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A general method for constructing the
generalized oblique projection matrices on

the Diagonal Weighting algorithm

CONSTANTIN POPA, rrOvidiusrr University, Constanta, Romania

Abstract. In the paper [1] C. Byrne and Y. Censor proposed and analysed
the Diagonal Weighting algorithm for least-squares formulations of linear systems.
Based on it, in [2] the authors analysed a particular version called Component
Averaging method. All these are iterative algorithms based on 'rgeneralized oblique
projectionsrr generated with diagonal positive semi-definite real matrices, having
as desired effect an improvement of convergence of the classical versions (based
on orthogonal projeciions). In the present paper we analyse a general method
for constructing the generalized oblique projection matrices. We show that our
method includes as a particular case the way proposed in [2] and we also offer
another possibility of construction. With respect to the numerical experiments
described in the last section of the paper we may conclude that our method is
better than the one mentioned in the above cited paper.

1. Generalized oblique projections and the diagonal
weighting algorithm

Let A be an m x n, (sparse) real rr,.atrix, b e IR^,oo: (an,..1ai,,-)t e n
the z-th row of ,4 and b6 e R the z-th component of b. We shali denote by
( .,' ) and ll . ll the Euclidean scalar product and the associated norm ,
respectively. With these notations we shall define the hyperplane H;: {z €
Rn,1 fr,a4 ): b;) and subspace Sa: {r € Rn,1 tr,a4 >: 0} associated to
the z-th equation of linear system

A r :  b .  ( 1 )

We shall'suppose through the whole paper that the system (1) is consistent.
If G is a diagonal positivesemi-definiten,xn matrix G: diag(gt,gz,...,gn),
gi ) 0, Y j : I,..,T, we shall denote by Q-t the diagonal matrix

( c - t ) , r :  
{

i f  i : i ,  g i * 0

else
(2)

I
O ; t

0,



and by ( ', . )c, ll . ll" the scalar semi-product and the associated semi-norm
defined by

1 r , U  t . :  i  9  j n j U i , l l  ,  l l 3 : <  t r , t r  ) s ,  V  r , y  €  n n .  ( 3 )
j : 1

With these notations we can define the generalized oblique projection
of a point n € IRn onto H6 or ,S; with respect to G by

P E , @ ) : n * u = 1 " ! " 0 ' G - r o o  ( 4 )t , z \  ,  
1 A , ; r A , ; ) 6 _ r

and, respectively

p3(" ) : t r -  ,1- " : "? '  G- tao.  (5)u z  \

Remark L If gi + 0, V j :1,...1n, then G-r i,s the classi,cal , inuerse of
G and the elements d,efined i,n (3) the well known energA scala,r prod,uct
and the correspondi,ng energA Tromrr (whi,ch are si,mi,larly defined for ang
symmetri,c and positi,ue defi,ni,te matri,r G). If G : I, then (l) and (5)
represent the orthogonal projections of r onto H6 and S;, respectiuely and we
shall denote them as follows

P r , ( r )  :  n - f W o n ,  P s , @ )  :  t r  - {  n ' a t }  ^  / r l
l l  a i  l l "  

a i t  Pa@) :  t r  -  
11f f i " , .  

(6)

A family {Go}o:t,...'- of real diagonal n x n, matrices such that

Gt :  d . i ,ag(g t t ,g tz , . .  . ,  gm) ,  g t i  )  g ,  
i *n :  ,  (7 )
i =1

(with l the unit matrix) will be called sparsity pattern oriented (SPo,
for short) with respect to the matrix A if  for every,i  :  L,. .  . , f f i ,  j  :  L,.,  . , f l , ,
we have gtj :0 if and oniy if on, :0
With the above constructed eiements the authors considered in f2l the Di-
agonal weighting algorithm (DW, for short) for the system (t) defined
by: let r0 e IR be the initial approximation and for k : 0, 1,. . . do

rk+, - rk + xnir,fr}:@r) - *r), (s)
i : I

where )1 e (0,2) arc relaxation parameters.



Remark 2 If the matri,ces Ga are defi,ned by

then the (DW) algorithm (8) becomes the Ci,mm,ino,s method, (see [Z]) and,
has the followi,ng for*

rh+r-*** f ier ,@r)- , r ) .

(e)

(10)

Remark 3 If for j : 1,. .. 7n, the number,s sr. € {0, 1, . ..,m} are d,efi,ned, b,g

s j  :  card( {e  e  { t ,  . . ,m} ,aq  l0 } )

and the elements of Ga by

( 1 1 )

i,f a61 t' 0
i,f a;i : g (12)

then th,e method (8) wi.ll be called the Cornponent Aaeraging algorithm
(CAV, for short) (see [2]).

Rernark 4 An obl'ique projecti,ons uers'ion of the class'ical Jacobi, projections
method (see [3]) (si,mi,lar wi,th (10), but wi,th Pfi: instead, of psu, wi,th G an
arb'itrary sgmrnetric and pos'iti,ue defi,ni,te matrir) was analgsed, i,n [l] as a
part'icular case of the precondi,ti,oned algorithms from [i].

In [2] the following result is proved (particular statement).

Theorem 1 wi,th all the aboue defined elements, i,f the system (1) i,s con-
s'istent and )p: 1, v k > 0 then the sequence (rk)nlo generated, wi,th the
(DW) algorithm (8) conuerges to one of i,ts soluti,ons.

Cimmino's (simultaneous) algorithm (10), for the case of large systems
of the form (1) with a sparse matrix A, exhibits a very slow convergence
rate, due to the fact that the change between succesive iterates is relatively
small. This was the reason in [2] for considering the (CAV) algorithm. But,
from the theoretical and practical considerations presented there, we can
not conclude why the use of generalized oblique projections (4) instead the

n,, : 
{+oi,



ciassical ones (6) will ensure a better behaviour of the (CAV) algorithm (11)-
(12) 'ragainst'r the classical Cimmino's one (10). We shall present a clear and
simple expianation of this fact in the next section of the paper. It is based on
'rstrenghtenedrr Cauchy inequalities involving the elements of the matrices A
and Ga,'i : 1,.. . )n'1. We also constructed a family of matrices Ga as in (7)
for which these inequalities are satisfied. In the last section of the paper we
describe some numerical experiments on a finite-differences discretization of
the one-dimensional steady state heat transfer equation. These experiments
show that our choice for the G,; generalized oblique projection matrices gives
better results than the choice (11)-(12) used by the authors in [21.

2. Strenghtened Cauchy inequalities

We shall start this section of the paper by observing that, exactly as in
[2], Lemma 4.3 we can prove that for any i € {1,...,m},2 € S,; and any
y € IR^ we have

ll p3'@) - y lll, < ll , - a ll'., - ll , - pE,@) llr",
Let ris now denote by (re)6>0, (i0 : ,o) the sequence generated with the
algorithm (B) and by (efr)r2o the sequence from (10). we shali suppose that
)r : 1, V k > 1 and that at the k-th iteration the error vectors Ek,ek € IRn,
defined by

e k - - r k - r * ,  € k : r k - t r *

(13)

(14)

are equal (as it happens for k:0): 6k : ek: e, where z* is a solution of the
consistent system (1). Then, because of the obvious equalities Pfi:1r.1 :
Pno(r*): tr* and by using (8) and (10) we obtain

( 15)

Then, by taking norms and using the properties of the matrices G; from (7)
we obtain

ll er*'llS ,?-qx ll P",(") ll, ll '**' lls ,?er ll 
pg'(') Il (16)

In order to obtain an acceleration by using the (Dw) algorithm (8) instead
of (10) we would iike to have

(17)

l r n r n

ek+ l  - ; tPsn ( " ) ,  ek+ l  - \ cne f , ,1 r1 .
m - :

; -  I

l l  "**' l l  < l l  ern'l l ,



but this inequality is very hard to be analysed. Then, going back to (16)
we observe that 6&+1 and eft+l lie in two balls with origin as center and radii
rn8X1<2<', ll Ps,(r) ll and il&X1<4<,, ll Pf,'(r) ll, respectively. Thus, it seems
to be quite natural to firstly compare ll Pr,(u) ll and ll pg,,(r) ll. This will
be done in the next result.

Proposition 2 In the aboue hypothesi,s we haue

l l  p3,(")  l l ,  -  l l  p""(")  l l ,  < -2 K e- pT,k),p?'k),  .  0.  (18)

PROOF. Let f i , fo,Gu €.R'be defined by

fu : " 
- Pso(u), fo'"u : e - P?,'k). ( 1e)

Firstly we shal observe that, because Psu(e) is the ortogonal projection of e
onto S1 and P^f;'(e) e ,Sr we always have

l l fo'c, l l: l l " 
- pg,,(') l! > ll " 

- ps,(r) l l: l l /, l l
Thus, using (19), (20) and the following obvious equalities

l l  pg,,( ') l lr: l l  " l l , 
- l l  f0,", l l , - 2 < pfl,u("),fo,.n >,

l l Ps"(') l l ' : l l " l l '  
- l l fo ll '

we obtain

l l  p?'k) l l ' -  l l  Ps,(") l l r :
-2< 1i,G',pGu(") > - 1l  f0,",  l l ,  -  l l  fn l l r)  < -2. yt,G;,p|, ,@) >, (23)

i.e. the first inequality in (1s). For the second one, by replacing z and, y
in (13) with e - fo'cn € 5, and - fo'cu, respectively and using the obvious
equality

(20)

(2r)

().).\

we get

PFuu (fo'".) : o

ll " ll'", >_ Il PT',k) llL, + ll fo,"' 11,., .
Flom here, by summing following ,i and using the equality (see
(4 6)) 

rr l

f  l l  ,  l l ' " ,  :  l l  , l l '
i : I

(24)

(25)

[2], formula

(26)



we obtain

l l " ll '> ll Pg'(') ll, + ll fo,.' l l,
from which the inequality

l l  fo 'cu l l> P l l  fo l l ,  v  ' i  :  r , .  .  .  im.

For this, let z e {1,...,rn} be arbitrary fixed and I(i) C
by

I ( i )  :  { r  e  { 1 ,  . . . , m } , a u  *  0 } ,

6

(27)

obviously holds and the proof is compiete.

Remark 5 From a geometrical ui,ew po'int, the relati,on (28) tells us that the
generalized obli,que project'ion made wi,th Gr has a "project'ion angle" less than
90o (see also the figure below).

Thus, what we would like to have would be to get rrstrenghtened" (strict)
inequalities in (18). This wili happen if the term ll fi,Gt ll2 - ll to ll2 in (23)
will be strictiy greater than 0. Thus, by taking into account (20) we would
like to exist a constant 0 > t such that

(28)

(2e)

{ 1 , . . , , r n }  d e f i n e d

Si

(30)



Then using (5), (6) and (19) we can write the inequality (2g) as follows

0 < au, ,a i ls - r  S l l  "o  l l l l  
G; ton l l

or equivalentiy

iJ1';19t'1
(31)

where ̂ f : 
h € [0,1), i.e. a 'rstrenghtenedrr Cauchy ineguality. It wiil hold

(independently on e) for the (minimal) value of 7 given by

? :  m a x' 
lLi{rn

(32)

Then, taking into account all the above considerations we can conclude that
for a choice of the matrices Gr : di,ag(ga1,...,gm) for which the constant
7 from (32) is strictly less then 1 (i.e. P : + > 1) we may expect better
convergence properties of the (Dw) algorithm (g). In the next section of the
paper we shall numerically analyse these aspects for the G; 's choice proposed
in [2] and another one suggested by the author.

3. Numerical experiments

We considered in our experiments the one-dimensional stadv state heat
transfer equation

6 r / - a ? ,
I Liqo oiitlLi.,e) 

d

I ""(r) 
- au'(r) : g, if r € (0, 1)

I "(O) 
: LLo, u(I) : u, (33)

(34)

(35)

discretized by a classical (centered) finite defferences scheme. Thus, for n, )
2,h: f (ttre mesh size) and after we eliminated the boundary conditions we
obtained the (n - 1) x (n,- r) sparse, nonsingular? nonsymmetric system

A r : b ,

with A and b given by

A -

2 a n
c11 2 an

c1, 2

C7,

A6

2

L "7t L ^ 2
i€IQ) vi i



w h e r e  a h :  _ l + + , c r , :  - I - + ,  A :  ( f  + ! , 0 , . . . , 0 , 1 - + ) .  I t i s
weil known that, in order to get a stable solution by solving (34) the Pdclet
number Pe: ah must satisfv

Pe e  [0 ,2 ) . (36)

For solving (34) we used the (DW) algorithm (8) with the following two
choices f.or Gi:
Case I Gl : diag(g|r,. . ., g)*) and

nl, :  {
and s3 from (11) (i.e. the (CAV) algorithm (11)-(12))
and
Case II G? : dtag(g?r, . . ., gl,) with

1
s  j '

0,
i f  a u t 0
i f  oo j  :0

(37)

,  laoo l
n- - _--___--:-_---:-vti - 

D,?=':rlori|
(38)

(3e)

We denoted by 1o@,, Pe), i, : 1,2 the corresponding constants calculated as
in (32) for different values of. Pe € [0, 2). The results are described in Table I
bellow (they are independent on n). We observe that in all tests we obtained

0 < 1r(n,, Pe)

After these evaluations we considered the corresponding (DW) algorithms
which we respectively denoted by (DW1) and (DW2). We applied them
for solving the sistem (34) for different values of n and Pe with the stopping
test

I l A " r - b l l < h (40)
The results described in Table 2 confirm the fact that a relation like (39)
determines a better behaviour of the (DW2) algorithm than (DW1) one.

Final remarks 1-. The stopping test (40) was choosen such the error
between zfr and the exact solution of (33) was 10-1 (which is good enough
for many practicai problems).
2. We observe in Table I that even for values of. Pe closer to 2 (i.e. rrunstable

numerical solutionr') the behaviour of the DW2 algorithm rests as for the
other values of. Pe e lL,z).
3. The numerical experiments were made with the numerical linear algebra
programs package OCTAVE (free available on Internet).



Table 1-. The values of 1r(n,,Pe) and 72(n,, Pe

1',(n',  Pe 12(n,, Pe)
0.95961
0.96761
0.96861
0.96716
0.96587
0.96012
0.95502
0.94917
0.94782
0.94827

Table 2. The behaviour of the algorithms (DWl-) and (DW2
Nr. iter. (DW1 Nr. iter. (D.W2

32
32
32
32
32
32
32
32
32
32

36
43
oo

61
76
8B
101
1 1 5
122
126

34
39
47
54
62
69
76
83
86
8B
138
208
220
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