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1 Introduction

In this article we work over an algebraically closed field of characteris-
tic zero (e.g. C = the complex field) (see §4 also). We use the standard
notations from [Ha 1].

By a curve (resp. surface) we mean a C-algebraic integral scheme of
dimension 1 (resp. 2).The curves and surfaces used in this paper will be
non-singular.

We begin with some comments. Let C' be a (smooth, irreducible) curve.
Because any such curve can be embedded in a projective space using a



morphism associated to some linear system, we can consider the curve C,
simultaneously, in three hypostases: abstract curve, polarised curve and
embedded curve. In the classification of abstract curves it is considered
the numerical invariant named genus g = h%(w¢) = A (Oc¢) (comming from
the classification of compact Riemannian Surfaces) and, for fixed g, it is
considered the space of continuous invariants M, (called the moduli space)
containing the isomorphism classes of curves of genus ¢. In this theory there
are considered various problems concerning M,: dimension, quasiprojectiv-
ity, unirationality, singular locus etc. In the theory of polarised curves
there are considered pairs (C,¢%), where g7 is a linear system (producing
rational applications C' — P") of degree d and dimension n. In the Brill-
Noether theory it is considered, for instance, the object

T =W} (C) = {g}lg} complete on C, s> n}.

There are studied problems concerning the structure of W} (a determi-
nantal variety): irreducibility, dimension, singular locus etc. But the first
problem is: when W} # @ ? An answer is given using the Brill-Noether
number p = p(g,n,d) =g — (n+1)(g — d + n): namely, p > 0= W7 #0.
An embedded curve is a curve C C P". The theory of non-degenerate
curves from P” (i.e. not contained in any hyperplane) is related to the the-
ory of polarised curves (the study of W7) and to the theory of embedded
curves, both of them being twpo faces of the same problem. If C C P" we
associate to it, as usual, the genus g (comming from Riemannian Surfaces),
the degree d (which is a projective invariant) and the embedding dimen-
sion n (both of them comming from the theory of polarised curves). The
Hilbert schemes Hy , of smooth, irreducible and non-degenerate curves from
P" (the closure in the general Hilbert scheme of the open set corresponding
to smooth, irreducible, non-degenerate curves from P") are usually studied
in the theory of embedded curves. There are studied topics about Hg,:
reducibility, projectivity, singular locus, tangent spaces, "good” or ”bad”
components etc. But, first of all, similar to the Brill-Noether theory, what
is important to know is in which conditions we have H} , # 0.

We call Halphen-Castelnuovo theory the study of ezistence, for a
fized triplet of integers (n,d,g), n > 2, d > n, g > 0 and a given property
P, of non-degenerate curves C C P" of degree d, genus g and having the
property P. Then it is natural to study the (nonempty) families .f;’f of
curves as before.

The property P may be, for instance, irreducibility, smoothness, linear



noxmahty, projective normality, maximal rank etc. If P = smoothness then
]: = H},, for instance.

The numbers d = degree, ¢ = genus, n = the embedding d1mens1on
appear naturally from the necessity for the theories of abstract, polarised
and embedded curves to be compatible. This allows us to study the connec-
tions between the eztrinsic geometry (represented by properties of projective
enbeddings and of the Hilbert scheme) and the intrinsic geometry (repre-
sented by abstract properties and the moduli space) of families of algebraic
curves. This comparison is often best represented by the natural maps
m: H} , — M,. So, it’s important again to know when H} , # 0, so ”when
the map 7 is not the empty map ?”. In this context some new properties P
appear: general or particular moduli, expected number of moduli etc.

We recall now the Castelnuovo bound (found in 1893) (for a modern
proof, see [H], ch. 3):

Theorem A (Castelnuovo [C]): Ifn € Z, n >3, and C C P" isa
reduced and irreducible (possibly singular) non-degenerate curve of degree d
and geometrical genus g, then d > n and 0 < g < wo(d,n). The curves for
which the bound is attained lie on a rational normal surface of degree n — 1
in P" (i.e. either rational scrolls or the Veronese surface in P°) and can be
completely described (these curves are called extremal curves).

This result is a generalization of a previous similar result obtained by
Halphen and Noether in 1882 for n = 3 ([HI], [N]).

Here, m,(d, n) is the first one from the Harris-Eisenbud numbers m,(d, n)
(see [H], ch. 3: Castelnuovo theory), given (for 0 < p < n —2) by:

(1.1) Tp = mp(d,m) = m,,(m; — 1)(n +p— 1)+ mp(ep + D) + tps
where
(1.2) my =my(d,n) = [(d-1)/(n+p— 1)k

(we denote, during this article by [z]. the integer part of € R)

(1.3) gp=¢6p(dyn)=d—-1-my(n+p-1)

(L4) b = pp(dym) = max(0,[(p — n + 2 hy)/2).).

We remark that po = 0 and 7, = d&*/(2(n + p — 1)) + O(d).



We recall that, if the property P is irreducibility (or nodality), the com-
plete answer in Halphef®Castelnuovo theory is given by the following

Theorem B (Tannenbaum [T1], [T2]): Forn > 2 and any d,g € Z,
d>n, 0<g<m(d,n) there is a non-degenerate curve C C P* of degree d
and geometric genus g with only nodes.

This theorem generalize a similar result of Severi from 1915 for n = 2
([5v).

If P = smoothness we arrive to the Halphen-Castelnuovo Problem
(related with the intrinsic and extrinsic geometry of curves), denoted HC'(n)
forn>2,n¢€Z:

HC/(n) : For which pairs of integers(d, g), d > n, 0 < g < mo(d, n)
do we have H}, # 07

This is the Problem which we’ll consider in this article. We recall now
what is known on HC'(n).

HC(2) is simple: H} , # 0 ¢ d>2and g = (d - 1)(d - 2)/2. But, for
n > 3, HC(n) becomes highly non-trivial. A (correct) solution for HC(3)
has been proposed by Halphen in 1882 ([Hl]), but his proof was, partially,
incorrect. A complete proof was given by Gruson and Peskine 100 years
later ([GP1], [GP2]). The answer is contained in the following

Theorem C (Halphen-Gruson-Peskine): Let there bed,g € Z, d>3

i—d‘? —d+1, deven

1
Z(az2 —-1)~-d+1, dodd

and 0 < g < mo(d, 3) =

1
a) If [gd(d - 3)] +1 =m(d,3) < g < mo(d,3), then any non-degenerate

(smooth, irreducible) curve C C P? of degree d and genus g is contained in
a quadric surface; so, in this case H3 , # 0 < (3)a,b € Z, a,b 20 such that
d=a+bandg=(a—1)(b-1).

b) If0 < g < mi(d, 3) for any pair (d, g) there is a (smooth, irreductble)
non-degenerate curve C C P? of degree d and genus g; then the necessary
curves can be found on surfaces of degree 4 (singular: [GP2] or not: [Mo])

1
if0<g< %(d —~1)? and on cubic surfaces if —é(d -1’ < g<m(d,3).

Definition 1.1: A pair of integers (d,g), d > n, 0 < g < mo(d,n) is
called a gap for HC(n) if there is no non-degenerate (smooth, irreducible)
curve C' C P" of degree d and genus g.
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So, for HC(3) there are two domains in the (d, g)-plane:

D?:0<g<m(d3),d>3 where there is no gap.
D3 :m(d,3) < g <mo(d,3), d >3 where there are gaps.

H(C'(n) has been solved for n = 4,5 by Rathmann ([Ra]), n = 6 by Cilib-
erto ([Ci]) and ”almost” solved by Ciliberto if n = 7 ([Ci]). The situation
is similar to the case n = 3 in the sense that there are two domains: D7,
where there is no gap and D7, where there are gaps.

Let’s review that is known for n > 3 general. The construction of
Gruson-Peskine has two steps: step 1 consists in the construction of curves
on a quartic surface and step 2 consists in the construction of curves on a
smooth cubic surface (see [GP 2] or [Ha 2]).

Step 1 has been generalised to P” (n > 3) as follows:

Theorem D (Pé&sarescu [P 1], Ciliberto-Sernesi [CS]): Ifd, g € Z,
d>mn,é6€{2,34}, n>2-1,0<g < (d-n)?/2(2n - ¢), there is a
(smooth, irreducible) curve C C P" of degree d and genus g which is non-
degenerate in P*, on a surface of degree 2n — & in P" (so H} , # 0 for such
pairs (d, g)).

For 6 = 2 see [P 1], for § € {3,4} see [CS]. The case § = 2, n = 3 is
exactly the Gruson-Peskine construction.

A generalisation of Step 2 was initiated by PHsirescu and Rathmann
([P1], [Ra]) who applied the Gruson-Peskine construction on Del Pezzo sur-
faces from P* and P°. Ciliberto ([Ci]) studied a generalisation of these 3
initial cases (the Del Pezzo surfaces from P3P P°®). He constructed curves
on some rational surfaces with hyperelliptic hyperplane sections X? C P"
of degree n +k — 1, k = [n/3]. (see §3 section 2.2 for X}}).

Precisely let’s denote by

7 (d, n) ,if n=0,1 (mod 3)

(1.5) A(d,n):= {
me(d,n) — i + max(0,e, — 3k — 1) ,if n =2 (mod 3).

(see (1.1) - (1.4)).
Ciliberto proved the following:
Theorem E ([Ci]): Let there ben € Z, n > 6 and k = [n/3].. Then

there are two functions dy(n) (of degree 3/2 in n) and ¢(d,n) (of degree
3/2 in d), given ezplicitly, so that for any d > do(n), d € Z and ¢(d,n) <

Ut



g < Ald,n), g € Z there is a (smooth, irreducible) curve C' C X, non-
degenerate in P", of degree d and genus g (hence, in this range Hy , # ).

If n = 3 and k£ = 1 one obtains exactly the Gruson-Peskine construction.

Combining Theorems D (§ = 4) and E, Ciliberto defined 4 domains for
HC(n): A, B,C, D proving that there is no gap in the domain C, the sit-
uation from A, B, D being unknown ([Ci]). In this article we obtain results
in the domains A and B (and C, incidentally). Precisely, we replace the 4
domains of Ciliberto with two domains: D} (without gaps) and D} (con-
taining gaps), as in the cases n € {3,4,5,6,7}. The domains D} and D}
will be defined in §2, where we will also state the Main Theorem. In §3
we give the (long) proof of Main Theorem. Our contribution is for "small”
degrees, less than D(n) = @ quadratic function. The method used in the
proofs is a new one and it isn’t o generalization of Gruson-Peskine methods.
It will be briefly explained in section 3.1 of §3. Finally, further develop-
ments may concern the construction of curves with some special properties
P (topics belonging to Halphen-Castelnuovo theory) or the construction of
”good” components of H},. These aspects will be briefly discussed in §4,
where something concerning the domain D} will be said.

We remark that the Mori construction for smooth cuartic surface ([Mo])
has been generalised to P™ by Rathmann, in his thesis, obtaining curves in
the range of Theorem D.

We end this § by remarking that the case n = 3 of HC(n) has some
intrinsic importance, because any (smooth, irreducible) curves in some P,
n > 4, can be projected (so, conserving the degree) isomorphically (so,
concerving the genus) on P®. But, from the more sophisticated reasons,
concerning in the comparison between the extrinsic and intrinsic properties,
the natural problem is the general HC(n), n > 3.

Convension: Formula (a,b) means that it is formula b from §a and
(a,b,c) means that it is formula ¢ from section b, §a; similarly for the state-
ments of Lemmas, Propositions and Theorems.
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2 The functions a,(d,n); the domains D, Dy and
A}; the Main Theorem

At the beginning of this § we define for any p,n € Z, p > 0, n > 3 the

following numerical functions a,(d, n) = + O(d) given by:

2(n+p-1)
, z,(z, — 1)
(2.1) ap = ap(d, n) = T(n+p—l)+xp(tp + p) + tp,
where
(2.2) T, = z,(d,n) = [(d - a;)/(n +p-1)].
(2.3 ap = a7 i= [(n— p)/2u +1
(2.4) tp=t,(dyn) i =d—-1-gz,(n+p—1)
(25) by = by () 5= [(p = n+ 1+ 4, (d, m))/2)..
We also consider the functions
max <2n+1,%(3+(4k— 1)\/24k—33)> ,n =0 (mod 3)
(2.6) di(n) =1 jax <2n +1, Zk—}——l(_4k + V/32k2 + 16k2 — 2k — 1)) ,n=1(mod 3)
max(2n + 1,5k + 3 + (2k + 1)v/48k + 6) ,n =2 (mod 3)

where k = [n/3]. and n € Z, n > 3.
We'll need

iy1(dn), if n=1,2(mod 3)
(2.7 B(d,n) = ap(d,n), if n=0(mod 3)
A(d,n) Jif d > dy(n)

} ,if2n 41 < d < dy(n)



with & from before and A(d, n) from (1.5).
We consider the following graphs (contained in the (d, g)-plane), of equa-

tions:
Bg :g = Wo(d, n)

n. ) mldn), n<d<2n ,
& 'g‘“{ B(d,n), d>2n+1 'F=[/3k
Cl:g=ua,(dn),p>n/3, pneZ, n>3.
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Now we are ready to define the non-lacunar domain D} (bounded by
g = 0 and B}) and the lacunar domain D} (bounded by B} and Bg}),
contained in the (d, g)-plane:

) mo(d,n), n<d<2n
2.'w n: < < /U( 3 ] == _—
(2.:8) = O_g“{B(d,n), d>2n+1

(2.9) D} : B(d,n) < g < m(d,n), d > 2n+ 1.

The Main Theorem belonging to Halphen-Castelnuovo theory which we’ll
prove in this article is:

MAIN THEOREM: In the domain D} there is no gap for the problem
HC(n), for anyn >3, n € Z.

Remark 2.1: We recalled in §1 that the Main Theorem is already proved
for3 < n <7 due to the contributions of Rathmann ([Ra]), Ciliberto, Sernesi
([Ci], [CS]) and of the author ([P1]). Moreover, the Main Theorem is true
for d > D(n) (= a quadratic functions in n) (see [Ci], [CS], [P1]). So, our
main contribution here is for "small” degrees, 2n +1 < d < D(n). We will
suppose, that n > 8 (but our arguments work, in principle, for 5 < n < 7
also).

During the proof of Main Theorem, the domain D} will be divided in
subdomains A7, namely:

2.10) A ;:0<g<a,_3(d,n), d>2n+1 (between g = 0 and C"_
n—3 n—-3

(2.11) AV tap(d—1,n) <g<ap(d,n), d>2n+1, p>n/3

(containing the domain between Cy,, and C7 for p < n — 1; see section 3.3

from §3).
(2.12) AT i (d—1,n) < g < B(d,n), d>2n+ 1, k = [n/3),



(containing the domain between C}',, and By).
(2.13) Ay :0< g <mo(d,n), n<d<2n,

Lemma 2.2: In the domain A} then is no gap for HC'(n), n > 8.
Proof: We use projections of nonspecial curves. For d = 2n and ¢ =
mo(d, n) = mo(2n,n) we consider the extremal curve.

The following equality holds (see Lemma 3.3.1 b)):

(2.14) Dy =Ajuar,u( | ADui

2<p<n—4
We just solved the elementary step (curvesin A7) of HC(n), n > 8in the
previous lemma. The curves from U%SPS”-‘* Ap will appear in section 3.5
(§3)-Theorem 3.5.11, the curves from A7, in section 3.6 (§3)-Theorem 3.6.1
and the curves from A2 ., in section 3.6 (§3)-Theorem 3.6.2, thus proving

the Main Theorem, using (2.14).
We end this § with a picture

i

|
l
|
|




The hashureted domain is D} (the non-lacunar one).

3 The proof of Main Theorem

3.1 Methods

Let’s fix some notations. Let there be © C P? a finite set of (distinct)
points ¥ = {Py, P, ..., P,}. We denote by S = BLs(P?) — P’ the blow up
of P*in . Then Pic (S) = Z & Z°"" with (I; —eo, —é1, ..., —€,) a Z-basis
(here [ is the class of the inverse image in S of a line L C P? and e¢; are the
classes of the exceptional divisors E; C S corresponding to the points F;,
0 <i<s). We recall that the intersection form on S is given by:

(l-e;)=0, (e2)=—1,i=0,s, (e,-¢;)=0, (V)i#j (*)=1.

If £ =al- Zbiei € Pic(S), we write £ = (a;bo, by, ..., b;).

i=0

If L = Og(D), D € Div(S), we denote by [£] = |D| the complete
linear system associated to £ (resp. D). We write [(a;bo, b1,...,b,)] =
[a; b0, b1y ..., by).

Let’s now analyse the Gruson-Peskine type construction given by Cilib-
erto ([Ci]). The surfaces X' used by Ciliberto, containing the necessary
curves (k = [n/3],) are obtained blowing up 3k — n + 6 points from P?
in general position (i.e. any 3 noncollinear and not all on a smooth conic)
and embedding the abstract surface obtained using the very ample invert-
ible sheaf (k 4 2;k,1%¥~"+%) (we denoted (a;b,c...,c) by (a;b,c')). Be-

e

¢t times
cause 3k —n+ 6 € {4,5,6} there is a well-known criterion giving sufficient
conditions for a linear system for containing (smooth, irreducible) curves.
Precisely, if £ = (a;,bo,by,...,bsz) € Pic(X}), where s§ =3k —n+5 and

(311) azb0+b1+b2,bOZbl?_...stzzo,a>0

then [£] = [a; g, by,. .., b,] contains a curve.

Due to this criterion (depending only on coefficients), the construction
of curves on the surfaces X7 has two parts: an arithmetical part, where the
necessary degrees and arithmetical genera are realised by using the well-
known formulae of genus and degree for £ € Pic(X}) and a geometric part,
where the necessary curves are obtained by applying (3.1.1) to the sheaves
L used in order to solve the arithmetical part.

10



The main contribution of this section to HC(n) is the construction of
invertible sheaves (and then curves) having the degree and genus in the
domains A}, on some surfaces X'. Precisely, let’s denote by 5, = S :=
Bls,(P*), T, = ©7 = {Py,P,,..., P}, s = 3p—n+5, ] containing
general points. Then H} = (p+2;p, 1°7) € Pic(S}) is very ample (see section
3.2, Proposition 3.2.2) and then X' := Im ¢pm) C P" deg X} =n+p-1.
If p = k one obtains the surfaces X} from [Ci].

If we try to use an argument similar to the argument from [GP 2] for X',
so to divide the proof in two parts, an arithmetical one and a geometrical
one (the smoothing) we need a criterion similar to (2.1.1) for an arbitrary
number of points in £,. But this is, anyway, very complicated by itself (see,
for instance, the Hirschowitz conjecture [Hi]). On the other hand, such a
general criterion must include the conditions (2.1.1) (normalisation, using
quadratic transformations); but these conditions allow us to construct curves
only for d > a function of degree 3/2 in n as it can be seen if we try to apply
an argument as in [Ci]. So, in order to produce the necessary curves for
small degrees, we need a new technique, which we shall explain here.

The main idea is to consider the arithmetical and the geometrical parts of
the construction of curves on X entirely linked, i.e. to construct linear sys-
tems containing the necessary curves directly and explicitely enough using
combinations between some simple sheaves (so, somehow easy to understand
them).

Explicitely, we’ll proceed as follows (in order to construct the necessary
curves from the domains A} on X'): we start with a simple initial family
Dy of sheaves

3.1.2 Do = (a+2;a,1,,0% ") € Pic(X?), 0<t<s? acZ
; P P

of arithmetical genus a and some degrees, realising the necessary sheaves in
some initial intervals in d (like z,(d,z) = 0, for instance - see (2.2) - but
not only). The families (3.1.2) are the only ones which are good for the
initial intervals (we’ll explain this later). After the initial construction we
continue using a number of inductive arguments (after z,(d, n), for instance,
but not only), adding repeatingly to Dy (by tensorisation) some simple (and
well understood) invertible sheaves, similar to the class of hyperplane section
(see Lemma 3.2.4). Let’s explain, shortly, why the inductive processes works.
Let’s suppose that we need to construct curves on the surfaces X7, of degree
d and genus g = 7,(d, n) (see (1.1)). Let’s suppose that we have constructed

11



the necessary curves for m,(d,n) = 0 (see (1.2)). Because
(3.13) 7y (0 (np—1)) = 1y (d)+(d4p—1); mp(d+(n+p-1)) = my(d)+1

in order to construct curves with (deg(C),¢(C)) = (d,g), we proceed as
follows: if the curves C have degrees d and genera g = 7,(d,n) in the
domain m,(d, n) = m, then the curves C' := C'+ H}, H}' € [p+ 2;p, 1°7]
have degrees d' = d+ (n+ p — 1) and genera ¢’ = m,(d’,n) in the next
domain m,(d’,n) = m+1 (use (3.1.3)). Hence, we obtain invertible sheaves
for all pairs (d,g), g = ps = m,(d,n) as far as we succeed to construct
these invertible sheaves in the domain m,(d, n) = 0. Moreover, we can test
when the associated linear system appearing contain curves, because the
appearing linear systems |Dg + ZH}?I, [ > 0 are simple (specialise the points
from ¥7 on a rational plane curve of degree p+ 1, having a singular point
P, with multiplicity p, see Proposition 3.2.2 and Lemma 3.2.4).

In our case, in order to construct the necessary curves from the domains
A7 it is necessary to change in some way the functions 7, so that the initial
verifications (corresponding to m,(d,n) = 0) to be made using sheaves as in
(3.1.2) and a property as (3.1.3) to still hold (and some others are appearing,
see section 3.3, Lemma 3.3.1). We get in such a way the (unique) functions
a,(d, n) from section 2 (see (2.1)).

Moreover, the method shortly explained here works only if # ¥ =

3p—n+6 > 12 (#A4 means the cardinal of the finite set A) so,if p > —g+2. Sa,

for #37 <11 we need another method in order to construct curves on X'
Because we need such curves for small degrees also, the inductive argument
is used again, as possible. But in this second method of construction we
will be, partially inspired from [GP 2], because in this case a smoothing
criterion of (3.1.1) type will be good enough (it is obtained specialising the
points from X7 on a smooth plane cubic curve, see Proposition 3.2.1 and
Proposition 3.2.3). In this case, a suplimentar property of the function a,
will be necessary, namely that these functions must be related in a ”good”
way with the genus formula (see section 3.3, Lemma 3.3.2); and this is
possible exactly because one uses initial families of type (3.1.2) (so these
families are obligatory).

The smoothing criteria used in the methods are collected in section 3.2,
in Proposition 3.2.1 and Lemma 3.2.4.

In section 3.4 we’ll construct invertible sheaves from Pic(X}) in Ap
using both methods. In section 3.5 we'll apply the two smoothing criteria
to sheaves from section 3.4 in order to get curves. We remark that the

12



domain of applicability of the only inductive method is (R1) and for the
other method (using some of Gruson-Peskine ideas) is (R2) where:

(3.1.4) (R1):n > 9, §+2§n—4(so #Y° > 12)

(3.1.5) (R2) :n > 8, gg <§+2(soﬁ<#v” < 11).

In section 3.6 we finish the proof of Main Theorem by briefly comparing
our results from section 3.5 with two previous theorems of Ciliberto and
Ciliberto-Sernesi.

We end this section remarking that it is possible to see that the construc-
tions from sections 3.4 and 3.5 have no degree of freedom, but they cover
all the necessary ranges. Let’s remark that the method used in (R2) cannot
be used in general because the condition (c5) from Proposition 3.2.3 gives
curves only for d > a quadratic function in n.

And now, let’s systematically analyse the domain D7.

3.2 Two smoothing criteria; the surfaces X

Let there be © C P?, ¥ = {Py, P,,..., P} a set of general points and
S := Blg(P?) 5 P? the blow up of P* in X.

The first smoothing crierion is ii) from the next Proposition (reformu-
lated in Proposition 3.2.3).

Proposition 3.2.1: If D = (a;bo, by,...,bs) € Pic(S) is so that a >
by > by >...>b, >0, then:
i) each one of conditions (i.1), (i.2), (i.2)", (i.3), (i.3)" implies h'(D) =
s 2
0, where (i.1): a=Y by > ~1; (i.2): 2<s<T,a> Y by (1.2):2<s <7,

=0

2 2 8
a=>"b>-1,bo>b; (i3):s>8,a>y b, 3a—) b >1; (i3)s 28,

=0 1=0
a— b>—1,3a=Y b >1,by> by
= =0
ii) each one of the conditions (ii.1), (1i.2), (11.2)', (ii.3), (ii.3)" implies
h°(D) # 0, [D] has no base point and contains a (smooth irreducible) curve,

where (1i.1): a>Zb1, (i.8):2 £ § £ 86, a>Zb,, (#.2) : 2 < & £ 7,

1=0 =0
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- sz > <1, bo > by +2; (ii3): s> T, a> 3 by 3a—) b > 2

‘=0 1=0

(ii.3) 15 > 8, a—Zbl_ ~1,3a—Y b >2 by > by +2.
1=0

Remark: This is a Harbourne type result ([Hb 1]).

Proof: A direct proof can be obtained specialising the points from X
on a smooth plane cubic 'y C P? (general on I'y), using induction on s and
standard exact sequences. Details are left to the reader (or see [P 2}).

* % &

Proposition 3.2.2: Let there be D = (p + 2;p,1°) € Pic(S), p € Z,
p>1. Then: i) if s < 3p+ 3, then h°(D) # 0, [D] has no base point and
contains a (smooth, irreducible) curve; ii) if s < 3p, then D is very ample.

Remark: A proof of ii) can be found in [Gi].

Proof: A direct proof can be obtained specialising the points from
(except the last one) on a rational irreducible plane curve Ay C P’ of
degree p + 1 having only one ordinary singularity of multiplicity p : Py will
be the singular point, Py,..., Pi_y € Ag, Py ¢ Ag. Then use standard exact
sequences and standard techniques in order to separate points and tangent
vectors. Details are left to the reader (or see [P 2]).

* ¥ *

Now, we are ready to define the surfaces X)'. Precisely, let there be
pe€Z, k<p<n-4, k=[N3 neZn>5and =% =
{ P Pusosaa Peg} C p* (sp :=3p—n+5) be a set of general points. From
Proposition 3.2.2 ii) follows that #j := (p + 2;p, 1%2) € Pic(S?) (Sp =
Bl:;(Pz)) is very ample on S7'. Then:

Xy =1Im (ppey)

X7 are rational surfaces with hyperelliptic hyperplane sections and we

can easﬂ) check (doing computations) that X C P?and deg(X]') = n+
— 1. If p = k one obtains the surfaces used in [Ci].

Now we want to reformulate Proposition 3.2.3 (ii) in the Gruson-Peskine

coordinates (d,7;6y,...6sx) ([GP 2], step 2), (this is possible). So, for D €

Pie(XP) = Z &z,
D = OX;!(D) = ((l;bo,bl,...,bsg), a _>_ bo Z bl?Z Z bs;‘ Z O,

for some D € Div(X["), we consider the change of coordinates (in Pic(X])®

14



Q)
5 . L T
(3.2.1) ri=a-—by, ;= §r—b,-, i=1,85.
If d=degD:=(D-H})(H} € [H;]) and g = p.(D), using the genus
formula one obtains:

st Fr

_ » 1o,
l i=1 §=1
1 1,
(3:23)  Fu(r)=F{"(r):=3 {d@“ 1)+ (p-1r-2 +§ ] +1

Proposition 3.2.1 ii) can be reformulated now as:
Proposition 3.2.3: Let there be
DIOX;(D)EPlC()(:), D:(a;bg,bl,.‘.,bsv’}).

If the conditions (c1), (c2), (¢8), (c4), (c5) are simultaneously satisfied by
D in the coordinates (d,r;0y,...,0,.), then [D] = |D| # 0, has no base point
and contains a (smooth, irreducible) curve, where:

(c1) 6; = —%r (mod 1), ¢=1,s3
(c2) d+ -(p—n+5)—> 6 =0 (mod2);
i=1
(¢3) |6, <0, < < Bs; d %
sy 1
(c4) —61+§9i Sd-gn—p+1n
(c5) d>(p—1r+2.

Proof: Left to the reader (similar to the case n = 3, see [Ha 2], [GP 2]).
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......

%% %
We end this section with a technical lemma (which represents the second
smoothing criterion), essential in section 3.5.
n
Lemma 3.2.4: If pn€ Z, n >3 and p > 3 + 2, let’s consider the
Jollowing invertible sheaves from Pic(X]): '

!

Hy=He = (p+25p, 1), Ha = Hy = (p+2;p,1571,0), H = (H2E) =
= (p+1;p—1,1575,0%,1%,0), Hy = (HMHL) = (p+1;p-1,1%77,0%,1%,0),
Hy = (HpHa) = (p+ Lp-1,157%,0%,1%,0),

Hy == (H;’_“LllA)’ = (p+1;p— 1,171, 0% 18,0).

Ifti to, ..., 16 € Z, t1,...,t6 > 0, let there be
(3.2.4) D:=TDo+tHy + toaHo + tsHs + taHy + t5Hy + teHg € Pic(X))

where Do := (a+ 2;a,v1, V... Vsn), Vj € {0,1},j=T1,sp and v; =1 for
u values of the indez 7(0 < u < sg). Let’s denote by t :=t, +to + ...+ t6.
Then, the condition

(8.2.5) 3a>u+n—T7T-(t+1)(n—4)

implies [D] # 0, [D] without base points and contains a (smooth, irreducible)
curve.
Proof: Write D = t, D, +t3D,,+t3D;,+t4D;, +t5Dy +te Dy +K for any
T1, 39y ... 06 € L, where Dy, = (2, +2;21,1%), Dy, := (224+2; 3, 1°»71,0),
D, = (234 2; 23,15 75,0%,1%,0), Dy, 1= (244 2;24,177,0%,1%,0), D, :=
(z5 + 2;25,1°779,0%,15,0), D, = (26 + 2;26,1°5711,0%,15,0), R == (b +
6

2;b, 01,0, ..., Vgn) Where b:=a + tp—1)4 (t1 +1t2) — Ztixi'
i=1

Take then zi,...,z¢ > 0 minimalso that Proposition—3.2.2 i) applies for
D,y Dy, We deduce that

(3.2.6) 3Jp—n+2<32;,<3p-n+4
(3.2.7) 3p—-n+1<32,<3p—-n+3
(3.2.8) 3p—n—-1<3z;, <3p-n+1,i=3,6.
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In order to obtain the conclusion from the lemma for [D], it follows that
it’s enough to have the same for [R] so, by Proposition 3.2.2 i) we need

6
(3.2.9) u<3b+3, b=a+t(p—1)+ (t +1t2) - Dtz
i=1

6
Replacing b, (3.2.9) becomes u < 3a+3t(p—1)+3(t1+t2) —Zti(Sxi)+3,
1=1
6
or Z t:(32;) < 3a+3t(p—1)+3(t1 +1t2) —u+3. Using (3.2.6), (3.2.7), (3.2.8),
i=1
we can see that this last inequality is implied by t(3p — n+ 1) +3t; 4+ 2t, <
3a4+3t(p-1)+3t+t)~ut+3e3a>ut+n—T-(t+1)(n—-4) —t,.
Because t, > 0, this last inequality follows from (3.2.5).
* ok *

Corollary 3.2.5: In the same hypotheses as in Lemma 3.2.4, the same
conclusion holds for [D) if

(3.2.10) 3a>3p— (t+1)(n—-4)—2.
Proof: Give to u the biggest value u = s} = 3p—n+5in (3.2.5)

3.3 Numerical properties of the functions a,(d,n)

We recall that the functions o, = o,(d,n) were defined in section 2
((2.1)-(2.5)). Let it be now

(3.3.1) a,(d,n) = ap_1(d+1,n+1).

We prove now the following key lemma:
Lemma 3.3.1:
a) Let’s denote by d' := d+ (n+p—1). Then:

z,(d',n) = a,(d,n) + 1; (&', n) = t,(d, n); up(d', n) = up(d, m);
ap(d' n) = ap(d,n) + (d+p=1)(« apy(d= (n+p—1),n) = ap(d,n) — d+n);
the same for «,.

k) pei(d—1,n) < a,(dyn), (Vd>al+1,d€Z;
apr1(d,n) < ay(d,n), (V)d>ay+n+p, d€Z.
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C)‘Tp+l(d', Tl) = xp(d+ 1,72+ 1)7 tp-i—l(d)n) = tp(d+ 17 n+ 1) - 17
ap(d+1,n+1) =a,,,(d,n) € {ap1(dyn) = 1, apya(d, n)}.
Proof: b) We will show first that
(3.3.2) apy1(d—1,n) <opp(d,n), (V)d>ap,, +1,de€Z.
We’ll use induction on z,4,(d — 1,n), using a). Let’s remark that
rpea(d = 1,1) = 0 = apys(d—1,m) = [(d - n +9)/2).
([d—n+p+1)/2, d# ap+ (n+D)
(3 — 4n 4 1)/2). , d= a2y, + (n+)

(3.3.3)
.'L'p_i_l(d - 1, 71) == in+1<d, n) =

So, ,41(d — 1,n) = 0= opy1(d - 1,n) < a,(d,n) (doing some compu-
tations for d = T (n+p)).

Suppose now that we have proved (3.3.2) for z,41(d — 1,n) = . Let
d' be so that z,.;(d' — 1,n) = 2+ 1. Put d' = d' — (n+p). Using a)
we deduce that z,4,(d — 1,n) = z. Then api(d',n) — i (d' — 1L,n) =
Gpa(dt (n-+p),m) — Cpys (d— 1+ (n+p),m) = (use a) again) (o (d,m) =
apy1(d—1,n))+1> 1> 0 (we used the induction hypothesis). Now (3.3.2)
is proved.

We'll now prove the first inequality from b) using induction on z,(d -
1,n). We have

[(d~n+p)/2., d# e+ (n+p-1)

3.3. z,(d-1,n) = a‘pd’n:
(3.34) zp(d—1,n) = 0= ay(d;n) {[(3d_4n+1)/2]*,d:a;+(n+P—1)-

It can be seen that
(3.3.5) 2,(d—1,n) = 0= [(d—n+p)/2 < ap(d,n) < [(d—n+p+1)/2]..

Becanse z,(d — 1,n) = 0 = z,,1(d - 1,n) = 0, from (3.3.3) we now deduce
the first inequality from b) if z,(d — 1,n) = 0.

Suppose now that the inequality holds for z,(d —1,n) = z and let d’ be
so that 2,(d' —1,n) =z +1. Put d:=d'— (n+p—1). Then zo(d-1,n) =12
and we have: a,(d',n) — ayp1(d,n) = ap(d+ (n+p—-1),n) - appr{d—1+
(n+p),n) = (use a)) ay(d,n) = ap41(d—1,n) > 0 (induction hypotheses).
So a,(d',n) > opyq(d',n). Using now (3.3.2) we get the first inequality b).

18



The second equality b) comes from the first one, as before.
Bk ¥
Lemma 3.3.2 (for F7"(r) see (3.2.3):
8) Fi{inpp-n(r+2) = FI"(r) + (d+p - 1);
. y 1
b) i) o, (d,n) = |FI"(2(z,(d, n) + 1)) — ik
i) a1 (d = 1,m) = [ 2y (d = 1,m) + ).
Proof: b) Use a), Lemma 3.3.1 a) and induction on z,(d,n) (and
Z,41(d — 1, n), respectively).
K %
Remark 3.3.3: The previous lemma shows us that the functions a, (d, n)
are related in a "good” way to the genus formula (see (3.2.2)) and this will
be very important in sections 3.4 and 3.6.

3.4 Invertible sheaves from Pic(X”) in the domains

P
_ n
Ax(n =5, p> 3)

We recall that the domains A2, p > n/3, p € Z from (d, g)-plane were
defined in §2, (2.11). Here we consider, for p > n/3, p € Z the domains Az

(3.4.1) AZ opp(d—1,n) <g<ay(d,n), d>ap+1,d,g€Z
(for the definition of a7 see (2.3)). Obviously
(3.4.2) fi; DAY, (V)p2n/3, (¥)n>3, nel.
In this section we’ll prove the following
Proposition 3.4.1: Let there ben > 5, n € Z and (d, g) € fl;’, p>n/3.
Then there is D € Pic(X}) such that (deg D, p,(D)) = (d, g).

2
We recall that deg D := (D - %7 ), where H} = (p+2;p,1°7) € Pic(X}).
Proof: This is long and will be divided in 4 steps:
Step 1: Let there be d,g € Z, d > a},, + 1 so that

a;+1(d - 17 TL) S g S ,-‘/3p+1(d7 n) - $p+1(d3 72),
where
ay(d,n), d # af(mod (n+p—1))

(for o, see (3.3.1)).
ap(d,n), d = a}(mod (n+p - 1))

Bold,5) = {
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Then, there is D € Pic(X}') so that (degD, pa(D)) = (d, g).

Step 2: Let there bed, g€ Z,d > ,fz.;,’“ so that o, (d,n+1) — z,(d,n+
1) <g < ap(d,n+1). Then thereis D € Pic(X]) so that (deg D, p.(D)) =
(d.g).

Step 3: Let therebe d,g € Z,d > ag“ —1=a},, sothat aj,,(d, n) -
Tpr1(din) < g < ajyy(d,n). Then there is D € Pic(X}) so that (degD,
pa(D)) = (d, 9).

Step 4: The statement of Proposition 3.4.1.

Proof of Step 1: We use induction on 2p41(d—1,n). f2,4:(d-1,n) =
0, we have:

[(d ~p+p=—1)72, = 0;+1(d -1,n) < ,"Serl(dﬁ n) - Ip-i—l(d: ) =
(3.4.3) { [(d=n+p)/2)., d# gy + (n+p)
[(3d — 4n - 1)/2]., d = a3, + (n +p).

We consider the following invertible sheaves Dy € Pic(X]'):
(3.4.4) Do =(g42:9,1%0% %), 0< u< sy =3p—n+5.

Then g = p,(Dy) and, if d := degDy = (Do - H;) it result that g =
(d—2p+u—4)/2. Taking now

(3.4.5) vu=3p-n+4,3p-n+3,3p-n+22>0

and using (3.4.3), one obtains invertible sheaves Dy € Pic(X]') having the
last component zero and degree and arithmetical genus in the range from
Step 1, for z,41(d — 1,7) = 0. Because

(3.4.6) { o (d=1+(n+p)n)=a,,(d-1n)+(d+p-1)
(Bpar = 2pg1)(d+ (n+p),n) = (Bpir — 2p11)(d,n) + (d+p— 1)

(see Lemma 3.3.1 a)) we obtain from (3.4.3) by induction on ,41(d — 1,n)

the inequality o, (d = 1,n) < Bp41(d,n) = 211 (d, ), (V)d 2 afy, + 1.

Let there be 7?[;}' = (p+2;p,1+71,0) € Pic(X]'). It is easy to check that,
if D € Pic(X]) has the last component zero, then

deg(D f?rl;j) =d+ (n+p), d=degD
(3.4.7)

po(D+H) =g+ (d+p=-1), g=p.(D)
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Now, using (3.4.6) and (3.4.7) it follows that we cover the range from Step
1, a.ddi.ng to the sheaves Dy, used for z,41(d — 1,n) = 0, succesively, the
sheaf H (at each addition, z,;,(d — 1,n) increase by 1, see Lemma 3.3.1

a)).

Remark 3.4.2: The invertible sheaves used in order to cover the domain
from Step 1 are of the form: D = Dy + t,H, (see Lemma 3.2.4), where
Hs = ?{_g =(p+2;p,1%71,0),t, € Z, t, > 0, Dy = (a + 2;a,1%0%7Y),
u € {3p—n+2, 3p—n+3, 3p—n+4}, a € {(d,—n+p-2)/2, (d)—n+p-1)/2,
(dy =+ p)/2) N2, dy = (Dh H3) > a1, dy < aZyy + (n+p) (see
(3.4.4), (3.4.5) and the construction.)

Proof of Step 2: This step is the most difficult. We’ll give two con-
structions, necessary in a complementary way in section 3.5.

Construction A (works for #X? > 12, hence p > g—k Z)

1) We'll prove here the existence of D € Pic(X;*') of degree d and
arithmetrical genus g for ¢ = a,(d,n+ 1) and any d > ap*'. We recall that
X+t Pt

Let there be H2*! = (p+2;p, 1) e Pic(X}*"). Because deg(X)'t!) =
n + p, it can be seen that, for any D € Pic(X]}'*")

(3.4.8) { deg(D+Hp™) =d+ (n+p), d=deg(D)

PP+ HI ) =g+ (d+p-1), g=p.D).

Using (3.4.8) and Lemma 3.3.1 a), it follows that we can use the same
argument as in the proof of Step 1, using induction on z,(d,n + 1). So, we
check the existence for z,(d,n+ 1) = 0 and we add succesively the class
of hyperplane section of X7'**, namely H*'. If z,(d,n + 1) = 0, then
a,(d,n+1) = [(d=n+p—1)/2].. So, we cover this initial range with
sheaves Dy € Pic(X}*") of the form

ntl

(3.4.9) Do=(9+2;9,1%0% ), g=[d=—n+p-1)/2],,

with
(34.10) w=3p-n+2=5"-2 or u=3p-n+3=5"" -1

Let’s remark that the sheaves used here are of the form

(3.4.11) (t+21;t,15;+1—2,l~1 orl,l-1), where [ = z,(d,n+1)+1 € Z, | > 1.
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2) Now we consider H3 = ]Nf;,’fllyl = (p+1;p-1,1%77,0% 1%) € Pic(X]+1).
Then s

(3.4.12) pa(H}’,’ff}l) =p-1, deg(ﬁ;j{l) =n 4+ p.

In the beginning we’ll prove
(3.4.13) { Ifg=oa,(d,n+1) = (z,(d,n+1) —2)* 2,(d,n+1)>2,2€2Z, >0
3.4.1
then (3)D € Pic(X}*) so that (deg D, po(D)) = (d, g).

We'll use induction on 2,(d,n+ 1) > z. In the induction process we’ll
need the following ¢(D):

(3.4.14) { D :l(a; boy b1,y bap_nya) € Pic(X)H),
then (D) := a — by — bzp_ns1 — b3p_nta.

(the indices 3p — n 4 1 and 3p — n + 2 correspond to the two consecutive
zeros in Hs, so that e(H3) = 2).
Ifz,(d,n+1) ==z, (3.4.13)is just 1). If z,(d, n+ 1) = =z, let’s denote by

D, an invertible sheaf satisfying (3.4.13). Then ¢(D,) = 0 (= 2(z,(d,n +
1) — z)), by (3.4.11). Actually, we'll prove by induction on z,(d,n+1) > z
the following statement (stronger than (3.4.13)):

lfg = aP(d’n+ 1) - (mp(dan) - ‘T)za xp(d’n+ 1) 2z,
(3.4.15) z €%, x>0, then (3)D € Pic(X]*) so that

(deg D, p. (D)) = (d, g) and €(D) = 2(z,(d, n+ 1) — z).

We have just verified (3.4.15) for z,(d,n+ 1) = z. In order to finish the
inductive process, let’s suppose that we have constructed invertible sheaves
D,., having (deg(D.+¢), pa(Drys)) = (d, g) in the situation (t € Z, t > 0):

Tpld,n+1) =341
(3.4.16) g=a,(d,n+1)-t* =a,(d,n+1) - (z,(d,n+ 1) — z)?
so that €(D,4:) = 2t = 2(z,(d, n + 1) — z).

We need D141 € Pic(X]*!) to do the same job for the next range in
d(z,(d',n+1) =2z +t+1). Or, using the induction hypothesis and Lemma
3.3.1 a) we can see that the sheaves D,yyq1 1= Doy + HJH | are the good
ones. Indeed: '

deg(Dryis1) =d+ (n+p):=d; zp(d,n+1) =2+t +1.
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Pa(Datis1) = Pa(Dapd) + (p = 1) + (Dege - Hy2 1) = 1= pa(Degd) + (- 1)+
+deg(Dyyt) — €(Dypyt) — 1 = (use the induction® uypolhesns)
ap(d,n+1) = (zp{d,n+ 1) —2)?+ (p- 1) +d - 2(zp(d,n+ 1) —2) - 1 =
=o,(d,n+1) = (2,(d,n+1) - 2)? = 2(zp(d,n+ 1) —2)+d+p - 2.
We replace now d with d' — (n + p) and we use Lemma 3.3.1 a). We
obtain
Pa(Deyirr) = op(d — (n+p)yn+ 1) ~ (z,(d — (n+ p),n+1) - I)Z"
=2(z,(d = (n+p),n+l)-z)+d —(n+p)+p-2=a,(d,n+1)-
—d'+n+1-(zp(dyn+1)-1- x)z - 2z,(d,n+1)-1~-2)+d —n-2=
ap(dn+1) = (z,(d,n+1) —2)* + 2(zp(d',n+ 1) —z) — 1—
=2z, (d\n+1)—z)+2-1=qa,(d,n+1) = (zp(d',n+ 1) - 2)%
Moreover, €(Dyyiq1) = €(Deye) +2 = 2(z,(d',n+ 1) — 1). Now, the
inductive process is finished. So (3.4.15) (hence (3.4.13) also) is proved.
Now, let a be arbitrary, a € Z, a > 0 and put ¢ := ¢®> —a > 0. We obtain
by (3.4.13) elements from Pic(X}*!) of degree d and arithmetical genus
Pa = ap(d,n+1)—(2,(d, n+1)—a’+a)? for any d so that z,(d, n+1) > a*—a.
Take now d so that z,(d,n+ 1) = a®(> z = a® — a). One obtains invertible
sheaves of degree d and p, = a,(d,n + 1) — @® for z,(d,n+ 1) = a®. Now,

adding succesively H?*! and using Lemma 3.3.1 a), we obtain 1nvert1bl
sheaves of degree d and arithmetical genus g in the domain (d, g) defined by

(a) g=a,(d,n+1)—a* azp(z,n+1)>d°

3) Now, start again with the invertible sheaves covering the domain (a),
from 2). Using the invertible sheaf H, = {"+112 = (p+1;p-1,1%77"2/0%1%) €
€ Pic(X}*) (instead of H;Jrlll) and using (3.4.11), we obtain, as before,
invertible sheaves covering by degrees and arithmetical genera the domain

from the (d, g)-plane defined by

g=a,(d,n+1)—a®> - (z,(d,n+1)—y)? z,(d,n+1) >y

23



forany y > a®, y € Z.

Take now b € Z, b > 0 arbitrary and put y =22+ b°—b (> @?). It follows
that we obtained invertible sheaves from Pic(X]+1) covering by degrees and
arithmetical genera the domain

{ g=oay(d,n+1) - a®— (2,(d,n+ 1) — a® — b2 4 b)?
zo(dyn+1)> a4+ b6 -b

Take now d such that z,(d,n4 1) = a® + b? (> y = d® +b*-0).
We obtain invertible sheaves of degree d and arithmetical genus g for g =
ap(d,n+1) = (a® + b*). Adding succesively H2+! we get invertible sheaves
covering by degrees and arithmetical genera the domain

(b) g=a,(d,n+1) - (a®+0*), z,(d,n+1)>a®+b%

\

4), 5) Continuing for another two times as for (a) and (b), using (3.4.11)
(and s;}“ > 10, because p > g+2) and the invertible sheaves Hs = ff;‘j’ll’g =

(P+1;p—1,1%7"%0%1°) and He = HH = (p+1;p—1,1%7775 02, 19),
M, Hs € Pic(X]+!), one obtains sheaves from Pic(X"*1) covering by de-
grees and arithmetical genera the domain (d, g) given by

(€) g=ap(d,n+1) = (@ + 6+ 7 +e?), a,(d,n+1)>a’+b° 4+

for a,b,c,e € Z, a,b,c,e > 0 arbitrary.

6) The domain (e) is exactly the domain from Step 2, because any posi-
tive integer can be written as a sum of 4 squares of positive integers. Indeed,
let there be g € Z so that a,(d,n+ 1) - z,(d,n+ 1) < g < a,(d,n+ 1).
Write f = a®+b*4-c?+¢€%, a,b,c,e € Z, a,b,c,e > 0 for f := a,(d, n+1) —g,
0< f<z,(d,n+1). Hence

{ g=a(dn+1) - (@®+ b6+ +¢€%) (= ap(d,n+1) — f)
o(d,n41) > a®+ b2+ c? 4 €

Because the domain (e) is covered by degrees and arithmetical genera corre-
sponding to invertible sheaves from Pz'c(_X';‘“) for anya,b,c,e€ Z,a,b,c,e >
0, we deduce the existence of D € Pic(X'*') so that (deg D, p.(D)) = (d, g).

. n
Construction B (works for #%7 > 6, hence p > g) because

1
3.4.17) ay(d,n+1) = |FP" (2(z,(d,n+ 1) +1) = =| (Lemma 3.3.2 b)i)
P d P 92

*
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we can use the Gruson-Peskine coordinates (d, r; 6;, 6,, . . oy 0.n41) where r =
14

a— by, 0; = —;—r —b;, 1= 1, sp*t for D = (asby, .. .,65:“) € Pz'c(X;’“) (see
(3.2.1)). Step 2 will be proved as far as for any (d, g) from the domain of
Step 2 we’ll prove the existence of a sheaf D € Pic(Xp+) with degD = d,
such that, in the coordinates (d,r;8,,.. -y0,n41), D satisfies the conditions

(c1) and (c2) from Proposition 3.2.3 and

n+1

L@% 4
(3.4.18) Fymti(e) — z Y 6 =g.
1=1

Indeed, the left member of (3.4.18) is just p,(D) (see (3.2.2)), hence
(deg D, pa(D)) = (d,g). Moreover, it is necessary, performing the transfor-
mation of coordinates of D from (d,r;6,,...,0,.41) to (a;by,...,b,+1) that
these last ones be integers. But (c1) means b; EF (see (3.2.2)); then by € Z,
because r € Z.

Now, we’ll prove the existence of such D covering the domain from Step
2 by degree and arithmetical genus. Using (3.4.17), take

(3.4.19) ri=2(z,(d,n+1) +1).
Let there be b € Z so that

(3.4.20) 1<b<r=2(z,(d,n+1)+1).

4
Write b = ZC?, ¢i €74, ¢y >y >c3>cy > 0. Then take
(3.4.21) im1

05;‘+1_]-+1 = ¢, ]:m’ 91, :O, i = 1,3;"7"1 s

(recall that 3;“ > 4, because p > n/3).

Given r as in (3.4.19) and 6; as in (3.4.21), D is determined by these
numbers and d, performing the inverse transformation (3.2.1), with d =
deg D.

nt1
Sp

¢ 2 n 1
We have p,(D) = FF**(r) — % Z 0; = Fi™(r) - 51) (from (3.2.2)
i)

and (3.4.21)). Because b moves in the range (3.4.20), it follows from (34.17)
that we get the necessary invertible sheaves for Step 2 as far as we check
(c1) and (c2). Now, (cl) is clear, because r € 2Z and 6; € Z. As for (c2),
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gt sl
, - 1 ¢~ o L
g = pa(D) € Z and p,(D) = FE™ (1) -3 ; 8%: so 2FP"H (1) — 22_:? 62=0

(mod 2). Because f? = f (mod 2)if f € 7 and because r € 27, we can see
that the left member of the above congruence is congruent (mod 2) with the
left member of (c2).

Remark 3.4.3: The Construction B is, obviously, shorter than Con-
struction A, but in section 2.5 we’ll need both of them.

Proof of Step 3: The existence of invertible sheaves in the domain of
Step 3 is a consequence of the construction from Step 2, using Lemma 3.3.1
c).

Recall that X = ¢pn1(S;) C P", where gy is the embedding defined
by the very ample sheaf H} = (p+2;p, 1%) € Pic(S]) and S} = BZE;(PE)
(X C P’ a set of sp 4+ 1 general points). The classes from Step 2 were
constructed by using the surfaces X}* C P"*'. If we consider them on
the abstract surface SI’}“, these invertible sheaves can be considered also on
S7, obtained from S;*' blowing up a new general point P» (considered in
P?). Put 57 = 52+ U {P,;}. The sheaves from Pic(S;*') used in Step 2,
considered now in Pz'c(S;“) have the last component equal with zero. Using
Lemma 3.3.1. ¢), we obtain invertible sheaves D € Pic(X}) of degree d and
Pe = g in the domain
ap i (d=1,n) = zpp(d—1,n) < g <y (d=-1,n), d2 gt =ap,, +1.

Now, putting 1 (instead of 0) on the last component of the previous
sheaves, the arithmetical genus doens’t change and the degree is translated
by 1. We get exactly the necessary domain for the proof of Step 3.

Remark 3.4.4: The invertible sheaves D € Pic(X}') used in order to
cover the domain from Step 3, comming from Construction A in Step 2, are
of the following form: D = Dy + toHs + taHy + taHy + tsHy + teHg, where
Ho, My, My, HE, Hi are as in the Lemma 3.2.4, ty ...t € Z, t3,...,t6 2 0,
Dy = (a+ 2;a, 14,0 1), ue {3p-n+2, 3p-n+3}, ac{(d -n+
po1)/2, (d] - n+p)/2}0 5, d = (D4 -H) > apyy = [(n = p - 1)/2).,
dy <ap +n+p—1.

This follows from (3.4.9), (3.4.10), (3.4.11), the inductive processes, used
in proving (a), (b), () and the transformation from Step 3 (1 instead of a 0
on the last component, giving 1 on the last component of Dj and translating
dy by 1, giving a as in Remark).
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Proof of Step 4: Let’s remark for the beginning that, by putting to-
gether the Steps 1 and 3 and using Lemma 3.3.1 ¢), it follows that we covered
with invertible sheaves from Pic(X]'), by degrees and arithmetical genera
the domain

(3.4.22) ap(d-1,n)<g< e, (dn), g>a),+1.

We need sheaves from Pic(X]') that cover by degrees and arithmetical
genera the domain

ap-*—l(d_ 1,77/) S g S QIJ(CZ)TI’)’ g 2 (L; + 1'

We'll do this by induction on z,(d -1, n) using (3.4.22). If z,(d—1,n) =
0, then z,.:(d — 1,n) = 0. Hence a,4;(d—1,n) = [(d — n+ p)/2].. Using
(3.3.5), it follows that we need invertible sheaves which cover by degrees and
arithmetical genera the domain [(d -~ n+p)/2l. < g <[(d—n+p+1)/2].,
ay +1<d < ay+ (n+p—1). But then the necessary degrees and genera
are realised by

(3.4.23) Do = (9+2;9,1%0%™*) € Pic(X])
with
(3.4.24) u=3p—n+3,3p—n+4or3p—n+5.

Then, if we succeeded to construct invertible sheaves in the domain
appi(d —1,n) < g < op(dyn), 2,(d — 1,7) = 2 > 0, adding to them
the hyperplane class #; = (p + 2;p,1%7) we obtain, as many times be-
fore, using Lemma 3.3.1 a), invertible sheaves from Pic(X}') covering by
degrees and arithmetical genera the domain a,y41(d,n) < g < a,(d,n) for
z,(d—1,n) = z+ 1. Filling on the left from (3.4.22) (using Lemma 3.3.1 ¢},
last part) we finish the inductive process. Now Proposition 3.4.1 is proved.

* %k

Before ending this section, some remarks. The next Remark 3.4.5 is a
consequence of Remarks 3.4.2, 3.4.4 and of the construction given in Step 4.

Remark 3.4.5: The invertible sheaves D € Pic(X]') used in order to
cover by degrees and arithmetical genera the domain from Proposition 3.4.1,
using Construction A in Step 2 are of one of the following forms:

a) D= Dy + 611y + taHo, where Hy, Hy as in Lemma 3.2.4, t,13 € Z,
ti,t, >0, D) = (a+2;a,1% 0%Y), s5=3p—n+5uc{lp—n+2, 3p—
n+3 3p—n+4, 3p-n+5}, a€{(dg-n+p-2)/2, (dg—n+p-—

27



1Y/2, (dy —n+p)/2, (d} —n—i—p+1)/‘2}ﬁZ do = (Do - Hp) 2 apyy + 1,
dn<a”—l—7z+p o

b) D= Dy +t H1+to7{2+t3?i’ F it Hy +tsHE e He, withHy, ..., He as
Mmem324th””meZJh”q%20,ﬁ-—m+2mﬂﬂwﬁﬂu,
ue{3p—n+2 3p-—n+3} ac{ l”—n+p—1)/2, (dy —n+p)/2}NnZ,
dy = (Dg - Hy) > apy, anddy < aly +n+p—

From Remark 3.4.5 we deduce the following remark, which we’ll use in
the next section.

Remark 3.4.6: Ifn>9 andg <p<n—4,n,p€ Z, then the invertible
sheaves D € Pic(X}') used in order to cover by degrees and arithmetical gen-
era the domain from Proposition 3.4.1 (using Construction A in Step 2) are
of the following form: D = Do+, Hi+taHo+tsHy+taHy +tsHE +teHy with
Ho, Hoy Ha, Hy, He, He as in Lemma 8.2.4 and Dy = (a+2;a,1%,0% 7471 ¢),
e€{0,1},0Lu<sp-1=3p-n+4,a2(dg-n+p-1)/2, c€ %
%Gmﬁup%n+ﬂ Z (a; =[(n—p)/2. +1).

Put dg =dy—1if Dis of category a) in Remark 3.4.5 and do = dj if D
is category b).

Remark 3.4.7: Lel there be D = (a;b1,by,...,b5x) € Pic(X}) one of
the classes used in the proof of Proposition 3.4.1. Let there be d = degD =
(D-H}) and r:=a—by. Thenr < 2(z,(d,n)+1).

Indeed, let’s denote by r(d,n) := 2(z,(d,n) 4+ 1). If D has been used in
Step 1, then r = 2(2,41(d—=1,n)+ 1) < r(d n). If D has been used in Step
3 (mth any construction in Step 2), then r = 2(z,4,(d,n) + 1) < r(d,n). If
D has been used in Step 4, then r = 2(z,(d - 1,n) + 1) < r(d,n) or D is
obtained from some D; = (a'; b}, .. .,big) € Pic(X]) adding a number, let’s
say t, of Hy = (p+2;p, %) € Pic(X]'); then ry == a' - by < r(dy,n), where
d; = degDy; now, adding ¢ times H}, r; increases with at most 2¢ in order
to become r and r(dy, n) increases with exactly 2¢ in order to become r(d, n)
(due to the form of the three previous r); so the inequality ry < r(dy,n) is
transfered to r < r(d, n).

3.5 Curves on the surfaces X in the domains A;‘ (n > 8,

n

—<p<n-4)

3

We recall that the domains A7 were defined in §2 (2.11). In this section

we’ll prove Theorem 3.5.11 (stated to the end of section). This theorem
follows from:
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Proposition 3.5.1: Let there be (d,g) € A}, where n,p € Z, n 2> 8,
n/3<p<n-—4andk=1[n/3], Then:

) ifd> ;(3]) + n+9) there is a (smooth, irreducible) curve C C X',
non-degenerate in P", so that (deg(C), ¢(C)) = (d, g);

i) ifd < %(3]) +n+9) there is a (smooth, irreducible) curve C C P7,
non-degenerate in P", so that (deg(C),g(C)) = (d,g); if n = 0 (mod 8)
then C' can be found on X3 and if n = 1,2 (mod 3) then C' can be found on
b oA

Proof: The proof is a consequence of the analysis which we’ll do on the
linear systems associated to the invertible sheaves appearing in the proof
of Proposition 3.4.1. Precisely, we’ll test when these linear systems are
nonempty and contain (smooth, irreducible) curves, using the smoothing
criteria from section 3.2. Namely, for the situation (R1) (see (3.1.4)) we’ll
apply essentially the criterion given by Corollary 3.2.5 (considering Con-
struction A in Step 2 of the proof of Proposition 3.4.1) and for the situation
(R2) (see (3.1.5)) we’ll apply the criterion given by Proposition 3.2.3 con-
sidering Construction B in Step 2 of the proof of Proposition (3.4.1). The
situations (R1) and (R2) are complementary and their union cover the hy-
pothesis.

The proof of Proposition 3.5.1 will be the consequence of a sequence of
lemmas.

1) For the situation (R1):

Lemma 3.5.2: If (p,n) is in the situation (R1), (d,g) € A} and D €
Pic(X]') is one of the invertible sheaves used in the proof of Proposition 3.4.1
(considering Construction A in Step 2) so that (deg D, p,(D)) = (d, g), then
we know that D = Dy + t1Hy + toHe + taHy + taHy + tsHi + teHg as in

6

Remark 3.4.6; let’s denote by t := Zt,’ and suppose that t > 3. Then
1=1
[D] # 0 and contain a (smooth, irreducible) curve C, non-degenerate in P"
(here degD = (D - Hy)).
Proof: We use Corollary 3.2.5, i.e. we check that (3.2.10) is verified for
t > 3. Indeed this becomes

(3.5.1) 3a > 3p—4n + 14.

Because a > (dg —n +p —1)/2, do > (n — p)/2 (see Remark 3.4.6),
minorating @ (and dy) as before, it follows that (3.5.1) holds if

(3:5:2) 13n > 9p + 62.

29



However, this is true in (R1) (p <n—-4, n>9).

Because deg H > n+p—1, (V)H € {Hy, Ha, Hb, Hy M5, M} and deg Do >
0 (with degree as in the statement of lemma), the curve C' which we just ob-
tained has deg C' > 3(n+p~1) > n+p—1=deg X]'. So Cis non-degenerate
in P".

* K %

Lemma 3.5.3: If (p,n),(d,g),D,t are as in the previous lemma and
t = 2, then the same conclusion holds for [D].

Proof: We apply again Corollary 3.2.5 for t = 2 and we use that a € Z.
Doing computations, it follows that the only case when (3.2.10) doesn’t
apply is for p=n — 4 and a = —1. We’ll consider separately this case.

However, it’s easy to see that the sheaves D from the lemma are of the
form D = (b4 650,91, 7, -+, Msz)y i € {0,1,2,3}, b€ {a+2p-2, a+2p—
1, a+2p}, a € Z asin Remark 3.4.6. Let E be one of the exceptional divisors
lying on X and corresponding to a F; € ¥7. From the exact sequence

O —D—D(E)-DE)eg—O0

we deduce that the conclusion of lemma holds for [D] iff it holds for [D(L)],
as far as b; = (D - Oxn(E)) > 1. Moreover, it’s easy to see that all 7, = 3
only if b = a + 2p. So, to conclude the lemma it’s enough to prove the
conclusion for D € {D', D"} where D’ = (a4 2p +4; a+2p — 2, 3'+71,2),
D" = (a+2p+6; a+2p,3°%), of course for p=n —4 and a = —1. We'll
study the case D = D', the other one being similar.

So, D' = (2p+3;2p— 3,3%,2), p=n—4> 5.

We specialize the points from ¥} on a smooth cubic curve Iy C P% we
denote this specialization by 53;‘ = {B, P,,.. .,P2P+1}; we suppose, more-
over that the points from i; are general on I'y (see the sketch of proof of
Proposition 3.2.1), in particular, every 3 of them are noncollinear. Let there
be 5; = Blg, (P*). Then (p+ 2;p,1%*!) is very ample on 5;‘ (actually, if
s<20+3,¢>1,5>0,8¢€Zand X ={Roy,Ry,...,R;} C Ty general
on Ig, S := Blg(P?), then (g4 2;¢,1%) is very ample on S-see [Hb2]; for a
direct proof see [P2]). Let’s denote by X' := go[p+2;p)1zp+1](§;) C P". Using
Proposition 3.2.1 (i3)" and (ii3)’ it results that, if D, 1= (2p;2p — 3,2%,1),
then

‘ ) h1(D;) = 0 and [D,] #0, without base points and
{3.5.8
containing a (smooth, irreducible) curve.
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By semicontinuity (see [CS], Remark 1, p. 324) we deduce that (3.5.3)
holds again if we replace P, with another point (denoted P) from a small
neighbourhood of P, non-belonging to I'y and non-collinear with any other
P; and P;. Then, the proper transformation of I'g in X;} is T' € [3;0,1%%1].

Now, we denote by ¢;; the quadratic transformation based on {]55, P, ]5]}
Performing the succesive quadratic transformations 612, 034, ..., 0251 2p, the
curve Iy becomes a curve Ay, C P? of degree p + 3 having 2p + 1 sin-
gular points (with distinct tangents) with multiplicities p,2,...,2 respec-
tnely, X" becomes X" = @ppyop120-11(S)) C P", where Sp = Blg, (P %,

= {Po,Pl, .. Pop Pap+1}, By, P, .. Pqp being the smgu]antles of Ag
mt} multiplicities p,2,...,2 respectlvﬁly and P‘)p_{_] € Ay a smooth point so
that every 3 points in 9” are non-collinear; of course X” &= Y” e S” = S")

moreover, D, b-vcomes in the new coordinates, D; = (p; P8 127”'3) €

ch(\ '), If we consider D, and D, on 9 = S“ then D, = D,. Considering
(3.5. 3) it results that

K (D,) = 0 and [D;] # 0, without base points and
(3.5.4) { 1

containing a (smooth, irreducible) curve.

Let’s denote by A € [p+ 3;p, 2%, 1] the proper transformation of Ag in
X7 We can see that Dy = D'(~A), where D' is our initial invertible sheaf
(con51dered on X7). We obtain then the exact sequence of sheaves on X7’

0—+Dy =D = D/a—0.

Since (D'- Oxx(A)) =7 2 29(A) = 2(= 2¢(T)), using (3.5.4) it results
that [D'] # 0, without base points and containing a (smooth, irreducible)
curve, if the points of X} are specialized in EP So, the same fact remains

true on X", by semicontinuity.
2 :
% ok %k

Lemma 3.5.4: If (p,n),(d,g),D are as in the Lemma 3.5.2 and d =
deg D > max <2n+ 1 %(Bp—l— n + 9)), then [D] # 0, withoul base points
and contains a (smooth, irreducible) curve C, non-degenerate in P”.

Proof: Apply Corolary 3.2.5 for ¢t = 1.

Preliminary Conclusion 3.5.5: If (d, g) € A} with (p,n) in situation
(R1) and d > max (2n+ 1, %(3})—1— n -+ 9)), then there is a (smooth, irre-
ducible) curve C C X}, non-degenerate in P*, with (deg(C), ¢(C) = (d, 9).
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2) For the situation (R2):

Lemma 3.5.6: If (p,n) is in the situation (R2), (d,g) € A} and D €
Pic(X)) is one of the invertible sheaves used in the proof of Proposition
3.4.1 (considering Construction B in Step 2) so that (deg D, p,(D)) = (d,g),
then D satisfies condition (¢3) from Proposition 3.2.8 in the coordinates
(d,7;01,05,...,05x) (here degD = (D - Hy)).

Proof: The sheaves used in Step 1 satisfy (c3). The invertible sheaves
used in Step 3 come from the sheaves used in Step 2, putting 1 (instead 0)
in the last component. So, it’s enough to verify that the sheaves D used in

Step 2 apply to
(3.5.5) 164/ <6, < ... < B < ’5 for d = degD > 2n + 2.

The inequalities |6;] < 8, < ... < 95;“ come from (3.4.21). From
d > 2n + 2 we deduce that r = 2(z,(d,n+ 1) + 1) > 4 (cf. (3.4.19)).

Then, ¢; > % =b>c > 7: (see (3.4.21)); but b < r (see (3.4.20)) and

r < s that is a contradiction ! So, ¢ < 7 hence 6; < X 1= 1, syt

r s
Moreover, ¢; = 3 & r = 4. Then we replace (if necessary) (cy, ¢z, c3,¢4) =

-
=

(2,0,0,0) with (c1,co,¢3,¢4) = (1,1,1,1) and we get 6,41 < g Now, the
general invertible sheaves (from Step 4) satisfy (c3), because Hj satisfies
this condition.

* ok %

Lemma 3.5.7: If (p,n),(d,g) and D are as in the previous lemma,
then D satisfies the condition (c4) from Proposition 38.2.8 in the coordinales
(d, 301,05, ..., 0,2).

Proof: (c4) means by > by if D = (a;b1,b1,...,b;2), in usual coordinates
on Pic(X[). We will check this (to i)) for the sheaves used in Step 1 from
the proof of Proposition 3.4.1 obtained by adding a (finite) numbers of 73
to the initial Dy, for the sheaves used in Step 4 obtained by adding a (finite)
number of H} to the corresponding initial Dy and for sheaves used in Step
4 obtained by adding a (finite) number of %3 to the sheaves used in Step
1 (the invertible sheaves D from Remark 3.4.5 a) contains all these three
categories of sheaves). We will check also (c4) for the sheaves used in Step
2, Construction B (to ii)). It’s clear that from these two verifications, i) and
ii), we obtain the conclusion of the lemma.
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i) We consider sheaves D = Dy + t,Hy + t3Hy, Hy = Hyy Ho = ?—Zg, as
in Remark 3.4.5 a). Put t :=¢; +¢y. If t = 1, because d = degR > 2n + 1,
it follows that dy := degDy > n — p+ 1. But, then D = ((L-{—.p +4;a+
p, 24, 15;”“_176), € € {0,1}. We need a+p > 2. Minorating a as in Remark
3.4.5 a) and dy from before, it results that we need p > 3, which is true in
(R2). If t > 2, then by > b; (i.e. (c4)) becomes a +tp > ¢ + 1. Because the
function (in t) a+tp—t¢ —1is increasing, we can suppose that t = 2. Then
we need a + 2p > 3. Minorating a and dy from Remark 3.4.5 a), it results
that we need p > (n+ 14)/9, which is satisfied in (R2).

ii) We are going to study now the sheaves used in the proof of Step 2
(Construction B). Their degree is d > 2n 4 2, so z,(d,n + 1) > 1.

n41 41
Sh i

4
1) If 2,(d,n+ 1) > 3. We have: —6, + }: 0; < Z 16:] = Zci (see

=2 L =g

4
(3.4.21)) < 2, ZC? <2h < 2\/2(11,((1, n+1)+1) (see 3.4.20)). Now, if
=1

we prove that

(3.5.6) 2,(d,n+1) 2 3 = d—(n—p+2)(z,(d, n+1)+1) > 2(z,(d, n+1)+1)
s:+1

we obtain (because \/Q(va(d, n+1)+1)<z,(d,n+1)+1) -6, + Z 6;

i=2
d— %(n —p+2)2(zy(d,n + 1) + 1) which is exactly (c4), because r =
2(2,(d, n+ 1) + 1) (see (3.4.19)). So, it remains to prove (3.5.6). But

IA

(3.5.7) Tp(dyn+1)>3=>d> (Tn+5p+2)/2.

a) If p > 4, wehave d— (n—p+2)(z,(d, n+1)+1) = 2(2,(d,n+1)+1) >
d—n(z,(d,n+1)+1)>d- (2d 4+ n + 3p — 2). This last number

is > 0iff

2(n+p)

(3.5.8) d>n(n+3p-2)/(2p).

But in (R2), (3.5.8) follows from (3.5.7). We get then (3.5.6).

b) If p= 3, thenn € {8,9}. If n = 8, (3.5.6) becomes d > 9(z5(d,9) +1),
true for d > 27. But from (3.5.7) it results that d > 37, so we are ready.
If n =9, (3.5.6) becomes d > 10(z3(d, 10) 4 1), true for d > 30. But from
(3.5.7) it results that d > 40 so we are ready again.
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2) If x,(d,n+1) = 2. Then

D
-

(3.5.9) d> (5n+3p+2)/2.

In this case (c4) becomes

s;"H
(3.5.10) -6, + Zf)i <d-3(n-p+2).

1=2

Using (3.5.9), we obtain d ~ 3(n—p+2) > (9p—n —10)/2 > 4 (because
n+1

p > % n>8andp> —g = 3 if n = 8. Then, in order to obtain (3.5.10)
$ 2L
it’s enough to choose 6, .. .,«95;+1 such that -6, + 5: 0; < 4. From (3.4.20)
and (3.4.21) it results that it’s enough to express ié&ich be{1,2,...,6} as
b= i ¢! so that ici < 4, which is, obviously, possible.
31.):1[]‘ T, (d, n+i1:)1: 1, (c4) becomes
Sn+l
(3.5.11) —91+p20i <d-2(n-p+2).
i=2

But p>3and d>2n+2,s0d - 2(n—p+2) > 4. Using now (3.4.20)

and (3.4.21) it results that it’s enough to express each b € {1,2,3,4} as
4 4

b=> ¢} sothat ¢; € {0,1} for all i (hence Y e < 4), which is possible.
=1 i=1 -
Lemma 3.5.8: If (p,n), (d,g),D are as in Lemma 3.5.6 and d = deg D >
max (‘Zn +1, %(3])4— n + 9)), then D satisfies the condition (c5) in the co-
ordinates (d,r;6,,0,, .. 1 04n).
Proof: From Remark 3.4.7 it follows that it is enough to check (c5) for
r = 2(z,(d,n) + 1). This becomes:

(3.5.12) d>2(p-1)(z,(d,n)+ 1)+ 2.

If we denote by F,(d,n) :=d - 2(p - 1)(2,(d,n) + 1) — 2, then (3.5.12)
“becomes

(3.5.13) E,(d,n) > 0.
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We can see that, if (3.5.13) is true for integers d so that z,(d,n) = =,
thexngit is true for any integer d’ so that z,(d’,n) =y, (V)y > . Indeed, if
E,(d,n) > 0 for all d so that E,(d,n) =y, let d’ be so that z,(d',n) = y+1
and d := d'~(n+p-1). Then E,(d',n) = Ey(d, n)+(n—p+1) > E,(d,n) > 0
(use Lemma 3.3.1 a)). The previous statement follows then by induction on
zy(d, 1)

Now, if z,(d,n) = 2, the relation (3.5.12) becomes

(3.5.14) d > 6p-—4.

Because z,(d,n) = 2 we have d > (57 + 3p — 3)/2. But this implies
(3.5.14) in the situation (R2) (use 3p < n+5).

So, (3.5.12) is true for any d such that z,(d, n) > 2.

If 2,(d,n) =1, (3.5.12) becomes d > 4p — 2. But this results from the

2
suplementary condition d > 5(3}7 +n+9)in (R2) (use 3p < n+5).
* ok *

Because the conditions (c1) and (c2) were verified during the Construc-
tion B in the proof Step 2 of Proposition 3.4.1 and (c3), (c4), (c5) were
verified in Lemmas 3.5.6, 3.5.7, 3.5.8, from Proposition 3.2.3 we deduce the

following
Preliminary Conclusion 3.5.9: If (d,g) € A} with (p,n) in situation

(R2) and d > max <2n+ 1,g

3
ducible) curve C' C X', non-degenerate in P", with (deg(C),¢(C)) = (d,9).

K % %
Lemma 3.5.10: If n > 8 and g <p<n-4,npcZ (dg)c A

Bp+n+ 9)), then there is a (smooth, irre-

2
and2n+1<d< §(3p—l— n+9) then it exists a (smooth, irreducible) curve
CCXpifn=0 (mod3)andC C Xp,, ifn=1,2 (mod 3), non-degenerate
in P, with (deg(C),g(C)) = (d,g) (here k = [n/3]. as usual).
Proof: We use the criterion given by Proposition 3.2.3.
We need curves in the range

2
apr(d=1,n) <g<ap(d,n), 2n+1<d< -3—(3p+n+ 9).
Then a, 41 (d—1,n) = [(3d—4n—2)/2)., a,(d, n) = [(3d—4n+1)/2].. Because
the interval [, 41(d — 1, 1), ap(d, n)]N Z does not depend on p we construct

the necessary curves on X} if n = 3k and on X, if n =3k +1,3k+2. We
remark that F?"(4) = (3d — 4n + 2)/2 (see (3.2.3)).
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To be more precise, we consider linear systems associated to invertible
sheaves L € Pic(X)), p.Gyik,k + 1}, k = [n/3]., which in the Gruson-

Peskine coordinates are (d,4;0%* 1') with 2n + 1 < d < §(3p +n +9),

t € {1,2,3,4,5} (see (3.2.1) and (3.2.2)). Hence r =4, 6, = 0,7 =1, — ¢,
Ospjsr € {0,1}, 7 = 2,5, 0,x = 1, sp € {5,6,7}. We can see immediately
that the conditions (c1)-(c5) are satisfied (use d > 2n 4 1 and (3.2.2)).
* ¥ *
The proof of Proposition 3.5.1 results immediately from the Preliminary
Conclusions 3.5.5, 3.5.9 and Lemma 3.5.10.
* ¥ %
Now, from Proposition 3.5.1, using Lemma 3.3.1 b) we obtain the fol-
lowing
Theorem 3.5.11: Ifn,p€ Z, n > 8 and (d, g) € U A} then there
2<p<n-—a
is a (smooth, irreducible) non-degenerate curve C' C P with (deg(C), ¢(C)) =
(d,g). ‘

3.6 The absence of gaps in D}

In this section we finish proving the Main Theorem. For this, we need
two more theorems, namely:

Theorem 3.6.1: Ifn € Z, n > 8 and (d,g) € A} (see (2.12)) then
there is a (smooth, irreducible) curve C' C X, non-degenerate in P* so that

(deg(C),9(C)) = (d,9)-

Theorem 3.6.2: Ifn € Z, n > 8 and (d,g) € A} 5 (see (2.10))
then there is a (smooth, irreducible) non-degenerate curve C C P", so that
(deg(C), 9(C)) = (d,9)-

The Theorem 3.6.1 is, essentially, covered by Theorem 1.1 from [Ci].
But, because our statement, which is necessary here, differs from Ciliberto
statement, it is necessary to prove it. Here we’ll give only a sketch of proof
(for details see [P3]). The proof consists in a comparison between the upper
bound of genus from our Theorem 3.5.11 and the lower bound of genus from
Ciliberto’s Theorem. This comparison is possible due to the Lemma 3.3.2.
It will be divided in 3 parts, according to n = 0 (mod 3), n = 1 (mod 3),
n =2 (mod 3).

The main part of the domain A”" , is covered by our Theorem 1 from
[P1] and by Ciliberto-Sernesi Main Theorem from [CS]. Again, because the
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statement of Theorem 3.6.2, which is necessary here, differs from the previ-
ous two statements, it is necessary to prove the Theorem. We'll give only
a sketch of proof (for details see [P3]). The proof consists in a comparison
between the lower bound of genus from our Theorem 3.5.11 and the upper
bound of genus from Ciliberto Sernesi’s Theorem (for & = 4) and a filling of
the distance between them when it exists.

Proof of Theorem 3.6.1 (sketch): We’ll consider here only the case
n=1(mod3) (son=3k+1,k€Z k2 3) the others being (more or less)
similar.

1) Claim: Ifd,g € Z, there is a (smooth, irreducible) curve C c Xg,
non-degenerate in P", of degree d and genus g, in the domain from the
(d, g)-plane given by:

Entl 9z (d—1,n) +1)) < g < FEmM 2y (d—1,m) +1)), d 2 2n+1

(for F§™(r) see (3.2.3); for Trpr(d,m) see (2.2)).
Proof: Let r 1= 2(zg41(d —1,7) +1). Now we express m := Q(P’f’”(r) -
4

g) € Z, m > 0 as a sum of 4 squares m = Z@f, 6, € 2,0 <6, <0, <

65 < 8,. Then, we can check that (d,r;@l,H;,bg,&;) satisfy the conditions
(c1)-(c4) of Proposition 3.2.3 ((c5) being automatically satisfied). So, we
can find D € Pic(X}) such that [D] contains (smooth, irreducible) curves
C with (deg(C),9(C)) = (d, ) in the domain of the Claim.

2) Claim: If d,g € Z, there is a (smooth, irreducible) curve C C Xz,
non-degenerate in P*, of degree d and genus g, in the domain from the
(d, g)-plane given by:

Fim@2(zr(d—1,n)+1)) <g < B(d,n) = mx(d,n), d 2 di(n).

Proof: We recall that in [Ci], section 1.g a positive integer ro = ro(d, n)
has been defined, namely ro(d, n) = min{r € Z|r > s(d, n)}, where s(d,n) =
22k + 1)+ 2¢/d+2(k - 1) + (2k + 1)? (see [Ci], Lemma 1.11). In order
to prove the Claim it’s enough to show that (see (2.6) for dy(n)):

(3.6.1) d> dy(n) = Fi"(ro(d,n) = 1) < Fy" (2(w(d, n) +1))-

Indeed, then the Claim follows from [Ci] - Theorem 1.1 (take e(d,n) =
F¥™(ro(d, n) = 1)), [Ci]-Lemma 1.11 and section 1.d, [Ci] -Lemma 1.18 (use
that [max{E;" (r)|r € Z}. = max{[F¥"(r)].|r € Z}), using the fact that
we constructed curves of degree d > 2n+ 1 and genus g = [Fy" (2(ze41(d—

37



1,n) +1))). in the Claim from 1). We remark that d;(n) > do(n) (for do(n)
see [Ci], section 1,g), both"ef them being functions of degree 3/2 in n.

In order to prove (3.6.1) write d—k —2 = zpe(d—1,n)+£,0<e < 4k.
Doing computations we can see that

(3.6.2) 2(z41(d—1,n)+1) < p(d, n) < max(0, (8k>—k+1-d)/(4k)) < e < 4k

(3.6.3) 2(zppi(d=1,n)+1) > pe(d,n) & 0 <e< (8k>—k—d)/(4k) (if d < 8k*~k)

where pp(d,n) = 2(d+k - 1)/(n+k - 1) is the point where the function
F¥™(r) achieves its maximum.

a) If max(0, (8k* —k+1 - d)/(4k)) < € < 4k, by (3.6.2) it’s enough to
have 2(zps(d — 1,n) + 1) +1 2> s(d, n), implied by

(3.6.4) (2d + 2k — 1)/ (4k + 1) > s(d,n)

(indeed, & < 4k = 22,1 (d~- 1,n) +3 2 (2d + 2k — 1)/ (4k +1)).

b)If 0 <e < (8k? ~k —d)/(4k) (if d < 8k? — k), by (3.6.3) it’s enough
to have [2(pi(d,n) — zppi(d = 1,n) = Dl +1 2 s(d,n). But, it can be seen
(computing this integer part) that’s enough to have

(4k + 1)d — 4k

s(d
W(dk+1) s(d,m)

(3.6.5)
if 0 <& < (4k> - 2k — d)/(4k) (When the previous integer part is 22541(d —
1,n)) and

s 2 _ 2
(4h+1)d+ 48 =3k o
ok (4k + 1)

(3.6.6)

if max(0, (4k?—2k+1—d)/(4k)) <e < (8k%—k —d)/(4k) (when the previous
integer part is 2zx41(d — 1,7) + 1).

Doing computations, we can see that (3.6.4), (3.6.5) and (3.6.6) hold
exactly for d > di(n). This proves (3.6.1).

3) The Theorem 3.6.1 (for n = 3k + 1) follows immediately from 1) and
2), using Lemma 3.3.2 b) ii).

* % k
Proof of Theorem 3.6.2 (sketch): We define the following numerical
functions (for d,r € Z, 6 € {2,3,4}):

(3.6.7) Gi(r,n)i=r (d —nr+ 7—;—16> .
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(3.6.8) OZZ——H—X(d? n) = G‘Sd(yé(d, n)),
where
(3.6.9) ys(d,n) = [(d+n—8)/(2n - 8)]..

Lemma 3.6.3:
a) G§+(3n_6)(7~ +1) =Ghi(r) + (d+n - 8);
b) ys(d + (2n - 8), n) = ys(d,n) + 1
&) _su1(d+ (20— 8),n) = @_gpy(dyn) + (d+ 1= 9).
Proof: easy.

* % %
We'll use the following
Theorem 3.6.4: Let there be § € {2,3,4},n€ 2, n>20-1, d,g€ Z,
o _spq(dym), §=2

o s (dn)=1, 0€ {3,4}.
(smooth, irreducible) non-degenerate curve C C P" of degree d and genus g.

Proof: This is, actually, the bound resulting by the arguments {rom
[P1], §1 (if 6 = 2) and from [CS] (if & € {3,4}). See (CS], Remark 1, p.312.

* k%

Remark 3.6.5: o//_5(d,n) < an_s(d,n) -1 & d # 1+ t(2n — 4),
r€{0,1,2,3,4},t € Z.

Theorem 3.6.2 follows from Theorem 3.6.4 (8§ = 4) and the following

Lemma 3.6.6: Let there bed,g € Z, n€ Z, n 2 7,d > 2n+ 1, so that
o _4(dyn) <g< o, _3(d,n) — 1. Then:

i) if d > 3n — 5 there is a (smooth, irreducible) curve C C X" 4, non-
degenerate in P, with (deg(C),4(C)) = (d,9);

i)if2n+1<d<3n— 6 there is a (smooth, irreducible) curve C C X,
(p = [(2n - 5)/3].), non-degenerate in P*, with (deg(C), 9(C)) = (d, 9)-

Proof: i) Since o, _3(d+ (2n— 4),n) = ap-3(d,n) + (d+n- 4) (Lemma
3.3.1a), p=mn—3) and o _J(d+ (2n—4),n) = o _4(d,n)+ (d+n—4)
(Lemma 3.6.3 ¢), § = 4) we can use an argument similar to the construction
of curves given in sections 3.4 and 3.5. Hence, for z,_3(d,n) = 0 take
sheaves D, € Pic(X?_,) of the form Do = (a + 2;a,1%,02"~*7*), then add
succesively H?_s. So, we cover the range of i) by degree and arithmetical
genus with sheaves D € Pic(X?_;) of the form D = Do + tH: 5, t > 0.
Then use the criterion (3.2.5) from Lemma 3.2.4 in order to prove that [D]
contains (smooth, irreducible) curves.

d>2n+1and 0< g < { Then there is a
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ii) Because 2n + 1 < d < 3n — 6, we have o _(dn) =d-mn and
L an_g(din) = [(3d — 4n + 1)/2).. So, we need to cover the domain

(3.6.10) d-n<g<[Bd—4n-1)/2., 2n+1< d £ 3n= G

Let there be (d, g) in the domain (3.6.10). Put D := Do+ H; € Pic(X})
(Hy = (p+2:p, 1°7)), where Dg 1= (902 9o, 1¢,0°% %) and dg := d—(n+p-
1), go := g—(do+p—1) = g—d+n, v = 290 —do+2p+4 = 2¢g—3d+3p+3n+3.
Then 0 < u < sy =3p—n+ 5, deg Do = (Do - Hp) = do, pa(Do) = go- So,
pa(D) = g, deg(D) = (D-Hp) = d. Applying now the criterion (3.2.5)
from Lemma 3.2.4 for D(t = 1), we conclude that [D] contains a (smooth,
irreducible) curve C, non-degenerate by degree reasons.

%k %
% %

Now, we are, finally, ready to prove the Main Theorem. This proof is
an immediate consequence of equality (2.14), of Lemma 2.2 and of Theorem
3.5.11, 3.6.1 and 3.6.2.

* ok ok

4 Comments and further developments

1) It is easy to see that our Main Theorem remains true over an al-
gebraically closed field of arbitrary characteristic. This follows replacing
the Bertini theorem (which we used several times during our proof) - true
‘0 characteristic zero - by the Hartshorne’s Bertini-type theorem ([Ha2],
théoreme 5.1) - true in arbitrary characteristic. The verifications are similar
to Rathmann’s verifications for curves in P* and P° ([Ra)).

2) We can consider other topics from Halphen-Castelnuovo theory (see
§1) also. For instance, we can consider the property P = linear normality
of (smooth, irreducible) curves from P™. We recall that a non-degenerate
(smooth, irreducible) curve C C P" is called linearly normal if it is not a
projection from a bigger P™ containing the given P". Using the Dolcetti-
Pareschi ideas ([DP], §1), we can add to the curves C from our Proprosition
3.5.1 i) one hyperplane section H)' of X} in order to obtain (smoothing
C+ H} using Bertini theorem) linearly normal curves on X} in P". Putting
together all these curves forn/3<p<n—4 (and using [CS], §4, 2)) we can
obtain a big range of existence of linearly normal curves in P", n > 8 (see
[P4]).
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3) Moreover, concerning the study of families of non-degenerate (smooth,
irreducible) curves in P", we can consider the Hilbert scheme H}, (see §1).
As Kleppe remarked ([KI}, §6) our results from Proposition 3.5.1 i) can be
used in order to stand out "good” components of Hg, in a big range on
(d, g) (here "good” means generically smooth).

4) Finally, few words about the lacunar domain D} from (d,g)-plane
(see (2.9)). If n > 7 and k := [n/3]. (we recall that HC(n) is completely
solved for 3 < n < 6) we consider the subdomains of D} given by:

Dy A(d,n) < g < mold, n), d>2n+1

i {aud¢m,ﬁnzL2mmdm

<g§Ad$n,2n+1§d<d n
ae(d,n),  ifn=0(mod 3) () ()

(for A(d,n) see (1.5), for o, (d,n) see (2.1), for d, (n) see (2.6), for 7, (d,n)
see (1.1)).

Then D} = DyUDs*. If (d,g) € Dy, inspired from Harris-Eisenbud
Conjecture ([H] -, true for d > 2"+1) and using the Horrowitz results from
[Hol, §1, we can see that a (smooth, irreducible) non-degenerate curve CcC
P" of degree d and genus g lies on a surface X7, 1 <p < yorona scroll
(possibly singular). This implies the existence of a relation between d and
g, generating gaps (see also [Ci], section 2. g). If (d,g) € Dy”, inspired
again from Harris-Eisenbud conjecture and using Horrowitz results, we can
see that a curve of degree d and genus g lies on a scroll or on the surface
X7 (if n = 3k) or Xp,, (ifn= 3k + 1, 3k 4+ 2). In this case there are also
gaps on XJ (or X[yy) and these can be, in principle, classified trying to use
a similar argument as in the proof of Théoreme 2.5 from [GP2]. However,
we do not insist here on D3.
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