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The Intertwining Lifting Theorem for a Class of Reproducing Kernel Spaces

CXlin-Grigore Ambrozie and Dan Timotin

0. Introduction.

Originating in the work of Schur, Carath6odory, Fejer and others, interpolation prob-

lems for bounded analytic functions have been studied for more than a century. The

simplest (and more easily generalized to different contexts) is probably the Nevanlinna-
Pick problem, which prescribes the value of the function in a finite number of points and
asks for the minimum value of the uniform norm. Starting with the paper of Sarason ([S]),

it has been realized that there exists a natural operatorial frame which unifies all function

theoretic problems. This line of research culminated in the intertwining lifting theorem of

Sz.-Nagy and Foiag ([SNF]), which has found subsequently many applications, including

applied areas as systems theory.

In recent years, there has been an increasing trend towards the investigation ofseveral

variables variants of the interpolation problems. As expected, complications arise, and a

large variety of techniques has been used in order to cope with them (see, for instance,

lAe2l, [As3], [AeM], [BB], [CS])
The aim of this paper is to discuss a certain class of reproducing kernel Hilbert spaces

that seems to be the most suitable for the direct extension of the classical results. Indeed,

the considered class, while defined in an extremely general manner, allows one to recapture

most of the interpolation theorems, including their operatorial generalizations. It seems

to include all known examples in which these generalizations are true.

The framework is the following: we consider an abstract set of indices A and a Hilbert

space 'll of complex functions defined on A, such that the point evaluations / + /())
are continous. A standard procedure is then to introduce the reproducing vectors for



these evaluations, which we will denote with C1; that is, /()) : (/, Cr) for any f e 11.
The reproducing kernel for the space is then the function C : A x A -+ C, defined by
C(A, p) : Cu(\), which is a function of positive type.

Now, the particular class of reproducing kernels spacesthat we will consider,l\ow, the partlcular class of reproducing kernels spaces that we wiil consider, apart

from some natural conditions that are fulfilled by basically all t$e spaces that appear in

applications, satisfies a special property which is essentiai to interpolation. Namely, we
will assume that the function 1 - llC is also of positive type on A x A. This condition
has been pointed out by Quiggin ([Q]) i" connection with the Nevanlinna-Pick problem;

see also [McC], where it is shown it actually characterizes kernels which satisfy a (matrix-

valued) Nevanlinna-Pick theorem. We will develop here more of its consequences; it is in
fact surprising that the condition contains all the function theory that is usually involved
in the proof of the interpolation results. There is no need of further complex function
theory of one or of several variables, nor of any Lebesgue spaces and measures.

Another remarkable fact is that, although the techniques we use, which originate in the
work of Agler ([Ag2]), are closely connected with concepts of systems theory (for instance,
the main representation theorem below can be interpreted as a realization formula, and
there exists even a "controlability" operator that can be proved to be contractive-see
Proposition 1), there is actually no corresponding "time domain" interpretation.

To state the main results, we have to introduce also the multiplier algebra on ?1. This
is the algebra M of all bounded operators of the form 

"(/)()) 
: d())/(l). The function

/ is called the symbol of. T, and we will denot e T6 : T. A closed subspace X C '17 will be
called inuariantif M*X C.ry (that is, if it is invariant to the adjoints of multipliers).

The main resuit of the paper is the foilowing intertwining lifting theorem.

Theorem A. Suppose X c H is an inaariant subspace, and denote Mx - PxMIX .
If X € L(X) and X e M'x (the commutant of Mx), then there eri,sts g mult'ipli,er,

l l f l lu: l lxl l ,  such that X - PxTolX.

We will give several applications of Theorem A, including Nevannlina-Pick or Cara-

th6odory-Fejer type results, as well as applications to model theory; other consequences

will be pursued elsewhere.

A central role in the proof of Theorem A is played by a fractional transform represen-

tation for contractive multipliers, which can be of independent interest. To state it, note

that, since 1-1/C is of positive type, there exists an (essentially unique) Hilbert space t,

and a function F : A -+ t, such that

ft - *)(r, p) : (.P(p), r()))a.



Since llf (l)ll ( 1 for any .\ € A, we may define, for any Hilbert space K, a strict contraction
Z()) : t I K -r K by its adjoinr

z(^) .k :  F( ) )  e  f t

and state the representation theorem. ''t ':

TheoremB.  A func t i , ond :  l y -+C sa t i , s f i esQeM and l l { l l us l  x f  andon ly
iJthere erists a Hi,lbert space K and a unitary operatorU : K oC -+ (tgx) oC,

/  r \

U : ( ^  2 l . s u c h t h a t
\ c  d ' J '

d(,I) : d + c(/ - zQ)a)-L z1x1a.

Theorem A is actuaily Theorem 2 in section 4. Theorem B foilows by combining
Theorem 1 with Corollary 1. The ideas of the proof originate in the work of Agler; the
actual development is inspired by [BLTT].

1. Preliminaries.

Let'14 be a Hilbert space of complex functions defined on the set A, such that the
point evaluations f *r /(,\) are continous. Define Cx e ?7 by /()) : (f ,Cx) for any

f e H. The reproducing kernel for the space is the function C : ly x A -+ C, defined
by C(), p) - Cr(\; it is a function of positive type: If C(fn, ),)zizi ) 0 for any
) r , . . . , ) r y  €  A  a n d  z L t . . . , z y  Q .  C .

There is actually a one-to-one relationship between functions of positive type and
reproducing kernel Hilbert spaces: if ,t : A x A -+ C is of positive type, then there exists
an essentially unique Hilbert space of functions C on A which has fr as reproducing kernel.
In particular, there exists a function F : A -+ t, such that

k(\ ,  t t ) :  (F(p),  r ( ) ) ) .

A multiplier on'Jl is a function { defined on A, such that $f e 'Jl for any f e'17. The
closed graph theorem implies then that ?a defined bV fAU) : df is a bounded operator
on'17. The algebra of such multiplication operators is denoted by M. We wiil denote (a

slight abuse of notation) llfll7v.: ll"oll. Note also that 7iC1 : QQ)Cx for any ) e A.



Functions of positive type play an important role in our proofs; we collect now a series

of results that will be needed. First, the following characterizations are well known ([Aro],

lsrl).

Lemma 1. Suppose f ,6: ly -r C. Then:

type,

(i,i) 6 is a multiplier and ll|lltr S I xf and only iJ the functi,on C(A, p,)(1 - OW66)
is of positiue type.

A related result that is easy to prove (and that implies (ii) in Lemma 1) is

. Lemma 2. Suppose 8t,82 are Hilbert spaces, and gi : lt, -+ h. There ed,sts a

contractionT :9t -+ 8z such that 
"(gr(l)) 

- gz()) for any,\ e A i,f and only if the

function (gt()), S{ti)) - (gz()), gz(tr)l is of posi,tiue type.

Finally, a classical theorem of Schur states that the (pointwise) product of two func-

tions of positive type is also of positive type.

We will now specialize to a more restricted class of reproducing kernel Hilbert spaces.
Flom now on we assume that the following conditions are satisfied:

(i) The constant functions belong to?4, and llf ll - t;
(ii) ML is dense in ?4;

(iii) C(^, p) * 0 for any ), p e A;

(iv) 1 - llc : A x A -+ C is a function of positive type.

A few comments concerning these definitions are in order. Conditions (i) and (ii)

are quite natural, and all the reproducing kernel spaces usually met satisfy them. We
will denote by P the orthogonal projection onto the constant functionsl from the equality
(Cr - 1,1) = (Cr,1) - (1,1) - 1 - 1 : 0 it follows that PCl : I. for any ) e A.

(iii) is also true in most applications; moreover, it plays an important role in model
theory (see [Ag1], [AMV]).

The main restriction is given by condition (iv); it is the one that singles out a class of
spaces which are extremely convenient for interpolation. It has already appeared in [Q],
where it was shown that it implies a Nevanlinna-Pick property (see Corollary 2), and in

[McC]. In fact, we will use the consequence of condition (iv) that states that there exists
^ an (essentially unique) Hilbert space t a.nd a function F: A -+t, such that

1
(1  -  

; ) ( ) ,  
p)  :  (F(p) , r ( ) ) )a ;  (1)

(t) f e?l and ll/ll S L if and, only if the function C(),p) - f $)7(6 is of posi,tiue ''{'



d and F will be fixed in the sequel. For any ) e A we have

$'  l l r ( ) ) l l2 :  1-  - l= .  
" '

r r  -  
c(A' , \ )

Finally, in view of the lifting theorem, we will consider later a subspace X c'H, such
tbat H O ,t is invariant to M; we will call such an X an inuari,ant subspace (it is of course
invariant to the adjoint of multipliers in ,&4).

2. The fractional transform.

We will introduce a fractional transform that produces contractive multipliers on ?7;
later it will be shown that it yields a representation formula for all multipliers. If K is an
arbitrary Hilbert space and ) € A is f ixed, define z(A):t8K -+K by its adjoint

Z(A) .k :  F ( ) )  I  / c .

It is easy to check that the action of Z(\) on simple tensors is given by Z(\)({ O f; :

(€,f()))k. Also, Z(A) is a strict contraction, since l l.F'())l l  < 1.

Theorem 1. SupposeK aHi. lbertspace andU: K@C-+(tgK)OC is auni tary

operator such that with respect to the aboae d,ecompositions we haue IJ : ( u 
I ) . n

\ c  d ) ' ' '

d()) :  d+c(/  -  z(\)a)- tz1t1u (2)

(wi,th Z(\) defined aboue), then g is a multi,pli,er and lldll7v- 1t.

Proof. By Lemma 1, we have to prove that the function C(A, p)Q - O@O@) is of
positive type. We have

d(- l )  :  d*1 + b.  z(A).( I  -  a* z( \ )*)- t "*1.

Let us denote g()): (I - a.Z(A)*)-t"*1. The system of relations

g()) : a- z(A). s()) + c*1,

A6 : b. z(\). s(l) + d-1 
(3)

can be written (using the definition of Z(^).)

( tJ! \  :  / " .  " .  )  f  F(^) sg()))
\ d ( , \ ) /  \ b .  d . / \  r  /



Since is unitary (in particular contractive), Lemma 2 implies that the function

(F()), rft,))(g(l), s(til + 1 - (g(.I), g0')l - O6O0'l

is of positive type. using the definition of F (formula (1)), it follows that

/ r \ 1 -
(t - 

"GD 
) k(t),e(p))+1-(g()), s1t))-d(x)d0') - -,G,D(g()), s(p)l+r-d1)60")

is of positive type. But the product of this function with the positive type function C(p, ))
is also of positive type (by Schur's theorem). Thus C(p, ̂ )(1 - 6Q)d0tD - (g(l), g(p)) is
of positive type, and therefore also C(p,,\)(L - dQ)Q1t)). The theorem is proved. t

In Section 4 we will obtain a converse to theorem L, showing that contractive multi-
pliers are actually characterized by the representation (2). Meanwhile, keeping the same
notations, we prove a related result that will be used in the sequel.

Proposition l-. The map V(Cr) : 9(^) can be ertended to a contraction V : H -+

K .

Proof. By Lemma 2, we have to prove that (C1, Crl - (g(f), gjt)) is of positive type.
The first equation in (3) can be written

e())  :  (a.  " . )  
( r ' ( ) )  3e() ) ) ., \  L  /

Since ( a* c* ) is contractive, applying again Lemma 2 implies that

(r()),  r0,))(g()),  gir) l+ 1- (g()),  g(t)):  ( t  qh) k(,\) ,  g!,D+ 1- (g(r),  g0,))

: =j * @or,r) - k(r) ,go.r)))c(p, )) '--

is of positive type. Appying Schur's theorem ends the proof. I

3, An auxiliary operator.

We introduce in this section a kind of "multiplication operator" coresponding to Z(^).
It will be denoted by,9 : t 8?{ -+'11; as in the case of Z(^), we actually start with its

adjoint S* :71-+ f I71. This is defined by the requirement that

S*Cr -F ( ) )  8Cr .

6
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We apply Lemma 2, in order to show that ,5* (and hence ,5) can be extended to a contrac-

tion; indeed, the function 
r{r

(Cx,Cr) -  (Cx,Cp)(F(^) , ,  e l tD :  C(p,^)(1 -  ( t  -  t lC(p, ,  ) ) ) )  :  1,

is obviously of positive type.

We can also compute the action of ,S on a simple tensorl we have

S(ry e /X^) : (S(? I /), Cx) : (q I /, Si.C.r)

: (ry I /, ,F(^) 6 C.r) : (a, F(,\))/()).

For a fixed 4 € t, denotu fn()) : (r7, F(.\)); we have thus .9(4 S /)(,\) : Fn())/(,\). Also,
since,S is a contraction, it follows that Fn is a multiplier and llprllu S llqll.

Lemma 3. (i) SS. : I - P.
(ii) With the notat,ions in Proposi,ti,on 1, ue haue

V : a * ( / e o t U ) . 9 * + c * P
pr6:b.(/a g {/).g. + d*.P 

(4)

Proof. All statements are equalities between bounded operators defined on ?1, and
it is therefore enough to check them on the total family Cx, ) e A. We have

(,SS.C;)(p) : ,S(r(l) e C.r)(p) : (F(,\), F(p))Cx0")

- (1 - l lC(p,^))C(p, l)  :  Cr(p) -  1 :  ( I  -  P)(Cx)(t ' ) ,

which proves (i). As for (ii), the system of equations (4) applied to a function C1 becomes
(3 ) .  I

Consider now an invariant subspace X c 1{; we can then "restrict" the action of ^9*

to X.

Lemma 4. With the aboue notati,ons,,9-(.y) C € @ N.

Proo f .  Suppose  f  e  X ,g€X t , , r l e€ .  Then

(,S."f, Tt I s) : (.f, S(rl a g)) : (f , F,ts) : o,

' where the last equality is true since Fn is a multipiier. Since (S A X)L : t & XL, if, follows
t h a t S . f  e t 8 X .  I



4. The intertwining lifting theorem.

Theorem 2. Suppose X c'11 is an inuariant subspace, and denote Mx - PxMIX ,

If X e L(X), llXll S 1, and X e M'7 (the commutant of Mx), then there eri,sts a

multi,pli,er $ wi,th ll|llu 1. I, such that X : P,TOIX . Moreoaer, $ admits a representati,on

of type (2) for some Hilbert space K and unitary operator U.

Proof. We will use some supplementary notation. Define Y : € I ,t + .t to be

Y : PxSlt I X. By Lemma 4, we have Y* = S*IX. Also, since,S,S* : I - P,YY* --

Px(r  -  P) lx.
Using elementary tensors q& f , we have

XY(rt e /) : XPTS(rt A /) : XP7F,,f .

Since X € M'a, the last term is

PTFrX f - Y (Is a X)(rts /).

Therefore

XY :Y(Ie I  X),  Y*X* :  ( Ie I  X*)Y* (5)

By hypothesis, X is a contraction, and so I - XX* - Dk,, where we have denoted

by Dy- the defect operator of X*. Therefore,

Ieax  -  ( I tB  X) ( I t  a  X . )  :  Ie  &  Dk, .

Multiplying to the left with Y and to the right with Y* and using formulas (5), it follows

that 
yy* - xyy* x* _ y (I a Dk.)y.

whence

Px(r - P) - XPx(I - P)X. :Y(r I Dk)Y..

After rearranging the terms, applying the equality to an h e X and taking the scalar

product with h, we obtain

llPhll'+ ll(1 I Dy,)Y.hll' : llPx.hllz + llDy.nll2

' consequently' the map 
( e, a Dv')y.h) '-' r 

p* h \I
\  P h  / - \ P X " h )



is an isometry on the respective domains (defined by taking all h € X). We can then

embed '14 into a larger Hilbert space K, such that K O ?l has infinite codimensionl denote

by Q : X -+ K th6*'iomposition between Dy. and this embedding. Then the map

is an isometry between its domain and range, which are subspaces of infinite codimension

in (t e l() O C and K O C respectively. It can be extended to an everywhere defined

unitary, rhat we will denor. u- : (;: ;: ) 
' therefore

Qh : a. (-I I o)Y. h * c* Ph,

PX*h:  b* ( /  a  o )Y.h  +  d*Ph.  
(6 )

Define then /()) : d*c(I - Z(\)a)-rz())b, which, by the first half of the proof,

is a contractive muitiplier in'11. Consider the map \P associated to / as in Proposition

1; it satisfies relations (4). By substracting the first relations of (a) and (6) we obtain, if

Q o : O - V l z '

Oeh - a.(f I Qs)Y.h for any h e X.

Since a* is contractive.

06o0 : v(/ I  of i)aa.(/ I  @6)Y- <Y(I a o6o0)v-.

Denote then Q6 : O6Ooi then Q6 ) 0, and

Qo <Y(I  sQo)Y*

We will now show that any positive contraction Q6 on ,Z which satisfies relation (7)

has to be 0. It is enough to show that any positive contraction Q e L(?{) that satisfies

8 S S(18 Q)S- has to be 0, since we may then apply the result to PvQsPv (and take

into account Lemma 4). If we denote M : L('17) -+ LQI by MQ) : S(/ I T)^9*,

then M is monotone, and we have (I - M)(Q) S O. Applying to this inequality the

monotone operator I + M +... + Mp-t (for some integer p), we obtain Q - Mp(Q) < 0,

or (Qh,,h) -  (un1Q)h,h\  < 0.

But it can be shown by induction that Mp(Q) -+ 0 strongly. Indeed, since llMr(A)ll S
1, it is enough to show that Mp(Q)(Cr) -+ 0 for any ,\ e A. Since Mp(Q) - S(1 A

Mp-L(eDS*, we have

M', (Q) Q x) : S(/ I MP-r (Q; ) S. (C,r ) :,5(f. (r) A Mp-r (Q) (C.r))

(,*.r?'.n) * (#r)

(7)



Q ,

But ,S is a contraction. and therefore

l lMo(Q)Q) l l  < l l r(A)l l  . l lMo-'1q)(c.,) l l .

As llI'(,\)ll < 1, this proves that Mo(Q)Qx) -+ 0.

Thus Qo :0 in equation (7) and (D : \1. The second formulas in ( ) and (6) say then

that PX*h: PT;h for any h e X; or, equivalently, (X*h,\ : gih,l). Remember now

that the space .t is invariant to Ti tor any f e M; writing the relationfor Tih, it follows

that

(X* h,Tfl l  :  (T; X. h,L) : (X.r;h,L) : Q;r;h,\ :  g;r;h,L) : \T6h,rr]- l .

Since we have assumed that vectors of type TSL arc dense in?1, it follows that X* : T;lX

or X : PxTolX. The theorem is proved. I

Important consequences of Theorem 2 are obtained in two extreme cases: either for

.t equal to the whole space or for ,t finite dimensional. First, by taking X :'ll we obtain

a converse of Theorem 1.

Corollary 1. Il d e M and llfllu ! l, then therer,erists a Hilbert space K and a

un i t a r y  ope ra to ru :  K  oc  -+  ( t e l r )  @c ,u :  ( ;  z ) ,  t u rn tno t

d(l) : d + c(/ - z(A)a)-L z1x1a.

Secondly,  suppose zrt . . , ,zn e A, and ' r ryt , . . ,wn e C. Take as, t  the l inear space

generated by the functions Cr, with j :1,. . . )n. It is invariant to M*, since any C1 is an

eigenvector for any $, with eigenvalue dG); we may then apply Lemma 2 to obtain the

Nevanlinna-Pick property for the space ?l (which has been proved by different methods in

tal)
Coro l la ry  2 .  I f  

" ' , . . . ,2n  
e  l v  andu)L t . . . ,une C,  thenthere  er i , s ts  0  €  M wi th

lldllu 1l and 6Qi) : wj for anA j if and only if the Pick mat,ix

P - ((1 -w;a)C(rn,r i)) l , i=, (8)

is posi,ti,ue defini,te.

Corollary 2 can also be extended by replaciu1 zt,...,zn with an arbitrary subset

E C A ,

10



5. Spaces of analytic functions.

Up to this stage it was not necessary to mention analiticity. However, most of the

reproducing spaces of interest are indeed spaces of analytic functions on domains in D C Cd
(that is, A : D). In this case the function C is analytic in the first variable and antianalytic
in the second, and F defined by formula (1) is antianalytic. Also, the multipliers on ?l are
analytic functions.

There are some other possible invariant subspaces of interest in this case. For instance,

evaluation of partiai derivatives in points of D are also bounded functionals, and we have

o* r(w) : d:|+*(,) : \r,cg\,
where

r-@) -v1u
al"lc.

7zi '  " '02;o '

Thus we may consider analogues of the Carath6odory-Fejer problem: supposing, for in-
stance, that we are given w € D and ao € C, a € Nd, lol : or *. .. * aa ( N, f ind

necessary and sufficient conditions for the existence of a multiplier / with llfllu ( 1 and

0of (w):  s,o

for lol < N. In this case, we have to apply Theorem 2 to the case when "rV is the

finite dimensional space spanned ay C{,P, for lcl < N. This space is invariant, since its

orthogonal  is { /  e 77lA"f  (w): '0 for  l " l  S N}.

Proposition 2. The aboue Carath{,odory-Fejer problem is soluable i,f and only if

l lXll S I, where the operator X € L(X) is d,efined, by X.C{P :Dp-p1:odpcg).

Proof . If @ is a multiplier, then for any f e 'll we have

U,r;c{,Pl: (6f ,cpr:0"(6f)@): I a0661at y1w1
F*1:a

: t aPO@)(f ,cfi)y - I (f ,NO@)cg))
Fl"y-a 0*1=a

The proof now follows from Theorem 2. I

1 1



Naturally, the condition llxll ( 1 can be written as the positivity of a certain matrix

depending on the data ao, but its precise form is more complicated than the Pick ma-

trix (8), We may imagine aiso other sets of given coefficients in the Taylor development

of / in tu. The corresponding invariant subspace ,t is then spanned by a fi.nite number of

C,!i)'t (for different values of a); of course, they have to satisfy the restriction arising from

the invariance of lf . Also, generalizations of the Fejer-Hermite problem can be stated,

fixing the value of the function and certain derivatives in a finite number of points.

Another interesting application in this area is connected with model theory for d-

tuples of operators which satisfy a certain positivity condition. This is an extensive area

of research (see, for instance, [At], [CV], [VtV]); we are rather interested by the general

results appearing in [Ag], [AS]vI] or [AEM]. To obtain a neat statement, we wiII make below

the most convenient assumptions; they can actually be slightly relaxed. Concerning the

space 77, apart from conditions (i)-(iv) in section 1, we suppose that the multiplications

Q, with the d coordinate functions XiQ) - zi arl continous, and that

d

dim [^] ker({, - F) : I
j = L

for any p e D. The last condition, which has appeared in [AS] and [ASM], insures that

the commutant of {T*r,.. .,Txo} coincides with Mt.

Suppose now that T : (Tt,. ..,Ta) is a commuting multioperator on some Hilbert

space K, having the Taylor spectrum in D and satisfying the condition

1

Ag)  >o

where C is, as above, the reproducing kernel of.'17, while bffl is defined via Agler's

"hereditary" functional calculus. It foliows then ([AEM]) that T is the restriction to an

invariant subspace of the adjoint of the multishift T*r,. . . ,Txo, where xi|) : zi (the i-th
coordinate), acting actually on the Hilbert space of the vector valued functions 148- H,

where -F/ is a separable Hilbert space.

In order to obtain an intertwining dilation for this class of operators, we have to extend

Theorem 2 to the case of vector valued functions. This extension does not present any

diffi.cuity, and thus we may state its consequence for the model space.

Proposition 3. Suppose T : (Tt,,. . .,Ta) is a commuti,ng multi,operator which sat-

isfies the positiui,ty condition

jrtl > o

t2



and is thus unitary equiaalent to the restri,cti,on to an inuariant subspace X of Q, e

Iu,...,Tio& Iu, acting on ?7e H (H sonxe separable Hilbert space). It X € L(X)

sat i ,sf ies XT; :T:X, thenthere er ists *  e M8L(H),  w*nl l* l l  -  l lx l l ,  suchthat

x : Px*lx.

6. Examples.

There is a large class of examples of spaces of analytic functions that satisfy the four

conditions in the preliminaries.

6.1. The Hardy space on the unit disc D c C. This is the basic example. We have

CQ',11')  -
r - A p ' t - rlC(^, P) : \tt.

Theorem A becomes Sarason's interpolation theorem([S]), while Theorem B is a weil known

result about the realization of analytic functions bounded in the unit disc.

6 . 2 .  C o n s i d e r , i n t h e u n i t b a l l B  C C d , B :  { )  e C d  l l l } l l ' :  l ) r l ' + . . ' + l l ^ a l l ' <  1 } ,

the reproducing kernel C(\, tt) : (1 - (,\, p))-t. We obtain then the space denoted by

Arveson with ff2 and extensively studied in [Ar]. Interpolation results for this space

(including a commutant lifting theorem) have been obtained by Popescu ([P1], [P2]) as a

consequence of his study of noncommutative d-contractions.

In this case we have t : Cd. F()) : .\. while/ \ /

d copies

z(\) : f f i -+K

is the row operator (,\1,16 AaIx ). Introducing these values in (2) yields a concrete

representation formula for contr4ctive multipliers on this space.

6.3. The above example can be generalized to a class of spaces studied in [Po]. Let

p -- p(r) : Dtezia.r,\? be a polynomial with p(0) : 0, all a", 2 0 and the coefficients of

the linear terms ,\j. are nonzero. Define

D :  { }  e  Cn  l p ( l } r l ' , . .  . ,  l ) , 1 ' )  <  1 } .

Let po be the Taylor coefficients in ) : 0 of the function (1-p)-t, and define 71o to be the

Hilbert space of all formai series /(^) : Do tolo such that ll/ll71, : Io l"ol'lpo ( oo,

.,+]
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endowed with the corresponding inner product. Then 74o is a Hilbert space of analytic
functions over D with reproducing kernel

c ( A , p ) : f f i ,  A ,  F € D ,

which satisfies conditions (il.(it).

6.4. Dirichlet spaces. The Dirichlet space D on the unit disc is originally defined as
the space of analytic functions in the unit disc D with

f f

J  J V ' @ f d A < o o '
where d,4 denotes the area measure. To avoid factorizing through the constants, one should
add a supplementary term; in [Ag3] it is shown that, if the norm on 2 is defined by adding
the usual Hardy space norm

nflt',: I lv'v)t'd,A+ f,vP,
then we obtain the reproducing kernel

c(^,t):+"-(+) ,
which satisfies all conditions (i)-(iv). The argument has been generalized by [Q] to a
larger class of spaces on the unit disc; the same proof can be extended to the following
more generai setting.

Lel utp > 0 (e > 0) be a sequence with tus : l, wlrfqr+r increasing and limlr-*wf,lk >-
l. Define'Jf to be the space of all series f : Doezi aazd such that I, o! ( lol !) 

- trlol 
lo.l' <

oo. We have then a corresponding scalar product, given, for g € ?7 with coefficients bo, by

U,g)x: Doa!(lal!)-1tr@la6,b... Then fl becomes a Hilbert space of analytic functions
over the unit ball of C'. Its reproducing kernel

c(A, t'): 
T 

lol!(o!u1.1)-'x"t : 
E 

*;t (^, p)k

satisfies condition (i)-(iv). The only nontrivial part is again (iv); this is proved, as in [Q],
by showing reccurently that

t  -  
udD: ;  a* ( \ , t )k ,

L4



with ap ) 0.

..A particular case is the Sobolev space WLH(Bd) (d,>2) for the unit ball considered
in {,tS1. The weights are originally given in that case by

w k :
(d+ k) t

k l ( k z + d k + L ) '

it is easy to show that one can change them to obtain an equivalent norm and have the
required conditions satisfied.

On the other hand, it is rather well known that many classical spaces of analytic
functions do not satisfy the positivity condition (iv). This is the case for the Hardy or the
Bergmann spaces for the unit ball or the unit polydisc in more than one dimension, for
instance. In some of these cases (see [Ag2] or [BLTT]), it can be shown that a satisfactory
statement is obtained by replacing the positivity of the Pick matrix (8) with other positivity
conditions.
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