

INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

ed S

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 02503638

NAGY-FOIAS DIAGRAM FOR HILBERT MODULES OVER THE POLYDISK ALGEBRA

by

ELENA ALINA SUCIU

Preprint nr. 2/2001

NAGY-FOIAS DIAGRAM FOR HILBERT MODULES OVER THE POLYDISK ALGEBRA

by

ELENA ALINA SUCIU*

February, 2001

^{*} Polytechnical University of Bucharest, Chair Mathematics I, Calea Independentei 313, Bucharest, Romania. E-mail: esuciu@miron.imar.ro

NAGY-FOIAŞ DIAGRAM FOR HILBERT MODULES OVER THE POLYDISK ALGEBRA *

ELENA ALINA SUCIU

To every Agler type analytic operator-valued function Θ on ${\rm I\!D}^N$ we associate a unique Nagy-Foiaş diagram. We show that the modeling morphism coresponding to this diagram coincides with Θ . This is a generalization to the case of the polydisk algebra of the Nagy-Foiaş model for contractions developed in the case of the disk algebra.

The Nagy-Foiaș diagram for a contractive Hilbert module M over a function algebra Adescribes in case it exists the geometry of the minimal spectral dilation of the module M, cf. [6]. There is a one-to-one corespondence between Nagy-Foiaş diagrams and a special class of A-module maps called modeling morphisms, cf. [6], [7]. This rather abstract description of Nagy-Foiaş diagrams can be expressed in terms of functions in special cases. When A is the disk algebra there is a way to attach to every purely contractive analytic function on ${\mathbb D}$ a unique Nagy-Foiaş diagram for a Hilbert module generated by a contraction T. To this diagram coresponds a unique modeling morphism which turns out to be exactly the characteristic function of T, cf. [4]. We look for such a description in terms of functions in the case of the polydisk algebra. More precisely, we start with a function from the Agler-Schur class, cf. [1], i.e. an analytic function on \mathbb{D}^N which has a certain factorization and we associate to it a unique Nagy-Foiaş diagram, hence a unique modeling morphism. We show that this modeling morphism coincides with Θ in a certain sense. Our work is based on papers [1] and [3]. J. Agler used in [1] the factorization of Θ to construct N contractions A_1, \dots, A_N . They do not commute, but they generate N commuting contractions $\mathcal{A}_1, \dots, \mathcal{A}_N$ which have a minimal spectral dilation, see [3]. Contractions $\mathcal{A}_1, \dots, \mathcal{A}_N$ still depend on the factorization of Θ . The interesting thing is that the Nagy-Foiaş diagram they generate is unique. This diagram is constructed imposing a purity condition on Θ .

^{*}Key words and phrases: Hilbert module, spectral dilation, Silov resolution, Nagy-Foiaş model. Math Subject Classification: Primary 47A20, Secondary 46E20.

1 Preliminaries.

Let M be a contractive Hilbert module over a function algebra A. Denote by M_* the adjoint Hilbert module of M with the multiplication given by \overline{f} for $f \in A$. We say that M admits Nagy-Foiaş diagram if we can construct the commutative diagram

where K is a minimal spectral dilation of M, S_0 , R_0 are the minimal subspectral dilations of M and M_* adiacent to K, respectively K_* , and S_1 , R_1 are the orthogonal complements of M in S_0 , respectively R_0 . Arrows in the above diagram are inclusions or orthogonal projections A-module maps. The necessary and sufficient condition for M to admit Nagy-Foiaş diagram is that $S_0 \vee R_0 = K$. In case A is the disk algebra, then Nagy-Foiaş diagram connects the minimal unitary and isometric dilations of T and T^* respectively, where T is the contraction that defines the multiplication on M.

To every Nagy-Foiaş diagram one can associate a special class of A- module maps, called modeling morphisms. Namely, we take $\Phi = P_{\overline{R_1}}^K | S_1$, where $\widetilde{R_1}$ is the minimal spectral extension of R_1 . In the case of the disk algebra Φ coincides with the characteristic function of the contraction T.

We want to construct the Nagy-Foiaş diagram and its coresponding modeling morphism for the case of the polydisk algebra. To do this we need some results, definitions and notations from [1] and [3] which we present below.

Consider the Agler-Schur class of analytic functions $\Theta(\lambda)$ on \mathbb{D}^N whose values are bounded operators from a Hilbert space E to a Hilbert space F, both separable, for which there exist Hilbert spaces H_i with $i=1,\dots,N$ and analytic functions F_i defined on \mathbb{D}^N with values bounded operators from E to H_i such that

(1.2)
$$I_E - \Theta(\lambda)^* \Theta(z) = \sum_{i=1}^N (1 - \overline{\lambda}_i z_i) F_i(\lambda)^* F_i(z), \ \lambda, z \in \mathbb{D}^N.$$

Denote $H = \bigoplus_{i=1}^N H_i$. For a N-tuple of operators T_1, \dots, T_N we shall use notation $\mathbf{T} = (T_1, \dots, T_N)$ and for $\xi = (\xi_1, \dots, \xi_N) \in \mathbf{T}^N$ we denote $\xi \mathbf{T} = \sum_{i=1}^N \xi_i T_i$.

J. Agler showed in [1] that $\Theta(\lambda)$ can be factorized as (1.2) if and only if there exist N

unitary operators

$$G_i = \left(\begin{array}{cc} A_i & B_i \\ C_i & D_i \end{array}\right) : \begin{array}{c} H & H \\ \oplus & \to \\ E & F \end{array}$$

such that $\xi \mathbf{G} = \sum_{i=1}^{N} \xi_i G_i$ is a unitary operator for any $\xi \in \mathbb{T}^N$. Moreover

$$\Theta(\lambda) = \lambda \mathbf{D} + \lambda \mathbf{C} (I_H - \lambda \mathbf{A})^{-1} \lambda \mathbf{B}, \ \lambda \in \mathbb{D}^N.$$

For $t \in \mathbb{Z}^N$ denote $|t| = \sum_{i=1}^N t_i$, $\widetilde{\mathbb{Z}}_+^N := \{t \in \mathbb{Z}^N : |t| \geq 0, \}$, $\widetilde{\mathbb{Z}}_0^N := \{t \in \mathbb{Z}^N : |t| = 0\}$, $\widetilde{\mathbb{Z}}_-^N := \{t \in \mathbb{Z}^N : |t| \leq 0\}$ and $\mathbb{Z}_+^N := \{t \in \mathbb{Z}^N : t_i \geq 0, i = 1, \dots, N\}$. Consider $s = (s_1, s_2, \dots, s_N) \in \mathbb{Z}_+^N$ and let σ be a permutation of the set

$$(1, \cdots, 1, 2, \cdots, 2, \cdots, N, \cdots, N)$$

$$s_1 \qquad s_2 \qquad s_N$$

Denote by $P_{|s|}$ the set of all this permutations. Then the number of elements of $P_{|s|}$ is

$$c_s := \frac{|s|!}{|s_1|!|s_2|!\cdots|s_N|!}, s \in \mathbb{Z}_N^+.$$

The symmetrized multipower of the N-tuple $\mathbf{A} = (A_1, \dots, A_N)$ is

$$\mathbf{A}^{s} := c_{s}^{-1} \sum_{\sigma \in P_{|s|}} A_{\sigma(1)} \cdots A_{\sigma(|s|)}, \quad s \in \mathbb{Z}_{N}^{+} - \{0\}.$$

In this notations if one component s_i of s is equal to zero, then operator A_i does not appear in any terms of \mathbf{A}^s . In the case of a commutative N-tuple $\mathbf{A} = (A_1, \dots, A_N)$ we obtain the usual multipower of \mathbf{A} , namely $\mathbf{A}^s = A_1^{s_1} \cdots A_N^{s_N}$. Also, we introduce the following notations:

$$(\mathbf{A}\#\mathbf{B})^s := c_s^{-1} \sum_{\sigma \in P_{|s|}} A_{\sigma(1)} \cdots A_{\sigma(|s|-1)} B_{\sigma(|s|)}, \quad s \in \mathbb{Z}_N^+ - \{0\},$$

$$(\mathbf{C} \& \mathbf{B})^s := c_s^{-1} \sum_{\sigma \in P_{|s|}} C_{\sigma(1)} B_{\sigma(2)}, \quad |s| = 2, \ s \in \mathbb{Z}_N^+,$$

$$(\mathbf{C} \flat \mathbf{A} \# \mathbf{B})^s := c_s^{-1} \sum_{\sigma \in P_{|s|}} C_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(|s|-1)} B_{\sigma(|s|)}, \quad |s| \ge 3, \ s \in \mathbb{Z}_N^+.$$

Then, from [3] we know that $\Theta(\lambda)$ has the power expansion

(1.3)
$$\Theta(\lambda) = \lambda \mathbf{D} + \sum_{\substack{|s| = 2\\ s \in \mathbb{Z}_+^N}} \lambda^s (\mathbf{C} \& \mathbf{B})^s + \sum_{\substack{|s| \ge 3\\ s \in \mathbb{Z}_+^N}} \lambda^s (\mathbf{C} \flat \mathbf{A} \# \mathbf{B})^s, \lambda \in \mathbb{ID}^N.$$

We want to associate to $\Theta(\lambda)$ a contractive Hilbert module. For this consider Hilbert spaces

$$\mathcal{H}=l^2(\widetilde{\mathbb{Z}}_0^N,\mathcal{H}),\ \mathcal{E}=l^2(\widetilde{\mathbb{Z}}_+^N,E),\ \mathcal{F}=l^2(\widetilde{\mathbb{Z}}_-^N,F),\ \mathcal{E}_{\sim}=l^2(\widetilde{\mathbb{Z}}_0^N,E),\ \mathcal{F}_{\sim}=l^2(\widetilde{\mathbb{Z}}_0^N,F).$$

For an arbitrary Hilbert space H consider the space of square integrable functions $L^2(\mathbb{T}^N, H)$. Then the Fourier transform is

$$\Phi^H: l^2(\mathbb{Z}^N, H) \to L^2(\mathbb{T}^N, H), \ \ (\Phi^H y)(\xi) = \sum_{t \in \mathbb{Z}^N} y(t) \xi^t, \ \ \xi \in \mathbb{T}^N.$$

 Φ^H is a unitary and its restrictions to $l^2(\widetilde{\mathbb{Z}}_0^N, H)$ takes values to the subspace of $L^2(\mathbb{T}^N, H)$ of functions with vanishing Fourier coefficients for multiindeces t which are not in $\widetilde{\mathbb{Z}}_0^N$.

As in [3] we define operators

$$\mathcal{A}_i: \mathcal{H} \to \mathcal{H}, \quad \mathcal{A}_i x(t) = \sum_{j=1}^N A_j x(t + e_i - e_j).$$
 $\mathcal{B}_i: \mathcal{E}_{\sim} \to \mathcal{H}, \quad \mathcal{B}_i v(t) = \sum_{j=1}^N B_j x(t + e_i - e_j).$
 $\mathcal{C}_i: \mathcal{H} \to \mathcal{F}, \quad \mathcal{C}_i x(t) = \sum_{j=1}^N C_j x(t + e_i - e_j).$
 $\mathcal{D}_i: \mathcal{E}_{\sim} \to \mathcal{F}, \quad \mathcal{D}_i v(t) = \sum_{j=1}^N D_j x(t + e_i - e_j),$

for $t \in \mathbb{Z}_0^N$ and

$$e_i = (0, \cdots, 1, \cdots, 0).$$

We show that A_1, A_2, \dots, A_N are contractions. Since

$$\xi \mathbf{G} = \begin{pmatrix} \xi \mathbf{A} & \xi \mathbf{B} \\ \xi \mathbf{C} & \xi \mathbf{D} \end{pmatrix} : \begin{array}{c} H & H \\ \oplus & \to & \oplus \\ E & F \end{array}$$

is a unitary operator for any $\xi \in \mathbb{T}^N$, it results that $\xi \mathbf{A} = P_H \xi \mathbf{G} | H$ is a contraction. Then we have

$$\|\mathcal{A}_{i}x\|^{2} = \|\Phi^{\mathcal{H}}\mathcal{A}_{i}x\|^{2} = \sum_{t \in \widetilde{\mathbb{Z}}_{0}^{N}} \|\mathcal{A}_{i}x(t)\xi^{t}\|^{2} = \sum_{t \in \widetilde{\mathbb{Z}}_{0}^{N}} \|\sum_{j=1}^{N} A_{j}x(t + e_{i} - e_{j})\xi^{t}\|^{2} =$$

$$= \sum_{t \in \widetilde{\mathbb{Z}}_0^N} \|\xi_i^{-1} \sum_{j=1}^N \xi_j A_j x(t) \xi^t \|^2 = \sum_{t \in \widetilde{\mathbb{Z}}_0^N} \|(\xi A) x(t) \xi^t \|^2 \le \sum_{t \in \widetilde{\mathbb{Z}}_0^N} \|x(t) \xi^t \|^2 = \|x\|^2.$$

It is easy to see that we have $\mathcal{A}_i \mathcal{A}_j = \mathcal{A}_j \mathcal{A}_i$, for $i \neq j$. In [3] D. S. Kalyuzhniy constructed a unitary dilation $\mathcal{W}_1, \ \mathcal{W}_2, \ \cdots \mathcal{W}_N$ of the contractions $\mathcal{A}_1, \ \mathcal{A}_2, \ \cdots \mathcal{A}_N$ in the following way. Denote $\mathcal{K} = \mathcal{F} \oplus \mathcal{H} \oplus \mathcal{E}$ and set $\mathcal{W}_i : \mathcal{K} \to \mathcal{K}, \ \mathcal{W}_i(v, x, u) = (v_i, x_i, u_i)$ with

$$v_i(t) = \begin{cases} v(t+e_i), & \text{for } |t| \le -1 \\ C_i x(t) + \mathcal{D}_i u(t), & \text{for } |t| = 0 \end{cases},$$

$$x_i(t) = \mathcal{A}_i x(t) + \mathcal{B}_i u(t), \text{ for } |t| = 0,$$

$$u_i(t) = u(t + e_i), \text{ for } |t| \ge 0.$$

The adjoint of W_i is $W_i^*: \mathcal{K} \to \mathcal{K}, \ W_i^*(v, x, u) = (v_i, x_i, u_i)$ with

$$v_i(t) = v(t - e_i), \text{ for } |t| \le 0,$$

$$x_i(t) = \mathcal{A}_i^* x(t) + \mathcal{C}_i^* v(t), \text{ for } |t| = 0,$$

$$u_i(t) = \left\{ egin{array}{ll} u(t-e_i), & ext{for } |t| \geq 1 \ \mathcal{B}_i^* x(t) + \mathcal{D}_i^* v(t), & ext{for } |t| = 0 \end{array}
ight.$$

Then W_i are unitary operators which pairwise commute, hence they generate a \mathbb{T}^N -spectral $A(\mathbb{D}^N)$ -module structure on \mathcal{K} . Since W_1 , W_2 , , $\cdots W_N$ is a unitary dilation of \mathcal{A}_1 , \mathcal{A}_2 , $\cdots \mathcal{A}_N$ we conclude that contractions \mathcal{A}_i satisfy the von Neumann inequality, hence they generate a contractive Hilbert module structure on \mathcal{H} . Clearly, \mathcal{K} is the spectral dilation of \mathcal{H} .

2 The Nagy-Foiaş diagram.

In this section we construct the unique Nagy-Foiaş diagram generated by Θ .

Proposition 1 If $\mathcal{F}_{\sim} = \bigvee_{i=1}^{N} \mathcal{C}_{i}\mathcal{H}$ and $\mathcal{E}_{\sim} = \bigvee_{i=1}^{N} \mathcal{B}_{i}^{*}\mathcal{H}$, then $\mathcal{K} = \cdots \oplus \mathcal{F}_{\sim} \oplus \mathcal{F}_{\sim} \oplus \mathcal{H}_{\sim} \oplus \mathcal{E}_{\sim} \oplus$

Proof. For conventional notation we give the proof for N=2. Denote $\mathcal{K}_+=\mathcal{F}\oplus\mathcal{H}$. We show that $\overline{A\cdot_{\mathcal{K}}\mathcal{H}}=\mathcal{K}_+$. For the inclusion $\overline{A\cdot_{\mathcal{K}}\mathcal{H}}\subseteq\mathcal{K}_+$ it is sufficient to show that $z_1^mz_2^n(0,x,0)\in\mathcal{K}_+$, for any $m,n\in\mathbb{Z}_+$ and any $x\in\mathcal{H}$. We have

$$z_1^m(0, x, 0) = \mathcal{W}_1^m(0, x, 0) = (v', x', 0)$$

with

$$v^{'}(t) = \left\{ egin{array}{ll} 0, & |t| \leq -m \ \mathcal{C}_1 x(t), & |t| = -(m-1) \ \mathcal{C}_1 \mathcal{A}_1 x(t), & |t| = -(m-2) \ \mathcal{C}_1 \mathcal{A}_1^2 x(t), & |t| = -(m-3) \ \end{array}
ight., \ \mathcal{C}_1 \mathcal{A}_1^{m-1} x(t), & |t| = 0 \end{array}
ight.$$

$$x'(t) = \mathcal{A}_1^m x(t), |t| = 0.$$

In the same way

$$z_{1}^{m}z_{2}^{n}(0,x,0) = \mathcal{W}_{1}^{m}\mathcal{W}_{2}^{n}(0,x,0) = \mathcal{W}_{2}^{n}\mathcal{W}_{1}^{m}(0,x,0) = (v^{'},x^{'},0)$$

with

$$v'(t) = \begin{cases} 0, & |t| \le -(m-n-2) \\ C_2x(t), & |t| = -(m-n-1) \\ C_2\mathcal{A}_2x(t), & |t| = -(m-n) \\ \cdots & \\ C_2\mathcal{A}_2^{n-1}x(t), & |t| = -m \\ C_1\mathcal{A}_2^nx(t), & |t| = -(m-1) \\ C_1\mathcal{A}_1\mathcal{A}_2^nx(t), & |t| = -(m-2) \\ C_1\mathcal{A}_1^2\mathcal{A}_2^nx(t), & |t| = -(m-3) \\ \cdots & \\ C_1\mathcal{A}_1^{m-1}\mathcal{A}_2^nx(t), & |t| = 0 \end{cases}$$

$$x'(t) = \mathcal{A}_1^m \mathcal{A}_2^nx(t), & |t| = 0.$$

Hence, it is clear that $z_1^m z_2^n(0, x, 0) \in \mathcal{K}_+$. To prove the reverse inclusion, namely $\mathcal{K}_+ \subseteq \overline{A}_{+\mathcal{W}} \mathcal{H}$, note that if we take $(v, 0, 0) \in \mathcal{K}_+$ with

$$v(t) = \begin{cases} \mathcal{C}_1 x(t), & |t| = -(m-1) \\ 0, & |t| \neq -(m-1) \end{cases}$$

then we have

$$(v,0,0) = \mathcal{W}_1^m(0,x,0) - \mathcal{W}_1^{m-1}\mathcal{A}_1(0,x,0) = z_1^m \cdot_{\mathcal{K}} (0,x,0) - z_1^{m-1} \cdot_{\mathcal{K}} z_1 \cdot_{\mathcal{H}} (0,x,0) \in \overline{\mathcal{A} \cdot_{\mathcal{K}} \mathcal{M}}.$$

Also, for $(v, 0, 0) \in \mathcal{K}_+$ with

$$v(t) = \begin{cases} C_2 x(t), & |t| = -(n-1) \\ 0, & |t| \neq -(n-1) \end{cases},$$

we have

$$(v,0,0) = \mathcal{W}_2^n(0,x,0) - \mathcal{W}_2^{n-1}\mathcal{A}_2(0,x,0) = z_2^n \cdot_{\mathcal{K}} (0,x,0) - z_2^{n-1} \cdot_{\mathcal{K}} z_2 \cdot_{\mathcal{H}} (0,x,0) \in \overline{\mathcal{A} \cdot_{\mathcal{K}} \mathcal{M}}.$$

The minimality condition given in Proposition 1 can be also expressed in terms of Θ . To do this we need some notations.

Let $\Theta(\lambda) \in \mathcal{L}(E, F)$ for $\lambda \in \mathbb{D}^N$. For $i = 1, \dots, N$ we define then $\Theta_i(\lambda) \in \mathcal{L}(\mathcal{E}_{\sim}, \mathcal{F}_{\sim})$ by

$$\Theta_i(\lambda)u(t) = \sum_{j=1}^N \Theta(0, \dots, \lambda_j, \dots, 0)u(t + e_i - e_j), \lambda \in \mathbb{ID}, u \in \mathcal{E}_{\sim}, \ t \in \widetilde{\mathbb{Z}}_0^N.$$

Also, denote by $\Theta^{\sharp}(\lambda) \in \mathcal{L}(F, E)$ the function defined by $\Theta^{\sharp}(\lambda) = \Theta(\overline{\lambda})^*$.

Definition 1 We say that Θ is pure provided

$$\mathcal{F}_{\sim} = \vee_{i=1}^{N} \Theta_{i}(\lambda) \mathcal{E}_{\sim},$$

$$E_{\sim} = \vee_{i=1}^{N} \Theta_{i}^{\#}(\lambda) \mathcal{F}_{\sim}.$$

This purity condition allows us to construct the Nagy-Foiaş diagram generated by Θ .

Theorem 1 If Θ is pure, then Hilbert module $\mathcal{H}(\Theta)$ admits a unique Nagy-Foiaş diagram.

Proof.

We show that the fact that Θ is pure implies that

$$\mathcal{F}_{\sim} = \vee_{i=1}^{N} \mathcal{C}_{i} \mathcal{H}.$$

Suppose first that we have $v \in \mathcal{F}_{\sim}$ of the form $v = \sum_{i=1}^{N} \Theta_i(\lambda) u_i$, with $u_i \in \mathcal{E}_{\sim}$. In [1] is described the way to construct operators C_j using functions F_j which appear in the factorization (1.2) of Θ . More precisely, for $t \in \widetilde{\mathbb{Z}}_0^N$ we have

$$C_j \begin{pmatrix} \lambda_1 F_1(\lambda) \\ \cdots \\ \lambda_N F_N(\lambda) \end{pmatrix} u_i(t) = \Theta(0, \cdots, \lambda_j, \cdots, 0) u_i(t), \quad i, \ j = 1, \ \cdots, \ N.$$

We denote

$$\begin{pmatrix} \lambda_1 F_1(\lambda) \\ \cdots \\ \lambda_N F_N(\lambda) \end{pmatrix} u_i(t) = x_i(t), \ i = 1, \ \cdots, \ N.$$

Hence,

$$v(t) = \sum_{i=1}^{N} \Theta_{i}(\lambda) u_{i}(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta(0, \dots, \lambda_{j}, \dots, 0) u_{i}(t + e_{i} - e_{j}) =$$

$$= \sum_{i=1}^{N} (\sum_{j=1}^{N} C_{j} x_{i}(t + e_{i} - e_{j})) = \sum_{i=1}^{N} C_{i} x_{i}(t) \in \vee_{i=1}^{N} C_{i} \mathcal{H}.$$

In the same way one proves that from the fact that $\mathcal{E}_{\sim} = \bigvee_{i=1}^{N} \mathcal{B}_{i}^{*}\mathcal{H}$. The purity condition imposed on Θ in Definition 1 it results then that \mathcal{K} is the minimal spectral extension of \mathcal{H} . To construct the Nagy-Foiaş diagram (1.1) associated to \mathcal{H} take $S_{0} = \mathcal{F} \oplus \mathcal{H}$, $S_{1} = \mathcal{F}$, $R_{0} = \mathcal{H} \oplus \mathcal{E}$, $R_{1} = \mathcal{E}$. It is easy to see that $\mathcal{W}_{i}S_{0} \subset S_{0}$, $\mathcal{W}_{i}S_{1} \subset S_{1}$, $\mathcal{W}_{i}^{*}R_{0} \subset R_{0}$, $\mathcal{W}_{i}^{*}R_{1} \subset R_{1}$, for $i = 1, \dots, N$. Hence, Hilbert modules S_{0} , S_{1} , R_{0} , R_{1} are subspectral. Since we have $S_{0} \vee R_{0} = \mathcal{K}$ it results that $\mathcal{H} = \mathcal{H}(\Theta)$ admits Nagy-Foiaş diagram.

The minimality condition imposed on Θ in Definition 1 does not depend on the Agler factorization (1.2). Hence, the Nagy-Foiaş diagram generated by $\mathcal{H}(\Theta)$ is unique.

3 The modeling morphism.

For contractive Hilbert modules which are pure there is a one-to-one corespondence between Nagy-Foiaş diagrams and modeling morphisms, see [7]. In this section we prove that the contractive Hilbert module $\mathcal{H}(\Theta)$ is pure and we construct the modeling morphism coresponding to $\mathcal{H}(\Theta)$. We indicate a way to identify this modeling morphism with Θ .

Proposition 2 If Θ is minimal, then $\mathcal{H}(\Theta)$ is pure.

Proof. First, we show that if Θ is minimal, then $\xi \mathbf{A}$, $\xi \in \mathbb{T}^N$ is completely non-unitary. By this we mean that there is no proper subspace H in H_0 reducing $\xi \mathbf{A}$ for each $\xi \in \mathbb{T}^N$ such that $\xi \mathbf{A}|H_0$ consists of unitary operators. Indeed, suppose that there exists $H_0 \subseteq H$ such that $\xi \mathbf{A}|H_0$ is unitary for any $\xi \in \mathbb{T}^N$. Since operators $\xi \mathbf{G}^*$ are also unitaries for any $\xi \in \mathbb{T}^N$, it results that $\xi \mathbf{C}^*|H_0 = 0$, hence $\overline{Im\xi \mathbf{C}} \neq F$. Consider $f \in F$, $f \neq 0$ such that $f \perp \overline{Im \xi \mathbf{C}}$. Define $v \in \mathcal{F}_{\sim}$ by v(t) = f for all $t \in \widetilde{\mathbb{Z}}_0^N$. Then, for $x_i \in \mathcal{H}$ we have

$$< v, \sum_{i=1}^{N} C_{i} x_{i} > = \sum_{t \in \widetilde{Z_{0}^{N}}} < v(t), \sum_{i=1}^{N} C_{i} x_{i}(t) > = \sum_{t \in \widetilde{Z_{0}^{N}}} < u(t), \sum_{i,j=1}^{N} C_{j} x_{i}(t + e_{i} - e_{j}) > =$$

$$= \sum_{t \in \widetilde{Z_{0}^{N}}} < f, \sum_{j=1}^{N} \xi_{j} C_{j} \sum_{i=1}^{N} \xi_{i}^{-1} x_{i}(t) > = \sum_{t \in \widetilde{Z_{0}^{N}}} < f, \xi \mathbf{C} \sum_{i=1}^{N} \xi_{i}^{-1} x_{i}(t) > = 0$$

Then, u is orthogonal on $\bigvee_{i=1}^{N} C_i \mathcal{H}$ which is a contradiction because we showed in Theorem 1 that if Θ is minimal, then $\bigvee_{i=1}^{N} C_i \mathcal{H} = \mathcal{F}_{\sim}$.

We show now that if $\xi \mathbf{A}$ is c.n.u., then the Hilbert module $\mathcal{H} = \mathcal{H}(\Theta)$ generated by contractions $\mathcal{A}_1, \dots, \mathcal{A}_N$ is pure. The canonical decomposition of \mathcal{H} is $\mathcal{H} = \mathcal{H}_s \oplus \mathcal{H}_p$ with \mathcal{H}_s the spectral part and \mathcal{H}_p the pure part of \mathcal{H} . We know from [5] that the characterization of the spectral part \mathcal{H}_s is

$$\mathcal{H}_s = \{ x \in \mathcal{H} | \| \mathcal{A}^s \mathcal{A}^{*t} x \| = \| x \|, \ s, t \in \mathbb{Z}_+^N \} = \{ x \in \mathcal{H} | \| \mathcal{A}^{*s} \mathcal{A}^t x \| = \| x \|, \ s, t \in \mathbb{Z}_+^N \},$$

where $\underline{\mathcal{A}^s} = \mathcal{A}_1^{s_1}, \dots \mathcal{A}_N^{s_N}$, for $s = (s_1, \dots, s_N) \in \mathbb{Z}_+^N$. Suppose that $\mathcal{H}_s \neq 0$. Denote $H_s = \{x(t) | t \in \widetilde{\mathbb{Z}}_0^N, x \in \mathcal{H}_s\}$. We show that in this case $\xi \mathbf{A} | H_s$ is unitary for any $\xi \in \mathbb{T}^N$, which contradicts the fact that $\xi \mathbf{A}$ is c.n.u.

Consider $x \in \mathcal{H}_s$ and take $s = t = (1, 0, \dots, 0) \in \mathbb{Z}_+^N$. Then

$$(\mathcal{A}^{s}\mathcal{A}^{*t}x)(t) = \mathcal{A}_{1}\mathcal{A}_{1}^{*}x(t) = \sum_{i,j=1}^{N} A_{i}A_{j}^{*}x(t+e_{i}-e_{j}).$$

Since $x \in \mathcal{H}_s$ we have $\|\mathcal{A}_1 \mathcal{A}_1^* x\|^2 = \|x\|^2$, which implies that

$$\sum_{t \in \widetilde{\mathbb{Z}}_{0}^{N}} \| \sum_{i,j=1}^{N} A_{i} A_{j}^{*} x(t + e_{i} - e_{j}) \xi^{t} \|^{2} = \sum_{t \in \widetilde{\mathbb{Z}}_{0}^{N}} \| x(t) \xi^{t} \|^{2},$$

hence

$$\|\xi \mathbf{A}(\xi \mathbf{A})^* x(t)\|^2 = \|x(t)\|^2, \ t \in \widetilde{\mathbf{Z}}_0^N.$$

It results that

$$\xi \mathbf{A}(\xi \mathbf{A})^* | H_s = I_{H_s}, \ \xi \in \mathbb{T}^N.$$

In the same way one shows that

$$(\xi \mathbf{A})^* \xi \mathbf{A} | H_s = I_{H_s}, \ \xi \in \mathbf{T}^N.$$

We conclude that $\mathcal{H}(\Theta)$ is pure.

In the remaining of the section we denote by $\mathcal{H}^*(\Theta)$ the Hilbert module generated by $\mathcal{A}_1^*, \dots \mathcal{A}_N^*$.

Theorem 2 The modeling morphism associated to $\mathcal{H}^*(\Theta)$ coincides with Θ .

Proof. We showed in Theorem 1 that $\mathcal{H}(\Theta)$ admits Nagy-Foiaş diagram. Then $\mathcal{H}^*(\Theta)$ also admits Nagy-Foiaş diagram with $S_0 = \mathcal{E} \oplus \mathcal{H}$, $S_1 = \mathcal{E}$, $R_0 = \mathcal{F} \oplus \mathcal{H}$, $R_1 = \mathcal{F}$.

We identify the elements $e \in E$ with the constant functions $v \in E$ defined by

$$v(t) = \begin{cases} e, & \text{for } t = (0, \dots, 0) \\ 0, & \text{for } t \in \widetilde{\mathbb{Z}}_0^N - \{(0, \dots, 0)\} \end{cases}$$

and we denote them simply by e. Then, by $\mathcal{W}^{*s}E$ we denote $\{\mathcal{W}_1^{*s_1}\cdots\mathcal{W}_N^{*s_N}e, s = (s_1,\cdots,s_N)\in\widetilde{\mathbb{Z}}_+^N, e\in E\}$. In the same way one defines $\mathcal{W}^{*s}F$. We have then

$$S_1 = \mathcal{E} = \bigoplus_{s \in \widetilde{\mathbb{Z}}_+^N} \mathcal{W}^{*s} E, \ R_1 = \mathcal{F} = \bigoplus_{s \in \widetilde{\mathbb{Z}}_+^N} \mathcal{W}^s F,$$

hence

$$\widetilde{R}_1 = \bigoplus_{s \in \widetilde{Z}_L^N} \mathcal{W}^s E = \bigoplus_{s \in \widetilde{Z}_L^N} \mathcal{W}^{*s} E$$

and

$$\widetilde{R}_1 \ominus R_1 = \bigoplus_{s \in \widetilde{\mathbb{Z}}_{-}^N - \widetilde{\mathbb{Z}}_0^N} \mathcal{W}^s E = \bigoplus_{s \in \widetilde{\mathbb{Z}}_{+}^N - \widetilde{\mathbb{Z}}_0^N} \mathcal{W}^{*s} E.$$

Let $P = P_{\widetilde{R}_1}^K | S_1$ be the modeling morphism associated to the Nagy-Foiaş diagram coresponding to $\mathcal{H}(\Theta)$. Then, it is known from [4] that P takes value in $\widetilde{R}_1 \ominus R_1$, hence for $e \in E$ we have

$$Pe = \sum_{s \in \widetilde{\mathbb{Z}}_{+}^{N} - \widetilde{\mathbb{Z}}_{0}^{N}} \mathcal{W}^{*s} f_{s}, \ f_{s} \in F.$$

Since P is a projection we have

$$\sum_{s \in \widetilde{\mathbb{Z}}_{+}^{N} - \widetilde{\mathbb{Z}}_{0}^{N}} \|f_{s}\|^{2} = \|\sum_{s \in \widetilde{\mathbb{Z}}_{+}^{N} - \widetilde{\mathbb{Z}}_{0}^{N}} \mathcal{W}^{*s} f_{s}\|^{2} = \|Pe\|^{2} \le \|e\|^{2} < \infty.$$

We are lead then to define a sequence of contractions $(\Phi_s)_{s \in \widetilde{\mathbb{Z}}_+^N - \widetilde{\mathbb{Z}}_0^N}$ from E to F setting

$$\Phi_s e = f_s, \quad s \in \widetilde{\mathbb{Z}}_+^N - \widetilde{\mathbb{Z}}_0^N.$$

Consider then the function $\Phi(\lambda) \in \mathcal{L}(E,F)$ given by the formal power serie

$$\Phi(\lambda) = \sum_{s \in \widetilde{\mathbb{Z}}_{+}^{N} - \widetilde{\mathbb{Z}}_{0}^{N}} \lambda^{s} \Phi_{s}, \quad \lambda \in \mathbb{D}^{N}.$$

We show that $\Phi = \Theta$, i.e. Φ is a function from the Agler-Schur class.

First we show that

(3.1)
$$\Phi_s = P_F^{\mathcal{F}} \mathcal{W}^s | E, \quad s \in \widetilde{\mathbb{Z}}_+^N - \widetilde{\mathbb{Z}}_0^N.$$

Indeed, we have

$$< Pe, \mathcal{W}^{*s}f>_{\widetilde{R}_1\ominus R_1} = \sum_{s\in \widetilde{\mathbb{Z}}_+^N - \widetilde{\mathbb{Z}}_0^N} < \mathcal{W}^{*s}f_s, \mathcal{W}^{*s}f>_{\widetilde{R}_1\ominus R_1} =$$

$$=<\mathcal{W}^{*s}f_s,\mathcal{W}^{*s}f>_{\widetilde{R}_1\ominus R_1}=< f_s,f>_F=<\Phi_se,f>_F$$
.

Hence,

$$<\Phi_s e, f>_F = < Pe, \mathcal{W}^{*s}f>_{\widetilde{R}_1 \ominus R_1} = < e, \mathcal{W}^{*s}f>_{\widetilde{R}_1 \ominus R_1} = < \mathcal{W}^s e, f>_{\widetilde{R}_1 \ominus R_1} = < P_F^{\mathcal{F}}\mathcal{W}^s e, f>_F.$$

We show now that we have

$$\Phi_s = \Theta_s, \ s \in \mathbb{Z}_+^N,$$

where the coefficients Θ_s of the power expansion of Θ are given by (1.3).

For $e \in E$ the constant function we denote by (0,0,e) the element (v,x,u) from \mathcal{K} defined by $v(t)=0,\ t\in\widetilde{\mathbb{Z}}_{-}^{N},\ x(t)=0,\ t\in\widetilde{\mathbb{Z}}_{0}^{N}$ and

$$u(t) = \begin{cases} e, & \text{for } t = (0, \dots, 0) \\ 0, & \text{for } t \in \widetilde{\mathbb{Z}}_+^N - \{(0, \dots, 0)\} \end{cases}$$

Also denote $(v^{(s)}, x^{(s)}, u^{(s)}) = \mathcal{W}^s(0, 0, e)$. Then $u^{(s)}(t) = 0, \ t \in \widetilde{\mathbb{Z}}_+^N$.

We compute now $x^{(s)}(t)$ for $s \in \mathbb{Z}_+^N$ and $t \in \widetilde{\mathbb{Z}}_0^N$, with $-s_i \leq t_i \leq |s| - s_i$. For |s| = 1 we have

$$x^{(s)}(t) = \mathbf{B}^{(s_1+t_1,\dots,s_N+t_N)}e = \mathbf{B}^{s+t}e.$$

We prove by induction on the components of s that for $|s| \geq 2$ we have

(3.2)
$$x^{(s)}(t) = (\mathbf{A} \# \mathbf{B})^{(s+t)} e.$$

Indeed,

$$x^{(s_1,\dots,s_N+1)}(t) = \sum_{j=1}^N A_j x^{(s_1,\dots,s_N)}(t+e_N-e_j) =$$

$$= \sum_{j=1}^{N} A_j x^{(s_1, \dots, s_N)} (t_1, \dots, t_j - 1, \dots, t_N + 1) = \sum_{j=1}^{N} A_j (\mathbf{A} \# \mathbf{B})^{(s_1 + t_1, \dots, s_j + t_j - 1, \dots, s_N + t_N + 1)} =$$

$$= (\mathbf{A} \# \mathbf{B})^{(s_1 + t_1, \dots, s_j + t_j, \dots, s_N + t_N + 1)}.$$

It is easy to see that $x^{(s)}(t) = 0$ for other $t \in \widetilde{\mathbb{Z}}_0^N$.

We compute now $v^{(s)}(t)$, for $s \in \mathbb{Z}_+^N$ and $t \in \widetilde{\mathbb{Z}}_-^N$ with $-s_i \leq t_i \leq |s| - s_i$. For |s| = 1 we have

$$v^{(s)}(t) = \mathbf{D}^{(t+s)}e.$$

Also, for |s| = 2 we have

$$v^{(s)}(t) = (\mathbf{C} \& \mathbf{B})^{(t+s)} e.$$

We prove by induction that for $|s| \ge 3$ we have

$$v^{(s)}(t) = (\mathbf{C} \flat \mathbf{A} \# \mathbf{B})^{(t+s)} e.$$

Indeed, using (3.2) we have

$$v^{(s_1,\dots,s_{N+1})}(t) = C_N x^{(s_1,\dots,s_N)}(t) = \sum_{j=1}^N C_j x^{(s_1,\dots,s_N)}(t+e_N-e_j) = \sum_{j=1}^N C_j x^{(s_1,\dots,s_N)}(t_1,\dots,t_j-1,\dots,t_{N+1}) =$$

$$= \sum_{j=1}^N C_j (\mathbf{A}\#\mathbf{B})^{(t_1+s_1,\dots,t_j+s_j-1,\dots,t_N+s_N+1)} e = (\mathbf{C} \triangleright \mathbf{A}\#\mathbf{B})^{(t_1+s_1,\dots,t_j+s_j,\dots,t_N+s_N+1)} e.$$

For $t = (0, \dots, 0)$ we obtain then $v^{(s)}(0, \dots, 0)$, with $s \in \mathbb{Z}_+^N$. Using (3.1) we deduce that $v^{(s)}(0, \dots, 0) = P_F^{\mathcal{F}} \mathcal{W}^s(0, 0, e) = \Phi_s e$, hence

$$\Phi_s = \Theta_s, \ s \in \mathbb{Z}_{\perp}^N$$

We show now that $P_F^{\mathcal{F}} \mathcal{W}^s E = 0$, for $s \in \widetilde{\mathbb{Z}}_+^N - (\widetilde{\mathbb{Z}}_0^N \cup \mathbb{Z}_+^N)$, which means that

$$\Theta_s = 0, \ s \in \widetilde{\mathbb{Z}}_+^N - (\widetilde{\mathbb{Z}}_0^N \cup \mathbb{Z}_+^N).$$

We have $\widetilde{\mathbb{Z}}_{+}^{N} - (\widetilde{\mathbb{Z}}_{0}^{N} \cup \mathbb{Z}_{+}^{N}) = \bigcup_{i=1}^{N} \{(s_{1}, \dots, s_{N}) \in \widetilde{\mathbb{Z}}_{+}^{N} - \mathbb{Z}_{+}^{N} | s_{i} < 0\}$. Take $s \in \widetilde{\mathbb{Z}}_{+}^{N}$ with $s_{1} < 0$. Since \mathcal{W}_{i} commute we can suppose that $s_{1}, \dots, s_{k} \leq 0$ and $s_{k+1}, \dots, s_{N} \geq 0$. For $t \in \widetilde{\mathbb{Z}}_{+}^{N}$ denote

$$u_{s_1,\dots,s_k}(t) = \begin{cases} e, & t = (-s_1,\dots,-s_k,0,\dots,0) \\ 0, & t \neq (-s_1,\dots,-s_k,0,\dots,0) \end{cases},$$

Then $\mathcal{W}_1^{s_1}\cdots\mathcal{W}_k^{s_k}(0,0,e)=(0,0,u_{s_1,\cdots,s_k})$. Since we have $s_1+\cdots+s_N>0$, it results that $-s_1-\cdots-s_k< s_{k+1}+\cdots+s_N$. Then, there exists $k< l\leq N$ and $0\leq \mu< s_{l+1}$ such that $-s_1-\cdots-s_k+s_{k+1}+\cdots+s_l+\mu=0$. It is easy to see that at step $s_1+\cdots+s_l+\mu$, by applying $\mathcal{W}_{k+1}^{s_{k+1}}\cdots\mathcal{W}_{l+1}^{\mu}$ we obtain $v=0,\ x=0$ and

$$u_0(t) = \begin{cases} e, & t_0 = (-s_1, \dots, -s_k, s_{k+1}, \dots, s_l, \mu, 0, \dots, 0) \\ 0, & t \neq t_0 \end{cases}$$

We showed before that if we have

$$u(t) = \left\{ \begin{array}{ll} e, & t = (0, 0, \cdots, 0) \\ 0, & t \neq (0, 0, \cdots, 0) \end{array} \right.,$$

then for $s = (s_1, \dots, s_n) \in \mathbb{Z}_N^+$ we have $\mathcal{W}_1^{s_1} \dots \mathcal{W}_N^{s_N}(0, 0, u) = (v^{(s)}, x^{(s)}, 0)$, with $v^{(s)}(t) = 0$ for $t \in \widetilde{\mathbb{Z}}_{-}^{N} - \{t : -s_i \leq t_i \leq |s| - s_i\}$. In the same way one can see that if we take

$$u(t) = \left\{ \begin{array}{ll} e, & t = t_0 \\ 0, & t \neq t_0 \end{array} \right.,$$

then we have $v^{(s)}(t)=0, \quad t\in \widetilde{\mathbb{Z}}_{-}^{N}-\{t_{0i}-s_{i}\leq t_{i}\leq t_{0i}+|s|-s_{i}\}.$ Hence, if we apply $\mathcal{W}_{l+1}^{s_{l+1}-\mu}\cdots\mathcal{W}_{N}^{s_{N}}$ to $(0,0,u_{0})$ we obtain $(v^{(s)},x^{(s)},0)$ with $v^{(s)}(t)=0$ for $t\in\widetilde{\mathbb{Z}}_{+}^{N}$ with the first component $t_{1}\neq -s_{1},\cdots,-s_{1}+|s|$. Since this are all strictly positive it results that $v^{(s)}(0,\cdots,0) = 0 \text{ i.e., } P_F^{\mathcal{F}} \mathcal{W}^s e = 0.$

References

- [1] J. Agler, On the representation of certain holomorphic functions defined on a polydisk, Topics in Operator Theory: Ernst D. Hellinger Memorial Volume (L. de Branges, I.Gohberg and J. Rovnyak, eds.), Oper. Theory and Appl., vol.48, Birkhauser-Verlag, Basel, (1990), 47-66
- [2] R. G. Douglas and V. I. Paulsen, Hilbert Modules over function algebras, Longman Scientific and Technical, New York, 1989
- [3] D.S. Kalyuzhniy, Multiparametric Passive Linear Stationary Dynamical Scattering Systems: Discrete Case, J.Operator Theory, Vol. 43, Nr. 2, (2000), 427-460
- [4] B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland, Amsterdam-London, 1970
- [5] I. Suciu, Function algebras, Editura Academiei, Nordhoff International Publishing, București, Leyden, 1975
- [6] E.A. Suciu, Nagy-Foiaş Diagram for Hilbert modules over a function algebra, Acta. Sci. Math., 66, (2000), 315-328
- [7] E.A. Suciu, Homological methods in operator theory: Hilbert modules over function algebras, Monografii matematice, Universitatea de Vest din Timișoara, Timișoara, 1999

Polytechnical University of Bucharest Chair Mathematics I Calea Independenței 313, Bucharest Romania

e-mail: esuciu@miron.imar.ro