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Spectra for solvable Lie algebras of bundle endomorphisms

Daniel Beltild

Abstract. The aim of the paper is to investigate spectral properties of the Lie algebras corresponding to

the symmetry groups of certain flags of vector bundles over a compact space. Under natural hypotheses,

such Lie algebras are solvable, but they are in general infinite dimensional. The spectral theory of finite-

dimensional solvable Lie algebras of operators is extended to this natural class of infinite-dimensional solvable

Lie algebras. The discussion uses the language of continuous fields of C*-algebras. The flag manifolds in

C*-algebraic framework are naturally involved here, they providing the basic method for obtaining flags of

vector bundles.

Introduction

The background of the present paper is twofold: first, the classical theorem of Lie concerning simul-

taneous triangularizability for Lie algebras of matrices; second, there is the close relation that is generally

expected to exist between the spectrum of a multiplication operator and the range of the multiplier. Both

types of questions can be thought about in the unifying framework of algebras of bundle endomorphisms

naturally acting on spaces of bundle sections. In fact, our approach will make use of the language of contin-

uous fieids of C*-algebras. The connection is that, roughly speaking, the end,omorphisms of the fibers of a

Hermitian uector bundle constitute a continuous field' of C* -algebras'

To describe the contents of the paper in some more detail, Iet us begin by recalling that various versions

of Lie's theorem were discovered to hold for Lie algebras of Banach space operators. Some references in

this connection are [Sa71], [Sa83], lYa72l, [Gu80], [F]821, [Be01b]. We refer to Chapter III in [BS01] for a

systematic treatment of this topic. We are mainly interested here in the spectral theoretic aspects of Lie's

theorem, taking into consideration the set of diagonal coefficients thought of as a set of characters of a

Lie algebra of tiiangular matrices. This set of characters allows the computation of the spectrum for each

matrix belonging to the considered solvable (and triangularized) Lie algebra. It turns out that such a set of

characters, which we call Cartan-Taylor spectrum, exists for every finite-dimensional solvable Lie algebra of

Banach space operators (cf. [Be99]; see also [Be01a] for a gentle introduction and [BS01] for more details).

In $1 of the present paper rre show that the Cartan-Taylor spectrum can be constructed in the case of

Hilbert space operators in a C*-algebraic manner. This C*-algebraic approach to joint spectra was initiated

in [Va82], where .loint spectra for commuting systems of operators were considered. That approach is based

on the fact that, if d is a closed densely defined operator in some Hilbert space such that 52 : 0 (i'e',

Rand ! Kerd), then Rand'= Kerd if and only if d + d* has a bounded inverse. This result is proved in full

g"rr"rulity in Lemma 3.1 in [Va7g] and it turns out to be a most convenient tool in order to handle Hilbert

space complexes (see [GV82]).
In $2 we prove the main result of the paper, that is Theorem 2.5. Roughly speaking' it asserts that

if A: ((l(t))rrr,O) is a continuous field of C*-algebras over some compact space 7 and € is a complex

finite-dimensional Lie algebra, then the spectrum o(p) (see Definition 1.3) of every Lie algebra morphism

p: € -+ O can be compuied pointwise. In the case when A(t) = M"(C) for every t € 7, this theorem allows

the computation of spectrum of multiplication operators by matrix-valued continuous functions acting on

-L2-spaces of C'-valued functions. (See also Lemma 1.2 in [AR96] for a related result') In the final of $2

we show that a most convenient Cartan-Taylor spectrum exists for certain infinite-dimensional Lie algebras

that are po,intwise f,nite-d,imensional soluablein a suitable sense (see Definition 2.7).

The aim of $3 is to provide a method for obtaining examples of the pointwise finite-dimensional solvable

Lie algebras lusl ,eferred to above (see Example 3.18). The basic ingredient here is the notion of flag

manifold, because on such a manifold is naturally "living" a flag of vector bundles. We use a version of

flag manifolds arising in the framework of tr4l*-algebras (cf. [Sk71]). The definition we are using has the

adiantage that the corresponding flag manifold is naturally acted on by a certain complex Banach-Lie group



(see Proposition 3.3). Our basic references for Banach manifolds and Banach-Lie groups are [Up85] and

[Ne00].

1. Cartan-Taylor spectrum in C*-algebras

1.1. Notation. If € is a complex finite-dimensional Lie algebra, then

G = {) : € -r C | ) is linear and )116,61 = 0}

stands for the set of characters of e.. If B is a unital associative complex algebra and p ; t -+ B is a Lie

algebra morphism, then for every .\ € € we denote by p -.\ the Lie algebra morphism defined by

p - \ : t - +  B ,  e r +  P ( e )  - ) ( e ) 1 .  I

1.2. Remark. For every finite-dimensional complex vector space € let us consider the exterior algebra

dim €

a6:  O np€.
P=0

We shall always think of the unital associative algebra 6(Ae) endowed with its unique C*-algebra structure

(i.e., norm) given by an arbitrary choice of a scalar product on the finite-dimensional vector space €. (Recall

that, if 'Jlt and?12 arc Hilbert spaces with the same underlying finite-dimensional vector space y' then the

identity mapping idv :'Jlt -+')L2 indtces a natural isometric +-isomorphism of the unital C*-algebta 8(712)

onto B(11r).) |

Now we can introduce a C*-algebraic version of the notion of spectrum for a representation of a Lie

algebra (cf. Definition 1 in $25 from [8501]). In the case of Abelian Lie algebras, this definition agrees with

Definition 1.3 in [Va82].

l-.8. Definition. Let € be a complex finite-dimensional Lie algebra. If B is a complex associative unital

*-algebra, then for every Lie algebra morphism p : t -+ B consider the element

5o e B s 6(Ae) = B(A€,8 I  AC)

defined by
? ;

6 o(a) : f {-t)u-'n(ua) o 0 +
; -  1

D
L< i< j<p

(- t ;e+i-r,  Afui,ui l  n ' f i

for 0 (p (  dim e,,u,=ur A..  .AureAp€, where i  derrotes as usual ly the omission of the i - th factor in u

etc.. We further define

o(p) := {.\ e G I dp-.r * dj-1 invertible in B s 6(Ae)}. I

1 . 4 .  R e m a r k ( c f .  P r o p o s i t i o n l . 4 i n [ V a 8 2 ] ) .  L e t d i m € : 1 a n d e € € \ { 0 } .  D e n o t e a : : p ( e )  e  B .  W e

have A€ : n0€ @ Ale : Cl O Ce and dp(1) = 0, do(e) : a. Thus

"  / o  a \d ,  :  ( ;  ; )  €  B a M , @ )  e  B t 6 ( ^ q .

Furthermore we have a natural bijection

G -+ C, ) *r i(") :' I'

On the other hand, for every ,l e G it is easily seen that

( 1 )

6 r_\ 1- 6I_x : ( ,, _o^,. 
, 

; 
^ 
)

It is straightforward to check that the last matrix is invertible in the unital *-algebra B I Mz(C) if and only

if a - ) is invertible in B. Thus the bijection (1) Ieads to a bijection between a(p) and the spectrum of o in

B ,  I



In order to put Definition 1.3 in a proper perspective, recall the Taylor joint spectrum for commuting
systems of operators introduced in [Ta70] by making use of Koszul complexes. A C*-algebraic version of
this joint spectrum was studied in [Va82]. On the other hand, joint spectra for noncommuting systems of
operators were introduced as well, extending the notion from [Ta70] by means of Lie algebra homology and
cohomology (see e.g. [Fa93], [BL93], [Ott97]; a systematic treatment of this topic, as well as historical notes,
can be found in [BS01]). Note that the commuting n-tuples of operators are in one-to-one correspondence
with the representations of the Abelian Lie algebra C"; in the same way, the representations of a finite-
dimensional Lie algebra where a certain basis was fixed lead to systems of operators that are in general
noncommutative. Now, the Definition 1.3. above should be thought of as giving the C*-algebraic version of
joint spectrum for noncomutative systems of operators.

L.5. Remark. Let us prove that
( 6 ) '  : 0

in order to suggest the connection between Definition 1.3 and Lie algebra homology and cohomology. Let
p : t -+ B be as in Definition 1.3. (In fact, the involution of B will not be involved in the reasoning below.)
First recall that there exist natural mappings

B l B @ )
t r  t ro
B

such that -Le is morphism of unital associative algebras, Ms is just linear and M6o L6 - ida, so trs is in
particular one-to-one. (More precisely, for b € B, Lo(b) is the left multiplication operator c r+ bc, while

MoQD :4)G) for every 4, e B(B).) More generally, we can consider the diagram

Bs6(^e )  I  6 (Bs^e )
I t'to

B s 6(^e).

Here -Ls is the composition of the morphisms of unital algebras

B s6(^€) 4 s@)s6(^e) &nPa ^c) ,

where -L! :  Lo8 idr(no), while.Llo is given av Q?(! sd))(b8o) - ,r/(b)s Q(u) tor 4) eB(B),OeB(Aq,
b e B, o € A€, and M6 is the restriction mapping

B(B sn  € ,8  I  n€)  -+  6 (1  o  n€ , "B  o  n€)  d  B  I  B(Aq.

(Note  the  vec tor  space isomorph isms 6(1aAe,BOn€)  =  B(A8,B8A€)  =  (B8A€)8(ne) .  =  B8(A€a
(Ae).) ^r B BS(Ae).) Remark that Meo Le = idp6r1r,,e), thus the morphism of unital algebras trE is

one-to-one.
Now consider the representation Lo o p : t -+ B(B) of the Lie algebra € on B and denote its Koszul

complex by
Kos(-Ls op) :  0 +- B eJ-B I  n1e 82- " '

(see [8501]). Then the operator
d im €

0 :  O  a o : 8 8 A € + B 8 A e
p:o

has the properties
az  :0  and  a  :  Le (6 ) .

Now, since the morphism of unital associative algebras tr6 is one-to-one, these properties imply (do)2 : g. t



L.O. Remark. Assume that B is a unital C*-algebra of operators on some complex Hilbert space ?1. Then

every Lie algebra morphism p : t -+ B can be viewed as a representation of € and it is easily seen by the

above Remark 1.5 and by Lemma 3.1 in [Va79] that a(p) from Definition 1.3 above agrees with the spectrum

of p introduced in Definition 1in $2b from [BS01]. (When the Lie algebra € is Abelian, this fact reduces to

Proposition 2.2 in [Va82].) I

The following theorem is concerned with the basic properties of the spectrum o(').

L.7. Theorern. Let€be acomplerf,nite-d,imens'i,onal Lie algebra. IlB is auni,talC"-algebra and p;t-+ B

is a Lie algebra morphism then the following asserti'ons hold.
(i) The set o(p) is compact in the fi,nite-dimens'ional uector space 6.
(i\ A J 'i,s a one-cod'imensional ideal of t, then

o(p) l t  = o(pl t) .

(iii) // t is soluable, then (2) holds for euery ideal i of t and o(p) is soluable.
(iv) The Li,e algebra € is nilpotent i,f and ont! if (2) holds lor euery subalgebraX of t. In this case for euery

e € t the s[)ectrunx of p(e) e B equals {f(") | ) e o(p)}.

Proof. In view of Remark 1.6, the assertions (i)-(iv) are consequences of the corresponding properties of

the spectrum for a representation. More precisely, (i) follows by Theorem 1 in $25 of [8501]. For (ii) and

(iii) see Theorem 2 and its proof as well as Theorem 3 in $25 of [8501]. Finally, the first part of (iv) follows

by Corollary 1 and Theorem 5 in $25 of [8501]. To obtain the last part of (iv), use (2) for the subalgebra

J = Ce of €, and then apply Remark 1.4 above. t

L.8. Definition. Let 6 be a complex finite-dimensional Lie algebra. Consider a Cartan subalgebra h of 6

and denote by Cg the sum of all root spaces of 6 (with respect to "f) corresponding to the non-zero roots'

so that 6 = llo C5. Then for every complex unital associative *-algebra B and every Lie algebra morphism
p:6 -+ B define the following set of linear functionals on 6:

Es@) := {r I r lo e o(pli l  and Ilao : 01. I

L.g. Theorern. Assume that6 is a compler finite-dimensional soluable Lie algebra. If B i's a unitalC*-

algebra and p : 6 -+ B is a Lie algebra morph'ism, then the set 2s@) is independent of the choi'ce of the

Cartan subalgebra fi of 6; let'rc d,enote this set by r(p). ThenE(p) is a compact non-empty subset of the

finite-dimens'i,onal uector space 6 and for euery subalgebra L of 6 we haue

rk l r )  :  I (p) l r .

Proof. First note that (in view of Remark 1.6) if B is a C*-algebra of operators on some Hilbert space ?1,

then Es(p) agrees with the Cartan-Taylor spectrum of the representation p:6 -+ B I B(11) as introduced

in [Do01]. Now the assertions follow by the corresponding properties of the Cartan-Taylor spectrum of a

representation (see [Do01]; cf. also [BS01]). I

1.10. Definition. The set I(p) in Theorem 1.9 above is called the Cartan-Taylor spectrumof p' If 6 is a

complex finite-dimensional solvable Lie subalgebra of B, then the Cartan-Taylor spectrum of 6 is just the

Cartan-Taylor spectrum of the inclusion 6 -+ B. I

1.11. Rernark. The name "Cartan-Taylor" is intended to point out that the underlying construction

heavily leans on the Cartan subalgebras in order to produce an extension of the Taylor joint spectrum. Cf.

also the comments preceding Remark 1.5. I

(2)



2. Continuous fields of C*-algebras

Throughout this section we denote by ? a topological space and by A = ((A(t))t<r,O) a continuous
field of unital C*-algebras on ? (see [Di64]) such that O contains the application associating to each t € ?
the unit element of A(t). This application is a unit element of O which is denoted by 1. Let .4 be the unital
*-subalgebra of O consisting of all r € @ such that llr(')ll is bounded. We recall that A is a C*-algebra with
respect to the natural norm

il"ll : ?lF Il'(r)ll
For every t e T we have a natural morphism of *.-algebras

u 1 : @ - + A ( t ) ,  r * r ( t ) ,

whose restriction to .4 is onto.

2.L. Remark. If eis acomplexfinite-dimensional Lie algebraandp: € -+ @ is aLie algebramorphism,
then for every f € T the unital *-algebra morphism

or I  idn(r,e) :  @ oB(n€) -+ A(t)s 6(Ae)

takes the element 6o e @ S 6(Ae) into d,,oo e A(t) S 6(Ae). I

The following fact is a first step towards the main result of the present paper (Theorem 2.5).

2 . 2 .  P r o p o s i t i o n .  I f  € . i s a c o m p l e r f i n i t e - d i m e n s i o n a l L i e a l g e b r a a n d p :  €  +  O  i s a L ' i e a l g e b r a
morPhism' then 

l) o(" " p) e o(p)'
teT

Proof. Consider ) e C arbitrary such that ^ / "(p). 
We are to prove that for every f € ? we have

) ,  /  o (u1o  p ) .
Since ) / o(p), the element dr-,r * dj_^ is invertible in the unital *-algebra @ S 6(A€). Then the

element
(u1 I id61^sl)(dp-r + di-^)

is invertible in A(t) 86(A€), and thus Remark 2.1 implies that

is invertible. since u1 o (p - )) - (,, or, - i,'J;.il"k.;:* t ). / o(u1o p), as desired. r

2.3. Corollary. Under the hypothesi,s of Propositi,on 2.2, nf pG) 9 A, then

|  |  /  \ - /  \
LJ o(ur o p) \- \p).
teT

Proof. Since A is a C*-algebra, Theorem 1.6(i) shows that o(p) is a closed set. Then the conclusion follows
by Proposition 2.2. I

It should be noted that the inclusion in Corollary 2.3 might be strict. Let us see an example in this
sense.

2.4. Exarnpte (cf. Solution 98 in [Ha82]). Take T: {1,2,3,...} endowed with the discrete topology and
for every t e T take A(t) : B(e), where Ct is viewed as a Hilbert space with the usual scalar product.
F\rrthermore take @

o  =  f I  A Q ) :  { ( & ) , e r  l s ,  e  n l c t ; ,  t : L , 2 , . . . , }
+ - 1

A :  {S :  (St) ter  € o I  l ls l l  : :  sup l l&l l  < *} .
te.r



F o r e v e r y t € ? p i c k

q . - e B(e)

a n d n o t e t h a t  l l ( g ) i l l  : 1 f o r  |  <  j  3  f  - 1 ,  w h i l e  ( & ) t : 0 .  I n p a r t i c u l a r w e h a v e , 9 .  , . ( S t ) t e r  e  A

and llSill : r ioi exery j 2 1. Thus for the spectral radius of ^g we have r(,9) : 
rtliL llsillr/i : 1' which

implies that the spectrum of ̂ 9 contains at least one complex number of modulus 1. On the other hand, the

spectrum of 51 reduces to {0} for each t e T, hence Remark7.4 implies that, for € = Cz and p: t. -+ A

given by P(e) : S, we have

U ,,p* p) = Ll{o} = {o} I o(p).
teT teT

Consequently the inclusion in Corollary 2.3 is strict in this situation. I

Despite of Example 2.4, the following theorem shows that the inclusion in Corollary 2.3 is always an

equality when ? is a compact space. Before stating the theorem we recall that, if ? is compact, then @ : A.

2.5. Theorexn. IJ t is a compler finite-dimensional Li,e algebra, p: t.-+ A is a Lie algebra morphism and

the space T is compact, then

U "(r, " 
p) = o(P).

te' I

The proof of Theorem 2.5 will be preceded by the following auxiliary fact.

2.6. Lemma. Consid.er a family of unitat C* -algebras (Br)ter indered by the compact space T and let B be

a unital sub-C* -algebra of thei,r direct prod,uct C* -algebra. Assume that for eaery b = b* : (bt)rer € B the

function f r+ llb1ll i,s continuous at the points of T where it uanishes. Then for euerg b = b* : (bt)ter e B

the set

U "(b')
t €T

, i scompact .  Inpar t i cu la r , i f  b1  i , s inuer t ib le fo reuery tQ.T , thensup l lb t t l l  <* .

Proof. The proof will consist of three steps.
1' (Cf. Proposition 10.3.6 and its proof in [Di6 ].) Let tp € T and D be an open subset of IR such

that o(b1o) ! D. We show that there exists a neighborhood [/ of te such that o(b1) e D for eacht e U.
To this end denote U : llbll: 

:Ef 
llb1ll and let / be a continuous real-valued function onl-M,M] such

tha t  /1o16,^y  :0  and f lF t t ,u l lo :1 .  Then f  (b t ) :0 .  But  f (b r ) :  f  (b ) to ,  hence l l / (b ) to l l  :0 '  S ince

f (b):;ia)i, tfte hypoth'esis implies that there exists aneighborhoodU of fs such that ll/(b)rll < l for every
t €U. Then for each f € [/ we have ll/(b1)ll < 1, thus sup/(o(b1)) ( 1, which in turn implies o(b1) c D, as
desired.

2o In view of the compactness of ?, what we have just proved at 1o implies the compactness of 
,.Qro(Ut).

Indeed let {Dt}a be an arbitrary family of open subsets of IR such that 
,U 

o(bt) e U Dl. Then for every

t € ? there exists a finite subset fi of I such that o(b1) C 
orUr,rn. 

The conclusion of 1o further shows that

for some open neighborhood Ut of t we have o(br) c [.J D1 for each s € [/i. Now, since T is compact, there
i € I

N

exist  f in i tely many points tr , . . . , tN e T such that ?:  U U1,,  so

( ; : : )

U  U D i .
j= l  i€F t i

U
s e l

o(b") c



3o For the last assertion of the theorem, note that

so inf{1.\l | ,\ e U o(bt)} ) 0. Thus
, t  I

o(b1) is a compact set which does not contain 0,U
teT

inf{l)l | .\ e U
+ ctf'

o(bt)j
( o o

and we are done, I

Proof of Theorem 2.5. In view of Corollary 2.3, it suffices to prove that the complementary of the left hand

side is contained in the complementary of the right hand side. Now taking ) arbitrary in the complementary
set of the left hand side of the desired equality and replacing p by p - ) we see that what we have to prove

i s t h e f o l l o w i n g a s s e r t i o n : i f . 0 / . o ( q o p )  f o r e v e r y t € ? , t h e n a l s o 0 / o ( p ) .  N o w , i f  w e d e n o t e  a : : 6 p I 6 t r

and take into account Remark 2.1, this assertion eventually reduces to the following fact:

if (ur a id61n6;)(o) e A(t) s6(A€) is invertible for every f € ?, then a € A86(A€) is invertible. (3)

On the other hand, let us denoteby A the direct product C*-algebra of the family (A(t))ter. Recall that

A g A and for every f6 e ? the *-morphism u4 ; A -+ A(to) is the restriction of the canonical projection of

, 4 o n t o A ( t s ) .  I n p a r t i c u l a r , i f . b e A a n d t , l ( b )  : 0 f o r e v e r y f € ? , t h e n b : 0 . S i n c e d i m 6 ( A € )  ( o o , i t t h e n

easily follows that if A e ASB(AC) and (o18 id6(^a))(B) :0 for every f e ?, then 0 =0. Consequently, if

? denotes the direct product C*-algebraof the family (A(r)S B(nt))6y, then the unital *-morphism

1 : A 8 B(ne) -+ P, 0 ,+ ((r, a id6(^a))(B))r€",

is one-to-one. Then Proposition 1.5.3 in [Di64] applied for the self-adjoint element a e A A 6(A€) easily

implies that a is invertible if and only if 7(a) is invertible. The invertibility of 7(c) is further equivalent to

i5p l l{{ut a id61a61)(o))-' l l  < *, (4)

since all of the components of 7(a) are invertible by the very hypothesis of (3).
Let us note that ( ) will follow by the Iast assertion of Lemma 2.6, provided the hypothesis of that

lemma is verified with the sub-C*-algebra "y(,4) of. P in the role of B. To prove this Iast fact, consider

0 : 0 * e A A 6 ( A A )  a n d t s € ? s u c h t h a t ( t , i o 8 i d 6 1 n o , ; 1 B )  = 0 . W e s h o w t h a t t h e f u n c t i o n

u:  T  -+  [0 ,  @) ,  t  ++  l l (u i  I  id61no, ;1B;11

is continuous at f6. Denoting rn: dim6(Ae) we have A8B(Aq = Mm(A) (mxm matrices with entries
in A). If for t € ? we denote (ut I idrrael)(0) : (p7(t]t\r.u,.-, then lld,r(')ll are continuous functions on
? and there exist positive constants Cr and Cz such that

Cg(t) < u(t) ! CzS(t) for every f € ?,

where 9(t) : ,4,?t*llg4(t111. 
Since the function g is a continuous and vanishes at fs (because u(te) - 0),

the above inequalities imply that u is also continuous at fs and we are done' I

We now make a definition which reduces to Definition 1.10 in the case when the index set of the

continuous field of C*-algebras contains only one point.

2.7. Definition. Let 6 be a complex Lie subalgebra of O. We say that 6 is pointwise finite di'mensional
solaableif.ut(6) is a finite dimensional solvable Lie subalgebnof A(t). In this case we define the Cartan-
Taylor spectrum of 6 by

x(6) :  U{r .  ( r , t lo)  |  r  e x(o1(6))} .
! - 4

e
I

r ' - t r  I
sup ll0, 

- 
ll = sup sup | \ |

t€T  rc r  ^€o(b t )  l ^ l



2.8. Remark. It A(t) is finite dimensional for every t € T, then each solvable Lie subalgebra of A is

pointwise finite dimensional solvable.

2.9. Theorern. Assume that the spaceT is compact. If the complen Lie subalgebra 6 of A is po'i'ntwise

finite dimensional soluable, then eaery compler Lie subalgebra $ of 6 is pointwise fini'te di,mensional soluable

and
r(6) ls :  t(s).

If t is a finite-d,i,mens,ional ni,lpotent Lie subalgebra of A, thenE(t): o(ide), where id6: € -r A is the

embedding of t. into A.

proof. Since g e 6, we have u6(g) g ut(6) for every t e T, which implies that S is pointwise finite

dimensional solvable, too. Then

t (6 ) ls  =  U{ ( } .  (u '16) ) l s  |  )  e  x (ur (6 ) ) }
t€T

:  U{ro (?,r ls)  |  l  e t (ur(o))}
r - o0 c r

: [J{l l,,rs) o (?/rls) | .\ e x(ut(6))}
! - 4
L E I

:  !  { r  o (ur ls)  |  p,  e E(u1(6)) l , , rs l }
! - 4
, c .

:  [J { r ro  (?, ' ls )  ;p  e l (o t (3) ) }
teT

: x(3),

where Theorem 1.8 is used at the last but one equality.
For the second assertion of the theorem, use Theorem 2.5 to get

o( id6) :  l )o(ut o ide) = [-J a( l . '6 le) '
te:l rcT

On the other hand,

t (e )  :  { , \o  (u116)  l  . \  e  l (u1(e) ) }  :  { Io  (u r la )  |  r  e  a ( id , ,1e ; ) } .

Now, in view of Remark 1.5, the desired equality follows by Propositi on 2.6 in [Fa93] (cf. also Remark 3 in

$25 of [8501]).  t

2.10. Remark. Theorem 2.9 above should be compared with Theorem 2 in $27 of. [BS01].

3. Flag manifolds and bundle endomorphisrns

In the present section we denote by M a tr4l*-algebra (see [Sk71] and also section C5.3 in [5279]), by

Pm the complete lattice of projections in M, that is

P m : { p e l r t l p = p ' : p * ) ,

(cf. [5279]) and by tu the set of idempotents in M, \.e.,

t y : { e e M l e - " ' } .

We further denote bv G(M) the Banach-Lie group of all invertible elements of M.



We recall (cf. section 2.13 in [5279]) the left- and right-support maps

I : M -+ Py, a r+ l(a),

r : M - + P x 4 ,  a + r ( a ) .

Bydef in i t ion , i f  ae  Mthen l (a ) is thesmal les t  p€Pru  suchtha t  p&:a ,  wh i le r (a )  i s thesmal les tp€Py
with op : a. In the case when M is a von Neumann algebra of operators on a Hilbert space 71, I (o) is just the
orthogonal projection onto the closure of the range of the operator a, while r(o) is the orthogonal projection

onto the orthogonal complement of the kernel of o. Let us also recall that in this case, if p : p2 = p. e. B(?t)
then the relation

ap = pap

expresses that the range of the orthogonal projection p is invariant to the operator a.

8.1. Remark. In the case M : B(11) for some complex Hilbert space 74, the set Pu can be naturally

identified to the GraBmann manifold of all closed subspaces of 71. Thus Pu has a structure of complex
Banach manifold (see e.g. [Up85]). This last fact also holds in the case of an arbitrary C*-algebra (see

[MSg8] and section 2.4 in [MS97]). More precisely, tu andPla have natural structures of complex Banach

manifolds such that t ru is a closed complex submanifold of M and the left-support map restricted to t y ,

lls- : ty -+ Pm

is a submersion, and it can be given by t(e): s11- e* * e)=1 for evety e e t14'

The following lemma collects a few elementary facts that are needed in order to introduce some natural

actions otG(M) on t14 andP*r (see Proposition 3.3 below). Here we make use of the order relation ( on

tm (e t l .e2 i fandon ly  i f  e tez :e2er :e r )  asvre l laso f  theequ iva lencere la t ion  -onPv ( 'p t -p2 i f .and

only if there exists a e M such that Pr: u*u and p2 - uu*).

3 .2 .  Lemma.  I f  a ,beM,g ,gr ,9ze  G(M) ,ee  ty  andp,p lp2e Pm, thenthe fo l low ing  asser t ionsho ld .
( i )  l (a t(b))  =I(ab).
(ii) t(sJ(s2p)) = I(stsrd.

(ii i) r(ep) - p and l(sd - p.
(iv) If p is a f,nite project'ion, then l(gp) : p il and only if gp: pgp.
(v) If pr I st2, then l(gpr) < l(sPz).

(vi)  t (ses-L) :  t (s l (e)) .

Proof. (i) It suffices to prove that, if Q e Pv, then we have

q (a l (b ) ) :  a l (b )  s  q  (q$) :  o '$ .  (5 )

I f . q ( a r ( b ) )  =  a t ( b ) , t h e n q  ( a I ( b ) ) b : a l ( b )  b .  S i n c e  l ( b ) b :  b w e g e t  a @ b ) =  a b .  C o n v e r s e l v , a s s u m e
q1oi1: 'oa. Then'(qa-a) b:0, hence(qa-a)bb* -  0.  Thislastrelat ioneasi ly impl ies(qa-a)(bbl) ! t  =0,
itrut ir (qa - a)lb.l : 0. Since M is closed under Borel functional calculus, by Corollary 2.22 in [5279] we

immedia ie ly  ge t (qa-o)  s ( lb . l )  :0 ,wh ichmeans (q" -o ) l ( lb . l )  :0 (seesec t ion2. Is in [5279] )  and(5)  i s

completely proved.
(ii) Use (i).
(iii) We have

r(gp) :  I ((gp).)  :  t (pg.)9 \p 4g.))  :  l (p '  r)  :  t ( 'p) :  p '

Here /(g-) = 1as an immediate consequence of the invertibility of g*. Now l(gp) - p because l(r) - v1v1

for every r € M (see Theorem 4.3 in [5279]).
(iv) Recall that by the very definition of a finite projection (cf'

and q - p, then q = p. Now note Lhat 9p = p kd implies l(gp)
l(sd = p.

(v) Denote q : l(1pz)' Then qgp2 : 9Pz, hetce qgp2pl :

e g p r = 9 p r , s o q > l ( s p L ) .
(vi) Since 9-1 is invertible, we have l(g-') :1, hence

section 4.8 in [5279]), if S e Pya, q 1 p
( p. We have l(gp) - p by (iii), hence

gpzpt. Since p1 1 p2, it then follows

and we are done. I

I (s"g- ' )Q r (n" , (g- t ) )  :  t (se)Q l1e l1 t ; ;



The following proposition shows in particular that in a l,tr/*-algebra the set Pv is naturally acted on by

the whole complex Banach-Lie group G(M), not only by its real subgrup consisting of the unitary elements,

as it is the case in a general C*-algebra (cf. [MS95]).

3.3. Proposition. If we define

a: G(M) x t14 -+ t1a, a(g,e) = 9e9-r,

B  :  G(M)  xPy 4  Py ,  Bk ,d  :  I (gp) ,

then a and, B are holomorphic acti,ons of the compler Banach-Lie group G(M) on the compler Banach

manifold,s tv and,Py, respecti,uely. These actions are compatible in the sense thatthe diagram

G ( M ) x € m l t r , t

idc r , rz l l  I l l e .  I l l e *

G(M) x Ppr -!- Pvr

is commutatiue.
proof. It is obvious that a is a holomorphic action of G(M) on ty. The fact thal B is a group action

follows by Lemma 3.2 (ii). Now since lle* : tm -+ Py is a submersion (see Remark 3.1), the fact that p is

holomorphic will follow by Corollary 8.a(i) in [Up85] as soon as we prove that the diagram is commutative.

To see this last fact, take g € G(M) and e € tv arbitrary. Then

(t le* o a)(s,  e) :  t (a(g, e))  :  l (ses- ' )

and
(B o (1ds@1 x l le-))b,e) = /Q, l(e))  :  l (s t(e))

and the commutativity of the diagram follows by Lemma 3.2 (vi). t

Now with Proposition 3.3 at hand we can define the Graf3mann and flag manifolds suited for our

purposes. When M = B(?7) for som€ complex Hilbert space?1, one gets certain constructions carried out in

[HH94a], [HH94b], [Ne00] and [Ne01].

3.4. Definition. For every p € 2,rz we define

Gr m(p) : {I(sd I s e G(M)},
G(p) = {g e G(M) | t(sd : P}. I

3.b. Remark. We have p e k1a(p) g.Pu.Taking into account Proposition 3.3 above, Gt,rz(p) is the orbit

ofpundertheact ion aof G(M)onPu,andG(p) isthestabi l izerof.p.  Thisimpl iesinpart icularthatG(p)

is a closed subgroup of G(M). I

The following proposition contains essential information concerning the closed subgroup G(p) of the

Banach-Lie group G(M).

3 .6 .  Propos i t ion .  I f  pe  Pt , r , thenG(p) i ,sasp l i tL iesubgroupof  theBanach-L i ,egroupG(M)  and i tsL i 'e

algebra is
S ( d : { a e M l a p : p a p } .

If p is rnoreoaer a finite projection, then

G(p) = {e e G(M) | gP: PgP},

hence G(p) is euen an algebraic subgroup of G(M).

Proof. It is obvious that g(p) is a closed Lie (in fact associative) subalgebra of M and the exponential map

e x p : M - + G ( M ) i s a h o m e o m o r p h i s m o f a n e i g h b o r h o o d o f 0 e g ( p ) o n t o a n e i g h b o r h o o d o f l e G ( p ) . T o
see that S(p) is a split subspace of M, use the well-known topological isomorphism of Banach spaces

V  :  M  - +  p M p @ ( r - p ) M p e p M ( I - p ) e ( t - d M ( 7 - p ) ,  o , +  ( p a p , ( l - p ) a p , p a ( l - p ) , ( 1 - p ) a ( 1 - p ) ) '

Since rf (g(p)) : pMp, it immediately follows that g(p) has a closed complement in M. If p is a finite
projection use Lemma 3.2(iv) to deduce G(p) : {e e G(M) | gp = pgp}, hence the results of [HK77] can be
applied to G(p). r
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3.7. Remark. Proposition 3.6. above should be compared with Lemma IV.12 in [Ne00]. I

3.8. Corollary. For euery projection p €Pu there erists a natural structure of compler Banach mani,fold
onGry(pt) such that the transitiue action olG(M) onGry(p) is holomorph'ic and the natural projection

ro: G(M) -+ G(M)lc(p)(-  G'1a(p))

is a submers'ion.

Proof. Use Proposition 3.6 above and Theorem 8.19 in [Up85]. I

3.9. Proposition. Let p e Pv and, for euery t e Gry(p) d,efine Ar(t) = tMt. Endow Grm(p) with the
manifold structure giuen by Corollary 3.5 and def,ne

@, : {r : Gry(p) -+ M I r continuous and r(t) e tMt for euery t e Gry(p)}.

Then
A, :  ((Ar(t))rec,-(o),  Oo)

is a continuous f,eld" of C* -algebras on Gr y(p) satisfying the hypotheses from the beginning of g2 .

Proof. First note that for t e Pm the closed sub-C*-algebratMt of M is not a unital subalgebra (since
1 / tMt if t I 1), but it is a unital C*-algebra in its own right with the unit t.

Now we show that & = ((Ae(t))teGru(e),Oo) is indeed a continuous field of C*-algebras on Gry(p).
What we have to prove is that, if r : Gry(pt) -+ M is such that r(t) e tMt for every f e Gry(p) and for
eache)0andeachf r -  Gry(p) thereex is tsane ighborhoodVl , "o f rsuchrnuro l t l .  l l c (s )  - r ' (q ) l l  <e for

s o m e s ' € O p , t h e n r < - o o . T o p r o v e t h i s l e t t € G t x a ( p ) a r b i t r a r y a n d g s e G ( M ) w i t h r o ( g e ) : f . S i n c e
r, : G(M) -+ Gr tt(p) is a submersion (cf. Corollary 3.8), there exist open neighborhoo ds U , V of 96 and
p respectively, and a holomorphic mapping $ : V -+ G(M) such that to " th = idv (see Corollary 8.30 in

[Up85]). But we can suppose U,, g I/ for each €, and then by the assumption on r it easily follows that
trolrp:G(M) -+ M is continuous at gs. Then r (:roroo$) is continuous on 7 and we are done.

Finally, note that the application associating to each t e Gry(p) the unit element t of Ao(t) is just the
inclusion map Gry(p) -+ M , whose continuity follows by using as above the fact t'hat' ro is submersion. I

Now we introduce the flag manifolds. In the following definition it is not necessary to assume any order
relations between the corresponding projections.

3.L0. Def ini t ion. For pL,. . . ,Pne Pru defrne

F l ( p , , .  . . , p n )  =  { ( l ( s p t ) , . . . , l ( s p ; ) l  s  e G ( M ) } ,

G ( p t , . . . , p n )  =  { g  e  G ( M )  l l ( g p * )  =  p p  f o r  k  :  L , . . . , n } .  I

3.11. Rernark.
(a) There is a transitive action of G(M) on FI(p1, ...,Pn),

G ( M )  x  F l ( p t , .  . . , p , )  - +  F I ( p 1 ,  . . . , p n ) ,

(g ,  ( t r , .  .  . , t " ) )  r+  ( I (g t1 ) , .  .  . ,1 (9 tn ) ,

(cf .  Proposit ion 3.3) andG(p1,. . . ,pn) is the stabi l izer of (pt , . . . ,pn) with respect to this act ion. Thus
Fl(pr,. ..,pn) can be thought of as a homogeneous space

G ( M )  l G ( P 1 , '  . . , P n )  =  F l ( P r ,  .  . . , P n )

and under natural hypotheses it also possesses a most convenient manifold structure (see Corollary 3.8
as well as Proposition 3.12 below).

(b )  We have G(p1,  . . . ,Pn)  :  G(p t )  n  " 'n  G(p^) .

1 1



(c)  For  k  :  7 , . . . ,n  there ex is ts  a natura l  mapping

prp :  F l (p1,  . ' . ,Pn)  -+ Gt^(p1r) ,  ( t r ,  "  '  , tn)  v+ t1r ,  (7)

that is onto. In fact, we have

F I (p r , .  . . , pn )  e  Gra r (p t )  x  " '  x  G ru@)  (8 )

and the maps prft are just the natural projections'

(d) In view of (a) and (b) above, the mapping (7) can be viewed as the natural onto mapping

G(tw) l @@') n "' ^ G(p")) -+ G(M) l G(ex).

Thus the inclusion (8) takes the form of the natural embedding

G(M)lG@,) n " 'nG(p")) '+ (G(M)lG(p')) x "' x (G(M)lG(p")),

s .  G@) n " '  n G(p"))  ,+ b 'G(pr) , .  . -  ,e 'G(p")) '  I

3.12 .  Propos i t ion .  I f  p t , . ' . ,Pn  €Pu andh 1" '3pn,  thenF l (p1 , " ' ,Pn)  possesses  a  s t ruc tu re  o f

compler Banach manifold, such that the followi'ng assertions hold"

(i) The natural transiti,ue action of G(M) onFl(p1,...,pn) i,s holomorphic l'nd the natural proiection

G(M) '+ G(M)lG(pt,-  .  . ,pn)(= Fl(pt,  .  .  .  ,P))

is a submersion.
( i i )  Fl(p1, . . . ,pn) i ,s a compler submanifold of Gt la(p) x " 'x Gtv(p.) '

proof. For (i) we use the method of proof of Corollary 3.8. More precisely, we show that G(pt,...,p,") is a

split Lie subgroup of the Banach-Lie group G(M). It is obvious that

g ( p t , . . . , p n )  :  { a  e  M  I  o p *  : *  a p p  f o r  k  =  7 , . . . , n

is a closed Lie (in fact associative) subalgebra of M and the exponential map expM -+ G(M) is a home-

omorphism of aneighborhood of 0 e g(pr,  . . . ,pn) onto a neighborhood of 1 e G(pt, . . . ,Pn).  To see that

g(pt,...,p",) is u rptit subspace of M, we make use of the assumption p1 s '.. < p' to construct the

topological isomorphism of Banach spaces

V:  M -+  
O (p , ,+ r -p )M(p i+ t -p i ) ,  o*  

o r f r r . (pn+t -P t ' )a (P i+ t -P i ) ,
0 ( i , j 1n

where we have denoted po = 0 and prrar = 1. Since

i[(g(pr,  . . . ,pn)) :  O (pn+, -  p)M(pi+t -pi)

O1 i1 j4n

i t  immediately follows that g(p1, ...,Pn) has a closed complement in M.

For (ii) use what we have just proved as well as Remark 3.11(d)' I

3.13. Rernark. Let PLt. . . ,Pn e P1a such that p1

on Fl(p1, . . . ,pn) continuous fields of C*-algebras satisfying the hypotheses from the beginning of $2. To this

end  f i x  f t  e  {1 ,  . . . , n } .  Fo r  eve ry  t  =  ( t t , . . . , t n )  e  ky (p1 )  x  " '  x  G rm(p . )  deno te

Ap(t)  : :  Aoo(tx) :  tnMtx.
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Then define

O; : {r : Gry(p) x ..' x Gry(p") -+ M lr continuous and r(t) e txMtn

for  every  t  =  (h , . . . , tn )  e  Gry(p1)  x  . . .  x  Grm(p" ) \ .

Then it is easily checked that

Ak :  ( (Ak( t ) ) reGrr ,o  (p , )  x . . .  xGry lp . ; ,  O* )

is a continuous field of C*-algebras on Gry(pt) x...xGry(pn). By restricting it (see section 10.1.7 in

[D i64 ] )  to thesubsetF l (p1 , . . . ,pn)o fGry(p1)  x . . . xGru(pn) ,wegetacont inuous f ie ldo fC*-a lgebrason
Fl(pr, .  . . ,pn),  which we also denote by

A1" = ((A6(t))reFl(p,, . . . ,p, ; ,  O*).  I

3.14. Remark. Let' pt,. . . ,Pn e Ptr be such that pr
pttpz - pt, . . . ,pn - pn-r are Abelian. (Recall that every Abelian projection is finite, hence Proposition 4.15

in [5279] implies that all of the projections pr,...,pn must be finite.) Then the associative subalgebra of

PnMPn
L ( P r , ' ' ' , P n )  :  g ( P r , '  " , P n )  i  P n M P n

is solvable when considered as Lie algebra in the usual way. This follows by making use of the topological

isomorphism ![ from the proof of Proposition 3.12. In fact one obtains that the (n +1)-th term in the derived

series of the Lie algebra L(pt,. .. ,Pn) vanishes. I

We are now going to look at the preceding constructions from the point of view of vector bundles, instead

of continuous fields of C*-algebras. In particular we introduce the tautological bundles on the previously

constructed Grafjmann manifolds.

B.Lb. Remark. Let {t: M -+ B(11) be a unital *-representation on the complex Hilbert spaceTT and pick

P e P*r. Denote
Ranr!(P) : Y.

Then the closed subspace V of 'llis invariant to $(g) for every g e G(p) (see Definition 3.4), hence there

exists a holomorphic (uniformly continuous) representation

, !p 'G(p)  -+  B(V) .

This representation further induces a holomorphic vector bundle

ro, '1 ' :To(M) -+ GrY(P)

which is naturally associated to the principal bundle

rr:  G(M) -+ G(M)lG(P)(-  G.,ra@)).

We recall that the fiber of zr, is the Banach-Lie group G(p), while the fiber of ro,,1, is the Hilbert space V' I

3 . 1 6 .  D e f i n i t i o n .  L e t p 1 , . . . t P n e  P m  b e s u c h t h a t p l  1 " ' a p n .  I f  $ :  M  - + B ( 1 1 )  i s a u n i t a l

x-representation on the complex Hilbert space17, then for every k € {1,...,n} we define the vector bundle

d n :  ( p r r ) . ( r p o , q , ) : T f  - +  F l ( p r , .  . . , p n ) ,

which is the pul l -backof roo,,1,  by the map prh :FI(p1 ,  . - . ,Pn) -+ Grv(pp).  I
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and

Thus

3.L7 .  Remark .  For  every  f  =  ( t t , . . . , tn )  e  F I (p t , .  . . ,Pn)  and every  /6  e  {1 ,  . . . ,n }  we have

O;tQ) = Ran,r/(p*)

4"0 )  g  " ' q  4 ; ' ( t ) .

r i  s  " ' 9 r ;
and S"l7; - Qp for k = I,. . . ,n. I

Finally we can put at work the constructions of the present section in order to obtain examples of

situations where Theorem 2.9 applies'

g.18. Example. As above, consider a l4l*-algebra M, a unital i-representation t! , M -+ B(')l) and

PL,. . . ,Pn e Pu such that P1
Thun *" have the vector bundles 6*:Ti  -+ Fl(p1, . . . ,Pn) for k:  1, . . . , tu,  hence for every compact space

? and every continuous mappin g r : T -r Fl(p1, . . . ,Pn) we obtain the vector bundles

r. (Qx) : r. (T[) -+ T

with the fiber Ranr/(pr). We have
, . (T { )  q  " 'g  r . (T ; ) ,

these inclusions being compatible with the bundle projections r.(0n).Since the basis ? is compact r-(T;)

can be endowed with a Hermitian structure. Then "4 = ((A(t))ter, O) is a continuous field of C*-algebras

where A(t) is the set of all continuous endomorphisms of the fiber of.r.(Qe) over t e ?, while O is the set

of all continuous sections in the (continuous) endomorphism bundle of r-(Sp).
Now consider the set 6 of all r € O such that the corresponding endomorphism of r*(fi) leaves

invariant each of the subbundles r*(7r*),...,r-(T;). Then Remark 3.14 implies that 6 is a pointwise

finite-dimensional solvable Lie subalgebra of O provided the fiber of ,.(T;) (that is Ran$(p")) is finite
dimensional Thus 6 falls under the hypothesis of Theorem 2.9'

We further note that, if pl is a Radon measure on ? with supplr: ?, then O (and in particular 6) has

a natural representation by "multiplication" operators on the Hilbert space of square-integrable sections of

r. (6) with respect to tr-r. t

Now we consider a simplest instance of Example 3'18.

3.19. Example. With the notation of Example 3.18, take 'Jl = U with the usual scalar product, M :

B(11) : M.(C), ,ry' the natural representation of M"(C) on C' given by multiplication of column vectors by

matrices. Consider the projections

t " ' t P n -

Then take ? = [0,1] and r :10,1] -+ Fl(p1 , . . . ,Pn) be the constant mapping wi ih r( t)
every t € ?. Then r*(d-) is the trivial bundle over [0,1] with the fiber C', that is

,- (T;) : [0, 1] x C" '

More generally, r.($p) is the trivial bundle over [0,1] with total space

,.  (T;)  :  [0,  1]  x pk 'V .

14

t : I1  0  0  . . .  0
0  0  0  . . .  0
0  0  0  . . .  0

) , : (

1  0  0  . . .  0
0  1  0  . . .  0
0  0  0  . . .  0

0  0  0  . . .  0 0  0  0  . . .  0

0
1
0



Thus 6 is the Lie algebra of all upper-triangular matrix valued continuous functions on [0,1],

" : { ( t t '  
. . .  

' 1 " )  

,  a i i : l l , L l  - r c c o n t i n u o u s ,  r < i < j < r }  .
f . \ o  o . ) '  )

This implies that for every f € T we have

(  ( " r ,  o t ' \  ' l

u t ( 6 )  : { 1  , .  
l l o o i € C ,  

1 3 i 3 j S n l
l \ 0  e n n /  )

hence Corollary 6 in $27 and Theorem 1 in $26 from [BS01] show that

x(o1(6))  :  { l r  |  11 i  <.  n} ,

where ,\r : u1(6) -+ C is the character given by

/ o "  
o t "  

\
) ( a )  : a i i f o r e v e r y a = l  ,  l a u t ( 6 ) .

\  0  a n n /

Now Theorem 2.10 implies that

t ( 6 )  :  { \ , t  I  1  I ' i  1  n , ,  e  [ 0 ,1 ] ] ,

where .\;,t : 6 -r C is the character given by

/  atr att  \
t r r , t ( o )  : a . i i ( t ) f o r e v e r y o = l  ,  J e o

\  0  ann /

If we consider [0,1] endowed with the Lebesgue measure, then the natural representation referred to in the

final of Example 3.18 associates to every continuous function

(  o "  o t " \

" 
:  

(.o,, .  .  .  o.*) 
' [o'  1] -+ M'(c)

(which is a bundle endomorphism of the trivial bundle over [0,1] with the fiber C") the multiplication

operator on .L2([0, 1], CP) given by

/ / ' \ , , ( o ' ,  
, ' " \ / / ' \

I  . . .  l +

\r,/ U"; . . ;"") \j;) 
t
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