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NAGY-FOIAS DIAGRAM FOR HILBERT MODULES
OVER THE POLYDISK ALGEBRA *

ELENA ALINA SUCIU

To every Agler type analytic operator-valued function © on IDV we associate a
unique Nagy-Foiag diagram. We show that the modeling morphism coresponding to
this diagram coincides with ©. This is a a generalization to the case of the polydisk

algebra of the Nagy-Foiag model for contractions developed in the case of the disk
algebra.

The Nagy-Foiag diagram for a contractive Hilbert module M over a function algebra A
describes in case it exists the geometry of the minimal spectral dilation of the module M, cf.
[6]. There is a one-to-one corespondence between Nagy-Foiag diagrams and a special class
of A—module maps called modeling morphisms, cf. [6], [7]. This rather abstract description
of Nagy-Foiag diagrams can be expressed in terms of functions in special cases. When A is
the disk algebra there is a way to attach to every purely contractive analytic function on
ID a unique Nagy-Foiag diagram for a Hilbert module generated by a contraction 7. To
this diagram coresponds a unique modeling morphism which turns out to be exactly the
characteristic function of T, cf. [4]. We look for such a description in terms of functions in
the case of the polydisk algebra. More precisely, we start with a function from the Agler-
Schur class, cf. [1], i.e. an analytic function on ID" which has a certain factorization and
we associate to it a unique Nagy-Foiag diagram, hence a unique modeling morphism. We
show that this modeling morphism coincides with © in a certain sense. Our work is based
on papers [1] and [3]. J. Agler used in [1] the factorization of © to construct N contractions
Ay, -+, An. They do not commute, but they generate N commuting contractions A, An
which have a minimal spectral dilation, see [3]. Contractions A, ---, Ay still depend on the
factorization of ©. The interesting thing is that the Nagy-Foiag diagram they generate is
unique. This diagram is constructed imposing a purity condition on O.

*Key words and phrases: Hilbert module, spectral dilation, Silov resolution, Nagy-Foiag model. Math
Subject Classification: Primary 47A20, Secondary 46E20.




1 Preliminaries.

Let M be a contractive Hilbert module over a function algebra A. Denote by M, the adjoint
Hilbert module of M with the multiplication given by f for f € A. We say that M admits
Nagy-Foiag diagram if we can construct the commutative diagram

0 0 0
\J ! \J
0 — S — S — M — 0
| ¢ +
(1.1) 0O — S — K — Ry — 0
\ 2 1
O — 0 — R = R — 0
\: 4 \:
0 0 0

where K is a minimal spectral dilation of M, Sy, Ry are the minimal subspectral dilations of
M and M, adiacent to K, respectively K,, and S;, R; are the orthogonal complements of M
in Sy, respectively Ry. Arrows in the above diagram are inclusions or orthogonal projections
A—module maps. The necessary and sufficient condition for M to admit Nagy-Foiag diagram
is that Sy V Ry = K. In case A is the disk algebra, then Nagy-Foiag diagram connects the
minimal unitary and isometric dilations of T' and T* respectively, where T is the contraction
that defines the multiplication on M.

‘To every Nagy-Foiag diagram one can associate a special class of A— module maps,
called modeling morphisms. Namely, we take ® = P%|Sl, where R; is the minimal spectral
extension of R;. In the case of the disk algebra ® coincides with the characteristic function
of the contraction 7.

‘We want to construct the Nagy-Foiag diagram and its coresponding modeling morphism
for the case of the polydisk algebra. To do this we need some results, definitions and notations
from [1] and (3] which we present below.

Consider the Agler-Schur class of analytic functions ©(\) on IDY whose values are
bounded operators from a Hilbert space E to a Hilbert space F', both separable, for which
there exist Hilbert spaces H; with ¢ = 1,---, N and analytic functions F; defined on DY
with values bounded operators from E to H; such that

(12) I —O(\)*O(2) = %(1 — XNz Fi(\)*Fy(2), ),z € DV,

=1
Denote H = @®N,H;. For a N—tuple of operators Ti,---,Ty we shall use notation
N
T = (T1, -+, Tw) and for € = (&, --,&n) € TV we denote €T =) &T;.

i=1

J. Agler showed in [1] that ©()\) can be factorized as (1.2) if and only if there exist N
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unitary operators

H H
Gi:(éf g"_): & — &
K3 7 EI F

such that £G = Zf\;l &G, is a unitary operator for any ¢ € T'V. Moreover
O(\) = AD + AC(Iy — AA)"'AB, X e D",

N
For t € Z" denote [t| = Y t;, Zf ={teZ" :|t| >0}, Zy = {t e Z:|t| =

=1
0}, Z" = {t ezl < 0} and ZY := {s € Z" : ;> 0, i =1, N}. Consider
s =(81,82,"*,8N) € Z and let o be a permutatlon of the set
1, ---, 1,2, --+, 2,---,N, ---, N)
S1 So SN '

Denote by P the set of all this permutations. Then the number of elements of Py is

|s!

[s1|!s2]!- - |sn]!

Cs 1= s € 2.

The symmetrized multipower of the N—tuple A = (A, -+, Ay) is
5N Asqy o Agqsp, S € Z% — {0}

TEP,

In this notations if one component s; of s is equal to zero, then operator A; does not appear
in any terms of A°. In the case of a commutative N—tuple A = (Ay,---, Ay) we obtain the
usual multipower of A, namely A* = Af* - .- A}, Also, we introduce the following notations:

(A#B)" = ;' Y Asqy - Ao(sl-1)Bo(s), 8 € Z — {0},
0EPRy
(C&B)* :=c;' > Co)Boz), |s| =2, s€ Z}
o€h;

(CHA#B)® := Cs_1 Z Ca(l)Aa'(2) .- -Aa(|s|__1)BJ(|s|), |s| >3, s € ZE

o€EP
Then, from [3] we know that ©()\) has the power expansion
(1.3) O(A)=AD+ > X(C&B)*+ Y. ) (ChA#B)’, ) e DV

ls| =2 ls| >3
s €zl s ez




We want to associate to ©()\) a contractive Hilbert module. For this consider Hilbert
spaces

H=12TZ, H), E=2TZ, E), F=P2Z",F), £ = 2(Zy ,E), F.=12Zy,F).

For an arbitrary Hilbert space H consider the space of square integrable functions
L?(T'N, H). Then the Fourier transform is

o . 2(zZN,H) — L* (TN, H), (®"y)(©)= > y@)¢, ¢e ™.
teZZ”

. . . .. =N
®# is a unitary and its restrictions to 12(Z, , H) takes values to the subspace of L?(TT"", H)

‘ . =N
of functions with vanishing Fourier coefficients for multiindeces ¢t which are not in 7, .
As in [3] we define operators

N

.A,L' TH — H, ./-llx(t) = ZAJ$(t+ €; — 6]').
N

Bi €L — H, Bi’U(t) = ZBjIE(t +e; — 6]').
N

Ci TH — .7:, Czl‘(t) = ZCjIE(t + € — ej).

N
D;:E.— .7:, Dﬂ](t) = ZDJCE(t +e; — Cj),

‘ j=1
for t € ZZ{’ and
€ = (07 T 1 ) 70)
1
We show that A;, Aj, ---, Ay are contractions. Since
H H
§G:<§‘é §g>: ® - @
E F

is a unitary operator for any & € T, it results that (A = Py¢G|H is a contraction. Then
we have

N
Azl = 19" Azl = 37 [ Aw@E = 3 130 Aja(t + e — ;)'|* =
tei: teﬁo 7=

= ||551;§jz4jx(t)£t!|2= > €Az < 3o =@ )* = ll=)l*.

—~N —~N —~N
teZl, teZl, teZl,




It is easy to see that we have A; A; = A;A;, for i # j. In [3] D. S. Kalyuzhniy constructed
a unitary dilation Wy, W, --- Wy of the contractions A;, Aj, --- Ay in the following way.
Denote C=FOH & E and set W; : K — K, Wj(v,z,u) = (vi, 75, u;) with

(t) = v(t + e;), for [t] < —1
vitt) = Cixz(t) + Dyu(t), for |t|=0

z;(t) = Aiz(t) + Byu(t), for |t| =0,

u;(t) = u(t + e;), for |t| > 0.
The adjoint of W, is W : K — K, Wi (v, z,u) = (v;, x5, u;) with

vi(t) = v(t — e;), for [t| <0,
z;(t) = Afz(t) + Cjv(t), for |t| = 0,
u(t —e;), for |t| > 1

u;(t) = { Biz(t) + Dfv(t), for |t| =0

Then W; are unitary operators which pairwise commute, hence they generate a T —spectral
A(ID")—module structure on K. Since Wi, W, , - -- Wy is a unitary dilation of A;, Ay, - - Ay
we conclude that contractions A; satisfy the von Neumann inequality, hence they generate
a contractive Hilbert module structure on #H. Clearly, K is the spectral dilation of .

2 The Nagy-Foias diagram.
In this section we construct the unique Nagy-Foiag diagram generated by ©.

Proposition 1 If 7. = VY,CH and E. = VY BIH, thenK = - @ F. @ F. O H. BE. &
E. -+ 1s the minimal spectral dilation of H.

Proof. For conventional notation we give the proof for N = 2. Denote K, = F & H.
We show that A .« H = K,. For the inclusion A -x H C K, it is sufficient to show that
2"25(0,z,0) € K4, for any m,n € Z, and any z € H. We have

2(0,,0) = W™(0,z,0) = (v, ,0)
1

with
| [ 0 t| < —m
Cuz(t), t| = —(m — 1)
J () = GAe@®), It =—(m—2)

C1A%z(t), lt| = —(m —3) ’

[ CLAT '2(t), [t =0




7 (t) = A™z(t), [t = 0.

In the same way

27250, z,0) = WIPW2(0,z,0) = WEW™(0,z,0) = (v, ,0)

with

‘ (0, [t| < —(m—n-—2)
Cox(t), t| =—-(m—-n-1)
CQAQ.T(t), |t| = —(m — TL)

o) care), = —m
vO=1 ), p=—(m-1)
CAAZZ(E), |t = —(m —2)
CLA ARz (t),  |t|=—(m —3)
| CLAT T ARZ(2), |t =0

z (t) = A" ARz(t), |t| =0.

Hence, it is clear that 2"2%(0,z,0) € K,. To prove the reverse inclusion, namely K, C

A -y H, note that if we take (v,0,0) € K, with

_{ Cuat), [ =—(m—1)
”@‘{a [t # —(m—1)

then we have
(v,0,0) = WP*(0,2,0) — W1 A4;(0,2,0) = 2" - (0,2,0) — 2" - 21 - (0,2,0) € A-x M.
Also, for (v,0,0) € K, with

_{ Ca®), [t =—(n—1)
““‘{a it # —(n—1) ’

we have
(v,0,0) = W3(0,z,0) — Wy 1 A45(0,2,0) = 25 - (0,2,0) — 257 - 23 -3 (0,7,0) € A-x M.

The minimality condition given in Proposition 1 can be also expressed in terms of ©. To
do this we need some notations.
Let ©(\) € L(E,F) for A\ € DV. Fori =1,---, N we define then ©;(\) € L(£., F.) by

O:(N)u(t) =500, -+, Aj, -+, 0)ult+e; — ;)A€ D,u € En, t € Zy -

Also, denote by ©%(\) € L(F, E) the function defined by ©f(\) = ©()\)*.
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Definition 1 We say that © is pure provided
f"’ = Vfilel(/\)gﬂ/a

E.=VN 0¥\ F..
This purity condition allows us to construct the Nagy-Foiag diagram generated by ©.

Theorem 1 If © is pure, then Hilbert module H(©) admits a unique Nagy-Foias diagram.

Proof.
We show that the fact that © is pure implies that

Suppose first that we have v € F. of the form v = YN, ©;(\)u;, with u; € £.. In [1]
is described the way to construct operators C; using functions F; which appear in the

=N
factorization (1.2) of ©. More precisely, for t € ZZ, we have

A Fi(N)

ANFNn(A)

We denote

A F1(N)

( )ui(t)zsc,(t), 1=1, . N

ANFn(A)

Hence,
N N
v(t) = Z@,()\)u,(t) = Z:Z:@(O, Ay, 0)ui(t + e —ej) =

N N N
= Z(Z Cjil?i(t +e; — ej)) = Zszz(t) € \/filCﬂ-l.
j=1 i=1

=

In the same way one proves that from the fact that &, = VN BH. The purity condition
imposed on © in Definition 1 it results then that K is the minimal spectral extension of H.
To construct the Nagy-Foiag diagram (1.1) associated to  take So = F®H, S; = F, Ry =
HOE, R =E. It is easy to see that W; Sy, C Sy, WiS, C S, WRy C Ry, WiR, C Ry,
for 7 = 1,---,N. Hence, Hilbert modules Sy, S;, Ry, R; are subspectral. Since we have
So V Ry = K it results that H = #H(©) admits Nagy-Foiag diagram.

The minimality condition imposed on © in Definition 1 does not depend on the Agler
factorization (1.2). Hence, the Nagy-Foiag diagram generated by #£(©) is unique.
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3 The modeling morphism.

For contractive Hilbert modules which are pure there is a one-to-one corespondence between
Nagy-Foiag diagrams and modeling morphisms, see [7]. In this section we prove that the con-
tractive Hilbert module #(©) is pure and we construct the modeling morphism coresponding
to H(©). We indicate a way to identify this modeling morphism with ©.

Proposition 2 If © is minimal, then H(0) is pure.

Proof. First, we show that if © is minimal, then £éA, ¢ € T is completely non-unitary.
By this we mean that there is no proper subspace H in Hy reducing £A for each & € TV
such that (£A|H, consists of unitary operators. Indeed, suppose that there exists Hy C H
such that £A|H, is unitary for any & € T. Since operators £G* are also unitaries for any
¢ € TV, it results that &EC*|Hy = 0, hence Imé C # F. Consider f € F, f # 0 such that

J L ImEC. Define v € F_ by v(t) = f forallt € iév. Then, for z; € H we have

N N N
<, Zcle >= Z < ’U(t), ZC,CL‘Z(t) >= Z < u(t), Z iji(t +e; — 6]') >=
=1 — =1 N 1,j=1

N N
telliq S/

=2 <f,EfJO Z£ zi(t) >= 3 <f,£CZ§ zi(t) >=

— Jj=1 7N
teZly teZl,

Then, u is orthogonal on V¥ ,C;# which is a contradiction because we showed in Theorem
1 that if © is minimal, then V¥ ,CG;H = F..

We show now that if £A is c.n.u., then the Hilbert module # = #(©) generated by
contractions A, - -, Ay is pure. The canonical decomposition of X is H = H, & H, with
s the spectral part and H, the pure part of . We know from [5] that the characterization
of the spectral part H, is

Mo ={z e H| |AA || = lzll, s,t€Zi}={zeH| [A“As|| =z, steZ]},

where A° = AP, --- AW, for s = (s1,---,sy) € ZY. Suppose that H, # 0. Denote

H, ={z(t)|t € iév,x € Hs}. We show that in this case £A|H, is unitary for any ¢ € T,
which contradicts the fact that £A is c.n.u.
Consider z € H, and take s =¢ = (1,0,---,0) € Z%. Then

(A°A*z)(t) = Ay Afz(t) = i\’: AiAz(t + e —ej).

i,j=1

Since x € H, we have ||.A;.4}z||?> = ||z||?, which implies that

)3 |5 Acdsa(e+ e — el - Y leerte
teZo b=t teZo




hence .
IEAEA)z@)|1* = lz()II°, t € Zy .
It results that
EA(EA)*|H,s = I, €TV

In the same way one shows that
(EA)€AlH, = Iy, £eTV.

We conclude that H(©) is pure.

In the remaining of the section we denote by #*(©) the Hilbert module generated by
A* o A%
1 N

Theorem 2 The modeling morphism associated to H*(O) coincides with ©.

Proof. We showed in Theorem 1 that #(©) admits Nagy-Foiag diagram. Then #*(©) also
admits Nagy-Foiag diagram with Sy =£ @ H, S; =&, Ry=F ®H, R, = F.
We identify the elements e € E with the constant functions v € E defined by

(0) = e, fort=(0,---,0)
"O=10, forte@ - {0, 0)

and we denote them simply by e. Then, by W*E we denote {W;*' ... WxiVe, s =
(s1,-++,8N) € if, e € E}. In the same way one defines W**F. We have then

51:8:@ ~NW*SE, Rlzf:@ ~NW8F,

S€LL s€Ll

hence
Ri=® —vWE=0 —~W"E
! EBSGZNW ®seZN
and

RIOR =® —n iNWSE =® —~n _~NW"E.
o

selli_ — selliy —1Lhg

Let P = Péf |S1 be the modeling morphism associated to the Nagy-Foiag diagram core-
1

sponding to #(©). Then, it is known from [4] that P takes value in R; © Ry, hence for e € E
we have

Pe= Y W®f, f,€F.

—~N —~—N
SEZ_'_—ZO
Since P is a projection we have
o AP =1 X WRLAIR=Pe|? < Jle|f* < co.
~N ~—N ~N —~N
SEZ+—ZO 3€Z+—ZO




‘We are lead then to define a sequence of contractions (®;) —~ —n~ from F to F setting
s€LLiy —LLy

~N =N
de="f,, s€Z, —Z.

Consider then the function ®(\) € L(E, F) given by the formal power serie

eA) = > Id, reD".
seii—z:

We show that ® = ©, i.e. ® is a function from the Agler-Schur class.

First we show that N  —N
(31) (I)s:PF]‘:Wle’ S€Z+ _ZO'

Indeed, we have

< Pe,W*f >RorR = Z < WHf W f ZRioR =

—~N —~—N
sell, -7,
=< W*sfsaW*sf >E16R1:< [s, [ >p=< e, f >F .
Hence,
F
{ D.e, f >p=< Pe, W* f >rorn=<e&6W"f >For =< Wree, f >z eor=<Fr Wee, f >F .

We show now that we have
¢, =0, sec Zf ,

where the coefficients ©, of the power expansion of © are given by (1.3).
For e € E the constant function we denote by (0,0, €) the element (v, z, ) from K defined

by v(t) =0, t € if, z(t) =0, te iév and
e, fort=(0,---,0)
u(t) = =N
0, forteZ, —{(0,---,0)}

Also denote (v®), z(*), u(9)) = W?(0,0,€). Then u( () =0, t ¢ if
We compute now z(9)(t) for s € Z and t € if)v, with —s; < ¢; < |s| —s;. For |s| =1
we have
&) (t) = Blrttmsntin)e — Bette,
We prove by induction on the components of s that for |s| > 2 we have
(3.2) 2O (t) = (A#B)EHe,
Indeed,

N
;L‘(slf"’SN_*.l)(t) — Zij(sl,...,sN)(t +ey — ej) —
j=1

10




N N
Z OV gyt — 1, ty 1) = ZAJ A#B)(1Htsi Loy tn 1)
=1 =1

= (A#B)(51+tl, ")SJ+tJ)"'1sN+tN+]_)-

It is easy to see that z(*)(t) = 0 for other ¢ € i”

We compute now v(*)(t), for s € Z¥ and t € ZY with —s; <t; <|s| —s;. For|s| =1
we have
v (t) = Dt

Also, for |s| = 2 we have
v (t) = (C&B)*+)e.

We prove by induction that for |s| > 3 we have
v (1) = (CHA#B) ),
Indeed, using (3.2) we have

N N
,U(sl,---,sN+1) (t) — CNx(sl,---,sN)(t) — Z Cj.’l?(sl""’SN)(t-i-eN—ej) — ZC]‘$(51""’SN) (tl, e tj_l, ce 7tN+1) =

N
— Z Cj (A#B)(t1+31,""tj+3j_1»"':tN+SN+1)e — (CbA#B)(t1+31,'",tj+5j,-“,tN+SN+1)e_

1
For ¢ = (0,---,0) we obtain then v(*)(0,-- -, 0), with s € ZY. Using (3.1) we deduce that
v®)(0,---,0) = PfWS(O 0,e) = ®,e, hence

®, =0, seZ.
We show now that PZW*E = 0, for s € if - (’Zvév U ZY), which means that
0,=0, seZ, —(Zy uzl).

We have Z, — (Zy UZY) = U {(s1,---,5n) € Zy — ZV|s; < 0}. Take s € 7Z, with
81 < 0 Smce W, commute we can suppose that S1,°++,8k < 0 and Sgy1,---,Sy > 0 For
te Z denote

’ )sk(t) { 6, ( 81,...,_8k,0’...’0)

07 t#( Sla"'7_’8k,0)""0) ’
Then W' ---WEk(0,0,e) = (0,0,us,,..s,). Since we have s; 4+ ---+ sy > 0, it results that
TSt =8k < Sgy1+ -+ sy. Then, there exists £ < [ < N and 0 < © < 841 such
that —s; — ---—sk+sk+1+--~+sl+u,=0. It is easy to see that at step s; + -+ + s, + 4,
by applying Wit - - W | we obtain v =0, 2 = 0 and
Uo(t) — €, tO = (_51) Ty TSk Sk+1y 0, Sl’/‘L)O: te :0)
0, t+#t,

11




‘We showed before that if we have

, t=(0,0,---,0)
U(t):{g, t#(0,0,---,0)

then for s = (s1,- -+, sp) € Z% we have Wi* - - - WR¥ (0,0, u) = (v, () 0), with v®)(¢) = 0
fort e Zf —{t: —s; <t; <|s| — s;}. In the same way one can see that if we take

. €, t:to
“(t)_{o, t£ty

| N .
then we have v()(t) = 0, t € Z_ — {to; — 5; < t; < to; + |s| — s;}. Hence, if we apply

~N .
Wi WY to (0,0,u0) we obtain (v(®), (%) 0) with v®)(£) = 0 for ¢ € ZZ, with the
first component ¢; # —sy,--+, —s; + |s|. Since this are all strictly positive it results that
v (0,--+,0) = 0 ie., PEWse = 0.
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