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Grothendieck Institutions

Rdzvan Diaconescu (diacon@stoi low. imar.  ro)
Institute of Mathematics "Simion Stoilow", Romania

Abstract. We extend indexed categories, fibred categories, and Grothendieck constructions to institutions. We show that
the 2-category ofinstitutions admits Grothendieck constructions (in a general 2-categoical sense) and that any split fibred
instirution is equivalent to a Grothendieck insdnrtion of an indexed institution.

We use Grothendieck institutions as the underlying mathematical strucfue for the semantics of multi-paradigm (tret-
erogenous) algebraic specification. We recuperate the so-called 'extra theory morphisms' as ordinary theory morphisms in
a Grothendieck institution. We investigate the basic mathematical properties of Grothendieck institutions, such as theory
colimits, liberality (free constructions), exactness (model amalgamation), and inclusion systems by 'globalisation' from
the 'local' level of the indexed institution to the level of the Grothendieck institution.

1. Introduction

Multi-paradigm (heterogenous) logical specification or pro$amming languages admit institution
semantics in which each paradigm has an underlying institution and paradigm embedding for-
mally corresponds to institution homomorphism. This leads to a concept of indexed institution
which generalises indexed categories of (Par6 and Schumacher, 1978; Tarlecki et al., 1991). Se-
mantics of multi-paradigm specification languages requires the extension of the institution concepts
across indexed institutions, this can be naturally achieved by an extension of the Grothendieck
construction for indexed categories to indexed institutions; this leads to the concept of Grothendieck
institution. We prove that the ?-category of institutions admits internal Grothendieck constructions
abstractly expressed as special lax colimits. ln a fibration framework, Grothendieck institutions can
be formalised as fibred institutions, we develop here this concept rather briefly, and show that Gro-
thendieck institutions are categorically equivalent to split fibred institutions by extending a classical
result by Bdnabou.

The new algebraic specification language CafeOBJ (Diaconescu and Futatsugi, 1998) provides
a good practical example for the use of Grothendieck or fibred institutions. In fact, the research on
Grothendieck institutions is part of the research project on the logical foundations of CafeOBJ. The
semantics of CafeOBJ is based on the indexed institution resulting from the various combinations
of the basic CafeOBJ paradigms. This is illustrated by the following so-called 'CafeOBJ cube'
(consider only the full anows):

HOSRWL

II = hidden
A = algebra
O = order
M =many
S = sortpd
RWL = rewriting logic

where the nodes represent institutions and the arows represent institution homomorphisms. The
institution underlying CafeOBJ is obtained as the Grothendieck institution of the CafeOBJ cube,
which is a lax colimit of the CafeOBJ cube in the 2-category of institutions.

The work of this paper can be regarded as a step forward from @iaconescu, 1998), Grothendieck
institutions providing a higher conceptual framework for the so-called 'extra theory morphisms'.

i$ 
t 2O([ Kluwer Academic Publishers. Printed in the Netherlands.
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We show that extra theory morphisms of (Diaconescu, 1998) can be regarded as ordinary theory
morphisms in a Grothendieck institution. In this way, we come back to the globalisation of insti-
tutional properties studied in (Diaconescu, 1998) from the new higher conceptual perspective of
the Grothendieck (fibred) institutions. In this paper we extend the main globalisation results of
(Diaconescu, 1998) (obtained there in sufficient form) to necessary and sufficient conditions. These
include theory colimits, liberality, exactness, and inclusion systems.

Theory colimits. Module expressions in algebraic languages in the Clear-OBJ tradition are eval-
uated as colimits of theories (Goguen and Burstall, 1992). The problem of existence of theory
colimits exhibits very clearly the conceptual power of Grothendieck institutions, which enable a
very compact proof (contrasting to the rather complex similar proof of (Diaconescu, 1998)) by
using important results from indexed category theory and institution theory.

Liberality. Liberality (Goguen and Burstall, 1992; Tarlecki, i986) is a basic desirable property
expressing the possibilify of free constructions generalising the principle of initial algebra seman-
tics' which underlies the tight semantics of algebraic languages, including semantics for parame-
terised modules (Diaconescu et al., 1993). Here we give a necessary and sufficient condition for the
liberality of a Grothendieck institution which extends a similar result of (Diaconescu, 1998).

Exactness, Exactness expresses the possibility of amalgamation of consistent models (or 'imple-
mentations', in a more application oriented jargon) for different specification modules (for more
details see (Diaconescu et al., 1993)) and is a necessary technical condition on the underlying logic
for good semantic properties of the module system for a specification language. A set of necessary
and sufficient conditions for the globalisation of exactness was the main conjecture of @iaconescu,
1998), in this paper we solve this problem within the framework of Grothendieck institutions.

Inclusions, Theory inclusions model mathematically the concept of module import (see (Dia-
conescu et al., 1993)), which is the most fundamental structuring operation for specification lan-
guages. Inclusion systems were first introduced in (Diaconescu et al., 1993) as the underlying
categorical structure of an institution-independent module algebra. They were further studied and
their definition simplified in (Cdztrnescu and Rogu, 1997). Inclusion systems are related to the better
established concept of factorisation systems, but they capture the uniqueness property of inclusions
(such as set-theoretic inclusions). Here we extend the construction of inclusion systems for extra
theory morphisms of (Diaconescu, 1998) to Grothendieck institutions.

2. Preliminaries

2.I. Cereconres

This work assumes some familiarity with category theory (including 2-categories), and generally
uses the same notations and terminology as Mac Lane (Maclane, 1998), except that composition
is denoted by ";" and written in the diagrammatic order. The application of functions (functors) to
arguments may be written either normally using parentheses, or else in diagrammatic order without
parentheses, or, more rarely, by using sub-scripts or super-scripts. The category of sets is denoted
as Set, and the category of categoriesl as Car. The opposite of a category C is denoted by CPr.
The class of objects of a category C is denoted by lAl; also the set of arrows in C having the
object a as source and the object b as target is denoted as C(a,b). We use =+ to denote 2-cells in
2-categories. The 'horizontal' composition between 2-cells is also written in diagrammatic order by
simple juxtaposition.
-f 

VEL"". 
"lear 

of any foundational problem related to the "category of all categories"; several solutions can be found
in the literature, see, for example (Maclane, 1998).
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Indexed categories (Pard and Schumacher, 1978) play an important r6le in this paper, for the
purpose of this work they are more adequate than the fibred categories (Grothendieck, 1963) for-
mulation of indexation. (Tarlecki et al., 1991) constitutes a good reference for indexed categories
and their applications to algebraic specification. An indexed category garlecki et al., 1991) is a
functor B: Iop -+ C.at; sometimes we denote B(i) as B; (or B') for an index i e l1l and B(a) as Bu for
an index morphism z € /. The following 'flattening' construction providing the canonical fibration
associated to an indexed category is known under the name of the Grothen"dieck construction) and
plays an important r6le in mathematics and in particular in this paper. Given an indexed category
B: Iop -+ C,at,let Bl be the Grothendieck category having (i, x), with i e l/l and x e lBil, as objects
and(u,q) :  ( i ,X)- r ( i ' ,X ' ) ,wi thue l ( i , l / )andg:X+X/Bu,asarrows.Thecomposi t ionofarrows
in Br is defined by (u,q|;(u',qt l t :  (u;ut,rp;(q'B')).

The following simple lemma will be used later in the paper:

LEMMA l. Let B: IoP -+ C,at be an indexed category. Then each arrow (r, q) t (i, X) -l (/ ,2') in
the Grothendieck category Bil can be canonically factored as

(u, q) : ( l i ,  q); (o, Lya,)

Moreoven if the functor B' has a lefi adjoint B, with unit Q then (u, q) : (i, X) -+ (i', 2t) can also
be factored as

(u, q) : (u,20;(1,,,  Q)

where Q : 2N -r X/ is the free extension of g: 2 -+ 2t Bu .

(t,>) 4 ( i ,>'B')

(,,oi \J,,',,*'
({ ,I,8,-) ur,O--- li ' ,2')

2.1.I. Grothendieck Construction in 2-categories
In this section we internalise the Grothendieck construction for indexed categories to any 2-category
rather than a-at by using the following basic resuh2

TI{EOREM 1. The Grothendieck category Bt of an indexed category B: Iop -+ C^at is the vertex of
the lax colimit p: B -'> BF of B in C.at, where

- for each index i € Vl, N: Bi -+ Bl is the canonical inclusion of categories, and

- for each index morphism u€ l(i,j), lt: Bu;F + tti it defined by t*i: (u,Im,l for each
obiect b e lni1.

lnx colimits (see (Borceaux, 1994)) constitute the most relaxed concept of colimit in 2-categories,
where diagrams are required to commute up to 2-cells only (rather than ordinary strict equality).
Notice that since the Grothendieck construction is a lax colimit of an ordinary (l-)functor, this
simply means that the lax cocone ;r of Theorem 1 is initial.

COROLLARY 1. Any 2-functor B: I* -+ At, where I* is the 2-dimensional dual changing the
direction of 2-cells both horizontally andvertically, induces a canonical 2-category structure on the
Grothendieck category Bt of the (1lfunctor B: Iop -+ Cat.

2 We omit the proof of this result since we believe this is folklore although we are not aware of any clear reference for
this result. Also, the proof of this theorem is straightforward.
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We now internalise the concept of Grothendieck construction to 2-categories as follows:

DEFIMTION 1. Given a (l-)functor B: Iop -r V, where 7 is a 2-category, a Grothendieck con-
struction for B is a lax colimit p: B.'. Bl. Then Bi is called the Grothendieck obiect associated to
B . n

2.2. INsrrrurroNs

Institutions (Goguen and Burstall, 1992) were introduced in the mid eighties as (categorical) abstract
model theory for specification and programming, since then the theory of institutions became the
modern level of algebraic specification and institutions now constitute the mathematical sffucture
underlying the algebraic specification theory. In this section we briefly review some of the basic
concepts on institutions. Besides the seminal paper (Goguen and Burstall, 1992), @iaconescu et al.,
1993) contains many results about institutions with direct application to modularisation in aigebraic
specification languages.

From a logic perspective, institutions are much more abstract than Tarski's model theory and
also have another basic ingredient, namely signatures and the possibility of translating sentences
and models across signature morphisms. A special case of this translation is familiar in first order
model theory: if X -+ )' is an inclusion of first order signatures and M is a X/-model, then we can
form the reduct of M to E, denoted Mf2. Similarly,if e is a X-sentence, we can always view it
as a Y-sentence (but there is no standard notation for this). The key axiom, called the satisfaction
condition, says that truth is invariant under change of notation, which is surely a very basic intuition
for traditional logic.

DEFIMTION 2. An institution $ : (Srgn, Sen, MoD, p) consists of

1. a category Srgn, whose objects are called signatures,

2. a functor Sen: Sign -+ Se/, giving for each signature a set whose elements are called sentences
over that signature,

3. a functor Moo: Slgnon -+ C-ar giving for each signature X a category whose objects are called
Z-models, and whose ilrows are called }-(model) morphisms, and

4. a relation l2 e lMoo(>)l * Sen(>) for each ) e lSlgnl, called Z-satisfaction,

such that for each morphism g: I -+ X' in Sign, tbe satisfaction condition

*'?z sen(rp)(e) itr Moo(g)@')?>,

holds for each mt e lMoo(x/)l and e € Sen(X). We may denote the reduct functor Moo(g) by -f,
and the sentence translation Sen(rp) by q(-). n

DEFIMTION 3. Let 5 : (S,gr, Sen, MoD, F) be an institution. For any signature X the closure
of a set E of X-sentences is E': {e lE F: e}3. (Z,n) isatheory if and only if E is closed, i.e.,
E : E ' .

Atheory morphism rp: (I,E) -+ (21,E') is a signature morphism g: E -+ !, such that g(E) G 8,.
Let 1fh(5) denote the category of all theories in 5. n

For any institution S, the model functor Moo extends from the category of its signatures Sign to
the category of its theories 11ft(3), by mapping a theory (X,E) to the full subcategory Moo(X,E)
of Moo(X) formed by the X-models which satisfy E.

t f =re means that M pg e for any Lmodel M that satisfies all sentences in E.
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DEFIMTION 4. A theory morphism g : (X, E) -+ (Zt , Et) is liberal if and only if the reduct functor
-f, : Moo(l' ,E') l Moo(X, E) has a left-adjoint (-)0.

The institution 5 is liberal if and only if each theory morphism is liberal. tr

General results (Tarlecki, 1986) show that liberality is equivalent to the power of Horn axiomatis-
ability.

DEFIMTION 5. An institution $ : (Srgn,Sen,MoD,f) is exact if and only if the model functor
Mop: Signor -+ A-at preserves finite limits. S is semi-exact if and only if Moo preserves only
pullbacks. I

Exactness properties for institutions formalise the possibility of amalgamating models of different
signatures when they are consistent on some kind of intersection' of the signatures (formalised
as a pullback). In practice, the weak4 version of exactness properties may actually suffice (see
(Diaconescu, 1998).

2.2.L. Institution homomorphisms
DEFIMTION 6. Let 3 and 3' be institutions. Then an institution homomorphism S' -+ S consists
of

1. a functor @: Srgn'-+ Srgn,

2. a natural transformation cx': @;Sen =+ Sen/, and

3. a natural ransformation B: Moot 4 qroP;MoD

such that the following satisfaction conditionholds

*'*z ay(e) i tr $v@t)F'yae

for any X'-model m' fromS' and any X/@-sentelce e from 5.
An institution modffication between institution homomorphisms (@, cr, p) + (O', d, p') consists

of

l. a natural transformation t: @ + O/,

2. amodificationrrl: B+B';tMoD,i.e.,foreachY e lSign'l,anaturaltransfonnationo2r:Fy +
9i;Moo(rv).

tr

By defining the canonical compositions @oth vertical and horizontal) for institution homomor-
phisms and modifications, we can define a2-category llns which has institutions as objects (0-cells),
institution morphisms as 1-cells, and their modifications as 2-cells.

In the literature there are several concepts of institution homomorphism, each of them being
adequate to some specific class of problems; a survey on this topic can be found in (Tarlecki, 1996).
The definition presented above and originally given by (Goguen and Burstall, L992) is the structure-
preserving one and is also the most adequate for the applications of this work.

The following properties of institution homomorphisms play an important r6le in this paper.

DEFIMTIONT. An institution homomorphism (O,o,F) ' 3'-+ 5 is

- an equivalence iff @ is an equivalence of categories,

- an embedding itr Q admits a left-adjoint O- (with unit (); an institution embedding is denoted
as ((D,(D,(,o,0): S' + S, and is

a In the sense of'weak universal properties' of(Maclane, 1998) requiring oriy existence without uniqueness for the
corresponding universal arrows.



- liberal iff By has a left-adjoint Bo for each I' e lSlgn/1.

An institution embedding (O,O,(,o,0): S'-+ S is exact if and only if the square below is a
pullback

Moo(X) . 
Mon(rp) 

Moo(Xl)

tutoorr,rt
I

Moo(>6o)
,{

tu-l

4
lMool>'qy
I

Moo(x160)
Î A  -
I  PErO

I
Moo/(I6) -< - _ Moo'(E1<D)

Moo'1eo-;

where g: X -+ X1 is any signature morphism in 5. tr

Our notion of institution equivalence is a natural generalisation of the notion of categorical
equivalence. The idea of institution embedding (although not formulated directly) is as old as the
seminal work on institutions (Goguen and Burstall, 1992). Notice that the terminology 'institu-

tion embedding' is used also by (Meseguer, 1998) but in a completely different sense. Besides
(Diaconescu, 1998), several stronger variants of liberal institution homomorphisms have been inde-
pendently introduced in the literature, such that the categorical retractive simulations of (Kreowski
and Mossakovski, 1995) and the extension maps of (Meseguer, 1998). Exact institution embeddings
are a novel concept which expresses the primitive possibility of amalgamation of consistent models
across an institution embedding.

3. Grothendiecklnstitutions

The following definition generalises the concept of indexed category to institutions.

DEFIMTION 8. An indexed institution.S is a functor 5: lop -+ llns. fl

The following theorem generalises the Grothendieck construction from categories to institutions:

TIIEOREM2. The 2-category of institutions nns admits a Grothendieck construction for each
in"dexed institution 5: /op -+ llns.

Proof.5
We start with the following lemma:

LEMMA 2. Let K be any 2-category and fiy be the Grothendieck 2-category for the 2-functor
Car[(-)on,61: A-at* -+C-at. Thenthefibration llr: Ilr -+A-at creates Grothendieck constructions
for eachfunctor S: IoP -+ IIr.

Proof. We have to prove that for each functor 5 : lop -l IIs, there exists a Grothendieck construc-
tion p: 5.., 3s in n5 such that 116( ti: tt, where p: 5 ".+ J[ is the Grothendieck construction in
A-at for.9: S;flr.

5 For a better understanding of the structure of Grothendieck institutions we go here for a rather direct proof of this
result. Alternatively one may use the general theorem of existence of weighted colimits in enriched categories (Borceaux,
1994) instantiated to the case of lax colimits.

l op  
$  o l r

\ l
\ t*

A_at
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Since II5 is a Grothendieck (2-)category, as notational convention, let us assume that Sr = (J', 5')
for each u € 1 (either index or index morphism).

Let 5[ : (.S[, $[), where S[ . (Ji)oe + K is the unique funcror (by the universal property of the
Grothendieck construction for.9) such that

l;(3[)"p : (Si)on for each object I € l1l, and

F'(31;on : ($t')on for each arrow r € 1.

We then define p by

t  :0t ,Ls,)

for each u e I (either index or index morphism) and we have to prove that trr is initial. This is
enough since lax colimits of (ordinary 1-)functors are simply initial lax cocones. Consider another
lax cocone (v, p)' 5 * (J',3'). We prove that there exists a unique (v', p'): (5[, Sil) -+ (-t',5')
such that

(y', lsr); (v', p') : (vi, pi) for each index i € l/1, and

(1, ls,)(v', p') : (vu, p') for each index molphism z € I.

By projecting the first condition on the fust component, we have that v': .9i -+ .i' is the unique
functor such that !l;v' : v' for each index i e l1l a:rd #v' : vu for each index morphism n € /.

The first condition on the second component means (l)opp' - pi for each i € l/1, which deter-
mines the natural transformation p' by Pli,q = p! for each i e l1l and > € U'1. The checking of the
second condition follows now by routine calculations.

This concludes the proof of this lemma.

The theorem now follows by noticing that IIns = [Rrr^ where Room is the 2-category which has
objects triples (M,S,R) where

M is a category,

,S is a set (regarded as discrete small category), and

R is a tunction lMl -+ P(S),

has pairs of functors @' I M, S + S') as l-cells (M'*3, R') -+ (M, S, R) such that the following
diagram

lutl ---!------> P1g1

,,J
lul o 

--" r(s)

commutes, and has natural transformations / + / as 2-cells between (f , d + (f', g').

Notice that the generality level of Lemma 2 permits variants of Theorem 2 for concepts of
institutions enriched with additional structure, such as proof-theoretic, operational, etc. This can
be easily achieved by replacing Room with an appropriate 2-category.

The explicit structure of the Grothendieck institution of an indexed institution is given by the
following:

REMARK 1. The Grothendieck institution 5[ of an indexed institution 5 : 1op + ]lns has

1-r
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L the Grothendieck category SrgnF as its category of signatures, where Sign:1oP -+Car is the
indexed category of signatures of the indexed institution 3,

2. Moo!: (Signf,;ol -+ C-at as its model functor, where

tvtooil1l;, E)) : Ivtootl>; ror each index i € l1l and signature t € ls,8njl, and

Moo!((r.r,  rp)) :  F3,;MoD'(g) for each (u, g): (f , I) -r ( i ' , I ' ) ,

3. Senil: Srgnf -+ Set as its sentence functor, where

senl((;, >)) : sent(>) for each index i e lll and signature E e lSig,?tl, and

senil((2, q)) : sen'(rp);a$, for each (u, e) ' (i, x) -+ (i', r'),

. , t i  i , ,
a. m ?|i,zl e Iff m l'2 e for each index i e Vl,signature I e lSlgntl, model m e lMool((t, I))1,

and sentence e e Seni((t, >)).

where 5i: (Srgn',MoDi,Sent,f') for each index i € l1l and 3u: (@', au,F') for r € l index
morphism. tr

COROLLARY 2. The concept of extra theory morphisrn @iaconescu, LggS) across an institution
homomorphism X' --+ 3 (with aII its subsequent concepts) is recuperated as an ordinary theory
morphism in the Grothend.ieck institution of the indexed institution given by the homomorphism
5' -+ $ (i.e., which has o -+ o as its index category).

3.1. Frsnso INsrrruuoNs

For the readers prefening fibred categories to indexed categories, we generalise fibred categories to
fibred institutions. We show that split fibred institutions ate essentially the same as the (previously
introduced) Grothendieck institutions. Readers with no background in fibred categories may skip
this section because the rest of the paper does not use any of the developments of this section and
stays within the framework of indexed and Grothendieck institutions. For this reason we also keep
the developments of this section very brief.

DEFIMTION 9. Given a category I, afibred institution over the base I is a tuple
$ : (Slgn,I,fI,MoD,Sen,l) such that

- fI: Srgn -+ / is a fibred category, and

- (Sign, MoD, Sen, p) is an institution.

3 is split when the fibration lI is split.
A cartesian institution homomorphism is an institution homomorphism between fibred institu-

tions for which the signature mapping functor is cartesian functor between the corresponding fibred
categories of signatures. D

EXAMPLE 1. By Remark I any Grothendieck instirution is a split fibred institution. D

Now we try to define an opposite mapping, from (split) fibred institutions to indexed institutions.

DEFIMTION 10. Given a fibred institution $ : (Sign,I, lI, MoD, Sen, l), for each object t € l/1,
thefibre of S at i is the institution g; : (Srgnt, MoD', Seni, l') where

- Signt is the fibre of fI at i, and

- MoDi, Sent, and F'-" the restrictions of MoD, Sen, and respectively p to Signi.
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n

PROPOSITION 1. Given afibred institution $: (Slgn,1,fI,MoD,Sen,p), for each arrow u€
I(i, j), any 'irwerse imagefunctor' Qu : Srgnj -+ Signi determines a canonical institution homomor-
phism (Ou,cr',0'): 3i -+3i beween the fibres of _5, where si, : Sen(g$) 

"na 93, : Moo(q$)
for each signature 2t in the fibre Signi at j, ord g$ : E'<D' -+ Et being the distinguished cartesian
morphism corresponding to @u.

Proof. The naturality of cr" and p' follow directly from the way the family of distinguished
cartesian molphisms {q$iy determine the functor O', and by applying the sentence functor and
the model functor, respectively, to the corresponding commutative diagrams.

Finally, the satisfaction condition for the institution homomorphism (@u, au ,F") follows from the
satisfaction condition of the fibred institution 3 applied for the distinguished cartesian morphisms.

COROLLARY 3. Cozsider a category I. There exists anatural isomorphism between the category
of split fibred institutions over I (with cartesian institution homomorphisms as arrows) and the
category of institutions indexed by I (with natural transformation between the indexing functors as
arrows).

Now we can extend B6nabou's result (B6nabou, 1985) to fibred institutions:

COROLLARY 4. Eachfibred institution is equivalent to a Grothendieck institution.

4. Globalisation of Institutional Properties

This section is devoted to the study of the most important institutional properties (as seen from the
semantics of specification languages; see (Diaconescu et al., 1993)) for Grothendieck institutions.
These include theory colimits, liberality (i.e., free constructions), exactness (i.e., model amalgama-
tion), and inclusion systems for institutions. In all cases we follow the same pattem of 'globalisation'

of the properties by lifting them from the 'local' level of the ildexed institution to the 'global' level
of the Grothendieck institution. All developments of this section can be immediately translated in
the language of fibred categories/institutions. However, the framework of indexed institutions seems
to be the most appropriate for applications and for the presentations and development of the results.

Most of the developments of this section rely on a stronger version of indexed institution in
which the institution homomorphisms are embeddings. This is a natural technical condition which
almost always occurs in practical applications.

DEFIMTION 11. An embedding-indexed institution is an indexed institution S: /op -+ IIns for
which all institution homomorphisms 5'are embeddings (O',O',eu,du,B') for all index mor-
phisms u e 1.

A embedding-indexed institution is coherent if and only if

6t;Of : Q",'t (i.e., the indexed category of signatures is 'globally' reversible)

and

c":@e''q'u --q'"u'

foreach ueI( i , j )  andut  eI ( j ,k ) .a

4.1, THnoRy CoIIUITS IN GROTHENDIECK INSTITUTIONS

DEFIMTION 12. An indexed category B: lop -+ An is locally J-cocomplete for a small category

"I if and only if the category Bt is J-cocomplete for each index i € l1l. n
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The 'sufficient' part of the following fundamental result was essentially obtained for the first
time in (Diaconescu, 1998) in the context of 'extra theory morphisms'.

TFDOREM 3. Let 5: Iop -+ Ins be an embedding-indexed institution such that I is J-cocomplete
for a small category J. Then the category of theories Th(gr) of the Grothendieck institution St has
J-colimits if and only if the indexed category of signatures Sign o/ S is locally J-cocomplete.

Proof, For the 'necessary' part of this theorem, it is sufficient to notice that for each index i € 1,
the canonical inclusion functor l|ft( S') .+ T'lr(5n) reflects colimits, hence 1fft( 5') has ,I-colimits if
T'/x(S[) has ,I-colimits. This implies that Srgni has ,I-colimits for each index i e /.

For the 'sufficient' part of the theorem, by the fundamental result that in any institution the
forgetful functor from theories to signatures creates colimits (see (Goguen and Burstall, 1992)), we
have only to show that the category of signatures of the Grothendieck institution 5[ has "/-colimits.
By Remark 1, the category of signatures of 5I is the Grothendieck category of signatures S4grzil.
The conclusion of the theorem now follows from the general result on existence of colimits in
Grothendieck categories (see (Tarlecki et al., 1991)).

This theorem shows very clearly the conceptual power of Grothendieck institutions, since in this
case they enable a very compact proof by invoking important results from indexed category theory.
This situation contrasts to the rather complex proof given in @iaconescu, 1998) for the existence of
colimits for extra theory morphisms.

4.2. LIBERALITY IN GRoTHENDIECK INSTITUTIoNS

DEFIMTION 13. An indexed institution 5 : /op -+ IIns is locally liberal if and only if the institution
5t is liberal for each index I € 1. !

The following result represents the global counte{part of a similar result of @iaconescu, 1998)
where we studied liberality at the level theory morphisms only.

TFIEOREM 4. The Grothendieck institution Sl of an indexed institution 5: 1op -+ llns is liberal if
and only f 5 is liberal and each institution homomorphism Su is liberal for each index morphism
u € 1 .

Proof. The 'necessary' part of the theorem follows by noticing that local liberality of the indexed
institution is contained by the liberality of the Grothendieck institution because each model functor
Moot is a restriction of the model functor Mooil of the Grothendieck institution Sil:

llh ( S'; or --------------> T'ft ( 5 fl ;"n

I
luoor+

A-at

and by noticing that for each index morphism u e l(i,i'), the liberality of the institution homomor-
phism g'!r : (OU, o',0') is the same as the liberality of the (extra) signature morphism
((Du, 1zo,): (Signt, X/<D') -+ (Sign'', E').

For the 'suff,cient' part of the theorem, we consider an (extra) theory morphism
(o', g): (Signi, (:,E)) -+ (Sign'n, (y,E')) and a (X,E)-model M.The free expansion of M along
(@', q) is the model S1tWw11n', where Me is the free expansion of M alongthe (intra) signature
morphism g: E -+ >Ou Oy the liberality of 5'), and -f E' is the left adjoint to the forgetful inclusion
Moo'"(z',E').+tvtoo/(>')(bytheliberalityof 5j').Finally,theuniversalproperry otfi1uo11c'
follows as a composition of the three universal properties corresponding to the three adjunctions
involved:
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M -----> Mqh Me - gy(Fy(,rze)) E(M,0) ------------> po1U,t\1r,

\  1 0 , , .  \  r -  \  l -
' \ { '  , \ J n ' t ; o r  \  I * ' u '

Fy (N) f.p py(n) N ? E'

This liberality result is also stronger than its counterpart from @iaconescu, 1998) because it
gives an 'if and only if' characteization of liberality in Grothendieck institutions.

4.3, Ex,qctNess tN GRorurNDIEcK INsrrrurtoNs

From all the properties of Grothendieck institutions, exactness seems to be the most complex to
study. In @iaconescu, 1998) we conjectured an 'if and only if' characterization of exactness for
extra theory morphisms, in this section we solve this problem. Our approach is to decompose the
exactness property into a set of atomic orthogonal necessary and suffrcient conditions.

DEFINITION 14. An indexed institution 5: /op -+ Ilns is locally (semi-)exact if and only if the
institution 3' is (semi-)exact for each index i € /. !

PROPOSITION 2. If the Grothendieck institution of an indexed instintion is semi-exact, then the
indexed institution is locally semi-exact.

Proof. By Remark 1, for each index i, the model functor Moot is the restriction Moo[((t, -))

of the model functor of the Grothendieck institution to the sub-category Signi of the Grothendieck
category of signatures Sfgnil (i.e. the category of signatures of the Grothendieck instinrtion).

(Slgni)on (Sign[;on

\ l
to\ ltvtood*c,

Because the canonical injection Srgn'+ Slgnfl preserves co-limits (as a simple general property of
the Grothendieck constructions), we have that Moo' preserves whatever limits are preserved by
MoDtr, hence Moo' preserves pullbacks.

PROPOSITION 3. lf the Grothendieck institution of an indexed institution is semi-exact, then each
institution embedding of the indexed institution is exact.

Proof. Consider an institution embedding (O,O,(,cr,p): 5'*+ 5, and an arbitrary signature
morphism rp: E -+ tl in 5.

Notice that the following square

(Sign, r) 
(r'q) 

' (Sfgn, 11)

(o,r0 t l,*,r,r,
V Y

(S,8n', EO) (,*6i (Slsn',11o)

is a pushout. Because the Grothendieck institution is semi-exact, this pushout is mapped by the

(Grothendieck) model functor to a pullback square. All we still have to do is to notice that this

pullback square gives the exactness of the institution embedding ((D, @, (, cx, F).



DEFINITION 15. A coherent embedding-indexed institution
only if for each pushout

i  
' r  o j l

I
I

^ lu z l
I
Y

j2 --r* k

in 1, the following squzue

MoDi(rE')
Moot(lo'16't;
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5: /oP -+ nns rs semi-exact if and

p;h
Mooil (xdi)

J"'

Moo'(X)

t(rr')l
>ot(>oa(O)lr

oD'(>('

Moo'

M

,,fuI
MqpizISOA;

Jluroo"tro'e'r
MOo/l (to'r1Ovl,O"t )

1"*
*Morfle-."gry seiz1z@@a") * 

9:@e Haooti>o'6*)

is a pullback for each signature X in 5'. I

PROPOSITION 4. Let S be a coherent embedding-indexed institution. If the Grothendieck institu-

tion Sl is semi-exact, then the indexed institution S is also semi-exact.
Proof. Consider a pushout squa.re in 1 as in Definition 15. Notice (by the colimit construction in

Grothendieck categories cf. (Tarlecki et al., 1991)) that the following square

(signt, t) 
(o'"E(")' 

(signjr, >oa;

l l
(6u2,8(u2) |  l (ou1,:6,tq"t1

v {
(S r.sr?i2, 2AA) =;:=:.(S ignk, >Qil Q'i\\ - -o - -  ) - -  ' (evz ,Zquzquz l '  "

is a pushout in the category of signanrres Slgnil of the Grothendieck institution. Because the

Grothendieck institution is semi-exact, the Grothendieck model functor MOoi maps this pushout

square to the pullback square of Definition 15.

TIIEOREM 5. fet S be a coherent embedding-indexed institution. The Grothendieck institution

Sr is semi-exact if and only if

- the indexed institution S is locally semi-exact,

- the indexed institution S is semi-exact, and

- all institution embeddings are exact.
proof.The 'necessary' part of this theorem holds by Proposition 2, Proposition 4, and Proposition

3 .
For the 'sufficient' part, we consider an arbitrary pushout of signatures in the Grothendieck

institution
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(S;grxo, >.0)

I
(o'2,o) |

{,
(Sign2, >2)

g r
t _
| (@t ,o" ( "o"p ' )

go

t
(@"2,@,e"2,s'2,9,\l

I
f i )
t \ -

(@' r ,e r ) ,  
(S lgn t ,11)

I
l (o ' ,e r )
l

(.rpr) 
* (slgn' l)

where
1o't,o't ,q't ,c't,Plt ;

1a2,@,(,&,ff1

is the underlying square of institution embeddings.
By factoring each of the extra signature morphisms accordingly to the second part of Lemma 1,

and by applying the pushout construction in Grothendieck categories (cf. (Tarlecki et al., 1991)), due
to the coherence property of the indexed institution, the pushout square of extra signature morphisms
can be expressed as the following composition of four pushout squares:

(signo, &) 
(o'r '&('1)> 

(signl, >oo") 
( l '0r) 

> (signl, )1)

(au2,r4q,2l l  f  (or,&otr(r) l{o', : ,{ '){ ' r {
(Sign2, s^.nZt >- 1(

rEo*") C1%6rA 
(sisn' Ee@u'o') 

l,,oio* 
(sirn',rriDI)

(',@l jtr,oo;r {tt,oi)
(Sign2, >zl 

,or,z"e>- 
(Slgn,I2(D2) -- 

<,,qt* 
(Sign, E)

The Grothendieck model functor

maps the up-left pushout square to a pullback square because the indexed instinrtion is semi-
exact,

maps the down-right pushout square to a pullback square because the indexed institution is
locally semi-exact, and

maps the up-right and down-left pushout squares to pullback squares
embeddings (@t,F,(l ,o1,Ft) *d (@',@,l ' ,*,82) are exact.

because the institution

Therefore, the Grothendieck model functor maps the original pushout square of signatures in the
Grothendieck institution to a pullback square by composing the four pullback squiues obtained
from mapping the four component pushout squares.

Unlike the corresponding results for theory colimits or liberality, the result of Theorem 5 cannot
always be applied in practice; there are important practical cases when the necessary conditions for
the (semi-)exactness of the Grothendieck institution do not hold. In such situation one should try to
base the semantics of the specification language on a subclass of practically meaningful cases for
which the (semi-)exactness property can be obtained (Diaconescu, 1998). In this case Theorem 5
allow us to isolate the condition which is responsible for the failure of the (semi-)exactness property.
It seems that in practice only the last two conditions of Theorem 5 might fail to hold.
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4.4. INcr-usroN Sysreus lN GRorugNDrEcK INsrrrurrohrs

Inclusion systems where first introduced by (Diaconescu et al., 1993) for the institution-independent
study of structuring specifications. They provide the underlying mathematical concept for module
imports, which are the most fundamental structuring construct. Mathematically, inclusion systems
capture categorically the concept of set-theoretic 'inclusion' in a way reminiscent of factorization
systems (Borceaux, 1994). Weak inclusion systems were introduced in (Ctrzdnescu and Rogu, 1997)
as a weakening of the original definition of inclusion systems of @iaconescu et al., 1993).

DEFIMTION16.  ( I ,E) isaweakinc lus ionsystern foracategoryCi f  I  andE aretwosub-
categories with l/l : lEl: lCl such that

1. .I is a partial order, and
2. every arrow / in C can be factored uniquely as,f - e;iwith e eEandie I.

The anows of .I are called, inclusions, and the arrows of E arc called surjections.6 The domain
(source) of the inclusion i in the factorization of / is called called the image of f and denoted as
Im("f). An injection is a composite between an inclusion and an isomorphim.

A weak inclusion system (1, E) is an inclusion system if and only if .I has finite least upper
bounds (denoted *) and all surjections are epics (see @iaconescu et al., 1993)). fl

Recall from @iaconescu, 1998) the following technical definition:

DEFIMTION 17. Let C and C be two categories with weak inclusion systems (1, E) and, (It , Et)
respectively. Then a functor 'U: C, -+ C lifis inclusions uniquely ifand only if for any inclusion
\' : At "-+ BUv.I'with B € lcl, there exists a unique inclusion t € .I such UittU:1/. D

Because of the structure of the Grothendieck institutions (see Remark 1), the problem of an
inclusion system for its category of signatures is reduced to the problem of inclusion systems in
Grothendieck categories. However, in this paper we limit this study to the case of weak inclusion
systems.

4.4.t. Inclusion Systems in Grothendieck categorier
TTIEOREM 6. Let B: Iop -+ C-at be an indexed category such that

- I has a weak inclusion system (II , EI),

- Bi has a weak inclusion system (ti, Ei) for each index t € l/1,

- B' preserves inclusions for each inclusion in^dex morphism u € II, and

- Bu preserves inclusions an"d surjections and lifts inclusions uniquely for each surjection index
morphism u e El.

Then, the Grothendieck category Bl has an inclusion system'Qnt , gatl where (r.r, rp) is

- inclusion iffboth u and g are inclusions, and

- surjection iffboth u and q are surjections.
Proof IBt and EBt are both sub-categories of B[ because Bu preserves inclusions (sudections)

whenever u is inclusion (surjection).
We now consider an arrow (u, ql, (i, X) -+ (l ,>') in the Grothendieck category B[ and prove

that it factors uniquely as a composite between an €urow from EBt and an arrow from .rB!. We factor
uin (II , EI) and g in (/', Ei) asfollows:

6 Surjections of some weak inclusion systems need not necessarily be surjective in the ordinary sense.
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u

\ /
\ . /. \  /

f i - \  
/ u '

i"
X" ,4

2t

Since u" lifts inclusions uniquely there exists an unique inclusion <pi : 2" --+ 2/Bu' such that qiBu" :
rpr. Notice that (ui,gi) is an inclusion, (u",tp") is a surjection, and that (u, q) : lu",rp");(rt, qt).

Finally, the uniqueness of this factorization follows stepwise from the uniqueness of the factor-
ization of the index morphism, then from the uniqueness of the factorization through the inclusion
system of B' (by using the preservation of inclusions by the Bu"), and finally from the uniqueness of
the lifting to I{'.

A similar result was proved in @iaconescu, 1998) directly for extra theory morphisms. Theo-
rem 6 avoids some complexities of the corresponding result from (Diaconescu, 1998) which were
related to the sentences. This simplification is possible due to the fact that we have a (Grothen-
dieck) institution in which extra theory morphisms appear as ordinary theory morphisms which
permits the automatic lifting of inclusion systems from signatures to theories (see (Diaconescu et al.,
1993; Cdzdnescu and Rogu, 1997)). ln fact, as pointed out by (Ctrzinescu and Rogu, lggT), for the
case of weak inclusion systems this can be done in two different ways, thus obtaining two different
weak inclusion systems at the level of theories for each weak inclusion system for signatures. In
this way, from Theorem 6 one can also obtain a different variant of the result in (Diaconescu, 1998)
corresponding to the other way of lifting of weak inclusion systems from signatures to theories,
which shows that Theorem 6 is conceptually more general than the result of @iaconescu, 1998).
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5. Conclusions

We extended the concepts of Grothendieck and fibred categories to institutions, including a Grothen-
dieck construction for institutions (easily extensible to other related structures) and an equivalence
result i{ la Bdnabou between Grothendieck and fibred institutions. We showed that the concept of
extra theory morphism of (Diaconescu, 1998) appears as ordinary (intra) theory morphism in a
Grothendieck institution, leading to a higher conceptual approach to multi-paradigm (heterogenous)
algebraic specification. We also extended the 'globalization' results of institutional properties of
(Diaconescu, 1998), by giving necessary and sufficient conditions for theory colimits, liberality,
exactness in Grothendieck institutions, and by providing inclusion systems to Grothendieck car
egories. The conceptual power of Grothendieck institutions enabled us to extend the results of
(Diaconescu, 1998), also by highty simplifying some of the proofs, and to give a necessary and
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sufficient chancteization for the exactness problem in Grothendieck institutions (conjectured in
(Diaconescu, 1998).
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