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A general method for constructing the
generalized oblique projection matrices on
the Diagonal Weighting algorithm

CONSTANTIN POPA, "Ovidius" University, Constanta, Romania

Abstract. In the paper [1] C. Byrne and Y. Censor proposed and analysed
the Diagonal Weighting algorithm for least-squares formulations of linear systems.
Based on it, in [2] the authors analysed a particular version called Component
Averaging method. All these are iterative algorithms based on "generalized oblique
projections" generated with diagonal positive semi-definite real matrices, having
as desired effect an improvement of convergence of the classical versions (based
on orthogonal projections). In the present paper we analyse a general method
for constructing the generalized oblique projection matrices. We show that our
method includes as a particular case the way proposed in [2] and we also offer
another possibility of construction. With respect to the numerical experiments
described in the last section of the paper we may conclude that our method is
better than the one mentioned in the above cited paper.

1. Generalized oblique projections and the diagonal
weighting algorithm

Let A be an m X n (sparse) real matrix, b € R™, a; = (a;, .., a;)* € R"
the ¢-th row of A and b; € R the i-th component of b. We shall denote by
< +,- > and || - || the Euclidean scalar product and the associated norm ,
respectively. With these notations we shall define the hyperplane H; = {z €
R", < x,a; >= b;} and subspace S; = {z € R",< z,a; >= 0} associated to
the i-th equation of linear system

Az = b. (1)

We shall suppose through the whole paper that the system (1) is consistent.
If G is a diagonal positive semi-definite n x n matrix G = diag(gy, gs, - - -, gn),
g; >0, Vj=1,.. n we shall denote by G~! the diagonal matrix

(G Ny = { o &

0, else

(2)



and by < -, >¢, || - ||¢ the scalar semi-product and the associated semi-norm
defined by

<z,y>e= Y 9izy;, ||z |&=<z,7 >¢, Vz,y € R" (3)
=1

With these notations we can define the generalized oblique projection
of a point € IR™ onto H; or S; with respect to G by

b; — <z,a; >
Hl(m) T < a;,a; >g-1 ! ( )
and, respectively
<z, a; >
Prlgi=g— —2000 . g~ 5
5 (2) =2 = - e O (5)

Remark 1 If g; # 0, V j = 1,...,n then G™! is the classical inverse of
G and the elements defined in (3) the well known energy scalar product
and the corresponding energy morm (which are similarly defined for any
symmetric and positive definite matriz G). If G = I, then (4) and (5)
represent the orthogonal projections of x onto H; and S;, respectively and we
shall denote them as follows

bz’ =13 x,a; >
| ai |2

<x,a; >

PH@(I) =z + || ol “2

a;, Ps(z)=z—

a;. (6)

A family {G,;}i=1, . m of real diagonal n x n matrices such that

:::::

Gi = diag(gin, giz, - - -» Gin)s 955 20, Y Gy =1 (7)

i=1

(with I the unit matrix) will be called sparsity pattern oriented (SPO,
for short) with respect to the matrix A if foreveryi=1,... m,j=1,...,n,
we have g;; = 0 if and only if a;; = 0.

With the above constructed elements the authors considered in [2] the Di-
agonal Weighting algorithm (DW, for short) for the system (1) defined
by: let z° € JR™ be the initial approximation and for k = 0, 1,...do

2 =2F + A Gi(PGi(a*) — o), (8)
i=1
where )\ € (0,2) are relaxation parameters.
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Remark 2 If the matrices G; are defined by
G; =diag(—,—,...,—), Vi=1,....m (9)

then the (DW) algorithm (8) becomes the Cimmino’s method (see [2]) and
has the following form

= gk % i(PH(wk) — zF). (10)

i
Remark 3 If for j =1,...,n the numbers s; € {0,1,...,m} are defined by
§j = CCLT’d({’i € {]_, ..,m},aij # 0}) (11)

and the elements of G; by
4. Zf Q5 7£ 0
g =14 % 12
o { 0, 4 ay;=0 43

then the method (8) will be called the Component Averaging algorithm
(CAV, for short) (see [2]).

Remark 4 An oblique projections veision of the classical Jacobi projections
method (see [3]) (similar with (10), but with Py instead of Py, with G an
arbitrary symmetric and positive definite matriz) was analysed in [4] as a
particular case of the preconditioned algorithms from [5].

In [2] the following result is proved (particular statement).

Theorem 1 With all the above defined elements, if the system (1) is con-
sistent and A\, = 1, V k > 0 then the sequence (mk)kzo generated with the
(DW) algorithm (8) converges to one of its solutions.

Cimmino’s (simultaneous) algorithm (10), for the case of large systems
of the form (1) with a sparse matrix A, exhibits a very slow convergence
rate, due to the fact that the change between succesive iterates is relatively
small. This was the reason in [2] for considering the (CAV) algorithm. But,
from the theoretical and practical considerations presented there, we can
not conclude why the use of generalized oblique projections (4) instead the
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classical ones (6) will ensure a better behaviour of the (CAV) algorithm (11)-
(12) "against" the classical Cimmino’s one (10). We shall present a clear and
simple explanation of this fact in the next section of the paper. It is based on
"strenghtened" Cauchy inequalities involving the elements of the matrices A
and G;,7 = 1,...,m. We also constructed a family of matrices G; as in (7)
for which these inequalities are satisfied. In the last section of the paper we
describe some numerical experiments on a finite-differences discretization of
the one-dimensional steady state heat transfer equation. These experiments
show that our choice for the G; generalized oblique projection matrices gives
better results than the choice (11)-(12) used by the authors in [2].

2. Strenghtened Cauchy inequalities

We shall start this section of the paper by observing that, exactly as in

2], Lemma 4.3 we can prove that for any i € {1,...,m},z € S; and any
y € IR™ we have
I PSiy) =y ll& < 2=y llE, — | 2— PS'(v) 1%, - (13)

Let us now denote by (Z¥)gs0, (Z° = z°) the sequence generated with the
algorithm (8) and by (z*)x>0 the sequence from (10). We shall suppose that
A =1, V k> 1 and that at the k-th iteration the error vectors &*,e* € R,
defined by

k k

=32, fF=aF o (14)

are equal (as it happens for k = 0): é* = e* = e, where z* is a solution of the
consistent system (1). Then, because of the obvious equalities ng (&%) =
Py, (z*) = z* and by using (8) and (10) we obtain

1 m m
ék+l = PS- €), €k+1 = GZPGl e). 15
m ’ &
i=1 i=1

Then, by taking norms and using the properties of the matrices G; from (7)
we obtain

I IS max Il Po(e) Il 1€ 1< max || PSe) . (16)

In order to obtain an acceleration by using the (DW) algorithm (8) instead
of (10) we would like to have

et IE < I & i, (17)
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but this inequality is very hard to be analysed. Then, going back to (16)
we observe that é+! and e**! lie in two balls with origin as center and radii
maxy<i<m || Ps;(€) || and maxi<i<,, || P§*(e) ||, respectively. Thus, it seems
to be quite natural to firstly compare || Pg,(e) || and || Pgi(e) |. This will
be done in the next result.

Proposition 2 In the above hypothesis we have
I Psi(e) II” = | Ps.(e) I < —2 < e = Pgi(e), P§i(e) > < 0. (18)
PROOF. Let f¢, f% € R" be defined by
f'=e— Ps(e), fi% =e— PSi(e). (19)

Firstly we shall observe that, because Pg,(e) is the ortogonal projection of e
onto .S; and PSGii(e) € S; we always have

(Wi

Thus, using (19), (20) and the following obvious equalities

=l e—P5i(e) Il 2 | e~ Ps,(e) 1=l || - (20)

I PSe) IIP=] e |I* — || £

2 —2< PSie), fi% >, (21)

I Psi(e) IP=Ile > =1l f*1 (22)
we obtain
I BSi(e) I> = | Ps,(e) I*=
=2 < PG ) > = (1L P = £17) < =2 < 2% PSi(e) >, (23)

Le. the first inequality in (18). For the second one, by replacing z and y
in (13) with e — f%% € S; and — f*Ci, respectively and using the obvious
equality

PG (f*%) =0 (24)
we get ‘
Felle, = 1 Ps(e) &, + Il /% 12, - (25)

From here, by summing following ¢ and using the equality (see [2], formula

(4.6))

Sl = 1= (26)

S



we obtain’
G’f/ i7 %
lell* >[I Pgi(e) I* + || £ |

from which the inequality

i (27)

< B PRs< (28)
obviously holds and the proof is complete.

Remark 5 From a geometrical view point, the relation (28) tells us that the

generalized oblique projection made with G; has a “projection angle” less than
90° (see also the figure below).

Thus, what we would like to have would be to get "strenghtened" (strict)
inequalities in (18). This will happen if the term || %% ||2 — || £ ||? in (23)
will be strictly greater than 0. Thus, by taking into account (20) we would
like to exist a constant 8 > 1 such that

ANz B0 f Il Vi=1,...,m. (29)

For this, let 7 € {1,...,m} be arbitrary fixed and (i) C {1,...,m} defined
by
I(i) ={5 € {1,...,m},ay #0}. (30)
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Then using (5), (6) and (19) we can write the inequality (29) as follows
B<asai>g < | ailll Gila |
or equivalently

” < v Z a (31)

jEI(z glJ JeI(z) ]GI('L gU

where v = % € [0,1), i.e. a "strenghtened" Cauchy ineguality. It will hold
(independently on %) for the (minimal) value of 7 given by
a2,
2el) g
- L)
7= 1%%}7% a2’ (32)

Zje[(i) a?j Zje[(i) =

9i;

Then, taking into account all the above considerations we can conclude that
for a choice of the matrices G; = diag(g:1, ..., gin) for which the constant
v from (32) is strictly less then 1 (ie. 8 = —i— > 1) we may expect better
convergence properties of the (DW) algorithm (8). In the next section of the
paper we shall numerically analyse these aspects for the G; ’s choice proposed

n [2] and another one suggested by the author.
3. Numerical experiments
We considered in our experiments the one-dimensional stady state heat

transfer equation

{ w'(z) ~ ond(2) =0, i € (0,1) (33)

u(0) = ug, u(l) =,

dlscretlzed by a classical (centered) finite defferences scheme. Thus, for n >
2,h = L (the mesh size) and after we eliminated the boundary conditions we
obtamed the (n — 1) x (n — 1) sparse, nonsingular, nonsymmetric system

Aw = b, (34)
with A and b given by

Ch 2 ap,

Ch, 2 Qyp,
Ch 2 J




where aj, = —1+ %, ¢, = —1 - ¢ p = (1+92—h,0,..‘,0,1—%h). It is
well known that, in order to get a stable solution by solving (34) the Péclet

number Pe = ah must satisfy
Pe € ]0,2). (36)

For solving (34) we used the (DW) algorithm (8) with the following two
choices for Gj:
Case I G} = diag(g},,-..,g;,) and

1 .
1 e if Qg5 7& 0
o g 7
gz] { O, if Qi = 0 (3 )
and s; from (11) (i.e. the (CAV) algorithm (11)-(12))

and
Case II G? = diag(g?, . . .,g2,) with

|as;]

k=1 |akj’ .

95 = (38)
We denoted by v,(n, Pe), @ = 1,2 the corresponding constants calculated as
in (32) for different values of Pe € [0,2). The results are described in Table 1
bellow (they are independent on n). We observe that in all tests we obtained

0 < 7v4(n,Pe) < 1=r(n,Pe). (39)

After these evaluations we considered the corresponding (DW) algorithms
which we respectively denoted by (DW1) and (DW2). We applied them
for solving the sistem (34) for different values of n and Pe with the stopping
test

| Az* — b ||< h. (40)

The results described in Table 2 confirm the fact that a relation like (39)

determines a better behaviour of the (DW2) algorithm than (DW1) one.
Final remarks 1. The stopping test (40) was choosen such the error

between z* and the exact solution of (33) was 10~ (which is good enough

for many practical problems).

2. We observe in Table 1 that even for values of Pe closer to 2 (i.e. "unstable

numerical solution") the behaviour of the DW2 algorithm rests as for the

other values of Pe € [1,2).

3. The numerical experiments were made with the numerical linear algebra,

programs package OCTAVE (free available on Internet).
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Table 1. The values of ,(n, Pe) and 7,(n, Pe)
Pe 71(”’7})6) ’)/2(’/’),,P€)
0.1 1 0.95961
0.5 1 0.96761
0.8 1 0.96861
1 1 0.96716
1.2 1 0.96587
1.4 1 0.96012
1.6 ] 0.95502
1.8 1 0.94917
1.8 1 0.94782
1.95 1 0.94827
Table 2. The behaviour of the algorithms (DW1) and (DW2)
n | Pe | Nr. iter. (DW1) Nr. iter. (DW2)
32| 0.1 36 34
32| 0.5 43 39
32| 0.8 99 47
32| 1 61 o4
32| 1.2 76 62
32| 14 38 69
32| 1.6 101 76
321 1.8 115 83
321 19 122 86
32 | 1.95 126 88
64| 1 166 138
64 | 1.8 292 208
64 | 1.95 320 220
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