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Spectra for solvable Lie algebras of bundle endomorphisms
Daniel Beltita

Abstract. The aim of the paper is to investigate spectral properties of the Lie algebras corresponding to
the symmetry groups of certain flags of vector bundles over a compact space. Under natural hypotheses,
such Lie algebras are solvable, but they are in general infinite dimensional. The spectral theory of finite-
dimensional solvable Lie algebras of operators is extended to this natural class of infinite-dimensional solvable
Lie algebras. The discussion uses the language of continuous fields of C*-algebras. The flag manifolds in
C*-algebraic framework are naturally involved here, they providing the basic method for obtaining flags of

vector bundles.

Introduction

The background of the present paper is twofold: first, the classical theorem of Lie concerning simul-
taneous triangularizability for Lie algebras of matrices; second, there is the close relation that is generally
expected to exist between the spectrum of a multiplication operator and the range of the multiplier. Both
types of questions can be thought about in the unifying framework of algebras of bundle endomorphisms
naturally acting on spaces of bundle sections. In fact, our approach will make use of the language of contin-
uous fields of C*-algebras. The connection is that, roughly speaking, the endomorphisms of the fibers of a
Hermitian vector bundle constitute a continuous field of C*-algebras.

To describe the contents of the paper in some more detail, let us begin by recalling that various versions
of Lie’s theorem were discovered to hold for Lie algebras of Banach space operators. Some references in
this connection are [Sa71], [Sa83], [Va72], [Gu80], [Fr82], [BeO1lb]. We refer to Chapter IIT in [BSO01] for a
systematic treatment of this topic. We are mainly interested here in the spectral theoretic aspects of Lie’s
theorem, taking into consideration the set of diagonal coefficients thought of as a set of characters of a
Lie algebra of triangular matrices. This set of characters allows the computation of the spectrum for each
matrix belonging to the considered solvable (and triangularized) Lie algebra. It turns out that such a set of
characters, which we call Cartan-Taylor spectrum, exists for every finite-dimensional solvable Lie algebra of
Banach space operators (cf. [Be99]; see also [BeOla] for a gentle introduction and [BS01] for more details).

In §1 of the present paper we show that the Cartan-Taylor spectrum can be constructed in the case of
Hilbert space operators in a C*-algebraic manner. This C*-algebraic approach to joint spectra was initiated
in [Va82], where joint spectra for commuting systems of operators were considered. That approach is based
on the fact that, if & is a closed densely defined operator in some Hilbert space such that 82 =0 (i.e,
Rané C Kerd), then Ran§ = Ker § if and only if § + §* has a bounded inverse. This result is proved in full
generality in Lemma 3.1 in [Va79] and it turns out to be a most convenient tool in order to handle Hilbert
space complexes (see [GV82]).

In §2 we prove the main result of the paper, that is Theorem 2.5. Roughly speaking, it asserts that
if A= ((A(t))eer,®) is a continuous field of C*-algebras over some compact space T and € is a complex
finite-dimensional Lie algebra, then the spectrum o(p) (see Definition 1.3) of every Lie algebra morphism
p: & — © can be computed pointwise. In the case when A(t) = M, (C) for every t € T, this theorem allows
the computation of spectrum of multiplication operators by matrix-valued continuous functions acting on
L2-spaces of C"-valued functions. (See also Lemma 1.2 in [AR96] for a related result.) In the final of §2
we show that a most convenient Cartan-Taylor spectrum exists for certain infinite-dimensional Lie algebras
that are pointwise finite-dimensional solvable in a suitable sense (see Definition 2.7).

The aim of §3 is to provide a method for obtaining examples of the pointwise finite-dimensional solvable
Lie algebras just referred to above (see Example 3.18). The basic ingredient here is the notion of flag
manifold, because on such a manifold is naturally “living” a flag of vector bundles. We use a version of
flag manifolds arising in the framework of W*-algebras (cf. [Sk71]). The definition we are using has the
advantage that the corresponding flag manifold is naturally acted on by a certain complex Banach-Lie group
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(see Proposition 3.3). Our basic references for Banach manifolds and Banach-Lie groups are [Up85] and
[Ne0O].

1. Cartan-Taylor spectrum in C*-algebras

1.1. Notation. If ¢ is a complex finite-dimensional Lie algebra, then
€={\:€— C|)is linear and A|[¢,¢) = 0}
stands for the set of characters of €. If B is a unital associative complex algebra and p : € — B is a Lie

algebra morphism, then for every A € € we denote by p — X the Lie algebra morphism defined by
p—A:€= B, errple)—Ae)l. 1

1.2. Remark. For every finite-dimensional complex vector space € let us consider the exterior algebra

dim &

ne = P rre.

p=0

We shall always think of the unital associative algebra B(A€) endowed with its unique C*-algebra structure
(i.e., norm) given by an arbitrary choice of a scalar product on the finite-dimensional vector space €. (Recall
that, if #; and H, are Hilbert spaces with the same underlying finite-dimensional vector space V, then the
identity mapping idy : H; — Hz induces a natural isometric *-isomorphism of the unital C*-algebra B(72)
onto B(H1).) 1

Now we can introduce a C*-algebraic version of the notion of spectrum for a representation of a Lie
algebra (cf. Definition 1 in §25 from [BSO01]). In the case of Abelian Lie algebras, this definition agrees with
Definition 1.3 in [Va82].

1.3. Definition. Let € be a complex finite-dimensional Lie algebra. If B is a complex associative unital
*-algebra, then for every Lie algebra morphism p : € — B consider the element

5, € B® B(AE) = B(AE, B ® AC)

defined by
P 1]

5w =S (D) @+ Y (D) e fuul AL

i=1 1<i<j<p

for 0 <p<dim€&, u =uj A+ Auy € APE, where U denotes as usually the omission of the 4-th factor in u
etc.. We further define
alp):={X€ ¢ | 6p—x + &;_, invertible in B ® B(A€)}. 1

1.4. Remark (cf. Proposition 1.4 in [Va82]). Let dim & = 1 and e € €\ {0}. Denote a := p(e) € B. We
have A€ = A€ @ A'¢ = Cl @ Ce and 6,(1) =0, 6,(e) = a. Thus

8, = (8 8) € B® M>(C) = B ® B(\€).

Furthermore we have a natural bijection
€= C, Ao Ae) =\ (1)
On the other hand, for every X€Eitis easily seen that
§ 0 a—A
5p_5\+(sp_:\'—<(a_)\)* 0 )
It is straightforward to check that the last matrix is invertible in the unital -algebra B ® M(C) if and only

if @ — A is invertible in B. Thus the bijection (1) leads to a bijection between o(p) and the spectrum of a in
B. 1



In order to put Definition 1.3 in a proper perspective, recall the Taylor joint spectrum for commuting
systems of operators introduced in [Ta70] by making use of Koszul complexes. A C*-algebraic version of
this joint spectrum was studied in [Va82]. On the other hand, joint spectra for noncommuting systems of
operators were introduced as well, extending the notion from [Ta70] by means of Lie algebra homology and
cohomology (see e.g. [Fa93], [BL93], [Ott97]; a systematic treatment of this topic, as well as historical notes,
can be found in [BS01]). Note that the commuting n-tuples of operators are in one-to-one correspondence
with the representations of the Abelian Lie algebra C"; in the same way, the representations of a finite-
dimensional Lie algebra where a certain basis was fixed lead to systems of operators that are in general
noncommutative. Now, the Definition 1.3. above should be thought of as giving the C*-algebraic version of
joint spectrum for noncomutative systems of operators.

1.5. Remark. Let us prove that
(‘59)2 =0

in order to suggest the connection between Definition 1.3 and Lie algebra homology and cohomology. Let
p: &= B be as in Definition 1.3. (In fact, the involution of B will not be involved in the reasoning below.)
First recall that there exist natural mappings

B % B(B)
I Mo
B

such that Lo is morphism of unital associative algebras, My is just linear and Mg o Lo = idg, so L is in
particular one-to-one. (More precisely, for b € B, Lo(b) is the left multiplication operator ¢ — bc, while
My (1) = (1) for every 9 € B(B).) More generally, we can consider the diagram

B®B(AE) L% B(B®AE)

| Mg
B ® B(A€).

Here L¢ is the composition of the morphisms of unital algebras

B ® B(AE) 2% B(B) @ B(AE) 25 B(B ® AE),

where L} = Lo ® idp(ne), while L} is given by (Lg (¢ ® ¢))(b® v) = ¢(b) ® ¢(v) for 9 € B(B), ¢ € B(AE),
be B,v e A€, and Mg is the restriction mapping

B(B® A€, B® AE) - B(1® A€, B® A€) = B ® B(AE).

(Note the vector space isomorphisms B(1® A€, B® A€) = B(AE, BRAE) = (BRNAE) ® (ANE)* 2 B®(NE®
(A®)*) = B ® B(AE€).) Remark that Me o Le = idpgp(ae), thus the morphism of unital algebras L¢ is
one-to-one.
Now consider the representation Lo o p : € — B(B) of the Lie algebra € on B and denote its Koszul
complex by
Kos(Loop): 0+ BE-B A e

(see [BSO1]). Then the operator
dim &
a=EP op: BOAE - BOAE

p=0

has the properties
o? =0and a = Le(d,).

Now, since the morphism of unital associative algebras Le is one-to-one, these properties imply (6,)2=0. 1
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1.6. Remark. Assume that B is a unital C*-algebra of operators on some complex Hilbert space H. Then
every Lie algebra morphism p : € — B can be viewed as a representation of & and it is easily seen by the
above Remark 1.5 and by Lemma 3.1 in [Va79] that o(p) from Definition 1.3 above agrees with the spectrum
of p introduced in Definition 1 in §25 from [BS01]. (When the Lie algebra € is Abelian, this fact reduces to
Proposition 2.2 in [Va82].) 1

The following theorem is concerned with the basic properties of the spectrum o(-).

1.7. Theorem. Let & be a complez finite-dimensional Lie algebra. If B is a unital C*-algebra and p : € = B
is a Lie algebra morphism then the following assertions hold. R

(i) The set o(p) is compact in the finite-dimensional vector space €.

(ii) If J is a one-codimensional ideal of €, then

a(p)ls = a(pls). (2)

(iii) If € is solvable, then (2) holds for every ideal 3 of € and o(p) is solvable.
(iv) The Lie algebra € is nilpotent if and only if (2) holds for every subalgebra J of €. In this case for every
e € € the spectrum of p(e) € B equals {\(e) | A € o(p)}.

Proof. In view of Remark 1.6, the assertions (i)—(iv) are consequences of the corresponding properties of
the spectrum for a representation. More precisely, (i) follows by Theorem 1 in §25 of [BSO01]. For (ii) and
(iii) see Theorem 2 and its proof as well as Theorem 3 in §25 of [BS01]. Finally, the first part of (iv) follows
by Corollary 1 and Theorem 5 in §25 of [BS01]. To obtain the last part of (iv), use (2) for the subalgebra
J = Ce of €, and then apply Remark 1.4 above. 1§

1.8. Definition. Let & be a complex finite-dimensional Lie algebra. Consider a Cartan subalgebra ) of &
and denote by Cg the sum of all root spaces of & (with respect to ) corresponding to the non-zero roots,
so that ® = $ @ Cg. Then for every complex unital associative x-algebra B and every Lie algebra morphism
p: ® — B define the following set of linear functionals on &:

S5(p) = {X | Al € 0(pls) and X, =0}. ®

1.9. Theorem. Assume that & is a complez finite-dimensional solvable Lie algebra. If B is a unital C*-
algebra and p : & — B is a Lie algebra morphism, then the set $5(p) is independent of the choice of the
Cartan subalgebra ) of &; let us denote this set by $(p). Then T(p) is a compact non-empty subset of the
finite-dimensional vector space ® and for every subalgebra £ of & we have

Y(ple) = X(p)|s-

Proof. First note that (in view of Remark 1.6) if B is a C*-algebra of operators on some Hilbert space #,
then $g(p) agrees with the Cartan-Taylor spectrum of the representation p : & — B C B(H) as introduced
in [Do01]. Now the assertions follow by the corresponding properties of the Cartan-Taylor spectrum of a
representation (see [Do01]; cf. also [BSO01]). &

1.10. Definition. The set ©(p) in Theorem 1.9 above is called the Cartan-Taylor spectrum of p. If & is a
complex finite-dimensional solvable Lie subalgebra of B, then the Cartan-Taylor spectrum of & is just the
Cartan-Taylor spectrum of the inclusion & — B. 1

1.11. Remark. The name “Cartan-Taylor” is intended to point out that the underlying construction
heavily leans on the Cartan subalgebras in order to produce an extension of the Taylor joint spectrum. Cf.
also the comments preceding Remark 1.5. &



2. Continuous fields of C*-algebras

Throughout this section we denote by T' a topological space and by A = ((A(¢))ter, ©) a continuous
field of unital C*-algebras on T' (see [Di64]) such that © contains the application associating to each t € T
the unit element of A(t). This application is a unit element of ® which is denoted by 1. Let A be the unital
x-subalgebra of © consisting of all z € © such that ||z(-)|| is bounded. We recall that A is a C*-algebra with
respect to the natural norm

llzll = sup [lz(2)]l-
teT
For every ¢t € T' we have a natural morphism of x-algebras
v O = A(t), z v x(t),

whose restriction to A is onto.

2.1. Remark. If € is a complex finite-dimensional Lie algebra and p : € — © is a Lie algebra morphism,
then for every ¢t € T the unital *-algebra morphism

V¢ @ idB(/\e) 10 ® B(AE) = A(t) ® B(AE€)
takes the element d, € © ® B(AE) into dy,0, € A(t) ® B(AE). 1

The following fact is a first step towards the main result of the present paper (Theorem 2.5).

2.2. Proposition. If € is a complex finite-dimensional Lie algebra and p : € — © is a Lie algebra

morphism, then
U o0 p) C o).
teT

Proof. Consider A € & arbitrary such that A & o(p). We are to prove that for every ¢ € T we have

A g o(veop).
Since A ¢ o(p), the element d,_» + 67_, is invertible in the unital x-algebra © ® B(A€). Then the

element
(v ® idp(ae))(Gp-x +5_5)

is invertible in A(f) ® B(A€), and thus Remark 2.1 implies that
Fuio(p=) T Ouso(p-)
is invertible. Since v; o (p — A) = (v 0 p) — A, it then follows that A & o (v o p), as desired. &

2.3. Corollary. Under the hypothesis of Proposition 2.2, if p(&) C A, then

U o(wop) C(p).

teT

Proof. Since A is a C*-algebra, Theorem 1.6(i) shows that o(p) is a closed set. Then the conclusion follows
by Proposition 2.2. 1

It should be noted that the inclusion in Corollary 2.3 might be strict. Let us see an example in this
sense.
2.4. Example (cf. Solution 98 in [Ha82]). Take T' = {1,2,3,...} endowed with the discrete topology and
for every t € T take A(t) = B(C'), where C' is viewed as a Hilbert space with the usual scalar product.
Furthermore take

€]

HA(t) ={(St)ter | Se € B(C), t=1,2,...,}
=

A

1
{S = (St)ier € O [ [|S]] := sup [|S¢]| < o0}
teT
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For every t € T pick
10 0
By = oo € B(T)
0 1 0
and note that [|(S¢)7|| = 1 for 1 < j < t — 1, while (S;)* = 0. In particular we have S = (St)ter € A
and ||S7]| = 1 for every j > 1. Thus for the spectral radius of S we have r(S) = lim IS7||*/9 = 1, which
j—oo

implies that the spectrum of S contains at least one complex number of modulus 1. On the other hand, the
spectrum of Sy reduces to {0} for each t € T, hence Remark 1.4 implies that, for € = Ce and p : € — A
given by p(e) = S, we have

U o(wiop) = [ {0} = {0} # o(0).

teT teT

Consequently the inclusion in Corollary 2.3 is strict in this situation.

Despite of Example 2.4, the following theorem shows that the inclusion in Corollary 2.3 is always an
equality when T is a compact space. Before stating the theorem we recall that, if T' is compact, then © = A.

2.5. Theorem. If & is a complex finite-dimensional Lie algebra, p: € — A is a Lie algebra morphism and
the space T is compact, then

U otwion) =alo).

teT

The proof of Theorem 2.5 will be preceded by the following auxiliary fact.

2.6. Lemma. Consider a family of unital C*-algebras (B:)ter indexed by the compact space T and let B be
a unital sub-C*-algebra of their direct product C*-algebra. Assume that for every b = b* = (bt)teT € B the
function t — ||by| is continuous at the points of T where it vanishes. Then for every b =b* = (b)ter € B

the set
PE)
teT

is compact. In particular, if by is invertible for every t € T', then sup 1571 < oo
teT

Proof. The proof will consist of three steps.

1° (Cf. Proposition 10.3.6 and its proof in [Di64].) Let to € T and D be an open subset of R such
that o(by,) € D. We show that there exists a neighborhood U of t such that o(b;) C D for each t € U.
To this end denote M = ||b]| = sup |lbs|| and let f be a continuous real-valued function on [—~M, M] such

that fls@,,) = 0 and f]| MM]\D = 1. Then f(by,) = 0. But f(bt,) = f(b)t,, hence || f(b)s]| = 0. Since
f)y=f (b)* the hypothesm implies that there exists a neighborhood U of ¢y such that || f(b)¢]| < 1 for every
t € U. Then for each t € U we have ||f(b;)|| < 1, thus sup f(c(b)) < 1, which in turn implies o(b;) C D, as
desired.

2° In view of the compactness of T', what we have just proved at 1° implies the compactness of [J o(bz).

teT
Indeed let {D;};cs be an arbitrary family of open subsets of R such that (J o(b;) € |J D;. Then for every
teT i€l
t € T there exists a finite subset Fy of I such that o(by) C |J D;. The conclusion of 1° further shows that
1€F,
for some open neighborhood Uy of ¢ we have o(bs) C |J D; for each s € U;. Now, since T' is compact, there
261

N
exist finitely many points ¢1,...,ty € T such that T' = U Ug,s0 Jobs) € U U Ds
s€ET j=1i€F,



3° For the last assertion of the theorem, note that |J o(b:) is a compact set which does not contain 0,

teT
so inf{|\| | A€ U o(bs)} > 0. Thus
teT

_ 1
sup ||b; || = sup sup < 00
teT

1
teT xeo(s) Al IE{[AI[ A € U a(be)}
teT

and we are done. 1

Proof of Theorem 2.5. In view of Corollary 2.3, it suffices to prove that the complementary of the left hand
side is contained in the complementary of the right hand side. Now taking A arbitrary in the complementary
set of the left hand side of the desired equality and replacing p by p — A we see that what we have to prove
is the following assertion: if 0 & o (v; o p) for every ¢ € T, then also 0 ¢ o(p). Now, if we denote o := 6, + 67
and take into account Remark 2.1, this assertion eventually reduces to the following fact:

if (v; ® idg(ae))(a) € A(t) ® B(A€) is invertible for every t € T, then a € A ® B(A€) is invertible.  (3)

On the other hand, let us denote by A the direct product C*-algebra of the family (A(t))ier. Recall that
A C A and for every to € T the x-morphism vy, : A — A(%o) is the restriction of the canonical projection of
A onto A(ty). In particular, if b € A and v;(b) = O for every t € T, then b = 0. Since dim B(A€) < oo, it then
easily follows that if 8 € A® B(A€) and (v; ® idp(ae))(8) = 0 for every ¢ € T, then § = 0. Consequently, if
P denotes the direct product C*-algebra of the family (A(t) ® B(A€))ter, then the unital *-morphism

v A® B(/\@) - ,Pu ﬁ = ((vt ® idB(/\E))(ﬂ))tET7

is one-to-one. Then Proposition 1.5.3 in [Di64] applied for the self-adjoint element oo € A ® B(A€) easily
implies that « is invertible if and only if y(«) is invertible. The invertibility of () is further equivalent to

sup [|((v; ® idp(ae)) (@) 7| < oo, (4)
teT

since all of the components of y(a) are invertible by the very hypothesis of (3).

Let us note that (4) will follow by the last assertion of Lemma 2.6, provided the hypothesis of that
lemma, is verified with the sub-C*-algebra y(A) of P in the role of B. To prove this last fact, consider
B =pB* € A® B(A€) and ty € T such that (v, ® idg(ae))(B) = 0. We show that the function

u:T —[0,00), &+ [(ve® idpae))B)ll

is continuous at to. Denoting m = dim B(A€) we have A ® B(A€) = M, (A) (m x m matrices with entries
in A). If for ¢ € T we denote (v ® idp(ae))(B) = (Bij(t))1<i,j<m, then [|Bs;(-)]| are continuous functions on
T and there exist positive constants C; and Cs such that

C19(t) < u(t) < Cag(t) for every t € T,

where g(t) = ez [18:;(t)]]. Since the function g is a continuous and vanishes at to (because u(to) = 0),

the above inequalities imply that u is also continuous at to and we are done. 1§

We now make a definition which reduces to Definition 1.10 in the case when the index set of the
continuous field of C*-algebras contains only one point.

2.7. Definition. Let & be a complex Lie subalgebra of ©. We say that & is pointwise finite dimensional
solvable if v;(®) is a finite dimensional solvable Lie subalgebra of A(t). In this case we define the Cartan-
Taylor spectrum of & by

5(8) = [J{ro (uile) | A € B(vi(8))}-

teT



2.8. Remark. If A(t) is finite dimensional for every ¢ € T, then each solvable Lie subalgebra of Ais
pointwise finite dimensional solvable.

2.9. Theorem. Assume that the space T is compact. If the complex Lie subalgebra & of A is pointwise
finite dimensional solvable, then every complez Lie subalgebra § of & is pointwise finite dimensional solvable
and

5(®)lg = ()

If € is a finite-dimensional nilpotent Lie subalgebra of A, then ¥(€) = o(ide), where ide : € — A 1is the
embedding of € into A.

Proof. Since § C &, we have v,(F) C v;(®) for every t € T, which implies that § is pointwise finite

dimensional solvable, too. Then

2(8)l5 = [J{h o (vile))ls | A € B(ve(8))}

teT

= [J{ro (wilg) | X € B(vi(®))}

teT

= U{/\Im(g) o (uelg) | A € B(ve(®))}

teT

= (J{ro (wils) | 1 € Swi(®)lu )}
teT

= J{mo (wls) | 1 € B(w:(®))}
teT

where Theorem 1.8 is used at the last but one equality.
For the second assertion of the theorem, use Theorem 2.5 to get

o(ide) = U g(vg o ide) = U a(vtle).

teT teT

On the other hand,
5(€) = {Ao (vele) | X € B(ve(€)} = {Xo (vele) | A € o(idy,(e))}-

Now, in view of Remark 1.5, the desired equality follows by Proposition 2.6 in [Fa93] (cf. also Remark 3 in
§25 of [BS01]).

2.10. Remark. Theorem 2.9 above should be compared with Theorem 2 in §27 of [BS01].
3. Flag manifolds and bundle endomorphisms

In the present section we denote by M a W*-algebra (see [Sk71] and also section C5.3 in [SZ79]), by
P the complete lattice of projections in M, that is

Pu={peM|p=p=p"},
(cf. [SZ79]) and by Ear the set of idempotents in M, i.e.,
Ev={e€e M|e=¢"}.
We further denote by G(M) the Banach-Lie group of all invertible elements of M.
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We recall (cf. section 2.13 in [SZ79]) the left- and right-support maps

l: M = Py, awla),

r: M — Py, ar(a).
By definition, if a € M then I(a) is the smallest p € Py such that pa = a, while r(a) is the smallest p € Pus
with ap = a. In the case when M is a von Neumann algebra of operators on a Hilbert space H, I(a) is just the
orthogonal projection onto the closure of the range of the operator a, while r(a) is the orthogonal projection
onto the orthogonal complement of the kernel of a. Let us also recall that in this case, if p = p? = p* € B(H)
then the relation

ap = pap

expresses that the range of the orthogonal projection p is invariant to the operator a.

3.1. Remark. In the case M = B(H) for some complex Hilbert space , the set Py can be naturally
identified to the Grafimann manifold of all closed subspaces of 7. Thus P has a structure of complex
Banach manifold (see e.g. [Up85]). This last fact also holds in the case of an arbitrary C*-algebra (see
[MS98] and section 2.4 in [MS97]). More precisely, £ar and Py have natural structures of complex Banach
manifolds such that £/ is a closed complex submanifold of M and the left-support map restricted to &,

l|gM Em — Pum

is a submersion, and it can be given by I(e) = e(1 — e* +¢€)~"

for every e € Epr.

The following lemma, collects a few elementary facts that are needed in order to introduce some natural
actions of G(M) on Exr and Py (see Proposition 3.3 below). Here we make use of the order relation < on
En (e1 < eg if and only if ejes = eze; = e1) as well as of the equivalence relation ~ on Pys (p1 ~ p2 if and

only if there exists v € M such that p; = v*v and p; = vv*).

3.2. Lemma. Ifa,b€ M, g,91,92 € G(M), e € Epr and p,prp2 € P, then the following assertions hold.
i) l(a (b)) = l(ad).
(i) 1(g1l(g2p)) = L(9192p)-
(iii) 7(gp) = p and l(gp) ~ p.
(iv) If p is a finite projection, then l(gp) = p if and only if gp = pgp.
(v) If pr < pa, then l(gp1) < l(gp2)-
(vi) Ugeg™) = i(g U(e))-
Proof. (i) It suffices to prove that, if ¢ € Py, then we have

q (al(b)) = al(b) <= q (ab) = ab. (5)
If ¢ (a I(b)) = a (), then ¢ (a L(b)) b = a I(b) b. Since I(b) b = b we get ¢ (ab) = ab. Conversely, assume
q (ab) = ab. Then (ga—a) b = 0, hence (ga—a) bb* = 0. This last relation easily implies (ga—a)(bb*)/? =0,
that is (ga — a)|b*| = 0. Since M is closed under Borel functional calculus, by Corollary 2.22 in [SZ79] we
immediately get (ga — a) s(|b*|) = 0, which means (ga — a) I(|b*]) = 0 (see section 2.15 in [SZ79]) and (5) is
completely proved.

(ii) Use (i).

(iii) We have

r(gp) = U(gn)") = 1pg") L1lp Ug™) = 1(p- 1) = 1(p) = p.
Here [(g*) = 1 as an immediate consequence of the invertibility of g*. Now l(gp) ~ p because I(z) ~ r(z)
for every £ € M (see Theorem 4.3 in [SZ79]).

(iv) Recall that by the very definition of a finite projection (cf. section 4.8 in [SZ79]),if ¢ € Pm, g <p
and ¢ ~ p, then ¢ = p. Now note that gp = p (gp) implies [(gp) < p. We have I(gp) ~ p by (iii), hence
l(gp) = p-

)(v) Denote ¢ = l(gps). Then qgp» = gpz, hence qgpapr = gpap1. Since p1 < po, it then follows

qgp1 = gp1, 50 ¢ > l(gp1).
(vi) Since g~ is invertible, we have I(g™") = 1, hence

1geg™) Lige 1(g™Y)) = 1(ge) Lig 1(e))

and we are done. 1§



The following proposition shows in particular that in a W*-algebra the set Py is naturally acted on by
the whole complex Banach-Lie group G(M), not only by its real subgrup consisting of the unitary elements,
as it is the case in a general C*-algebra (cf. [MS95]).

3.3. Proposition. If we define
a:GM)xEu = Em, alg,e) = geg™l,
B:G(M) x Pu — Py, Blg,p) =lgp),

then « and B are holomorphic actions of the complex Banach-Lie group G(M) on the complex Banach
manifolds Ey and Py, respectively. These actions are compatible in the sense that the diagram

G(M) X EM i) SM

idgan 4 g . e

GM)  x  Pu D Pu

18 commutative.

Proof. It is obvious that « is a holomorphic action of G(M) on Ey. The fact that B is a group action
follows by Lemma 3.2 (ii). Now since |g,, : Ep — P is a submersion (see Remark 3.1), the fact that 3 is
holomorphic will follow by Corollary 8.4(i) in [Up85] as soon as we prove that the diagram is commutative.
To see this last fact, take g € G(M) and e € £y arbitrary. Then
(Uew © @)(g,€) = Ualg,€)) = l{geg™)

and

(B o (ida(ay * Uew)) (g, €) = Blg,1(e)) = Ug l(e))
and the commutativity of the diagram follows by Lemma 3.2 (vi). 1§

Now with Proposition 3.3 at hand we can define the Grafimann and flag manifolds suited for our
purposes. When M = B(#) for some complex Hilbert space ‘H, one gets certain constructions carried out in
[HH94a], [HH94b], [Ne00] and [Ne01].

3.4. Definition. For every p € Py we define
Gru(p) = {l(gp) | g € G(M)},
G(p) ={geG(M)|l(gp) =p} 1
3.5. Remark. We have p € Gras(p) C Pasr. Taking into account Proposition 3.3 above, Gra(p) is the orbit

of p under the action « of G(M) on Py, and G(p) is the stabilizer of p. This implies in particular that G(p)
is a closed subgroup of G(M). &

The following proposition contains essential information concerning the closed subgroup G(p) of the
Banach-Lie group G(M).
3.6. Proposition. If p € Pus, then G(p) is a split Lie subgroup of the Banach-Lie group G(M) and its Lie
algebra is

g(p) = {a € M | ap = pap}.
If p is moreover a finite projection, then
G(p) = {p € G(M) | gp = pgp},

hence G(p) is even an algebraic subgroup of G(M).
Proof. It is obvious that g(p) is a closed Lie (in fact associative) subalgebra of M and the exponential map
exp : M — G(M) is a homeomorphism of a neighborhood of 0 € g(p) onto a neighborhood of 1 € G(p). To
see that g(p) is a split subspace of M, use the well-known topological isomorphism of Banach spaces
U: M- pMp® (1-p)MpopM(1-p)®(1~p)M(1-p), ar (pap,(L-pap,pa(l-p),(1-p)a(l-p)).
Since ¥(g(p)) = pMp, it immediately follows that g(p) has a closed complement in M. If p is a finite

projection use Lemma 3.2(iv) to deduce G(p) = {p € G(M) | gp = pgp}, hence the results of [HK77] can be
applied to G(p). 1 ’
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3.7. Remark. Proposition 3.6. above should be compared with Lemma IV.12 in [Ne00]. &

3.8. Corollary. For every projection p € Py there exists a natural structure of complex Banach manifold
on Grpr(p) such that the transitive action of G(M) on Gras(p) is holomorphic and the natural projection

mp : G(M) = G(M)/G(p)(= Gra(p))

18 a submersion.

Proof. Use Proposition 3.6 above and Theorem 8.19 in [Up85]. &

3.9. Proposition. Let p € Py and for every t € Gra(p) define Ap(t) = tMt. Endow Grar(p) with the
manifold structure given by Corollary 3.5 and define

0, = {z : Grp(p) = M | & continuous and x(t) € tMt for every t € Gras(p)}

Then
Ap = ((Ap(t))teGrM(p)a @p)

is a continuous field of C*-algebras on Gryr(p) satisfying the hypotheses from the beginning of §2 .

Proof. First note that for ¢ € Py, the closed sub-C*-algebra tMt of M is not a unital subalgebra (since
1 € tMtift # 1), but it is a unital C*-algebra in its own right with the unit ¢.

Now we show that Ap = ((Ap(t))teGry(p)> ©p) is indeed a continuous field of C*-algebras on Gr (p).
What we have to prove is that, if z : Gras(p) — M is such that z(t) € tM¢ for every ¢ € Gras(p) and for

each ¢ > 0 and each t € Grps(p) there exists a neighborhood V; . of ¢ such that sup [|z(q) — 2'(q)|| < € for
q€EV;,e

some z' € ©,, then z € ©,. To prove this let ¢ € Grps(p) arbitrary and go € G(M) with m,(go) = t. Since
mp : G(M) = Gry(p) is a submersion (cf. Corollary 3.8), there exist open neighborhoods U, V' of go and
p respectively, and a holomorphic mapping ¢ : V' — G(M) such that 7, o ¢ = idy (see Corollary 8.30 in
[Up85]). But we can suppose V; C V for each €, and then by the assumption on z it easily follows that
zom,: G(M) — M is continuous at go. Then z (= z o7, 0 9) is continuous on V' and we are done.
Finally, note that the application associating to each ¢ € Grys(p) the unit element ¢ of Ap(t) is just the
inclusion map Grys(p) — M, whose continuity follows by using as above the fact that 7, is submersion. 1

Now we introduce the flag manifolds. In the following definition it is not necessary to assume any order
relations between the corresponding projections.

3.10. Definition. For p1,...,p, € Pa define

Fl(p1,...,pn) = {(l{gp1), ..., l(gpn)) | g € G(M)},
G(p1,---,pn) ={9 € G(M) | l(gp) =pr for k=1,...,n}. 1§

3.11. Remark.
(a) There is a transitive action of G(M) on Fl(p1,...,pn),

G<M) X Fl(pla R 7pn) = Fl(p17 .. 7Pn)»
(9, (t1, -5 tn)) = (Ugt1), - - -, U(gtn),

(cf. Proposition 3.3) and G(p1, ..., pn) is the stabilizer of (pi,...,pn) with respect to this action. Thus
Fl(p1,...,pn) can be thought of as a homogeneous space

G(M)/G(p1,...,pn) =FUp1,. .., Pn)

and under natural hypotheses it also possesses a most convenient manifold structure (see Corollary 3.8

as well as Proposition 3.12 below).
(b) We have G(py,...,pn) = G(p1) N--- N G(pn)-

11



(c) For k=1,...,n there exists a natural mapping
pry, : Fl(p1, .., pn) = Grm(pk),  (f1,---5tn) = B, (7
that is onto. In fact, we have
Fl(p1,...,Pn) € Grar(p1) X -+ X Grazr(pa) (8)

and the maps pry, are just the natural projections.
(d) In view of (a) and (b) above, the mapping (7) can be viewed as the natural onto mapping

G(M)/(G(p1) N -+ NG (pn)) = G(M)/G(pr)-
Thus the inclusion (8) takes the form of the natural embedding

G(M)/(G(p1) N+ NG(pn)) = (G(M)/G(p1)) x -+ x (G(M)/G(pn)),
g-(Gp)N---NG(pn) = (9-G(p1), -9 G(pa))- 1
3.12. Proposition. If p1,...,pn € Py and p1 < --+ < pn, then Fl(p1,...,pn) possesses a structure of

complex Banach manifold such that the following assertions hold.
(i) The natural transitive action of G(M) on Fl(ps,. .. ,Pn) is holomorphic and the natural projection

G(M) = G(M)/G(p1, - - -,Pn)(Z Fl(p1,- .., Pn))

is a submersion.
(ii) Fl(p1,...,pn) 15 a complex submanifold of Grar(p1) X -+ X Gray(pn)-
Proof. For (i) we use the method of proof of Corollary 3.8. More precisely, we show that G(p1,...,pn) is a
split Lie subgroup of the Banach-Lie group G (M). It is obvious that
g(p1,.-.,pn) ={a € M | apy = apr for k=1,...,n

is a closed Lie (in fact associative) subalgebra of M and the exponential map exp M — G(M) is a home-
omorphism of a neighborhood of 0 € g(p1,...,pn) onto a neighborhood of 1 € G(p1,-..,pn). To see that
g(p1,-..,pn) is a split subspace of M, we make use of the assumption p; < -+ < p, to construct the

topological isomorphism of Banach spaces

M= P @i —p)Mpir—p;), ar & (P —pi)alpin - Dj)s
0<i,j<n 0<4,5<n

where we have denoted pp = 0 and pp4+1 = 1. Since

(g(pr,..on)) = D it — )M (D41 —5)
0<i<i<n

it immediately follows that g(p1,...,ps) has a closed complement in M.
For (ii) use what we have just proved as well as Remark 3.11(d). &

3.13. Remark. Let pi,...,pn € Par such that py < --- < p,. making use of Lemma 3.7 we can construct
on Fl(p1, .. .,pn) continuous fields of C*-algebras satisfying the hypotheses from the beginning of §2. To this
end fix k € {1,...,n}. For every t = (t1,...,tn) € Grar(p1) x - -+ x Gras(pn) denote

Ag(t) == Ap, (tx) = tp Mty.
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Then define
O = {z: Grar(p1) % -+ x Grar(pn) = M |z continuous and z(t) € tr Mty
for every t = (t1,...,tn) € Gry(p1) X -+ X Grar(pn)}-

Then it is easily checked that

A = ((Ak (t))teGrM(pl)><~-~><GrM(pn) ) ®k)

is a continuous field of C*-algebras on Gras(p1) X -++ x Gras(pn). By restricting it (see section 10.1.7 in
[Di64]) to the subset Fl(p1,...,pn) of Gras(p1) X -+ - X Gra(pn), we get a continuous field of C*-algebras on
Fl(p1,...,pn), which we also denote by

Ak = (A1) teFi(ps,..ipn)s Ok)- 1

3.14. Remark. Let pi,...,pn € P be such that p; < --- < p, € Py, and all of the projections
P1,D2 —P1,--->Pn —Pn_1 are Abelian. (Recall that every Abelian projection is finite, hence Proposition 4.15
in [SZ79] implies that all of the projections pi,...,p, must be finite.) Then the associative subalgebra of

pnMpn
L(p1,- .. pn) = 9(p1,---,Pn) NPnMpn

is solvable when considered as Lie algebra in the usual way. This follows by making use of the topological
isomorphism ¥ from the proof of Proposition 3.12. In fact one obtains that the (n+1)-th term in the derived
series of the Lie algebra L(p1,...,pn) vanishes. 1

We are now going to look at the preceding constructions from the point of view of vector bundles, instead
of continuous fields of C*-algebras. In particular we introduce the tautological bundles on the previously
constructed Gramann manifolds.

3.15. Remark. Let ¢ : M — B(H) be a unital *-representation on the complex Hilbert space H and pick

p € Ppr. Denote
Ran(p) = V.

Then the closed subspace V of H is invariant to t(g) for every g € G(p) (see Definition 3.4), hence there
exists a holomorphic (uniformly continuous) representation

¥y G(p) = B(V).
This representation further induces a holomorphic vector bundle
Tt Tp(M) = Gry(p)
which is naturally associated to the principal bundle
™« G(M) = G(M)/G(p)(= Gram(p))-
We recall that the fiber of 7, is the Banach-Lie group G(p), while the fiber of 7,y is the Hilbert space V. 1

3.16. Definition. Let p1,...,pn € P be such that p1 < -+ < p,. If ¢ : M — B(H) is a unital
x-representation on the complex Hilbert space H, then for every k € {1,...,n} we define the vector bundle

¢k = (prk)*(ﬂ.l)k:w) : 7;: - Fl(p17 iR @ 7pn)a
which is the pull-back of 7p, 4 by the map pry : Fl(p1,...,pn) = Gra(pr). 8
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3.17. Remark. For every ¢t = (t1,...,tn) € Fl(p1,...,pn) and every k € {1,...,n} we have
¢ (t) = Rant(pk)

and

¢ri(t) C - C o).

Thus
=t at

and @p|7r = ¢ fork=1,...,n. 1

Finally we can put at work the constructions of the present section in order to obtain examples of
situations where Theorem 2.9 applies.

3.18. Example. As above, consider a W*-algebra M, a unital *-representation ¢ : M — B(H) and
P1,..-,Pn € Pa such that py < -+ < p, and all of the projections p1,p2 — p1,-..,Pn — Pn—1 are Abelian.
Then we have the vector bundles ¢, : T,* = Fl(p1,...,pn) for £ =1,...,n, hence for every compact space
T and every continuous mapping 7 : T — Fl(p1,...,pn) We obtain the vector bundles

() T (Ty) = T

with the fiber Ran(p). We have
™) € - C (7)),

these inclusions being compatible with the bundle projections 7*(¢y). Since the basis T is compact 7* (T5)
can be endowed with a Hermitian structure. Then A = ((A(t))teT, ©) is a continuous field of C*-algebras
where A(t) is the set of all continuous endomorphisms of the fiber of 7*(¢r) over t € T, while © is the set
of all continuous sections in the (continuous) endomorphism bundle of 7*(¢y).

Now consider the set ® of all z € © such that the corresponding endomorphism of 7*(7,) leaves
invariant each of the subbundles 7*(7;*),...,7*(7,}). Then Remark 3.14 implies that & is a pointwise
finite-dimensional solvable Lie subalgebra of © provided the fiber of 7*(7}) (that is Ran(pn)) is finite
dimensional. Thus & falls under the hypothesis of Theorem 2.9.

We further note that, if 4 is a Radon measure on T" with supp o = T', then © (and in particular @) has
a natural representation by “multiplication” operators on the Hilbert space of square-integrable sections of
7*(¢rn) with respect to p. 1

Now we consider a simplest instance of Example 3.18.

3.19. Example. With the notation of Example 3.18, take H = C™ with the usual scalar product, M =
B(H) = M,(C), 1 the natural representation of My, (C) on C* given by multiplication of column vectors by
matrices. Consider the projections

1 0 0 ... 0 1 0 0 0 1 0 0 ... 0
0 0 0 ... 0 0 1 0 0 0 1 0 ... 0
m=l0 0 0 ... 0]|,;=|0 0 O 0fl,...on=]10 0 1 ... 0
0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 1

Then take T' = [0,1] and 7 : [0,1] = Fl(p1,...,pn) be the constant mapping with 7(t) = (p1,...,pn) for
every t € T. Then 7*(¢,) is the trivial bundle over [0, 1] with the fiber C", that is

™(77) =10,1] x C*.
More generally, 7*(¢x) is the trivial bundle over [0, 1] with total space
™(T¢) =10,1] x pg - C™.
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Thus & is the Lie algebra of all upper-triangular matrix valued continuous functions on [0, 1],

aipz ... Qip
G = ot | ai; : [0,1] = C continuous, 1 <1< j<n

O Anp
This implies that for every ¢ € T' we have

a1 o Ogp
v(8) = R |ai;€C, 1<i<j<n

0 Ot
hence Corollary 6 in §27 and Theorem 1 in §26 from [BS01] show that
D(ve(®)) ={Ai | 1< <n},
where \; : v.(®) — C is the character given by

a1 ... Q1p

Ma) = ay; for every @ = R € v (®).

O Ann

Now Theorem 2.10 implies that
2(B)={ N |1<i<n,te[0,1]},
where A; ¢ : & — C is the character given by

al ... Qip
Ait(a) = ay;(t) for every a = | es.

0 G
If we consider [0, 1] endowed with the Lebesgue measure, then the natural representation referred to in the

final of Example 3.18 associates to every continuous function

ai; ... Qip
a=| ... ... ... |:[0,1] = M,(C)
an1 vee Qpn

(which is a bundle endomorphism of the trivial bundle over [0,1] with the fiber C") the multiplication
operator on L?([0,1],C™) given by

fi a1 ... Gip fi

cii | = s ¥ ]

fn Gn1 ... QOnpn fn
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