell
problems:

- Vs .(A@ Vy w*) : VuA(il i.* a € Yt

( e . 7 \  -  V y  ' @ ( Y ) Y a u z * ) : V s B ( i l Z x  U  € Y z
\ u ' " '  A @ ) v o w 1 1 , . i -  B ( y ) v r w z * ' i  g  €  f

A(y) Vowy, ' i  +h( i l ( r ru -  r ru)  :  -A(y) ik . i  y  € |

Remark 3.1 The effecti,ue rnl,croscopic permeabi,li,ty depends on h. That
means, at the nlacroscopic scale, we must consi,der not only the ualues of the
microscopic permeabilities of the fissure and the porous block, but also the
diffusi,on accross the boundary l. Neueriheless, the structure of thi,s model
remains classi,cal, i.e. only one equati,on at the macroscale (3.4).

3.2 The cas€ p - 1'

At the first order we obtain ui : ui(t,z) and u7 : ui(t, z), with ui(t, n) t'
ui(t,r).It wil l be seen that the leadingterms for the density in the fractures
and in the matrix blockes, will be a pair of functions ui (1, r) and ui(t, r), r e
0, f ) 0, which satisfy the system of equations:

( 3 . s )  , # - v ' 6 v u i )  + H ( u i - u Z ) : o f

-  atq t"

(3e )  bY#  -v .  @v u ; )  -  H ( " i -u ; )  :  (7 -  0 ) f
ot

with

(3 10) Ati a I"(Ati + o*wlo,

( 3 . i 1 )  E t i : + t (B t i +noop )aa
"  l Y l r Y 2 '  o A j '

(3 .12) H : A [n1a1a,



(3 . i3)

Now the auxiliary Y-periodic functions {16 and l2p are the solutions to:

0:ffi

(3.14)

and

(3 .15)

-  Vu.@(a) Vy Xr*) -  yrA(s) V* a €Yt
A ( i l v o x * i : - A ( i l i k . i  y e r

- Vv @@ Vy Xzx) : VoB(il in U € Yz
B ( y ) V o x z x i = - n @ i n i  a € l

Remarlc 3.2. The macroscopi,c behaui,our i,s eractly the model descri,bed
by the system (1.1) of G.L Barenblat, I.P. Zheltou and I.N. Kochi,na [1]. Ot
course the hypothesi,s (2.6) i,s fundamental, and in such a way we can account

for the flur across the boundaryf.

3.3 Totally Fissured Media

A totally fissured medium consists of a matrix of porous and permeable
material cells through which is intertwined a highly developed system of fis-
sures. The flow occurs in the highly permeable system, and most of the
storage of fluid is in the matrix of cells which accounts for almost all of the
total volume. These fissured media characteristics are modeled by choosing
very small values for the permeability in the blockes. Consequently in (2.2)
one sets B' :0, because there is no direct flow through the matrix of cells.
Practically each cell of the matrix is isolated from adjacent cells by the fis-
sure system. The resulting system at the macroscale is a parabolic-ordinary
differential equations.

(3 .16)

and is called the first-order kinetic model [2][3].

-}ui , adE - V . (A V ui) + H(ui- uZ) : f

6 r y - H t u ? - z t ) : o
iJt



3 . 4  T h e  c a s e  p : 0

Of course this case is an intermediate one between those presented in
sections 3.1 and 3.2. We have ui(t,r) : ui(t,r) : u"(t,r) and at the
macroscale an equation of the form (3.4):

(3 .17) ,T-  v '  (A v u\ :  f  inr r

where the macroscopic permeability I is given by (3.6) wityh /1p and /21a
instead of.wy, andw21,. Of course N16 and /21a dle given by (3.1a) and (3.15).

3.5 Other cases

It is clear that we have also two extremely different cases: p ( -1 and
p > L .

In the case p ( -1 we have practically the diffusion problem with classical
transmission boundary conditions: continuity of normal fluxes and continuity
of ur. The macroscopic result is only one diffusion equation with classical
homogenized coefficients [7].

The case p > L corresponds to the macroscopic equations (3.8) (3.9) with
H :0. The porous blocks are completely isolated and no interaction occurs
between them and the system of fissures. Such a model coresponds to the
case described in the section 3.3 with the suplementary hypothesis of small
values of b' in (2.1).

3.6 Estimates

In order to prove the convergence of the homogenization process we need
to extend each uro(a : L,2), defined in f,)ro, in the oposite paft Qrp(p t'
d, e, g : 1,2). To due that, if we use the extension operator introduced
by D. Ciordnescu and J. Saint Jean Paulin [8], denoting bY CI,r and 0,2 the
extension of each Lt,€a) we obtain for p ) 0 the estimates:

(3.1e) ll0,t - t,zll7,Ol < er-P C

Now it is clear that p : 1 is the critical value.
In the case p ( -1 we have the same estimates (3.19) with e#, and we

can see thal p - -1 is also a critical value.



CONCLUDING REMARKS

The basic distributed microstructure model is obtained as the limit by ho-
mogenization of a corresponding exact bui highly singular partial differential
equation with rapidly oscillating coefficients.

Experience suggests that the distributed microstructure models are easy
to work with, they provide accurate models which include the fine scales and
geometry, and their theory can be developed using conventional techniques.
Note also that the formula for the macroscopic coefficients is exact.
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