

INSTITUTUL DE MATEMATICĂ AL ACADEMIEI ROMÂNE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

THE DIRICHLET PROBLEM FOR THE MONGE-AMPERE EQUATION AND THE NONLINEAR RESOLVENTS

by

CORNELIU UDREA

Preprint nr. 6/2001

e de la companya del companya de la companya del companya de la co

THE DIRICHLET PROBLEM FOR THE MONGE-AMPERE EQUATION AND THE NONLINEAR RESOLVENTS

by

CORNELIU UDREA*

May, 2001

^{*} University of Pitesti, Department of Applied Mathematics, Str. Targu din Vale, Nr.1, 0300 Pitesti, Jud. Arges, Romania E-mail: cudrea@linux.math.upit.ro

The Dirichlet Problem for the Monge-Ampère Equation and the Nonlinear Resolvents

Corneliu UDREA

University of Piteşti, Department of the Applied Mathematics, Str. Târgu din Vale, Nr.1, 0300 Piteşti, Jud.Argeş, ROMANIA e-mail: cudrea@linux.math.upit.ro.

Abstract. For the Monge-Ampère equation $\nu_u = f \cdot \lambda$ (where $f \in L^1(U)$ and λ is the Lebesgue measure on the strictly convex bounded and open set $U \subset \mathbb{R}^k$) we shall consider the Dirichlet problem $u|_{\partial U} = \varphi$ (where $\varphi \in C(\partial U)$). We shall define a nonlinear operator V^φ on the space $L^1(U)$ which is associated with the solutions of the above Dirichlet problem and moreover we shall define a nonlinear resolvent which has V^φ as its initial operator. Afterwards we shall study the supermedian functions with respect to the above resolvent and we shall prove that these functions are completely determined by a class of concave real functions on U.

1 Preliminaries

We shall make a short review of the knowledges of the theory of convex functions (in conformity with [1], [2], [6] or [8]) and also of the theory of nonlinear operators (according to [5], [9] or [10]) which will be used in this work. Throughout this text $U \subset \mathbb{R}^k$ is a nonvoid open bounded and strictly convex set, $V \subset \mathbb{R}^k$ is a non void convex and open set and λ is the Lebesgue measure on \mathbb{R}^k . Also the spaces $L^p(U)$ $(p \in \{1, \infty\})$ are defined with respect to the measure $\lambda|_U$.

All functions are defined λ a.e. and all inequalities (and so that all equalities) are accomplished λ a.e.

Definition 1.1 (i). For all $A \subset \mathbb{R}^k$ non void convex set we shall use the following notation: $\mathcal{U}(A) := \{u \in \mathbb{R}^A : u \text{ is a convex function }\}$. Obviously $\mathcal{U}(V) \subset C(V)$.

(ii). Similarly, for all $\varphi \in C(\partial V)$, $\mathcal{U}_{\varphi}(V) := \{u \in \mathbb{R}^{\bar{V}} : u \in \mathcal{U}(\bar{V}) \cap C(\bar{V}) \text{ and } u|_{\partial V} = \varphi\}.$

Proposition 1.2 Let V be a bounded set and $H \subset \mathcal{U}(\bar{V}) \cap C(\bar{V})$ such that there exists $h \in C(\bar{V})$ with properties $h|_{\partial V} = 0$ and for all $u, v \in H$, $|u-v| \leq h$. We shall have that H is uniformly equicontinuous on \bar{V} .

Definition 1.3 ([6]). (i). If $u \in \mathcal{U}(V)$ and $a \in V$, then

$$\partial_u(a) := \left\{ p \in \mathbb{R}^k : u(x) - u(a) \ge \langle p, x - a \rangle \text{ for all } x \in V \right\}.$$

is called the subdifferential of u in a. For all $A \subset V$, $\partial_u(A) := \bigcup_{a \in A} \partial_u(a)$.

(ii). The map $(K \mapsto \lambda(\partial_u(K)))$ is defined on the compact sets of V and it is a Radon measure on V. This measure is denoted by ν_u and it is called the curvature of the convex function u (on the set V).

Proposition 1.4 ([6]). (i). If $u, v \in \mathcal{U}(V)$ and $D \subset V$ are such that D is a non void open bounded set, $u|_D \leq v|_D$ and $(sci_D u)|_{\partial D} \geq (sci_D v)|_{\partial D}$, then it follows that $\partial_v(D) \subset \partial_u(D)$ (where $sci_D u : \bar{D} \to \mathbb{R}$, $sci_D u(x) := \lim_{D\ni y\to x} \inf u(y)$, for all $x\in \bar{D}$).

(ii). If $u, v \in \mathcal{U}(V)$ and $\alpha \in \mathbb{R}_+$, then we have that: (a) $\nu_{u+v} \geq \nu_u + \nu_v$.

(b) $\nu_{\alpha u} = \alpha^k \nu_u$.

(iii). Let $(u_n)_n \subset \mathcal{U}(V)$ be such that $(u_n)_n$ converges locally uniformly on V to the map u. We shall have that $(\nu_{u_n})_n$ is vaguely convergent to the measure ν_u .

Proposition 1.5 ([6]). (i). (The minimum principle for the convex functions.) If V is a bounded set, and $u, v \in \mathcal{U}(V)$ are such that $\nu_u \leq \nu_v$ and $(sci_V u)|_{\partial V} \geq (sci_V v)|_{\partial V}$ if follows that $u \geq v$.

(ii). (The minimum principle for the locally convex functions.) Let $G \subset \mathbb{R}^k$ be a non void open bounded set and $f, g : \bar{G} \to \mathbb{R}$ be locally convex functions on G and continuous functions on \bar{G} such that $\nu_f \leq \nu_g$ and $f|_{\partial G} \geq g|_{\partial G}$. We have that $f \geq g$. (Here for all $D \subset G$ non void convex set $(\nu_f)|_{D} = \nu_{f|_{D}}$).

(iii). (The boundedness of the convex functions.) If V is bounded, $u \in \mathcal{U}(V)$ and $m \in \mathbb{R}$ are such that $(sci_V u)|_{\partial V} \geq m$, then it follows that:

$$u \geq m - (\mathit{diamV}) \sqrt[k]{rac{
u_u(V)}{\omega_k}} \quad (\mathit{where} \ \omega_k := \lambda \, (\mathit{B}(0_k, 1))).$$

Theorem 1.6 ([6]). Let μ be a bounded Radon measure on U and $\varphi \in C(\partial U)$. There exists one and only one convex and continuous map $u: \bar{U} \to \mathbb{R}$ such that $\nu_u = \mu$ and $u|_{\partial U} = \varphi$. (The map u what is defined in this theorem will be denoted by $M(\mu, \varphi)$.)

Proposition 1.7 ([6]). The following assertions hold:

- (i). For all $\varphi_1, \varphi_2 \in C(\partial U)$ and μ_1, μ_2 bounded Radon measures on U we have:
 - (a). $M(\mu_1 + \mu_2, \varphi_1 + \varphi_2) \ge M(\mu_1, \varphi_1) + M(\mu_2, \varphi_2)$.

(b). If $\mu_1 \leq \mu_2$ and $\varphi_1 \geq \varphi_2$, then $M(\mu_1, \varphi_1) \geq M(\mu_2, \varphi_2)$.

(ii). For all $\varphi \in C(\partial U)$, $\alpha \in \mathbb{R}_+$ and μ bounded Radon measure on U we find that:

(a). $M(\alpha^k \mu, \alpha \varphi) = \alpha M(\mu, \varphi)$.

(b). $M(\mu, \varphi) \ge \inf \varphi - (\operatorname{diam} U) \sqrt[k]{\frac{\mu(U)}{\omega_k}}$.

Definition 1.8 ([5]). (i). An increasing map $T: L^1(U) \to L^1(U)$ (respectively $T: L^{\infty}(U) \to L^{\infty}(U)$) is called operator on $L^1(U)$ (respectively on $L^{\infty}(U)$).

(ii). We shall say that $T: L^1(U) \to L^1(U)$ is a sub-Markov operator on $L^1(U)$ iff for all $f, g \in L^1(U)$ and $\alpha \in \mathbb{R}_+$ such that $f \leq g + \alpha$ it follows that $T f \leq Tg + \alpha$.

(iii). It is obvious that if a map $T: L^1(U) \to L^1(U)$ has the previous property, then T is an operator. Moreover if T satisfies the property of (ii) for all function $f, g \in L^{\infty}(U)$, then $||Tf - Tg||_{\infty} \leq ||f - g||_{\infty}$ for all $f, g \in L^{\infty}(U)$ (in conformity with [5] or [9]).

(iv).([5]). We shall say that $T: L^1(U) \to L^1(U)$ satisfies the weak complete maximum principle iff for all $f, g \in L^1(U)$ and $\alpha \in \mathbb{R}_+$ such that

$$f + Tf \le g + Tg + \alpha$$

on the set $\{f > g\} := \{x \in U : f(x) > g(x)\}$, if follows that

$$Tf \le Tg + \alpha.$$

We remark that if T satisfies the weak complete maximum principle then:

(a). T is an increasing map (that is T is an operator).

(b). $I+T: L^1(U) \to L^1(U)$ is an one to one map (where I is the identity map of $L^1(U)$).

(v).([5]) If $T, N : L^1(U) \to L^1(U)$ are such that

$$(I - N)(I + T) = I = (I + T)(I - N)$$

then (T,N) is called a pair of conjugated maps (on $L^1(U)$).

Proposition 1.9 (similarly to [5] or [9]). Let $T, N : L^1(U) \to L^1(U)$ be such that (T, N) is a pair of conjugated operators. The following statements are equivalent:

- The farethir Ve is a Monkfarkoor operator Ind Tons an operator.
 - (ii). The map T satisfies the weak complete maximum principle.
- (iii). T is an operator such that for all $f, g \in L^1(U)$ and $\alpha \in \mathbb{R}_+$ if $f + Tf \leq g + Tg + \alpha$ then $Tf \leq Tg + \alpha$.

Proof. (i) \Rightarrow (ii). Let $f,g \in L^1(U)$ and $\alpha \in \mathbb{R}_+$ be such that $f+Tf \leq g+Tg+\alpha$ on the set $\{f>g\}$ and $v:=\inf\{f+Tf,g+Tg+\alpha\}$. We have that $v \in L^1(U)$, $Nv \leq Tf$, $Nv \leq Tg+\alpha$ and v=f+Tf on the set $\{f>g\}$. If j:=v-Nv, then $j \in L^1(U)$, $f \leq j$ and $f+Tf \leq j+Tj=v$ hence $Tf=N(f+Tf) \leq Nv \leq Tg+\alpha$.

- (ii)⇒(iii). It is obvious.
- (iii) \Rightarrow (i). Let $f, g \in L^1(U)$ and $\alpha \in \mathbb{R}_+$ be such that $f \leq g + \alpha$. We have that $f = (I+T)(I-N)f = (f-Nf)+T(f-Nf) \leq (g-Ng)+T(g-Ng)+\alpha = (I+T)(I-N)g+\alpha = g+\alpha$.

By the hypothesis we shall find that $Nf = T(f - Nf) \le T(g - Ng) + \alpha = Ng + \alpha$, that is N is a sub-Markov operator.

Definition 1.10 ([5]). (i). The family of functions $\mathcal{V} = (V_p)_{p \in (0,\infty)}$ where, for all $p \in (0,\infty)$, $V_p : L^1(U) \to L^1(U)$ is called resolvent (on $L^1(U)$) iff, for all $p, q \in (0,\infty)$ it follows that

$$(I - (p - q)V_p)(I + (p - q)V_q) = I.$$

(ii). The resolvent $\mathcal{V} = (V_p)_{p \in (0,\infty)}$ is called the resolvent associated with the map $V: L^1(U) \to L^1(U)$ iff, for all $p \in (0,\infty)$, we have that:

$$V = V_p(I + pV)$$
 and $V_p = V(I - pV_p)$.

- (iii). If, for all $p \in (0, \infty)$, pV_p is a sub-Markov operator (on $L^1(U)$), then the resolvent $\mathcal{V} = (V_p)_{p \in (0,\infty)}$ is called a sub-Markov resolvent (on $L^1(U)$).
- 2 Nonlinear Resolvent Associated with the Solutions of the Dirichlet Problem for the Monge-Ampère Equation.

If $\varphi \in C(\partial U)$ then we shall define a sub-Markov resolvent associated with the solutions of the Dirichlet problem $\nu_u = f \cdot \lambda$ and $u|_{\partial U} = \varphi$, where $f \in L^1(U)$ and we shall present its important properties.

Throughout this section $\varphi \in C(\partial U)$.

Definition 2.1 (F.: Fibr left $f \notin \mathbb{Z}^1(V)$, $V := f := M(f^+ \cdot \lambda_1) - \psi_1$. In the operator what is defined in [9] or [10]. (Here $f^+ := \sup\{f,0\}$). Obviously $V^{\varphi}f = V^{\varphi}(f^+)$.

(ii). For all $f \in L^1(U)$, $V^{\varphi}f : \overline{U} \to \mathbb{R}$ is a continuous concave function

such that $(V^{\varphi}f)|_{\partial U} = \varphi$ and $\nu_{-V^{\varphi}f} = f^+ \cdot \lambda$.

(iii). $V^{\varphi}: L^1(U) \to -\mathcal{U}_{-\varphi}(U) \subset L^1(U)$.

Proposition 2.2 (Algebraic and order properties). Let $f_1, f_2 \in L^1(U)$. The following assertions hold:

(i). If $V^{\varphi}f_1 = V^{\varphi}f_2$, then $f_1^+ = f_2^+$ (obviously λ a.e.).

- (ii). Let $f_1 \leq f_2$. It follows that $V^{\varphi} f_1 \leq V^{\varphi} f_2$, so that V^{φ} is an operator on $L^1(U)$.
 - (iii). The following inequalities hold:
 - (a). $V^{\varphi}(f_1 + f_2) \leq V^{\varphi} f_1 + V f_2$.
 - (b). $|V^{\varphi}f_1 V^{\varphi}f_2| \leq V(f_1 f_2)$.
 - (iv). If $\varphi \geq 0$, then V^{φ} is a subadditive map.

Proof. (i). Since $f_1^+ \cdot \lambda = f_2^+ \cdot \lambda$, it is obvious that $f_1^+ = f_2^+$.

- (ii). Whereas $(V^{\varphi}f_1)|_{\partial U} = (V^{\varphi}f_2)|_{\partial U}$ and $\nu_{-V^{\varphi}f_1} \leq \nu_{-V^{\varphi}f_2}$, the assertion holds by the minimum principle for the convex functions (Proposition 1.5 (i)).
- (iii). (a) Since $(V^{\varphi}(f_1+f_2))|_{\partial U} = (V^{\varphi}f_1+Vf_2)|_{\partial U}$ and $\nu_{-V^{\varphi}f_1-Vf_2} \geq (f_1^++f_2^+)\cdot\lambda \geq \nu_{-V^{\varphi}(f_1+f_2)}$, we apply again the minimum principle for the convex functions.
- (b). The inequalities $f_i \leq f_j + (f_1 f_2)^+$, $i, j = 1, 2, i \neq j$ and the point (a) involve the assertion.
 - (iv). We use again the minimum principle for the convex functions.

Theorem 2.3 (Topological properties.) We have the following claims:

(i). For all $f \in L^1(U)$, $V^{\varphi} f \leq \sup \varphi + (\operatorname{diam} U) \sqrt[k]{\frac{||f||_1}{\omega_k}}$.

(ii). $V^{\varphi}: (L^1(U), \|\cdot\|_1) \to (L^1(U), \|\cdot\|_1)$ is an $\frac{1}{k}$ -Hölder map.

(iii). Let $\mathcal{F} \subset L^1(U)$ be such that either (a) there exists $h \in L^1(U)$ so as to, for all $f \in \mathcal{F}$, $|f| \leq h$, or (b) \mathcal{F} is bounded in $(L^1(U), \|\cdot\|_1)$, and \mathcal{F} is increasing (i.e. for all $f, g \in \mathcal{F}$ there exists $h \in \mathcal{F}$ such that $\sup\{f, g\} \leq h$).

We have that $V^{\varphi}(\mathcal{F})$ is relatively compact in the space $(C(\bar{U}), \|\cdot\|_{\infty})$ and accordingly it is relatively compact in $(L^1(U), \|\cdot\|_1)$.

Proof. (i). We apply the Proposition 1.5.(iii). and we find the assertion since $\nu_{-V^{\varphi}f}(U) = \int_{U} f^{+}d\lambda \leq ||f||_{1}$.

(ii). The previous point and the Proposition 2.(iii). involve that, for all $f_1, f_2 \in L^1(U)$:

$$|V^{\varphi}f_1 - V^{\varphi}f_2| \le V(f_1 - f_2) \le (\operatorname{diam} U) \sqrt[k]{\frac{\|f_1 - f_2\|_1}{\omega_k}}$$
 and so that

$$||V^{\varphi}f_1 - V^{\varphi}f_2||_1 \le \lambda(U)(\operatorname{diam} U) \sqrt[k]{\frac{||f_1 - f_2||_1}{\omega_k}}$$

(Moreover we have that $\|V^{\varphi}f_1 - V^{\varphi}f_2\|_{\infty} \leq (\operatorname{diam} U) \sqrt[k]{\frac{\|f_1 - f_2\|_1}{\omega_k}}$).

(iii). In any case let $c \in \mathbb{R}_+$ be such that, for all $f \in \mathcal{F}$, $||f||_1 \leq c$. If follows that, for all $f \in \mathcal{F}$:

$$\inf \varphi \leq V^{\varphi} f \leq \sup \varphi + (\mathrm{diam} U) \sqrt[k]{\frac{c}{\omega_k}},$$

hence $V^{\varphi}(\mathcal{F})$ is bounded in the space $(C(\overline{U}), \|\cdot\|_{\infty})$.

- (a). For all $f, g \in \mathcal{F}$, $|V^{\varphi}f V^{\varphi}g| \le V(f g) = V((f g)^+) \le V(2h)$, hence by the Proposition 1.2 it follows that $V^{\varphi}(\mathcal{F})$ is uniformly equicontinuous on U.
- (b). Since \mathcal{F} is increasing and bounded (in $\|\cdot\|_1$), the set \mathcal{F}^+ := $\{f^+: f\in\mathcal{F}\}\$ has the same properties. Accordingly we shall find that there exists $h \in L^1(U)$ such that, for all $f \in \mathcal{F}$, $f^+ \leq h$. It follows, similarly to the case (a), that $V^{\varphi}(\mathcal{F})$ is uniformly equicontinuous on \bar{U} .

In any case by the Ascoli theorem we have that $V^{\varphi}(\mathcal{F})$ is relatively compact in $(C(U), || \parallel_{\infty})$.

Corollary 2.4 $V^{\varphi}: (L^1(U), \|\cdot\|_1) \to (L^1(U), \|\cdot\|_{\infty})$ is a continuous map.

Proof. It is obvious.

- Remark 2.5 Let $(f_n)_n \subset L^1(U)$ and $f \in L^1(U)$. (i). If $(f_n)_n$ converges to f in $L^1(U)$, then $(V^{\varphi}f_n)_n$ converges to $V^{\varphi}f$ uniformly on U.
- (ii). If $(f_n)_n$ converges monotonely to f (λ a.e.), then $(V^{\varphi}f_n)_n$ converges uniformly and monotonely to $V^{\varphi}f$ (so that, in particular, V^{φ} is increasingly continuous on $L^1(U)$).
 - (iii). By the proof of Theorem 3.(ii). it follows that

$$V^{\varphi}|_{L^{\infty}(U)}: (L^{\infty}(U), \|\cdot\|_{\infty}) \to (L^{\infty}(U), \|\cdot\|_{\infty})$$

is also $\frac{1}{h}$ -Hölder and so that continuous map.

Theorem 2.6 Let $u \in -\mathcal{U}(U)$, $u \geq 0$ and $f, g \in L^1(U)$ be such that

$$V^{\varphi}f \leq V^{\varphi}g + u$$
 on the set $\{f > g\}$.

It follows that $V^{\varphi}f \leq V^{\varphi}g + u$.

Proof. If $D := \{V^{\varphi}f > V^{\varphi}g + u\}$ and $\bar{u} : \bar{D} \to \mathbb{R}$ is the map $\bar{u} := \operatorname{scs}_D u$ (where $\operatorname{scs}_D u = -\operatorname{sci}_D(-u)$) it follows that $D \subset \{f \leq g\}$, D is an open set and \bar{u} is a locally concave function on D.

For all $x \in (\partial D) \cap U$, by the continuity of the above functions we have that

$$V^{\varphi}f(x) = V^{\varphi}g(x) + u(x) = V^{\varphi}g(x) + \bar{u}(x).$$

If $x \in (\partial D) \cap (\partial U)$ if follows that:

$$\varphi(x) \leq \varphi(x) + (\operatorname{sci}_D u)(x) = \operatorname{sci}_D (V^{\varphi} g + u)(x)$$

$$\leq \operatorname{scs}_D (V^{\varphi} g + u)(x) \leq \operatorname{scs}_D V^{\varphi} f(x) = \varphi(x).$$

Therefore \bar{u} is continuous on $(\partial D) \cap (\partial U)$ and

$$(V^{\varphi}f)|_{\partial D} = (V^{\varphi}g + \bar{u})|_{\partial D}.$$

On the other hand we have that

$$(\nu_{-V\varphi_f})|_D = (f^+|_D) \cdot \lambda \le (g^+|_D) \cdot \lambda = (\nu_{-V\varphi_g})|_D$$

$$\le (\nu_{-V\varphi_g - \bar{u}})|_D.$$

By the minimum principle for the locally convex functions (Proposition 1.5.(ii).) we shall have that $V^{\varphi}f \leq V^{\varphi}g + u$ on D what is contrary to the definition of D if D is non void. It follows that $D = \emptyset$, so that $V^{\varphi}f \leq V^{\varphi}g + u$ (everywhere on U).

Remark 2.7 (i). It is obvious that V^{φ} satisfies the weak complete maximum principle and hence $I + V^{\varphi} : L^1(U) \to L^1(U)$ is an one to one map.

(ii). For all $p \in (0, \infty)$ pV^{φ} has the property of the previous theorem and so that pV^{φ} also satisfies the weak complete maximum principle.

Theorem 2.8 For all $p \in (0,\infty)$ there exists one and only one map $V_p^{\varphi}: L^{\infty}(U) \to L^{\infty}(U)$ such that

$$(I - pV_p^{\varphi}) (I + pV^{\varphi}) = I = (I + pV^{\varphi}) (I - pV_p^{\varphi}).$$

Proof. For all $f \in L^{\infty}(U)$ we shall define $L_f : L^{\infty}(U) \to L^{\infty}(U)$, where $L_f(g) := V^{\varphi}(f - pg)$, for all $g \in L^{\infty}(U)$ and $p \in (0, \infty)$ a fixed number. By the Theorem 3.(ii). it follows that, for all $h, g \in L^{\infty}(U)$,

$$||L_f h - L_f g||_{\infty} \le (\operatorname{diam} U) \sqrt[k]{\frac{\lambda(U)}{\omega_k}} \cdot \sqrt[k]{||h - g||_{\infty}}$$

and so that ([9]), there exists r > 0 such that for all $g \in L^{\infty}(U)$, if $||g||_{\infty} \leq r$ then $||L_f g||_{\infty} \leq r$.

Since $L_f: (L^{\infty}(U), \|\cdot\|_{\infty}) \to (L^{\infty}(U), \|\cdot\|_{\infty})$ is a compact map (the proof is similar to that of the Theorem 3.(iii).), we can apply the Schauder's fixed point theorem: there exists $u_f \in L^{\infty}(U)$ such that $L_f u_f = u_f$, that is $V^{\varphi}(f - pu_f) = u_f$. But $I + pV^{\varphi}$ is an one to one map and accordingly u_f is the unique map $u \in L^{\infty}(U)$ with property $L_f u = u$.

Let us define $V_p^{\varphi}: L^{\infty}(U) \to L^{\infty}(U), V_p^{\varphi}f:=u_f$, it follows that

$$(I+pV^{\varphi})\left(I-pV_{p}^{\varphi}\right)=I \text{ and } I-pV_{p}^{\varphi}=\left(I+pV^{\varphi}\right)^{-1}.$$

Remark 2.9 Since for all $f \in L^{\infty}(U)$ we have that

$$V_{p}^{\varphi}f=V^{\varphi}\left(f-pV_{p}^{\varphi}f\right) \ \ and \ \ V^{\varphi}f=V_{p}^{\varphi}\left(f+V^{\varphi}f\right),$$

the following assertions hold:

- (i). $V_p^{\varphi} f: \bar{U} \to \mathbb{R}$ is a concave and continuous function on \bar{U} such that $(V_p^{\varphi} f)|_{\partial U} = \varphi$ and $\nu_{-V_p^{\varphi} f} = (f pV_p^{\varphi} f)^{\pm} \cdot \lambda$. If $f \in L^{\infty}(U)$ is such that $V_p^{\varphi}(pf) \leq f$ then it follows that $\nu_{-V_p^{\varphi}(pf)} = p(f V_p^{\varphi}(pf)) \cdot \lambda$.
- $$\begin{split} V_p^{\varphi}(pf) &\leq f \text{ then it follows that } \nu_{-V_p^{\varphi}(pf)} = p\left(f V_p^{\varphi}(pf)\right) \cdot \lambda. \\ & (ii). \text{ For all } p \in (0,\infty), \ \left(V_p^{\varphi}\right)^{-1} = V^{\varphi}\left(I + pV^{\varphi}\right)^{-1} \text{ (the equality holds on the space } \dot{L}^{\infty}(U)) \text{ and, for all } p,q \in (0,\infty), \ V_p^{\varphi} = V_q^{\varphi}\left(I + (q-p)V_p^{\varphi}\right), \\ & i.e. \ \left(V_p^{\varphi}\right)_{p \in (0,\infty)} \text{ is a resolvent on } L^{\infty}(U) \text{ and this resolvent is associated with } \\ & V^{\varphi}|_{L^{\infty}(U)}. \end{split}$$

Corollary 2.10 The map V_p^{φ} (which is defined above for all $p \in (0, \infty)$) has the following properties:

- (i). $V_p^{\varphi}: (L^{\infty}(U), \|\cdot\|_{\infty}) \to (L^{\infty}(U), \|\cdot\|_{\infty})$ is a sub Markov operator, accordingly it is a continuous map.
 - (ii). For all $f, g \in L^{\infty}(U)$ we have that $V_p^{\varphi}(f+g) \leq V_p^{\varphi}f + Vg$.

Proof. (i). Since pV^{φ} satisfies the weak complete maximum principle and $(pV^{\varphi}, pV_p^{\varphi})$ is a pair of conjugated maps on $L^{\infty}(U)$, we can apply the Proposition 1.9 and the Definition 1.8.(iii).

(ii). It is similar to the proof of the Theorem 6. If

$$D:=\left\{V_{p}^{\varphi}(f+g)>V_{p}^{\varphi}f+Vg\right\}$$

then $D \subset U$ is an open set, $(V_p^{\varphi}(f+g))|_{\partial D} = (V_p^{\varphi}f + Vg)|_{\partial D}$ and since $Vg \geq 0$ on the set D we have the inequalities

$$\begin{array}{ll} \nu_{-V_p^{\varphi}(f+g)} & = & \left(f+g-pV_p^{\varphi}(f+g)\right)^{+} \cdot \lambda \\ \\ & \leq & \left(f+g-pV_p^{\varphi}f-pVg\right)^{+} \cdot \lambda \\ \\ & \leq & \left(f-pV_p^{\varphi}f\right)^{+} \cdot \lambda + g^{+} \cdot \lambda \leq \nu_{-V_p^{\varphi}f-Vg}. \end{array}$$

By the minimum principle for the locally convex functions if follows that $D=\emptyset$ and accordingly $V_p^{\varphi}(f+g)\leq V_p^{\varphi}f+Vg$.

Remark 2.11 (i). By the previous corollary it follows that for all $f, g \in L^{\infty}(U)$, $|V_{\mathfrak{p}}^{\varphi} f - V_{\mathfrak{p}}^{\varphi} g| \leq V(f-g)$ and so that

$$\begin{split} \left\|V_p^{\varphi}f - V_p^{\varphi}g\right\|_{\infty} &\leq \left(\operatorname{diam}U\right)\sqrt[k]{\frac{\|f - g\|_1}{\omega_k}} \leq \left(\operatorname{diam}U\right)\sqrt[k]{\frac{\lambda(U)}{\omega_k}}\sqrt[k]{\|f - g\|_{\infty}} \ \ \operatorname{and} \\ \left\|V_p^{\varphi}f - V_p^{\varphi}g\right\|_1 &\leq \lambda(U)(\operatorname{diam}U)\sqrt[k]{\frac{\|f - g\|_1}{\omega_k}}. \end{split}$$

- (ii). Let $f \in L^1(U)$ and, for all $n \in \mathbb{N}$, $f_n := \sup\{-n, \inf\{f, n\}\}$.
- (a). It is obvious that for all $n \in \mathbb{N}$, $|f_n| \leq |f|$ and $f_n \in L^{\infty}(U)$. Moreover $(f_n)_n$ converges λ a.e. (on U) to the map f and $(f_n)_n$ also converges in $(L^1(U), \|\cdot\|_1)$ to f.
 - (b). According to (i) it follows that, for all $m, n \in \mathbb{N}$

$$\left\|V_{p}^{\varphi}f_{n}-V_{p}^{\varphi}f_{m}\right\|_{\infty}\leq\left(\operatorname{diam}U\right)\sqrt[k]{\frac{\left\|f_{n}-f_{m}\right\|_{1}}{\omega_{k}}}.$$

Since $(f_n)_n$ is a Cauchy sequence in $(L^1(U), \|\cdot\|_1)$, we shall have that $(V_p^{\varphi} f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $(C(\bar{U}), \|\cdot\|_{\infty})$, and so that $(V_p^{\varphi} f_n)_n$ is uniformly convergent on \bar{U} .

Definition 2.12 (i). For all $p \in (0, \infty)$ and $f \in L^1(U)$ we shall define

$$V_p^{\varphi} f := \lim_{n \to \infty} V_p^{\varphi} f_n,$$

where $f_n := \sup \{-n, \inf\{f, n\}\}, \text{ for all } n \in \mathbb{N}.$

- (ii). By the definition, for all $f \in L^1(U)$, it follows that:
- (a). $V_p^{\varphi}f: \bar{U} \to \mathbb{R}$ is a concave and continuous function on \bar{U} such that $(V_p^{\varphi}f)|_{\partial U} = \varphi$.

(b).
$$\nu_{-V_p^{\varphi}f} = \lim_{n \to \infty} \nu_{-V_p^{\varphi}f_n} = \lim_{n \to \infty} \left(f_n - pV_p^{\varphi}f_n \right)^+ \cdot \lambda = \left(f - pV_p^{\varphi}f \right)^+ \cdot \lambda.$$

(iii). Similarly to the proof of the Corollary 10.(ii). we have that for all $f,g \in L^1(U)$, $V_p^{\varphi}(f+g) \leq V_p^{\varphi}f + Vg$ and so that $\left|V_p^{\varphi}f - V_p^{\varphi}g\right| \leq V(f-g)$.

Theorem 2.13 The function family $V(\varphi) := (V_p^{\varphi})_{p \in (0,\infty)}$ is a (nonlinear) sub-Markov resolvent which is associated with V^{φ} (on $L^1(U)$).

Proof. Let $f \in L^1(U)$ and $(f_n)_n$ be the sequence of the Remark 11(ii). By the Theorem 8 it follows that $V_p^{\varphi}f_n = V^{\varphi}\left(f_n - pV_p^{\varphi}f_n\right)$, for all $n \in \mathbb{N}$, and by the Definition 12 and the Corollary 4. we have that

$$V_p^{\varphi} f = \lim_{n \to \infty} V_p^{\varphi} f_n = \lim_{n \to \infty} V^{\varphi} \left(f_n - p V_p^{\varphi} f_n \right) = V^{\varphi} \left(f - p V_p^{\varphi} f \right)$$

and

$$(I + pV^{\varphi}) \left(I - pV_p^{\varphi} \right) = I.$$

It is obvious that $(pV^{\varphi}, pV_p^{\varphi})$ is a pair of conjugated maps and by the Proposition 1.9 and the Remark 7, it follows that pV_p^{φ} is a sub-Markov operator on the space $L^1(U)$.

Since $V_p^{\varphi} = V^{\varphi} (I + pV^{\varphi})^{-1}$, for all $p \in (0, \infty)$, $\mathcal{V}(\varphi)$ is a resolvent on $L^1(U)$.

Proposition 2.14 We have the following claims:

- (i). For all $p \in (0, \infty)$, $V_p^{\varphi} : (L^1(U), \|\cdot\|_1) \to (C(\bar{U}), \|\cdot\|_{\infty})$ is a continuous operator.
- (ii). For all set $\mathcal{F} \subset L^1(U)$ such that \mathcal{F} satisfies the property (a) of the Theorem 3.(iii). it follows that $V_p^{\varphi}(\mathcal{F})$ is a relatively compact set in $(C(\bar{U}), \|\cdot\|_{\infty})$ (for all $p \in (0, \infty)$).

Proof. (i). By the Definition 12.(iii). it follows that V_p^{φ} is continuous.

(ii) Since $V_p^{\varphi}(\mathcal{F}) = \{V^{\varphi}(f - pV_p^{\varphi}f) : f \in \mathcal{F}\}$, we have that the set $\{f - pV_p^{\varphi}f : f \in \mathcal{F}\}$ satisfies the condition (a) of the Theorem 3.(iii). and so that $V_p^{\varphi}(\mathcal{F})$ is a relatively compact set in $(C(\bar{U}), \|\cdot\|_{\infty})$.

3 The Supermedian Functions

We shall define and we shall study the $\mathcal{V}(\varphi)$ - supermedian functions and afterwards we shall compare these supermedian functions to the concave functions.

Throughout this section $\mathcal{V}(\varphi) = \left(V_p^{\varphi}\right)_{p \in (0,\infty)}$ is the resolvent what was defined in the previous section. Also we shall consider the resolvent $\mathcal{V}(0) = (V_p)_{p \in (0,\infty)}$ i.e. the resolvent what is defined for the map $\varphi = 0$. We shall define the extension of the operators $\left(V_p^{\varphi}\right)_{p \in [0,\infty)}$ (where $V_0^{\varphi} = V^{\varphi}$) to the following set of functions:

 $\mathcal{F}(\varphi) := \{ f \in \bar{R}^U : f \text{ is } \lambda \text{ measurable and } f \geq V^{\varphi} 0 \}.$ Obviously

$$\mathcal{F}(0) := \left\{ f \in \bar{R}^U : f \text{ in } \lambda \text{ measurable and } f \geq 0 \right\}.$$

Definition 3.1 Let $f \in \mathcal{F}(\varphi)$.

(i). For all $p \in (0, \infty)$, $V_p^{\varphi} f := \sup_{n \in \mathbb{N}} V_p^{\varphi}(\inf\{f, n\})$ and since V_p^{φ} is an increasing map if follows that $V_p^{\varphi} f = \lim_{n \to \infty} V_p^{\varphi}(\inf\{f, n\})$.

(ii). If $f \in L^1(U)$, then it is obvious that $V_p^{\varphi}f$ (the map defined here) is the function what is defined in previous section.

Remark 3.2 (i). By the minimum principle for the convex functions it follows that for all $p \in [0, \infty)$ $V_p^{\varphi}(V^{\varphi}0) \geq V^{\varphi}0$, hence $V_p^{\varphi} : \mathcal{F}(\varphi) \to \mathcal{F}(\varphi)$.

(ii). Since, for all $p \in [0, \infty)$, $V_p^{\varphi} : L^1(U) \to L^1(U)$ is an increasingly continuous operator we shall have that for all $f \in \mathcal{F}(\varphi)$ and $p \in [0, \infty)$

$$V_n^{\varphi} f = \sup \left\{ V_n^{\varphi} g : g \in L^{\infty}(U) \text{ and } g \leq f \right\}$$

and if $(g_n)_n \subset L^{\infty}(U)$ is such that $(g_n)_n$ is increasing to f, then

$$V_p^{\varphi} f = \sup_{n \in \mathbb{N}} V_p^{\varphi} g_n = \lim_{n \to \infty} V_p^{\varphi} g_n.$$

(iii). It is obvious that $V_p^{\varphi}: \mathcal{F}(\varphi) \to \mathcal{F}(\varphi)$ is an increasing map (that is V_p^{φ} is an operator on $\mathcal{F}(\varphi)$) and moreover V_p^{φ} is increasingly continuous (i.e. if $(f_n) \subset \mathcal{F}(\varphi)$ is such that $(f_n)_n$ is increasing then

$$V_p^{\varphi}\left(\sup_{n\in\mathbb{N}}f_n\right) = \sup_{n\in\mathbb{N}}V_p^{\varphi}f_n = \lim_{n\in\mathbb{N}}V_p^{\varphi}f_n, \text{ for all } p\in[0,\infty).$$

(iv). For all $f \in \mathcal{F}(\varphi)$ and $p \in [0, \infty)$, $V_p^{\varphi} f : \bar{U} \to (-\infty, \infty]$ and $V_p^{\varphi} f$ is a concave and lower semicontinuous function on \bar{U} such that $\left(V_p^{\varphi} f\right)|_{\partial U} = \varphi$.

Moreover either $\{V_p^{\varphi}f = \infty\} = \phi$ or $\{V_p^{\varphi}f = \infty\} = U$, hence if $V_p^{\varphi}f < \infty$ it follows that $(V_p^{\varphi}(\inf\{f,n\}))_n$ converges to $V_p^{\varphi}f$ uniformly on the compact set of U and $\nu_{-V_p^{\varphi}f} = \lim_{n \to \infty} \left(\inf\{f,n\}\right) - pV_p^{\varphi}(\inf\{f,n\})^+ \cdot \lambda$.

Definition 3.3 (i). The function $u \in \mathcal{F}(\varphi)$ is called $\mathcal{V}(\varphi)$ - supermedian iff for all $p \in (0, \infty)$ we have that $V_p^{\varphi}(pu) \leq u$.

(ii). We shall use the notation:

$$S(\varphi) := \{ u \in \mathcal{F}(\varphi) : u \text{ is } \mathcal{V}(\varphi)\text{-supermedian} \}.$$

Lemma 3.4 If $f, g \in \mathcal{F}(\varphi)$ and $p \in (0, \infty)$ it follows that $V_p^{\varphi}(f+g) \leq V_p^{\varphi}f + V_pg$.

Proof. For all $f, g \in L^1(U)$ the inequality $V_p^{\varphi}(f+g) \leq V_p^{\varphi}f + V_pg$ can be proved similarly to the Corollary 2.10.

Let $f, g \in \mathcal{F}(\varphi)$; since $f+g = \lim_{n \to \infty} (\inf\{f, n\} + \inf\{g, n\}) = \sup_{n \in \mathbb{N}} (\inf\{f, n\} + \inf\{g, n\})$ by the Remark 2 (iii) it follows that:

$$\begin{split} V_p^{\varphi}(f+g) &= \lim_{n \to \infty} V_p^{\varphi}(\inf\{f,n\} + \inf\{g,n\}) \\ &\leq \lim_{n \to \infty} \left(V_p^{\varphi}(\inf\{f,n\}) + V_p(\inf\{g,n\}) = V_p^{\varphi}f + V_pg. \;\blacksquare \right) \end{split}$$

Corollary 3.5 The following assertion holds:

$$\{u+V^{\varphi}0:u\in\mathcal{S}(0)\}=:\mathcal{S}(0)+V^{\varphi}0\subset\mathcal{S}(\varphi).$$

Proof. For all $u \in \mathcal{S}(0)$ and $p \in (0, \infty)$, we have that:

$$V_p^{\varphi}\left(pu+pV^{\varphi}0\right) \leq V_p^{\varphi}\left(pV^{\varphi}0\right) + V_p(pu) = V^{\varphi}0 + V_p(pu) \leq u + V^{\varphi}0. \blacksquare$$

Theorem 3.6 If $u \in -\mathcal{U}(U)$ is such that $\varphi \leq (sci_U u)|_{\partial U}$, then $u \in \mathcal{S}(\varphi)$.

Proof. Let $p \in (0, \infty)$, $u \in -\mathcal{U}(U)$ such that $\varphi \leq (\mathrm{sci}_U u)|_{\partial U}$, $D := \{V_p^{\varphi}(pu) > u\}$. It follows that $D \subset U$, D is an open set and $(V_p^{\varphi}(pu))|_{\partial D} \leq (\mathrm{scs}_D u)|_{\partial D}$ accordingly $\nu_{-u}(D) \leq \nu_{-V_p^{\varphi}(pu)}(D)$ (Proposition 1.4.(i).). Moreover $u \in L^{\infty}(U)$ and $\nu_{-V_p^{\varphi}(pu)}(D) = 0$, so that $(\nu_{-u})|_D = (\nu_{-V_p^{\varphi}(pu)})|_D$.

Since $V_p^{\varphi}(pu)$ and $\mathrm{scs}_D u$ are continuous functions on \bar{D} , we apply the minimum principle for the locally convex functions and we shall find that $(V_p^{\varphi}(pu))|_D \leq u|_D$, therefore $D = \emptyset$ and $V_p^{\varphi}(pu) \leq u$ for all $p \in (0, \infty)$.

Remark 3.7 (i). By the definition the map $V1: \overline{U} \to \mathbb{R}$, V1 is a continuous and concave function such that $(V1)|_{\partial U} = 0$ and $\nu_{-V1} = \lambda$. Moreover for all $x \in U$ we have that (V1)(x) > 0.

(ii). By the Corollary 5, for all $n \in \mathbb{N}$, $nV1+V^{\varphi}0 \in \mathcal{S}(\varphi)$ whereas $nV1+V^{\varphi}0$ is a concave continuous function on \bar{U} such that $(nV1+V^{\varphi}0)|_{\partial U}=\varphi$, and we apply the previous theorem.

(iii). Let us denote for all $n \in \mathbb{N}$, $e_n := nV1 + V^{\varphi}0$ and let us remark that $(e_n)_n$ is an increasing sequence of concave continuous functions on \bar{U} such that for all $x \in U$ $\lim_{n \to \infty} e_n(x) = \sup_{n \in \mathbb{N}} e_n(x) = \infty$.

(iv). For all
$$f \in \mathcal{F}(\varphi)$$
, $f = \sup_{n \in \mathbb{N}} (\inf\{f, e_n\})$ and so that

$$V_p^{\varphi} f = \lim_{n \to \infty} V_p^{\varphi} (\inf\{f, e_n\}) = \sup_{n \in \mathbb{N}} V_p^{\varphi} (\inf\{f, e_n\}).$$

We shall use the following notation: for all $n \in \mathbb{N}$ and $f \in \mathcal{F}(\varphi)$, $f^{(n)} := \inf\{f, e_n\}$.

Proposition 3.8 The following assertions hold:

- (i). If $u \in \mathcal{F}(\varphi)$ then the following sentences are equivalent:
- (a). The map u is $\mathcal{V}(\varphi)$ -supermedian.
- (b). For all $n \in \mathbb{N}$, the function $u^{(n)}$ is $\mathcal{V}(\varphi)$ -supermedian ($u^{(n)}$ is the function what is defined in the previous remark).
 - (ii). Let $(u_n)_n \subset \mathcal{S}(\varphi)$.
 - (a). The function $\inf_{n\in\mathbb{N}}u_n\in\mathcal{S}(\varphi)$.
 - (b). If $(u_n)_n$ is increasing, then $\sup_{n\in\mathbb{N}} u_n \in \mathcal{S}(\varphi)$.
 - (iii). We have that $S(0) + S(\varphi) \subset S(\varphi)$.
- (iv). For all $u \in \mathcal{S}(\varphi)$ the map $(p \mapsto V_p^{\varphi}(pu)) : (0, \infty) \to \mathcal{F}(\varphi)$ is an increasing map.

Proof. (i). (a) \Rightarrow (b). By the previous remark we have that for all $n \in \mathbb{N}$ $e_n \in \mathcal{S}(\varphi)$ so that for all $p \in (0, \infty)$.

$$V_p^{\varphi}(pu^{(n)}) = V_p^{\varphi}(p\inf\{u, e_n\}) \le \inf\{V_p^{\varphi}(pu), V_p^{\varphi}(pe_n)\}$$

$$\le \inf\{u, e_n\} = u^{(n)}.$$

(b) \Rightarrow (a). We have that (for all $p \in (0, \infty)$):

$$V_p^{\varphi}(pu) = \sup_n V_p^{\varphi}(pu^{(n)}) \le \sup_{n \in \mathbb{N}} u^{(n)} = u \text{ accordingly } u \in \mathcal{S}(\varphi).$$

(ii). (a). It is immediate since $\inf_{n\in\mathbb{N}} u_n \in \mathcal{F}(\varphi)$ and, for all $n\in\mathbb{N}$,

$$V_p^{\varphi}\left(p\inf_{n\in\mathbb{N}}u_n\right)\leq V_p^{\varphi}(pu_n)\leq u_n$$

(b). It is similar to the claim (b) \Rightarrow (a) from (i).

(iii). It is a consequence of the Lemma 4.

(iv). For all $p, q \in (0, \infty)$ such that q < p and for all $n \in \mathbb{N}$ it follows:

$$V_{p}^{\varphi}(pu^{(n)}) = V_{q}^{\varphi}\left(pu^{(n)} + (q-p)V_{p}^{\varphi}(pu^{(n)})\right)$$

$$= V_{q}^{\varphi}(qu^{(n)} + (p-q)\left(u^{(n)} - V_{p}^{\varphi}(pu^{(n)})\right)$$

$$\geq V_{q}^{\varphi}\left(qu^{(n)}\right)$$

and
$$V_p^{\varphi}(pu) = \lim_{n \to \infty} V_p^{\varphi}\left(pu^{(n)}\right) \ge \lim_{n \to \infty} V_q^{\varphi}(qu^{(n)}) = V_q^{\varphi}(qu).$$

Proposition 3.9 For all $f \in \mathcal{F}(\varphi)$ the following sentences are equivalent:

(i). $V^{\varphi}f \in -\mathcal{U}(U)$.

(ii). For all $p \in (0, \infty)$, $V_p^{\varphi} f \in -\mathcal{U}(U)$.

Moreover if one of the previous claims holds then $f \in L^1_{loc}(U)$, $\nu_{-V^{\varphi}f} = f^+ \cdot \lambda$ and $\nu_{-V^{\varphi}_p f} = (f - pV^{\varphi}_p f)^+ \cdot \lambda$, for all $p \in (0, \infty)$.

Proof. Let $\varepsilon_n := f^{(n)} = \inf\{f, nV1 + V^{\varphi}0\}.$

(i) \Rightarrow (ii). For all $n \in \mathbb{N}$ we have that

$$V_{p}^{\varphi}\varepsilon_{n}=V^{\varphi}\left(\varepsilon_{n}-pV_{p}^{\varphi}\varepsilon_{n}\right)\leq V^{\varphi}\left(f-pV_{p}^{\varphi}(V^{\varphi}0)\right)\leq V^{\varphi}\left(f-pV^{\varphi}0\right)$$

and according to Proposition 2.2.(iii). it follows that

$$V_p^{\varphi} f = \sup_{n \in \mathbb{N}} V_p^{\varphi} \varepsilon_n \le V^{\varphi} f + V(-pV^{\varphi} 0) < \infty.$$

(ii) \Rightarrow (i). Similarly to the previous proof we have that for all $n \in \mathbb{N}$

$$V^{\varphi} \varepsilon_{n} \leq V^{\varphi} \left(\varepsilon_{n} - p V_{p}^{\varphi} \varepsilon_{n} \right) + V \left(p V_{p}^{\varphi} \varepsilon_{n} \right)$$

$$= V_{p}^{\varphi} \varepsilon_{n} + V \left(p V_{p}^{\varphi} \varepsilon_{n} \right) \leq V_{p}^{\varphi} f + V \left(p V_{p}^{\varphi} f \right) < \infty$$

whereas $V_p^{\varphi}f$ is a concave real function on \bar{U} .

For the suplemental sentences we remark that $(V^{\varphi}\varepsilon_n)_n$ converges to $V^{\varphi}f$ uniformly on the compact sets of U, hence

$$\nu_{-V\varphi_f} = \lim_{n \to \infty} (\varepsilon_n^+ \cdot \lambda) \le f^+ \cdot \lambda$$

and moreover
$$\lim_{n\to\infty} (\varepsilon_n^+ \cdot \lambda) = \left(\sup_{n\in\mathbb{N}} \varepsilon_n^+\right) \cdot \lambda = f^+ \cdot \lambda.$$

We have that $\nu_{-V\varphi f} = f^+ \cdot \lambda$ and since $\nu_{-V\varphi f}$ is a Radon measure it follows that f^+ is λ -locally integrable and f is also λ -locally integrable.

By the Lebesgue convergence theorem we have that:

$$\nu_{-V_p^{\varphi}f} = \lim_{n \to \infty} \nu_{-V_p^{\varphi}\varepsilon_n} = \lim_{n \to \infty} \left(\varepsilon_n - pV_p^{\varphi}\varepsilon_n \right)^+ \cdot \lambda$$
$$= \left(f - pV_p^{\varphi} \cdot f \right)^+ \cdot \lambda. \blacksquare$$

Corollary 3.10 For all $f \in \mathcal{F}(\varphi)$ the following sentences are equivalent:

(i). $f \in L^1(U)$.

(ii). $V^{\varphi}f \in -\mathcal{U}_{-\varphi}(U)$ and $\nu_{-V^{\varphi}f}$ is a bounded measure on U.

(iii) For all $p \in (0, \infty)$, $V_p^{\varphi} f \in -\mathcal{U}_{-\varphi}(U)$ and $\nu_{-V_p^{\varphi} f}$ is a bounded measure on U.

Proof. It is obvious.

Definition 3.11 Let $u \in \mathcal{S}(\varphi)$.

(i). We shall define $\hat{u} := \hat{u}_{\varphi} := \sup_{p \in (0,\infty)} V_p^{\varphi}(pu) = \lim_{p \to \infty} V_p^{\varphi}(pu)$ and the map \hat{u} will be called $\mathcal{V}(\varphi)$ -excessive regularization of u.

(ii). It is obvious that:

(a). $\hat{u}: \bar{U} \to (-\infty, \infty]$ is a concave function such that $\hat{u}|_{\partial U} = \varphi$.

(b). $\hat{u} \leq u$.

Theorem 3.12 For all $u \in \mathcal{S}(\varphi)$ it follows that $\hat{u} = u$ (obviously λ a.e.) on U.

Proof. If $\{\hat{u} = \infty\} = U$, then $\hat{u} = u = \infty$.

Let $\{\hat{u} = \infty\}$ be the void set. For all $p \in (0, \infty)$ we have that:

$$\nu_{-V_p^{\varphi}(pu)} = p\left(u - V_p^{\varphi}(pu)\right) \cdot \lambda, \quad \frac{1}{p} \nu_{-V_p^{\varphi}(pu)} = \nu_{-\frac{1}{\sqrt[k]p}} V_p^{\varphi}(pu)$$

and

$$\frac{1}{\sqrt[k]{p}}\inf\varphi\leq\frac{1}{\sqrt[k]{p}}V_p^\varphi(pu)\leq\frac{1}{\sqrt[k]{p}}\hat{u},$$

accordingly $\lim_{p\to\infty} \frac{1}{\sqrt[k]p} V_p^{\varphi}(pu) = 0$ uniformly on the compact sets of U. It follows that $\left(\frac{1}{p}\nu_{-V_p^{\varphi}(pu)}\right)_{p\in(0,\infty)}$ converges (vaguely) to the zero measure when p converges to ∞ and by the Beppo-Levi theorem we have that for all $f\in C_c(U)$

$$\int_{U} f(u - \hat{u}) d\lambda = \lim_{p \to \infty} \int_{U} f\left(u - V_{p}^{\varphi}(pu)\right) d\lambda$$

$$= \lim_{p \to \infty} \frac{1}{p} \int_{U} f d\nu_{-V_{p}^{\varphi}(pu)} = 0,$$

hence $u = \hat{u}$ on U.

Corollary 3.13 We have that $S(\varphi) = \{u \in (-\infty, \infty]^U : \exists v : U \to \mathbb{R} \text{ concave function such that } (sci_Uv)|_{\partial U} \geq \varphi \text{ and } u = v \text{ } (\lambda \text{ a.e.}) \text{ on } U\}.$

Proof. It follows by the Theorem 6 and the Theorem 12.

Corollary 3.14 The following assertions hold:

(i). $S(\varphi)^+ + S(\varphi) \subset S(\varphi)$.

$$(ii). \ \mathcal{S}(\varphi)^+ + \mathcal{S}(\varphi)^+ \subset \mathcal{S}(\varphi)^+ \ (where \ \mathcal{S}(\varphi)^+ := \{u \in \mathcal{S}(\varphi) : u \geq 0\}).$$

Proof. (i). Let $u \in \mathcal{S}(\varphi)^+$ and $v \in \mathcal{S}(\varphi)$. Since $u = \hat{u}$ (λ a.e.) on U and \hat{u} is concave function on U, it follows that $\hat{u} \in \mathcal{S}(0)$ (Theorem 6).

By the Proposition 8.(iii). we have that $\hat{u}+v \in \mathcal{S}(\varphi)$, hence $u+v \in \mathcal{S}(\varphi)$.

(ii). It is obvious.

Definition 3.15 Let $u \in \mathcal{S}(\varphi)$

- (i) If $u = \hat{u}$ everywhere on U and $u < \infty$, then u is called $\mathcal{V}(\varphi)$ -excessive.
- (ii). We shall use the following notation:

$$\mathcal{E}(\varphi) := \{ u \in \mathcal{S}(\varphi) : u \text{ is } \mathcal{V}(\varphi) \text{-excessive} \}.$$

(iii). Obviously if u is $V(\varphi)$ -excessive then u is a real concave function on U such that $(sci_{U}u)|_{\partial U} \geq \varphi$, hence we have the following lemma.

Lemma 3.16
$$\mathcal{E}(\varphi) = \{u \in -\mathcal{U}(U) : (sci_U u)|_{\partial U} \geq \varphi.\}$$

Proof. It is obvious by the Definition 15 and the Theorems 6. and 12. ■

Corollary 3.17 The following assertions hold:

(i). $\mathcal{E}(\varphi)^{\pm} + \mathcal{E}(\varphi) \subset \mathcal{E}(\varphi)$.

(ii).
$$\mathcal{E}(\varphi)^+ + \mathcal{E}(\varphi)^+ \subset \mathcal{E}(\varphi)^+$$
 (where $\mathcal{E}(\varphi)^+ := \{u \in \mathcal{E}(\varphi) : u \geq 0\}$).

Proof. It is obvious.

References

- [1] Bertin, E.M.J., Fonctions convexes et théorie du potential, Preprint nr. 89, sept. 1978, Univ. Utrecht., Dep. of Math.
- [2] Bertin, E.M.J., Convex Potential Theory, Preprint nr. 489, dec. 1987, Univ. Utrecht., Dep. of Math.
- [3] Boboc, N., Bucur, Gh., Cornea, A. Order and Convexity in Potential Theory: H-Cones, Lect. Notes in Math. 853, Berlin, 1981.
- [4] Deimling, K., Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [5] Dellacherie, C., Une version non linéaire du théorème de Hunt, Proc. of I.C.P.T., Japan, 1990, Walter de Gruyter, Berlin, 1992.

- [6] Gool, Frans van, Topics in Nonlinear Potential Theory, Ph.D. thesis, Utrecht, 1992.
- [7] Meyer, P.A., *Probability and Potentials*, Blaisdell Publishing Company, 1966.
- [8] Rockafellar, T., Convex analysis, Princeton Univ. Press, 1970.
- [9] Udrea, C., Nonlinear Resolvents, Rev. Roum. de Math. Pures et Appl., 7-8, 1995.
- [10] Udrea, C., Supermedian Functions with Respect to a Nonlinear Resolvent, Math. Rep., Ed. Acad. de Roumanie 49, 1997.
- [11] Udrea, C., Nonlinear Operators: Boundedness and Maximum Principles, Rev. Roum. de Math. Pures et Appll., vol. XLVI, 2001.