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Optimization and numerical approximation for micropolar

fluids

Ruxandra Stavre,

Institute of Mathematics, Romanian Academy,

P.O. Box 1-764, RO-70700 Bucharest, Romania
Summary. In the theory of micropolar fluids, a special case appears when the
microrotation is equal to the vorticity of the fluid. The aim of this paper is to deter-
mine an external field which realises this case. An existence result for the proposed
control problem is obtained and the necessary conditions of optimality are derived.
For solving the optimality system, an iterative algorithm is proposed and its conver-
gence is obtained. The discretization of the approximation is studied; stability and

convergence theorems are proved.

1. Introduction

The classical Navier-Stokes theory is incapable of describing some physical phenom-
ena; for a class of fluids which exhibit certain microscopic effects arising from the
local structure and micro-motions of the fluid elements a new theory was introduced
by Eringen in [1]. A subclass of these fluids is the micropolar fluids, which exhibit
micro-rotational effects and micro-rotational inertia. Animal blood, liquid crystals,
and certain polymeric fluids are a few examples of fluids which may be represented by
the mathematical model of micropolar fluids. This model was introduced by Eringen

in [2]. From the physical point of view, micropolar fluids are characterized by the



following property: fluid points contained in a small volume element, in addition to
its usual rigid motion, can rotate about the centroid of the volume element in an
average sense, described by the gyration tensor, w, which is skew-symmetric. =

Due to its importance in industrial and engineering applications, micropolar fluids
were studied in several papers such as: (3], [4].

Both from the mathematical and from the physical points of view, it is interesting
to consider optimal control problems associated with the micropolar fluids motion.
Such a problem was studied in [5]. In [5], a viscosity coefficient was considered as the
control variable, in order to obtain a desired field of the microrotation velocity.

The present paper deals with another optimal control problem associated with
micropolar fluids. Let us denote by ¥ the velocity of the micropolar fluid and by
w the scalar function (microrotation velocity), which replaces the skew-symmetric

gyration tensor in the 2 D case. Since in the theory of micropolar fluids a special case

see |2|) appears when the microrotation is constrained by:
P y

-

(1.1) w = rotv,

we considered in this paper the following control problem: Find the external field, g,
which minimizes the functional:

(1.2) Jlg) = = (wg — rotv, )2 dzdt,
2 d5p

where {2 C R? is the bounded region of motion, {27 = 2x]0,T[ and 4, w, are the
velocity and the microrotation of the fluid respectively, corresponding to g.

The paper is organized as follows: in Section 2 we introduce the system of equa-
tions which describes the non stationnary flow of a micropolar fluid, and'its variational
formulation. We also define the notation used throughout the paper and we state a
well known existence and uniqueness result. Section 3 deals with the optimal control
problem; an existence result is proved and the necessary conditions of optimality are
obtained. Section 4 is devoted to the approximation of the optimality system. In

the first part of this section we introduce an algorithm for solving this system and
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we discuss its convergence. The discretization of this approximation is studied in the
second part. We propose fully implicit schemes as Scheme 5.1 of [6], p. 334, and we
obtain stability and convergence theorems. The most difficult to prove is the stability
of the scheme corresponding to the adjoint system. While the scheme for the initial
system is unconditionally stable, the one corresponding to the adjoint system is only

conditionally stable.

2. The physical problem. Existence and uniqueness results.

Let 2 C R? be an open, bounded, connected set, with 042 of class C? and T a given
positive constant. Taking into account the constitutive equations for micropolar fluids
given in [2], the non stationnary flow of such a fluid is described by the following

coupled system

5,+(5'v)17—(ﬂ+X>A17+Vp~Xrotw:f in 27,

jw’+]'17-vw—'yAw+2xw—Xrot?7:-9 in {2,

(2.1) div# =0 in £2r,
=0, w=0 on d0r,
#(2,0) = 0, w(z,0) =0 in {2,

where X, y, j, v are positive given constants associated to the properties of the ma-
terial, ]F g are the given external fields, #, w, p are the unknown of the problem: the

velocity, the microrotation and the pressure of the micropolar fluid, respectively, and

. Ov Jv ow  Ow
rot ¥ = —= — L rotw= (57—, —=).

01’.1 BIQ 8x2’ 321

For obtaining the variational formulation of the system (2.1) we use the following



spaces (for their properties see, e. g. [6]):

V ={ud € (Hy(12))?/div @ = 0},

H={ie(lN)?/divi=0,7 /s = 0},
H/"(O,T;X#Y’):{uELQ(O,T;.X')/'U’EL2(0 T; X')}, X-Hilbert space,

; ; du du 0%
2,1 — I 2 e
H* (7)) = {u € L*(27) 50 Bz; Bed, - € L*(0)7), 4,5 = 1,2},
LY(@2) = {p € L)/ [ pdz = 0)
and notation:
(,-) the scalar product , |- | the norm in L*(2) or (L2(12))2,

((*,-))o the scalar product | | - 1lo the norm in H(2) or (H3(92))?,
(,)x7,x the duality pairing between a space X and its dual X',
Bl(iz7 {:) = (ﬁ V)@ BZ“Z@) =1u- VS‘Q sz,l—)’ € (H(%(Q)V) p e H(%(Q)

In the sequel we shall use the following estimates for B; and B, (see [6], p. 292,
for B):

2

(2.2){(3 (@, 0), @) <2 @ 2o | & V2|55 a2, vieV, 5, e (H2(2))?
[(Ba(d@,w), )| V21 [2[allo"| w |2 [lwlly [ plla/?, YEEV, w, pe HE(2).

For fGLQ(O, T;V'), ge L*(0,T; H~1(12)), the variational formulation of the prob-
lem (2.1) is given by

[ G w(O,T,v,v), we wio,T; HI() H(0)),
(@), 2)vrv + (1 + X)(3(2), 2))o + (Bu(3(1), 3(1)), Dy
=X(rot w(t),2) = (f(t), vy VZ €V,
7' (1), =10y, m1 )+ (w(t), O))o+7 (B, (v(2), w(t)), Or-1(2),m1(a)
+2x(w(t),¢) — X(I‘Ot o(1),¢) = (9(t), Qur-1(a).m0y V¢ € HL),
5(0) = 0, w(0) = 0.

The next theorem gives the existence and the uniqueness of the solution of the
problem (2.3). Since the main steps in obtaining these results are similar to those

well known for the Navier-Stokes equations (see e.g. [6]), we shall skip the proof.
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Theorem 2.1 The problem (2.3) has a unique solution (U,w). Moreover, there exists
p € D'(£27), unique up to the addition of a distribution in (0,7), which satisfies,

together with (,w5s the system (2.1).

3. The optimal control problem. The optimality system.

We shall consider in the sequel further regularity for the external given functions, i.
e. f € (L3 (N71))32, g € L* (7). Taking into account the regularity of 2, the initjal
conditions and the regularity of the data, it can be proved, as in [6], that all the
duality pairings (-,-)ys 1 and () '>H~1(9)5H8(Q) can be replaced by (-, ).

We define the functional: .J : L*(£27) = R, given by (1.2), with (3, wy) the unique

solution of (2.3) corresponding to g. We introduce:
(3.1) Br =19 € L*(21) / |lgllz2(p) < 7}, ¥r > 0,

and we consider the control problem:

Find ¢g* € B, such that

(CP)
J(g7) =min{J(g) /g € B,},

with 7 an arbitrarily large constant. The physical interpretation of this problem is
the following: we determine an external field g, which gives rise to the special case in
the theory of micropolar fluids, w = rot 7.

The existence of at least a solution for (CP) is given by the next proposition:
Proposition 3.1 The control problem (CP) has at least a solution.

Proof.‘lf we prove that the functional J is weakly lower semicontinuous, the assertion
of the proposition will follow, by using a Weierstrass theorem. Let {g, },en be a weakly
convergent sequence to an element g € L*(027). We denote by (G, w,) the unique
solution of (2.3) corresponding to g,. The boundedness of the sequence {(U,, wy,)}n
in (H*(027))? x H>Y(027) (with a constant depending on 2, T, f, the viscosity co-

efficients, and on r) follows with the same steps as those for Navier-Stokes equations
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(see e. g. [6]). by using the estimates (2.2). Since the embedding H>'(02r) C L*(027)

Is compact, we get the following convergences (on subsequences):
(Vs wn) = (7, w) weakly in (H*'(£27))%, when n — 00,

Un, Wy) = (T, w) stron ly in (L*(02r 3 when n — co.
g

Using the above convergences, we can now pass to the limit in (2.3) corresponding to
9g» and we obtain that (7, w) is the unique solution of (2.3) corresponding to g. From
the uniqueness of the solution of (2.3), it follows that the whole sequence {(¥,, wy)}n
is convergent to (7, w) and, therefore, the property of J, stated at the beginning of
the proof, is immediate.

The next property of J, given by Proposition 3.2, will lead us to the necessary

conditions of optimality.
Proposition 3.2 The functional J is G-differentiable on L*(027) and Vg, g* € L*(N2r)

(3.2) (J'(g"), g — 972 (2p) :/ (rot (%o — 7™) — (wo — w*))(rot 7~ — w*)dzdt,

f2
where (07, w*) is the unigue solution of (2.3) corresponding to ¢* and (Do, wo) is the

unique solution of the system:

B W (0, T3V, V)N(H?'(027))?, woe W (0, T:HL(2), HY(2)NH>'(027)),

(0(1), 2) + (1 + ) (To(t), £))o + (By(3(t), 7(t) — (1)), )

+H(B1(%o(1), 5(2)), 2) — x(rot wo(t), 2) = (f(t), 2) VeV,

(3:3) 9 J(w6(): ) + ¥((wolt), O))o + j(Ba(To(t), (1)), ¢)
T1B2(77(8), wo(t) = w™(1)), O) + 2x(wo(t), ¢) — x(xot Fo(t), ¢)

= (9(1),¢) V¢ € H}(12),

0(0) = 0, we(0) =0,

(\ll

Proof. The existence and uniqueness of (%, wp) follow with similar techniques as
those of Theorem 2.1. The regularity of the solution of (3.3) is a consequence of the

remark made at the beggining of this section.



The differentiability of J and the relation (3.2) are obtained with standard tech-
niques. We denote by (Uag, wag) the unique solution of (2.3) corresponding to g* +
alg — g7), for any a € (0,1); we define the functions Uy _;_'é_ﬂgg”_) + T wy =
M +w™. With the same remarks as those of the previous proposition, we es-
tablish boundedness results for (Vo wa) in (H*1(£27))? | with a constant independent

of a and, then, the convergences which give (3.2).

If we take in (3.2) ¢* a solution of (CP), it follows:
(3.4) / (rot (T — T) — (wo — w*))(rot 7~ — w™)dzdt > 0.
f7

In the sequel, we shall replace the constrained inequality (3.4) by an unconstrained
one, given by the optimality system.
Let ¢* be a minimum point for the functional .J. We consider the following adjoint

system:

@ eW(0, TV, VIN(H> (21))%, o~ €W (0, T5HA(R2), H-Y(2))NH(2r),
=@ (1), 2) + (1 + (@ (1), D)o + (Bu(Z,57(8)), &(1))

—(Bi(T(0), 0(1)), 2) + J(Ba(Z,w* (1)), p*()) — x(rot p(t), 2)

(3:3) 4 = (rot T*(¢) — w*(t), ot 2 ) VZeV,

=307 (£):) +((p7(8),O))o — G(Ba(&(2), p*(£)), ¢)

+2x(p7 (1), (rot @(t), ¢) = —(rot &(t) — w*(¢),¢) V¢ € HA(92),
(L) =

() —x(r
, p(T) =0,

where (0™, w*) is the unique solution of (2.3) corresponding to g*.
Computing (3.3)-(2.3),, for (Z, ¢) = (@*(t), p*(t)) and (3.5) for (Z, ¢) = (v=(t)—
vo(t), w*(t) — wo(?)) and adding all the obta‘inxed equalities, the inequality (3.4) be-

comes:

(3.6) /p p"(g =g )dzdt >0 Vg € B,.
27

Therefore, we can state the following theorem:
Theorem 3.3 Let g* be an optimal control. Then, there exists the unique elements:
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(07, w"), the solution of (2.3) corresponding to g*, (i*, p*), the solution of the adjoint
system (3.5) which satisfy the following optimality system:

(T(), 2) + (& + )T (), D)o + (Ba(5*(2), 7(2)), 2)

—x(rot w*(t),2) = (f(t),9) ¥ e V,

(O5)1 9 (@), Q) + (@ (1), O))o + § (Ba(5%(1),w (1)), )

+2x(w (1), ¢) — x(rot v*(1),¢) = (g7(1), ¢) V¢ € Hg(92),

7(0) = 0, w=(0) = 0,

—(@(t),2) + (1 + )@ (1), D)o + (Bi(Z, (1)), (1))

—(Bu(07(1), u™(1)), 2) + j(B2(Z,w*(1)), p*(1))

—x(rot p=(1). ) = (rot T*(t) — w*(t), Tot ) V7€V,

=™ (), ) + 1 ((p7(1), ))o = F(Ba(¥7(2), p*(1)), €)

+2x(p" (1), €) — x(rot u*(t), () = —(rot T*(¢) — w*(¢),() V¢ € Hy(R2),
a*(T) =10, p"(T) =0,

(08)3 / p*(g — g7 )dzdt > 0 Vg € B,.

2r

Proof. The regularity, the existence and the uniqueness of (u*, p*) can be proved
with similar techniques as those mentioned in Theorem 2.1. The inequality (0S);
was previously obtained, hence the proof is complete.

The next section deals with the approximation of the optimality system.

4. The approximation of the optimality system.

In order to solve the optimality system, we propose, in the first part of this section,
an iterative algorithm and we study its convergence.
The second part of this section deals with the discretization of this scheme; sta-

bility and convergence theorems are established.



4.1 The approximation scheme.

We propose the following iterative scheme: given an initial guess go € B,, find, for
any m = 0,1,2,..., the elements ¥y, Wy, Un, pm, gm+1 satisfying:

(T (1):2) + (1 + X)((Fn(t), 2))o + (Bi(Tn(t), (1)), 2)

—x(rot wn(t),2) = (f(1),) VZ e V,

(OS] 5w (®),0) + 1(@n(t), ))o + F(Ba(Tm(t), wm(1)), )

F2x(wn (1), €) = x(rot T (1), C) = (gm(t), ) V¢ € Hy(92),

—(@a(1),2) + (1 + X)((@n(t), 2))o + (Bu(Z, Fa(2)), Um(2))
—(Bu(Um (1), Um(t)), ) + J(B2(Z,wm (1)), pm(t)) — x(v0t pm(t), 2) =
(rot Upm(t) — wi(t), ot 2) VZ €V,

=3 (P (t), )+ 7((pm (1), C))o = J(Ba(Om (t), pm(?)), )

+2x(pm(1): €) = x(rot Um(t), () = —(rot Tr(t) — wm(t), () V¢ € HY(12),
Un(T) =0, pm(T) =0,

Pm .
» PBr(gm ~ Oy )a if ”pmHLQ(QT) # 0,
Gy loml
OSF™ g = prllzian

Gm, if Hpm“Lg(Qr) =0,
where 6., is a positive suitable constant and Pp, denotes the projection map of L2(2r)
on B,.

We prove next a convergence theorem for this iterative algorithm.

Theorem 4.1 Let {gm, }ren C {gm }men be a weakly convergent subsequence to an
element g* € L*(f2r). Then the sequence {Um,, Wm,, Um,, Pm, treN, With the ele-
ments given by (OS], is weakly convergent in (H**(£27))° to the unique solution
(07, w*, u, p*) of (OS2, corresponding to the above weak limit, g*.

Moreover, for any m € N, there exists é,, > 0 such that:

(4.1) { J(gm+1) < J(gm) and

lim [J(gm) — JGmp1]] =0 = TYP}}(}O ||Jl(9m)”L?(f?T) = 0.

m—00



Proof. The sequence {g,, }men being bounded in L2(£27), it contains at least a weakly
convergent subsequence. Let us denote by {gm, }ren such a subsequence, and by
g~ € L*(f27) its weak limit. We obtain the boundedness of {Tmis Wmgs Uy, Py FEEN,
in (H?*'(£27))® with the same remarks as those of Proposition 3.1. The first assertion
of the theorem follows, passing to the limit in (OS)™, (on a subsequence) and using
the uniqueness of the solution of (0S)1-2.

For obtaining the second assertion of the theorem, we shall prove first the Lipschitz
continuity of J' on B,.

Let g1, g2 be two elements of B,. We denote by (v;, w;, @, p;) the unique solu-
tion of (OS);_y corresponding to g;, i = 1,2 and (7, w, 4, p) = (4, wy, iy, p1) —
(U2, wa, Ua, p2).

Computing (OS)1(g=g,)-(0S)1(4=g,) for (Z, ¢) = (v(¢), w(t)) and adding the equal-

ities we get:

%%([E(tﬂ? + 7lw®)1®) + (1 +0ITOE + Alw@®)]s + 2 x|w®) =
(42)  (g(t), w(t)) — (Bu(8(t), Ta(t)), B(2)) — J(Ba(B(t), wa(t)), w(t))+

x(rot w(t), 3(t)) + x(rot (t), w(t)),
since (B1(u,7),7) = 0 Vi € V, T € (H}(2))? and (By(#,w),w) =0 Vi € V, w €
H(92).

Using the estimates (2.2) and standard computations, it follows:
(4.3) 1ol 20,23y + lwllz2o,7,m300)) < M(P)llgllz2(ar)-

Computing now (OS)a(y=4,)-(0S)2(g=g,) for (, ¢) = (d(t), p(t)), adding the equal-

ities and using (2.2) together with (4.3), we obtain:

(4.4) @l 201y + ol L2 0im32)) < LOM9llz2(7)s
which yields:

(4.5) 1(91) = J'(92)lz2(2r) < L(r)lg1 — g2ll12(22)s Y1, 92 € B

10



We note that the Lipschitz constant depends on r. For 7 — oo, L(r) also converges
to oc.
This property of the functional J allows us to make a convergent choice of §,,, i.
b € [L( )”Pm”L (21)5 I )HpmHLz (2r)), with a, ¢ arbitrarily chosen in 10, 1[. For

this choice, the properties (4. 1) are fulfilled and, hence, the proof is achieved.

4.2 The discretization of the approximating system.

This subsection is concerned with the discretization of (0S)7,, (0S)3*! both in
the space and in the time variables. For the discretization in the space variables
we use an internal approximation and for the discretization in the time variable, a
backward Euler scheme. After the description of the scheme, we prove its stability
and convergence.

Let h be a parameter converging to 0; we denote by W;, Vi, S) and M}, internal

approximations for V, Hj(2), L2(2) and L?(02), respectively, and we define:

(4.6) Kn=Myn{g e L¥2)]]g] < ﬁ}

T
We divide the interval [0, T into n intervals of length At = = n e N*.
n

For any f € L?({27) we define the elements f}, | f2 | w5 i € My, given by
1 kAt
T At (k—=1)At

where fy € L*(0,T; M) is the space discretization of f.

(4.7) i = fudt, k=1,...n,

a) The discretization of (OS)™.

For (OS){* we propose the following scheme:

Schemel”. When (Gn)8,, .., (Tn)f2? and (wp,)2, ... (W )int are known, let us find
(T )in- (wm)hn) € Wi x Vi as the solution of the problem:
o (Fns 30 + (b (o + (BT, (Folf), 21
(0t (@nins F) = T ((Flf, 50 + (Fhn ) Vi € Wi,
Lm0+ (s o FIBA(F), (m )b 1)
+F2X (W s Cr) =X (x0b (T ), Cr) = Jt((wm)hn Ch) + ((9m )i C1) VR E Vi,

—
s
o0

Nl
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\Yith (({“m>2n’ (u/'m )gn) = PM”hXVh (F‘m(o)' ""Ym(o)) = (6’ O)
We define a : (Wy x Vi)2 = Rand Ly : W, x V, —» R by:

IR T . Al o .
an(7,0). (2,0)) = 755, 2) + (6 + )((F 2o + (BBl 7). 2) — x(rot w, 2)
+ 247 O 2, o + S (BBl 9),€) + 2w, €) = (ot 5,0),

z r 1, ) 1 2 . ;-1
Lh(Z,Q) = E(( );cm ¥ ) (fhn’ ) ﬁ((u}m%};n ? )+ ((gm)fm’g)

The system (4.8) is equivalent to the following linear equation:

(4.9) (T Vins (W )in): (Zhs C)) = La(Zh, ) (50, Ch) € Wi x Vi

and therefore the existence and the uniqueness of the solution of (4.8) is a consequence
of the properties of ax, L, and of the classical Lax-Milgram theorem.

We shall prove some a priori estimates, which will give the stability of Scheme".

Theorem 4.2 The solution ((Un)f,, (wn)k,) of (4.8) satisfies:

(4.10) (Ebl? < C), k=1, o,
(11) 2 (5 = ()P < 1),
(4.12) Al < )
(4.13) (@il < C(), k=1, m,
(4.14) Z @) = (n)i [ < C(r),
(4.15) w A3 el < CO)

Proof. Taking Z = (T, in (4.8)1, Ch = (wy)f, in (4.8),, adding the two equalities

and using the identity

2(a~b,a) = la]’ = [b]* + |a — b Va, be L*(12),

12



we obtain:

55 (T = 1B + 1l — (B P)

5 Ul = 15+ I(m)fn — ()i )
(1.16) 0N Bal13 + T3+ 201 )

(10t () (T )n) = X(0t (T, (m)f)

= (fF (Fn)kn) + (9 )y (W )E), k= 1, o,

Next, using the equality
(w,rot ¥) = (7, rot w) V& € (HY(2))?, w € H}(£2),
and the inequality
(4.17) (w, ot 7) <V2[w|||Tlo, V5 € (H3(2))%, w € HE(12),
(4.16) yields, after the addition of the obtained inequalities, for k = 1,..,n

“U hn!z “F Z ' Um hn IMAtZ ” hn”O
(4.18) Fil(wm)ia > + 7 Zl (wm) hn (“m)hn K +7Atz | (wm hn”O
< CoAt(= Z lfth + = Zl (9 )in?

and, hence (4.11), (4.12), (4.14) and (4.15) are obtained. If we add now the inequal-
ities for k = 1,...¢, with ¢ < n, we get (4.10) and (4.13) and the proof is achieved.
We define the functions:

(4.19) (T ) (t) = (U )kpr VE € [(k—1)At, kA,
| (W )in(t) = (wn)k,, VE € [(k—1)ALRA k=1,... n.

Il

An immediate consequence of the above theorem is the following stability result:

Theorem 4.3 The functions (T, )i ((wm )hn) defined by (4.19) are unconditionally
L>(0,T;(L*2))?) and L*0,T; (H (2 2))?) (L>=(0,T; L* (7)) and L*(0,T; Hi(02)) sta-
ble.

The next theorem gives the convergence of the Schemel”.

13



Theorem 4.4 For h — 0 and n — oo the Jollowing convergences can be proved:
(Vi )i = U strongly in L*(0,T; (L*(2))?), weakly starin L=(0,T; (L*(02))?),

weakly in L*(0,T;V),
(Wi )hn = wm strongly inL*(027), weakly star in L=(0,T; L*(12)),
weakly in L*(0,T; (Hy(£2)).
Proof. For obtaining the above convergences, we follow the same steps as in [6], p.
357-363, for Navier-Stokes equations, so we shall skip the proof.
The computation of the solution of (4.8) is not easy because of the constraint

div(@, )}, = 0. To overcome this difficulty we introduce, as for Navier-Stokes equa-

tions, the following equivalent system:

i Z) + (1 + (T 20))o + (Bi((Fm )i, (Fm)bn), Z)

(
(420> L((“’m im (:h) + 7(((wm)l‘;n7 gh))O + ]<BQ((1}'m)ﬁ;1, (wm)ﬁn% Ch)

S (@i )+ ((gm)hns G) VCh € Vi,
(div (Um)fn,80) =0 Vs, € S, k=1,...,n.

This system is solved by using Uzawa algorithm (see e. g. [6], p. 389).

We pass next to:
b) The discretization of (OS)7.

First, we define the new functions:

Wi (2,1) = Upp(z, T — 1),
(4.21) { (

997n(4r»tl> == [)m(J?,T - t/)
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and we obtain the following equivalent form of (OS)7

(W (£), 2) 4 (1 4+ (@ (1), 2))o + (Bu(Z, T (T = 1)), 1B (1))

(Br(Un(T = 1), 5n(8)), )4 (Ba(Z, 0m(T ~ 1)), om(t)) = x(rot o (t), 3)
(lomm( — 1) —wn(T —1),10t 7) V7€ V,

I (). C) + 9((om (), D)o = 5 (BT (T = 1), 0m (1)), ) + 2x(om (1), €)

¢) = =(rot Gn(T ~ 1) —wn(T — 1),) ¥( € HL(),

(4.22)

—x(rot @, (1), ¢
W, (0) —O, @il 0) =

For solving (4.22) we introduce the iterative scheme:
Schemey'. When (Wn)y,, .., ()57t and (Pm)ims o (Pm)int are known, let us
Sind ((@)f,, (0m)k.) € Wa x Vi as the solution of the problem:

s 50 G 00 ) + (B, (B, ()

~(Bul(#)in ™ (@), 31) + 5(Balh, (0 )j ), (m)ED)

—X(r0t (@m )i, Zh) =

1 - - n n - -
(4.23) _&t(( O )i s 20) + (10t (T )24 = (w0 ) 2441 rot Zp) V2, € Wy,

( Orm Vs Ch)%f(((@%)w(h))o—J'(Bz((f’m)Z;’““ (©m)kn)s Ch)

(
J<m>7*><mumzm—@mxmxnwﬁn,

with ((u_’:ﬂl>27;¢ (Sﬁm)(})m) = PWnXVh(ﬁm(o)a Som(o)) = (6> 0)'
We define now ay, : (W), x Vh)2 = Rand Ly : Wy, x V), —» R by:

ar((10, ), (£,()) = %(u? )+ (142000, )o = (Bi((Gn)i ¥, 1), 2) - x(r0t ¢, )

+- (. €) + (2, o = J(Ba((5n)32 1 0), €) + 2x(2, C) — x (10t 15, (),
At
L 2 = v s 5 ke n—k ;—
Lu(Z 0= (@)1 D= (BalGB)in ), (B )= (BalZa, (om i), (o))

J S, L ek k4 , 5 kb1
7 o)A €1 (MR = ()4 ot 2) = (rob( B ™ — (om0, ).
k

The system (4.23) is equivalent to the linear equation (4.9), with ((F,)%,, (wn)E))

replaced by ((@0,.)5,, (¢m)f,).



The properties of aj, and Ly, allow us to apply Lax-Milgram theorem which yields
the existence and the uniqueness of the solution of (4.23).

The most difficult part of this section is to obtain the a priori estimates of the
type (4.10)-(4.15), for the functions ((1f,,)5, , (om)E ), k=1,...,n

In the sequel we shall need the following inequalities (see [6], p. 333):
(4.24) Jun| < dollunllo Yus € Vi,

[urllo < S(h)jun| Vuy € Vi,

where S(h) — o0 as h — 0.

We shall prove:

Theorem 4.5 If h and n salisfy the inequality

i G AgQ2(7 . H 2
(4.25) AtS?(h) < max (326'(7’)’32j20(7"))’
then:

(4.26) (@ )k * < D(r), k= 1,...,m,
(4.27) D ()i — (Bn)E P < D(r),
k=1
(4.28) At Y (@ )ially < D),
k=1
(4.29) om)in> < D(r), k=1,...,n,
(4.30) > em)in = (pm)in [ < D(r),
k=1
(4.31) Aty (em)ialls < D(r).
k=1

Proof. For simplicity, any function (f,,)¥ will be denoted in the sequel f*. Taking
Zp = W in (4.23);, ¢ = ¢* in (4.23)7, adding the obtained equalities and using again

the identity of Theorem 4.2, we obtain:

1 - o e
g IT T = P ot — )+ (4 )13
(T = 1H 1 1k — 1) 4 4l + 2l P
(432) = (1ot o k1 wn_k-}'l.l‘ot LF ) (I‘Ot ~EH wn_k+1a§9k)

+x(rot ¢, 5*) + y(rot wF, o¥)

—( By (w =2 G k+1) d;k—ll) —j(Bg(LEk,w""k+l)7pk_l)‘
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We shall introduce in (4.32) the following computations:

—( By (@F, 07, 55 = — (B (k- apR T, k) gk
—(By (@1, o) 551 < (we use (2.2),)

2 R e i e R e i
—}«/5[13/“_1{Hzﬁk’“ll|gﬂﬁn‘k“llo < (we use (4.24); for the first term)

V2SR — @[5 4 o A/ 2Lt o ol |75+ o,

—j(BQ(zB"‘,w”“k“), Pk’l) — —-](Bz(lf}” _ 7vD'k—l)wrwlﬂ-l)’ Qk—l)

—J(By(wF1, wr=F 1) k1) < (we use (2.2),)

jﬂiﬁk . ,Lﬁk—lll/‘zn_lﬁk . L—ék—lul/z!“’n—kﬂfl/QHWn—kH“1/2”$9k_1||0
HIVH TP ol flo oot 2R 5 <
(we use (4.24), for the first term and 2ab < a* 4 b for the second)

o AR Al el ok - V2 . -
VS (R = B o o o + 51 1 lollw™ ™+ o

V2
+i5 e e

x(rot oF, 16%) 4 x(vot @F, ¥) = 2x(rot ¥, p*) < (we nuse (4.17))

22x|F 8 o < X125 + 2104 12),

(rot 7" FFL — W=k pot F) < (we use (4.17))
\/_{lot T k+1 ”'HlHld}kHO S\/‘E\/TZ—HU”_ICHHO—{— !wn—kHDH,lBkHO <

< (we use (4 24) \/(\/—Hﬁn Hl”o + do|lw™ HIH )“lﬁkHo

K ~n—k+11 “d7 o
< Sfla*)5 + uv UG + =2 ™3
ol ~n— n—
< B3 ol 4 ),
4 2d3
where ¢ = max(i ﬂ)’
pop
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—(rot TR — R k) < (we use (4.24),)

%
dp|rot ¢nF+1

1A BT + ™4 11B),

— W ||oFlg < (we use the same inequalities as above)

2z ds
where b = md\(L, (—)
T
Introducing all these inequalities in (4.32), it follows:

2 — [ — BT G [ L - R )
+Afﬂ'!w’”l|o + AtallH3 < 2a+ D)ALITHE + w4 B)4

(4:33) 2/ ALS ()~ =[5~ |+ ot 2 D AT | o[+ o+
23/ A (W [l [ ok B AL [ ol o441
V2 o™+ o

Majorating the right-hand side of the inequality (4.33) we obtain:

) 1 oir . .
o e 1 At i e (2 R e ER N AR

<

’,wkl?

+Atul|[aH§ + Aty]le*|§ < 2((1 +b) At([|[T7 IS + o IR
(4.34)  +AEASHR)EHPE 4+ D)t

+41(5J24t9?(h)l " k+]|2 )Hsﬂk 1“0+ Atl i b A

- nek ~] n—
+——\t11 PP IS + » — At || e
Using in (4.34) the inequalities (4.10), (4.13) and the hypothesis of the theorem, it
follows, for k =1,...,n
| *[? — |&* 12 l‘tﬁkhlﬁk"l|2+j(lﬁﬁklz o™+ [t = ")

+Atp| I3 — At;lhﬁk"lllg + Aty |||l ~ Até!lvk‘lllé

(4.35) 2 2
< 2(a + ) AT FHF 4w )
+ At 4l PTG+ e ),
16 45° 29 .
where a = max(—, -J-« l) Adding the inequalities (4.35) for £ = 1,...,q, with
pwopl



g < n. we get;

Wi“r le — G 4 (ot IQ+ZI¢ il
k=1
+4’f—ZHt Hﬁdftz'-;ff@kl!é

<2(a+b)At };(Hﬁ‘“‘k“ﬂg + e R)

(4.36)

+Ata i(lw’ PG TR 4 o), =1, o,
k=1

We introduce the notations:

i = Ala(|F)3 + Jwi]2), i =1, L,

(4.37) - 2(a + b)

(T, + ...+ Tpeiv1) + otz Tnoit1], 1=1,..n.
We shall now prove recursively that:
(4.38) G+l P< A i=1,..n

Using the notation (4.37)y, it follows from (4.36), for ¢ =1,...,n

b
(4.39) |02+ jlo? < _(QL)Z% k+1 +Z e R e kt1-

k=1

Taking ¢ =1 in (4.39) and using % = 0, ©° = 0 we obtain:

2(a +b)

(4.40) 15 + 5l < Tn,

l.e. (4.38) for 7 = 1. We suppose that the inequality (4.38) holds for ; = 1,.qg—1
and we introduce it in (4.39). This vields:

+ b)
(a {Y’En q+1+1' Loy l‘f[(xn_f'tn l)Tanxn lJnZ

2P + 5l <
41
Foot {2y F o £ Tngt2)F ot Ty, Tn—gt2]Tn_gi1},

which is (4.38) for i = ¢.

Now, from (4.37) it is obvious that A< A< L <
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The next computation wil] give, together with (4.36), the assertion of the theorem.

2(a+b)

A, = [(mn+...+$1)+...+:ztn-...-$1} =
Q(a; b){(l to) o (I+a,)-1] =
2(a + b) '
a~——(exp((lu(1 +21) o (T4 2,)) — 1) < (we use In(1 +2) <=z, vz >0)

T expen 42y —1) = A0 explact (112 + ) - 1) <
k=1

2(a +b)
(we use (4.10) and (4.13)) (exp(2aC(r)) - 1).

We define the functions:

(Wi ) (1) = (1 W), Vi€ (k= 1)At, kAt],
(4.42) (Dm)an(t) = (om ), V2 E [(k = 1) AL kAL, k = 1,...n,
(4 n)fm(t) (W )i (T = 1),
)i (1) = (Om)in(T — 1).

The stability and convergence resutlts follow, with the same techniques as for Schemel.

c¢) The discretization of (0OS)5+1,

We define
(4.43) g (t) = gk Yt € [(k — 1)At, kAL,

where gf. is given by the definition (4.7).

We first prove that if gn € Ky, then g, € B,. Indeed:
v, - iy ko2
‘i? (27) = Z/ _ ’ghnl dit =
kAt AAt d\2g J
<
>/ Jf/ (G oy 0V <
kAt mz d 02)
¢
/ —1)At A?f / / 1)A ?)
kAt kAt s
t <
Z/ 1) At Jt/ ,gh, s

kAt

L Atds =
L/udzTJ“ i

We consider the following scheme:

lghn

SchemeZ ™. When (90)hns s (G )i are known, let us find (Gm+1)mn given by:
y m n i
(4.44) (9m41)80(8) = Po (g (1) — (6oL din(D)
[(om Jin |22 (2
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with (p,, )4, given by (4.42), (81 )hn defined in the sequel and (go)s, the approximation

of a given gy € B,. We define

Om if ”/)m”L2(J'?T) >0,
(445)  (G)in =< 0 ;i lemllzz(2r) = 0, [l(pm)anllz2(apy = O,

S ALS*(R) I || pm|z2(ap) = 0, 1(om )bl L2(2g) > 0.

The last result of this section is a convergence theorem for SchemeJ !,

Theorem 4.6 When h — 0 and n — 00, satisfying the hypothesis of Theorem 4.5,

(gm—H)/m = Im+1 St']’O‘IZgZy mn LZ(-QT)

Proof. We shall prove this convergence recursively. The convergence (go)n, — go
strongly in L*(27) when & — 0 and n — oo is given by known results of the literature.
We suppose that (Gm )hn = G strongly in L?(027).

1) I [l o220z > 0 it follows, from the convergence of Schemell® : there exists

ho >0, ng € N* so that
[(gm+1)in — Imt1llrz(2r) < 1(gm)hm — 9m|z2(2p)

(pm)hn Pm ”LQ(QT) Vh < hO; n > ng.
)

o iy~ Tl

Using again the convergence theorem for SchemeZ', the proof is complete in this

case.

) I [ || 2(05) = 0 we get:

”(gm-l-])hn - gm+1HL?(QT) < ”(gm)hn - gm“LQ(QT) + (&n)hn;

and, hence, the assertion of the theorem follows from the definition of (6 ) 1.
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