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Abstraet.” For the Monge-Ampere equation v, = f-X (where f € L'(U) and
) is the Lebesgue measure on the strietly convex bounded and open set U C RF)
we shall consider the Dirichlet problem u|sy = ¢ (where ¢ € C(0U)). We shall
define a nemnlinear operator V¥ on the space L*(U) which is associated with the
solutions of the above Dirichlet problem and moreover we shall define a nonlinear
resolvent which has V¥ as its initial operator. Afterwards we shall study the su-
permedian Tunctions with respect to the above resolvent and we shall prove that
these functions are completely determined by a class of concave real functions on U.

1 Prelminaries

We shall make a short review of the knowledges of the theory of convex
functions (in conformity with 1], 2], [6] or [8]) and also of the theory of
nonlinear operators (according to-[5], [9] or [10]) which will be used in this
work. Throughout this text U C R* is a nenveid open bounded and strictly
convex set, V C R is a non void convex and open set and A is the Lebesgue
measure on R¥. Also the spaces LP(U) (p € {1, 00}) are defined with respect
to the measure Aly.

All functions are defined A a.e. and all inequalities (and so that all equal-
ities) are acomplished X a.e: ~

Definition 1.1 (i). For all A C R* non void conver set we shall use the
following notation: U(A) := {u € R4 : u is a convez function }. Obuviously
U\V)cCev). % " )

(i1). Similarly, for all p € C(OV), U,(V) :=={u e RV :u e U(V)NC(V)
and ulsy = p7}. ,



Pfoposition 1.2 Let V be a bounded set and H C UTV)NC(V) such that
there ezists b € C (V) with properties-hloy = 0.and for all u,v € H, ju—v| <
h. We shall have that H is uniformly equicontinuous on V.

Definition 1.3 ([6]). (). Ifu € U(V) and a € V, then
8y(a) := {p e R*: u(z) —u(a) ><p,z—a> foralz € V}.

is called the subdifferential of u in a. For all A CV, 8,(A) == |J u(a).

a€A

(ii). The map (K — X(8,(K))) is defined on the compact sets of V and .

it is a Radon measure on V. This measure is denoted by v, and it is called
the curvature of the convex function u (on the set V).

Propositien 1.4 ([6]). (i). If u,v € U(V) and D C V are such that D
is @ non void open bounded set, ulp < v|p and (scipu)|ap > (scipv)|sp,
then it follows that 0,(D) C 0u.(D) (where scipu : D = R, scipu(z) :=
lim inf ufy), for all z € D).

Day—z

(i). If u,v € U(V) and a € Ry, then we have that: (a) vy, > vy + 1sy.
0 =W,

(iii). Let (un), C U(V) be such that (uy), converges locally untformly
on V to the map u. We shall have that (v,,), is vaguely convergent to the
Measure v,.

Proposition 1.5 ([6]). (i). (The minimum principle for the convex
functions.) IfV is a bounded set, and u,v € U(V) are such that v, < vy
and (scivu)lav > (scivv)|av if follows that w > v.

(). (The minimum principle for the lecally convex functions.)
Let G C R* be a non void open bounded set and f,g : G — R be locally
convez functions on G and continuous functions on G such that v; < v, and
flag = glag. We have that f > g. (Here for all D C G non void convex set
(vr) D =vy1p)-

(ii3). (The boundedness of the convex funetions.) IfV is bounded,
u € U(V) and m € R are such that (scivu) |ay > m, then it follows that:

u>m— (d’iqu) JrulV) (where wi := X (B(0k,1))).

W

Theorem:1.6 ([6]). Let p be a bounded Radon measure on U and ¢ €
C(OU). There exists one and only one convez and continuous mapu : U — R

such that v, = p and ulog = ¢. (The map u what is defined in this theorem
will be denoted by M(p,p).)



Proposition 1.7 ([6]). The following assertions hold:

(i). For all p1,p2 € C(3U) and p1, ps bounded Radon measures on U we
have:

(¢). M (p1+ p2, 01+ @2) 2 M (p1,01) + M (p2, 2).

(b). If p1 < p2 and 1 > pq, then M (p1,01) > M (p2,02).

(ii). For all p € C(OU), o € Ry and p bounded Radon measure on U we
find that:

(a). M (c*p,ap) = aM (g, ).
(b). M (p,) > inf o — (diamly) {/2C).

Definition 1.8 ([5]). (i). An increasing map T : L*(U) — LY(U) (respec-
tively T : L*°(U) — L*(U)) is called operator on L*(U) (respectively on
LeUY).

(ii). We shall saythat T : L}(U) — L*(U) is a sub-Markov-operator on
LYU) iff forall f,g € L*(U)-and o € R, such that f < g+ « it follows that
Tf<Tg+c.

(iii). It is obvious that if a map T : LY(U) — LY(U) has the previous
property, then T is an operator. Moreover if T satisfies the property of (ii) for
all function f,g € L°(U), then |TF—Tg|lco < ||f—gllo for all f,g € L=(U)
(in conformity with [5] or [9]).

(w).([5]). We shall say that T : LY(U) — L'(U) satisfies the weak com-
plete mazimum principle iff for all f,g € L*(U) and a € Ry such that

f+Tf<g+Tg+a
on the set {f > g}:={2 € U: f(z) > g(z)}, if follows that
Tf<Tg+a.

We remarf that if T satisfies the weak complete mazimum principle then:

(a). T is an increasing map (that is T is an operator). ‘

(6). I+T : LY(U) — L*(U) is an one to one map (where I is the identity
map of L'U)).

(v).([5])) If T, N : E*(U) — L*(U) are such that

(I-N)YI+T)=1=(I+T)(I—-N)
then (T, N) is called a pair of conjugated maps (on L*(U)).

Proposition 1.9 (similarly to [5] or [9]). Let T, N : L}(U) — L*(U) be such
that (T, N) is a pair of conjugated operators. The following statements are
equivalent:



TN TR FivefaretldicaVv & dbo=hiarkooroperatod dlid-1swoperator.
(ii). The map T salisfies the weak complete mazimum principle.
(iii). T is an operator such that for all f,g € L'(U) and o € Ry if
f+Tf<g+Tg+athenTf<Tg+a.

Proof. (i)=-(ii). Let f,g € L'(U) and « € R be such that
f+Tf<g+Tg+aontheset {f >g}and v:=inf{f+Tf,g+Tg+a}.
We have that v € L}(U), Nv <Tf, Nv < Tg+aand v = f+Tf on the set
{f>9g}. Hj:=v—Nv,then je L'(U), f<jand f+Tf<j+Tj=v
hence Tf =N(f+Tf) < Nv<Tg+e.

(i1)=(iii). It is obvious.

(iii)=>(i). Let f,g € L*(U) and o € Ry be such that f < g+ a. We have
that f = (I4T)(I-N)f = (F~NJ)+T(F—NF) < (g-Ng)+T(g—Ng)+a =
(I+T)I—-N)g+a=g+ea.

By the hypothesis we shall find that Nf =T(f—Nf) < T(g— Ng)+a =
Ng + a, thatis N is a sub-Markov operator. m
Definition 1.10 ([5]). (3). The family of functions V = (V,)pe(0,00) where,
for all p € (0,00), V, : L}({U) = L*(U) is called resolvent (on L'(U)) iff, for
all p,q € (0,00) it follows that

(I=(p—Vp)I+(p—V) =1

(ii). The resolvent V = (Vp)pe(0,00) 8 called the resolvent associated with
the map V : LY(U) — LY(U) off, for all p € (0,00), we have that:

V=V,(I+pV) and V, =V (I — pV,).

(iii). If, for all p € (0,00), pV, is a sub-Markov operator (on L'(U)), then
the resolvent V = (Vp)pe(0,00) 18 called a sub-Markov resolvent (on L'(U)).

2 Nonlinear Resolvent Associated with the
Solutions of the Dirichlet Problem for the
Monge-Ampeére Equation.

If ¢ € C({AU) then we shall define a sub-Markov resolvent associated
with the solutions of the Dirichlet problem v, = f - A and u|sy = ¢, where
f € L}(U) and we shall present its important properties.

Throughout this section ¢ € C(9U).
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ular V f := —M(f* - ),0) is the operator what is defined in [9] or [10]. (Here
ft :=sup{f,0}). Obviously V¢f =V?(fT).

(ii). For all f € L}(U), V*f : U — R is a continuous concave function
such that (V¢ f) |sv = ¢ and v_yes = fT- A
(iii). V¢ : MUY - —U_,(U)yC L*(U).

Proposition 2.2 (Algebraic and order properties). Let fi, f» € L'(U).
The following assertions hold:

(i). If Ve fy = Vefy, then fif = fi (obviously X a.e.).

(i). Let fi < fo. It follows that V?f; < V¥ fa, so that V¥ is an operator
on L*(U).

(iii). The following inequalities hold:

(0). V(fi+ f2) SVPHi+V e

(). [Vefi—Vefo] SVI{Fi— o).

(iv). If ¢ > 0, then V¥ is a subadditive map.

Proof. (i). Since f; - X = f; - A, it is obvious that f; = £

(ii). Whereas (V¥ f1) lov = (V?f2) lov and v_vey, < vovep,, the assertion
holds by the minimum principle for the convex functions (Proposition 1.5 (i)).

(iif). (a) Since (Ve (f1+ f2))lov = (V¥Fi + Vo) lov and voves vy 2
FE4+ £ - X > veve(sas), We apply again the minimum principle for the
1 2 (fa+f2) g
convex functions.
(b). The inequalities f; < f;+ (fi — f2)t , 4,5 = 1,2, 1 # j and the point
(a) involve the assertion.
(iv). We use again the minimum principle for the convex functions. =

Theorem 2.3 (Topological properties.) We have the following claims:

(i). For all f € LYU), V¢ f < sup o+ (diamU){/ I,

(). Vo s (B - ) — (EAO), ] - ls) is an -Holder map.

(iii). Let F C L*(U) be such that either (a) there exists b € L'(U) so as
to, for all f € F, |f| <k, or (b) F is bounded in (L*(U),|| - [l1), and F 1is
increasing (i.e. for all f,g € F there exists h € F such that sup{f,g} < h).

We have that V¢(F) is relatively compact in the space (C(U), || - |loo) and
accordingly it is relatively compact in (L*(U), ]| - [l1)-

Proof. (i). We apply the Proposition 1.5.(iii). and we find the assertion
since v_y¢s(U) = ff+d/\ < Ifll-
U



(ii). The previous point and the Proposition 2.(iii). involve that, for all
f17 f2 € LIP(U)

V¢ fi = V| <V (fi — f2) < (diamU) o 2 S f2”1 and so that

o 1= falln

W

Ve f = Ve hall, < MU)(diam)

(Moreover we have that {{V¢f; — V¢ fo| , <{diamU)4/ ufl—;:—"’lli)
(iii). In ahy case let ¢ € Ry be such that, for all f € F, ||f]li < e If
follows that, for all f € F:

inf ¢ < V¢ <'sup +{diaml) i/g,
hence V¢(F) is bounded in the space (C(U), | - [|0)-

(a). For all £, € F, [/ — Veg| <V (F - g) = V((f — g)*) < V(2h),
hence by the Proposition 1.2 it follows that V¥(F) is uniformly equicontin-
uous on U.

(b). Since F is increasing and bounded (in || - ||1), the set F* :=
{f* : f € F} has the same properties. Accordingly we shall find that there
exists b & L*(U) such that, for all f € F, ft < h. It follows, similarly to
the case (a), that V¥(F) is uniformly equicontinuous on U.

In any case by the Ascoli theorem we have that V¥(F) is relatively com-

pact in (O(f}), I ||oo) o
Corollary 2.4 V¢ : (LYU),|| - |l1) = (L*U),] - l) s @ continuous map.
Proof. It is obvious. m

Remark 2.5 Let (f,), C L'(U) and f € L*(U).

(i). If (fa), converges to f in L*(U), then (V¥f,), converges to V¥ f
uniformly on U.

(i1). If (fa), converges monotonely to f (X a.e.), then (V¥ f,), converges
uniformly and monotonely to VPf (so that, in particular, V¢ is increasingly
continuous on L'(U)).

(iii). By the proof of Theorem 8.(ii). it follows that

VO o) s (L7, ]| - lloo) = (LZ(U), ]| - lloo)

is also %-Hé’lder and so that continuous map.



Theorem 2.6 Let u € —U(U), u> 0 and f,g € L*(U) be such that
V?f < Ve+u on the set {f > g}.
It follows that V¥f < V%g + u.

Proof. If D := {V¥f > V¥g+u} and @ : D — R is the map @ := scspu
(where scspu = —scip{—u}} it follows that D C {f < g}, D is an open set
and # is a locally concave function on D.
For all z € (D) NU, by the continuity of the above functions we have
that
Ve f(z) = V¥g{z) 4+ u{z) = V¥g{z) + a(z).

If z € (0D) N(0U) if follows that:
o(z) < plz)+ (seipu)(z)=scip (V¥g+u) (z)
< scsp (Vg +u)(z) < sespV?flz) = o(z).
Therefore @ is continuous en (D) N (0U) and
(V?flop =(V?g+u)lop.
On the other hand we have that
(vver)lp = (ffIp) - X< (g¥Ip) - X=(r-ve) Ip
< (V——V‘f’g—ﬂ) |D-

By the minimum principle for the locally convex functions (Proposition
1.5.(i1).) we shall have that V¥f < V¥g 4+ u on D what is contrary to the
definition of D if D is non void. It follows that D = (, so that V¥ f < V¥g+u
(everywhere on U). m

Remark 2.7 (i). It is obvious that V¥ satisfies the weak complete mazimum
principle and hence I + V¥ : LX(U)y — LY(U) is an one to one map.

(ii). For all p € (0,00) pV? has the property of the previous theorem and
s0 that pV? also satisfies the weak complete mazimum principle.

Theorem 2.8 For all p € (0,00) there erists one and only one map
Ve Lo°(U) — L(U) sueh that

(I—pVe) (I +pV¥) = F= (I +pV?) (I - pVy?).



Proof. For all f € L>(U) we shall define Ly : L*°(U) — L*(U), where
L¢(9) := V®(f — pg), for all g € L*(U) and p € (0,00) a fixed number. By
the Theorem 3.(ii). it follows that, for all k, ¢ € L°(U),

IE5h~ Lygl. < @m0} {202 /=]l

and so that ([9]), there exists r > 0 such that for all g € L=(U), if ||g|lcc <7
then ||Lsgfleo <.

Since Ls = (LU}, ]| oo} = (L=(U),]| - |lo) 18 & compaet map (the
proof is similar to that of the Theorem 3.(iii).), we can apply the Schauder’s
fixed point theorem: there exists uy € L*(U) such that Lyus = uy, that is
Ve(f —pus) = us. But T4 pV¥is an one to one map and accordingly uy is
the unique-map u € L°(U) with property Lju = u.

Let us define V¥ : L®(U) — L*(U), V7 f := uy, it follows that

(I+pV®) (I—pVy)=Tand [ —pV =(I+pV*) ' . m
Remark 2.9 Since for all f € L>(U) we have that
Vef =V (f—pVef) and VOF=V2 (f+V¥f),

the following assertions hold:
(¢). VIf :U — R is a concave and continuous function on U such that

(Veef) lov = ¢ and v_ye; = (f — p'V'p"’f')'Jr - X. If fre L™(U) is such that
Ve (pf) < f then it follows that V_VP‘:(pf;) =p (f - V;P(Pf)) - A

(ii). For all p € (0,00), (Vi)™ = V®(I+pV¥)™" (the equality holds
on the space L°(U)) and, for all p,q € (0,00), V,# = V? (I+ (q—p)V;"),
i.e. (Vl;p)pe(o o0) is a resolvent on L*(U) and this resolvent is associated with

V(p|Loo(U).

Corollary 2.10 The map V,? (which is defined above for all p € (0,00)) has
the following properties:

(i). V2 (L2U) ] “Mloo) = (L), - lloo) i @ sub Markov operator,
accordingly it is a continuous map.

(it). For all f,g € L*(U) we have that V?(f +9) < V2f+Vg.

Proof. (i). Since pV¥ satisfies the weak complete maximum principle and
(pV‘p,pV;") is a pair of conjugated maps on L*°(U), we can apply the Propo-
sition 1.9 and the Definition 1.8.(iii).



(ii). It is similar to the proof of the Theorem 6. If
D= {Zf(f +g) > |Ad +Vg}

then D € U is an open set, (Vp‘”(f-l-g)_) lom = (%“f—i— Vg) lap and since
Vg > 0 on the set D we have the inequalities

vovpeg = (FHa-pVP(f+9)7 2
(F+g—pY2f—pVg) -2
(f - P-fof ’\ +g" A< Y-vgs-vg

IA A

By the minimum principle for the locally convex functions if follows that
D = and accordingly V?(F +9) <VZf+Vg m

Remarkgll.(z) By the previous corollary it follows that for all
fyg € L=(U), IV“’f Vegl < VIf—g) and so that

Vs —vieg < <dmmv)«/”f Iy < (gigmr) 4 MO <U ,kf‘—”f

Vs = Vel < 3@ aiam g =2,

(7). Let f € LYU) and, for all n €N, f, := sup{—n,inf{f,n}}.

(a). It is ebvious that for alln €N, |f,| < |f| and f, € L=(U). Moreover
(fn), converges A a.e. (on U) to the map f and (f,), also converges in
(LHU), |- Ba) to f- |

(b). According to (%) it follows that, for allm,n € N

i = Fmlly

Wi

[V fo = Vit fmll, < (diam U5

Since (fu)n 15 a Cauchy sequence in (L*(U),]| - |l1), we shall have that
(V f")ne is a Cauchy sequence in (C(U),|| - lleo), and so that (\_/S‘Zfﬂ)?z

umformly convergent .on U.
Definition 2.12 (). For all p € (0,00) and f € L*(U) we shall define
‘/;Pf = Jilgi/;@fna



where f, = sup {—n,inf{f,n}}, for all n €N.

(ii). By the definition, for all f € LY(U), it follows that:

(a). VS U — R is a concave and continuous function on U such that
Ve lov = .

(b) Voyer = nﬁ—g;loy‘-y:f” = nh—I*noo (fn _.pv;;af.n)'*-‘ X = (f _ pvpcpf)"‘ X,

(iii). Similarly to the proof of the Corollary 10.(ii). we have that for all
f,9€ LNUY, VO(f +g) < V#f+ Vg and so that |VEf — Vieg| < V(f —g).

Theorem 2.13 The function family V(p) = (V;l)pe{ﬂ.oo) is a (nonlinear) .
sub-Markov resolvent which is assoeiated with V¥ (on L*(U)).

Proof. Let f € L'(U) and (f,), be the sequence of the Remark 11(ii). By
the Theorem 8 it follows that V?f, = V¥ ( Ju=—ph 7 fn), for all n €N, and
by the Definition 12 and the Corollary 4. we have that

VS = i Veh = lm Ve (s —pV0 k) = V7 (£ V)

and
(F+pVH (I -pVy) =1
It is obvious that (pV ", pr“’) is a pair of conjugated maps and by the
Proposition 1.9 and the Remark 7, it follows that pV*'is a sub-Markov op-
erator on the space L!(U).
Since V¥ = V¢ (I +pV¥®)™}, for all p € (0,00), V() is a resolvent on
LYU). m

Proposition 2.14 We have the following claims:

(i). For alt p € (0,00), V.2 - (L*(U), ]| - |l1) = (C(U),] - lleo) is a contin-
uous operator.

(ii). For all set F C LY(U) such that F satisfies the property (a) of
the Theorem 3.(ii1). it follows that V#(F) is a relatively compact set in
(CU),] - Yoo) (for all p € (0,00)).

Proof. (i}. By the Definition 12.(iii). it follows that V? is continuous.

(ii) Since VA(F) = {V“’ (f—pl{o‘”f) ¢ F 6.7:}, we have that the set
{f- o b il i = F} satisfies the condition (a) of the Theorem 3.(iii). and
so that V,#(F) is a relatively compact set in (CO) ] loo) m

10



3 The Supermedian Functions

We shall define and we shall study the V(y)- supermedian functions and
afterwards we shall compare these supermedian functions to the concave
functions.

Throughout this section V(¢) = ( ¢) pe(8100) is the resolvent what was

defined in the previous section. Also we shall consider the resolvent V(0) =
(Vo )pE(O o) 1€ the resolvent what is defined for the map ¢ = 0. We shall

define the extension of the operators (V )pe{e 00) (where V7 = V¥) to the
following set of functions:

Flo) = { f € RV : f is X\ measurable and f > V‘”O} Obviously
F(0) := {f € RV : f in A measurable and f >0} .

Definition 3.1 Let f € F(p).
(i). For all p € (0,00), V#f := sup V,#(inf{f,n}) and since V7 is an
n€N
increasing map if follows that V.7 f = Jirg Ve (inf{f,n}).
(it). If f-€ LNU), then it is obvious that V7 f (the map defined here) is

the function what is defined in previous section.

Remark 3.2 (i). By the minimum principle for the convez functions it

Jollows that for all p € [0,00) V2(V¥0) > V?0, hence Vi? : F(p) = F(p).
(i3). Since, for all p-€ [0, oo) VF ¢ LI(U) — Ll(U) is an tnereasingly

continuous operator we shall have that for all f € F(p) and p € [0, 00)

Ve f=sup{VPlg:geL*) and g < f}
and if (gs), C L®(U) is such that (g,), is increasing to f, then

V"”f = supV Gy = hm V“’gn
neN

(iii). It is obvious that V.¥ : F(p) — F(p) is an increasing map (that
is Vi is an-operator on .7:(90)) and moreover V¢ is increasingly continuous
(i.e. if (fo) C F(p) is such that (f,), is inereasing then

s (sup fn) = sup V2= im V' o for all p € 0,00).)

nEN
(iv). For all f € F(p) and p € [0,00), Vi#f : U = (—00,00] and V7 f s
a concave and lower semicontinuous function on such that (V‘” f) |3U =15

11



Moreover cither {Vp“’f = oo} =10 OF {Vp‘Pf = oo} = U, hence if VI f < o0
it follows that (VP‘P (inf{f,n})_)n converges to V¢ f uniformly on the compact
set of U and v_yyg; = 151010 (inf{f,n}) — pV,?(inf{f, n})+ DN

Definition 3.3 (i). The function v € F(y) is called V(p)- supermedian iff
for all p € {0, 00) we have that V,?(pu) < u.
(1t). We shall use the notation:

S(p) := {u € F(p): u 1s V(p)-supermedian} .

Lemma 3.4 If f,g € F(¢) and p € (0,00) it follows that V?(f + g) <
V2 F Vo

Proof. For all f,g € L*(U) the inequality V,?(f + g} < V,?f + V,g can be
proved similarly to the Corollary 2.10.
Let f,g € F(p); since f+g = lim (inf{f, n}+inf{g, n}) = sup(inf{f, n}+
n—roo neN

inf{g,n}) by the Remark 2 (iii) it follows that:

VO(F+g) = lim Vy(int{f,n} +in{g,n})

< lim (YGaE(Fnd) + Valintlg,n}) = VO + Vo, m
Corollary 8.5 The following assertion holds:
{u4V*0:u e S(0)} =: §(0) +V*0 C S(p).

Proof. For all u € 5(0) and p € (0,00), we have that:

V¢ (pu 4 pV¥0) < V7 (pV*?0) + Vi (pu) = V¥0 + Vp(pu) < u+V¥0.m
Theorem 3.6 If u € —U(U) is such that ¢ < (scigu)|sv, then u € S(p).

Proof. Let p € (0,00), u € —U(U) such that ¢ < (scipu)|oy, D :=
{V;,‘p(pu) > u}. It follows that D C U, D is an open set and (Vf(pu)) lap <
(sespu) |ap accordingly v_u(D) < v_yg(pu(D) (Proposition 1.4.(i).). More-
over u € L™(U) and v_yg (D) = 0, so that (v—w)|D = (V_Vpsv(pu)) |-
Since V,?(pu) and scspu are continuous functions on D, we apply the

minimum principle for the locally convex functions and we shall find that
(V#(pu)) Ip < ulp, therefore B = ¢-and V;#(pu) < ufor all p € (0,00). ®
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Remark 3.7 (i). By the definition the map V1 :U — R, V1 is a continuous
and concave function such that (V1)|sy = 0 and v_y1 = A. Moreover for all
z € U we have that (V1)(z) > 0.

(ii). By the Corollary 5; for alln € N, nV1+4+V¥0 € S(p) whereas nV1+
Ve0 is a concave continuous function on U  such that
(nV1+4 Ve0)|au = ¢. and we apply the previous theorem.

(iit). Let us denote for all n € N, e, := nV1 + V%0 and let us remark
that (ey), is an increasing sequence of concave continuous functions on U
such that for all t € U hm en(x)—supen(x)—

(). For dall f € .7:(3_0) f = sup(mf{f, en}) and so that
V' f = lim VP(inf{f, e.}) = B vy (inf{f, en}).

We shall use the following notation: for all n € N and f € F(p), f® =
inf{f,e.}.
Proposition 3.8 The following assertions hold:

(i). If u € F(p) then the following sentences are equivalent:

(a). The map u is V(p)-supermedian.

(b). For all n € N, the function u™ is V(p)-supermedian (u™ is the
function what is defined in the previous remark).

(ii). Let (wn), C S{p).
(a). The function irelgun € S(p).
(b). If (us)n is inereasing, then sup u, € S(p).
n€N
(iii). We have that S(0) + S(p) C S(p).
(iv). For all u € S(p) the map (p — V2 (pu)) : (0,00) = F(p) is an

mncreasing map.

Proof. (i). (a)=(b). By the previous remark we have that for all n € N
en € S(p) so that for all p € (0, 00).

V) = Ve(pint{u,en)) < inf {V¥(pu), VE(pen))
< inf{u,e,} = u™.

(b)=(a). ‘We have that (for all p € (0, 00)):
V.7 (pu) = sup V;p'(pu(n))_,ﬁ sup ul™ = u accordingly u € S(p).
‘n neN

(ii). (a). K is immediate since 'irelg un € F(p) and, for all n € N,
v (pigfn) < row < .

13



(b). It is similar to the claim (b)=>(a) from (i).
(iii). It is a consequence of the Lemma 4.
(iv). For all p, g € (0, 00) such that ¢ < p and for all n € N it Tollows:

Ve(pu®™) = V¢ (pu™ + (g —p)V;(pu!™))
= V(™ + (p— g) (W™ = VP (pu™))
> Ve (qut)
and V¢(pu) = lim V2 (pu®) > lim V#(qul) = V,?(qu). m
Proposition 3.9 For all f € F(p) the following sentences are equivalent:

(i). Vef € —UU).
(ii). For all p € (8,00), V2 F € —U(U)-

Moreover if one of the prekus elaims holds then f € L} (U), v_yey =
fH-Xandv_yes = (f - _pV;,‘P,f) - X, for all p € (0,00).
Proof. Let g, := f(® = inf{f, nV1 +V*0}.
(i)=>(ii). For all n-€ N we have that
Vien = V¥ (e — pVen) < V¥ (f —pV2(V90)) < VO (f = pV*0)
and according to Proposition 2.2.(iii). it follows that

Vif=sap Ve, SVIF+ V(- —pV?%0) < 00
neN
(ii)=-(i). Similarly to the previous proof we have that for alln € N
Ve < V¢ (en—pVlen) +V (pV,0en)
= Ve +V(pVlen) SVIF+ V[PV, f) < oo
whereas V¥ f is a concave real function on U.

For the suplemental sentences we remark that (V%¢,) convergesto V¥ f
uniformly on the compact sets of U, hence

vover = Hm(ef -A) < f7 -

and moreover lim (¢} - X) = (sup a+> A=T" v}k
A0 neN ;
We have fhat v_ye; = ft - X and since v_yes is a Radon measure it

follows that f* is Mlocally integrable and f is also A-locally integrable.
By the Lebesgue convergence theorem we have that:

T o o\t
v_oye; = limu_ye. = T}J_{léo(sﬁ A £,)" - A

- (f_p{gﬂ.f)ﬁ“.,\,.
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Corollary 3.10 For all f € F(p) the following sentences are equivalent:
(i). f e L' U).
(ii). Vof € —U_4(U) and v_vey is a bounded measure on U.
(iti) For all p € (0,00), V.7 f € —U_,(U) and v_yg; is a bounded measure
onU.

Proof. It is obvious. ®

- Definition 3.11 Let u € S(p)-
(i). We shall define & :=t, := sup VP(pu) = hm V2 (pu) and the
PpE(D,00)
map @ wilk-be called V(o )-ezcessive regularization of u.
(it). It is obvious that:
(a). &: U — (—00,00] is a concave function such that i|sy = .
(). 4 < u.

Theorem 3.12 For all u € S(p) it follows that & = u (obviously X a.e.) on
U.

Proof. If {& = co} = U, then & = u = oo.
Let {& = oo} be the void set. For all p € (0,00) we have that:

1
I/__va(pu) = p(u—V;"(pu)) 7\, ";V—Vp‘p(pu) = 'V__é/_z_;vf(pu)

and ]
—infe < ——V"”(p ) <

7 %

accordingly him —#V“’(pu*) = 0 uniformly on the compact sets of U. It
p—yoo VP P

follows that (ll/ vy (pu)) converges {vaguely) to the zero measure when

Pp€E(0,00)
p converges to co and by the Beppo-Levi theorem we have that for all f €

Ce(U)

pP—>00

[ ru-war - /f(u—w(pu ) dA

= lim - f fdl/ V‘p(pu)

p—+roo P

henceu =%on U. m

Corollary 3.13 We have that S(¢) = {u € (—o0,00]V : Jv: U —R con-
cave function such that (seiyv)|sv > ¢ and v =v (X a.e.) on U}.
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Proof. It follows by the Theorem 6 and the Theorem 12. m

Corollary 3.14 The following assertions hold:
(i). S(e)* + (@) C S(w)-
(ii). S(p)* +S(p)* C S(p)* (where S(p)* = {u € S(p) :u > 0}).

Proof. (i). Let u € ()" and v € §(¢). Since u =4 (A a.e.) on U and 4
is concave function on U, it follows that & € S(0) {Theorem 6).
By the Proposition 8.(iii). we have that &+v € S(¢), hence u+v € S(p).
(ii). It is obvious. ®

Definition 3.15 Let v € S{¢)
(i) If u = & everywhere on U and u < oo, then u is called V(i)-ezcessive.
(i)). We shall use the following notation:

E(p) = {u€ S(p) : u is V(p)-excessive} .

(ii). Obuviously if v is V(p)-excessive then w is a real conceve function
on U such that (sciyw)|ar > ¢, hence we have the following lemma.

Lemma 3.16 £(p) = {u € —U(U) : (seipu)lov > ¢.}
Proof. It is obvious by the Definition 15 and the Theorems 6. and 12. m

Corollary 3.17 The following assertions hold:

(). E@* +E(p) CEle).
(it). E()* + E()t C Elp)*t (where E(p)* :={u € &(p) : u 2 0}).

Proof. It is obvious. ®m
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