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SIMPLE PROOFS OF EXTENSIONS OF KuzmiN’S THEOREM WITH
EXPONENTIAL CONVERGENCE FOR A CLASS OF FIBRED SYSTEMS

ADRIANA BERECHET

Abstract. Let Jy be a compact and convex subset of RY. One considers a fibred
system (%,T) in a class defined by conditions near to that used in [6] but weaker, finite
range condition included. Let 3’(» be the partition of A induced by the finite range
structure. One denotes A the Perron-Frobenius operator associated with T under an
arbitrarily fixed probability equivalent to Lebesgue measure. One also considers the
Banach space 6, (M ) (and resp. L (M ) céntaining continuous (and resip‘Lipschitz
continuous functions on every cell of M and one proves for A acting on each of these
spaces a Kuzmin type theorem with exponential convergence in its norm. Then one also

proves that A is weak-mixing with respect to é (X)) (resp. (V\)).

Introduction.Content. Let B be a compact convex subset of R, ¥ the Borel
algebra in R , A the Lebesgue measure on %, T: B — B amapsuchthat (B ,I)isa
fibred system.

In [4] by condition (A),...,(F),(G) one defines a class of fibred systems for which
the basic theorems known for piecewise monotone transformations (abr: p.m.t.) also hold.
Let A be the Perron-Frobenius operator associated with T under A. One proves that the
conclusion of Kuzmin’s theorem (in the supremum norm) remains valid when A .
is acting on a collection denoted £ of strictly positive functions; the rate of convergence
is \q for aq & (0,1).

In [4] one considers a class of fibred systems delimited by conditions (A),....{E)
from [§] and a stronger than (F) condition, (F)’. Following [1] one defines the Banach
space;i ’é ( % gl‘gvhéf)e H s the partition of B induced by the finite range condition and
one proves, using the ergodic theorem lonescu Tulcea and Marinescu (named ITM for
brievity) a Kuzmin type theorem with exponentiai convergence for the operator A acting
on ¢ (J| ) in the norm of this space.

In [6] for the case of multidimensional continued fractions a Kuzmin theorem

with exponential convergence is given,using ITM. It is proved on the same lines as IT™M,




but, being formulated in a special with respect to ITM case and using particular
properties valid in that case to obtain a more direct one it has smail relation with the
original proof and is interesting in its own.

In this paper we consider the class of fibred systems defined by conditions
(A),...(F) from [4]. We describe this class in Section 2. That section also contains
Propositions 1 — 3 which prédide basic properties of T, most of them are known for
different classes of fibred systems (see [1] and [3] — [6]). To make easier the lecture of
this article we repeat in Section 2 the conditions(A),...,(F) and some definitions given in
(41, .

Section 3 contains the main results. Theorem 4 is the intermediate result
concerning the asymptotic behaviour of the sequence of the iterates of the operator A
acting on K (}{ ); it is the only ergodic theorem used in the proofs of main results.

Then we consider the Perron-Frobenius operator A associated to T under A where
’7\» is an arbitrary fixed probability on % equivalent to A and we prove extension of
Kuzmin’s theorem for the operator A acting on (@( o ),I.1) (Theoremo6) gmd acting on
(L NI (Theorem?).

Because of the special nature of the spaces { (Y yand X (}), proofs using only
the apparatus of classical mathematical analysis, mainly convergence properties of
sequences of continuous functions on compacts and Aszela-Ascoli theorem and only
fundamental probability theory notions (Hahn decomposition of R with respect to sign
measures included) are possible and presented here. We mention that also a proof of the
uniqueness of the endomorphism of B avoiding functional techniques needing
additional prerequisites was possible (see Lema 3). Imitating the title of the article [%} we
use the qualificative “simple” to mention this characteristic of proofs.

At the end, to complete the description of properties of Aon b (¥ yand < (H)
we prove that A is weak-mixing with respect to these spaces (Theorem 8). Then all
conclusions proved in [4] for Aon . ( } ) follow for A considered on either 4 (W) or

LA,

The Appendix contains completions of propositions from [6] needed in this paper.

The class of fibred systems considered in this paper contains the Jacobi-Perron
algorithm, the nearest integer continued fraction expansior. g-Qdic expansions.

We indicated by [&] Proposition xj 'the Proposition y§ reference [R].
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2. Description of a class of ergodic fibred system

Let be a norm in R?, ¥ be the Borel algebra in (B, ). We
assume that A(B)=1.Let T:B—B be a measurable and nonsingular map such
that (B,T) is a measurable with respect to > fibred system following the
definition given in [4].Let X be the denumerable set of digits and {[{],LeX}
be the collection of fundamental intervals (more usually called cylinders) of
first order from this definition .

We assume that [{] is connex and A( Fr [£])=0, £ €] here for any EcB,
Fr E indicates frontier of E in (B, [|*|). .

Forany 2 ¥=({4,..., 1)) eX ,7>1 one defines recursively the set
[t /)] cB by [£ N=[ LN AT 1[E,fffj]. With T we associate the label
sequence (@u(+))neny defined by ai(w)= gif well] , ai(w) = a(T"'w), 7>1,
whenever this is possible. If ~ a;(w),..., a(w) exist and a?(w) =2 for
some ! @ eXx” , then [ /].={w | a”(w) =1 (D1 0. The sets [£], ¢ D eXx’
such that A([{ (771) >0 form a partition (mod 0 ) of B ; we call them the
fundamental intervals of order j of the fibred system. The set X < X J
containing every (4 for which M[£ (/1) >0 will be called the set of
admissible sequences of length j , that is with j terms of the fibred system.

We denote N = {1,2,...} ; let Q be the set of points we B for which
aj(w) exists for any j = 1.For each weQ we define the X "valued map ¢
called the representation map of the fibred system by (w) = (aj(w) )j=1 -
The subset ¢(Q2) — X"“will be called the set of admissible infinite sequences
of the fibred system. Under our assumptions ¢ is well defined a.s. and
A (Q =L,

A fundamental interval [£ /] is said to be proper or full when
B=T' [? (j)]_

Let, forany £ eX’ andj 2 1, be the map V(£ Dy = (T | 1 Y,
where Al indicates the restriction to E €2, of the map honB. "

L et A be any probability on Y. ; as usual , L "B, i ) means the
collection of complex random variables ¢ on B for which ;o] dh < o
under the norm Yo X, 4 = s 10| dX . We shall use the shorthand notations
L?LI, L' and resp L; ) d\ for spaces L (B,2,\), L, and resp the quantity
-[B (P'dk .
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The defining equation of Perron — Frobenius operator A

associated with T under X is
fp-1n hdX = [ Ah dX | EeY, hels

We denote A4 , resp /4 the Perron - Frobenius operator associated to T
under A , resp X where % is %arbltrarﬂy chosed probability on 2. equivalent s
to A ; we mentain unchanged this probability throughout the whole paper.
Let ¥ be the function defined as ¥ {U; w} =1 when w € U;=0
when we U, for any Uc B and we B . For every ¢ D ex’ and j > 1 we
define a.s. in B the function o( %) = 4/ % {[£?];}. Then o( £7) can be
nonnull only in 7V [m]. V7 \@J{‘
' In this paper we deal with the class of fibred systems satis{ying
conditions (A),...,(F) stated below; they are the same as that identically
labeled in [4].
(A)  8() : =max diam [80)] —0 asj— 0
where the maximum is taken over all £¥ e X 0 -
(B) (finite range condition). There are finitely many subsets of B, U,
1 <j <y such that for any fundamental interval of any order m , there exists -
7 =7 (2™ <y such that the equality T"[®")]= 9 holds. ~o 8
(C) (condition of Renyi). There is a constant C > 1 for which , whatever
1™ eX ;) and n € N, the inequality
0)( 1 ouy< o2, 8 c
holds a.e. in T"[(2%)] . N 2
(D) Every set %, 1 <j <y contains a proper fundamental interval. -
For each n € N, let > be the & algebra generated by the collection of
fundamental intervals of order n , V°,_,>™ be the & algebra generated by
the collection > , n € N of o algebras. Condition (A) implies that
V2™ =3 (see [3], § 9.1.5).
By conditions (B) and (D) the sets 7, 1 <j <y cannot have null
A-measure; therefore min j<;<, A (% )=1/Ly<1foraly> 1.
Since the collection %, 1 <j <y contains B , it is a covering of B .We
denote & the finite partition of B induced by this covering.
Let (w,r) : = {17 X, such thatw e T" [£” ]}. When [£ 7 ] is
proper , £” e (w,r) for any w €B .Since by Lemma 5 from [4] , for any r > |
one has proper intervals [£ ], (w.r) # @ for any w eB and r > 1.
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By the general definition of Perron — Frobenius operators , using

the previous notation on has
Afw) = pum LVA™ Y 1) (£, 1) a.s.,

neN,fel

Hence the function A"/ has the same expression in all points
belonging to the same cell of &% and has in gereral different expressions
on different cells.

Summing over ™ €(u,n) the inequality

M C <A™, u) <MEPDC  as.inT" [2")]
which holds by condition ( C )we obtain

C'<s A"<L,C, as.n>1 (1)
Like in [6] we denote N3 : =L, C (see (2.4)).Then N3 > 1. B
We denote formulas in the current section with one number ; to
formulas from other sections we add the number of the section.
The last conditions are :
(E) There is a constant Ny>0 such that whatever e X wandn € N
| o, w) - o( ¥, w) | < w—u ] M,
wue T" [A")]. ' ‘
(F) There is a constant N,>0 such that whatever ¥ ex ) we have
1V Yyw—VE Y| <|w-ul N2 . wueT" [(€°)]
When condition (F) holds the assumption A(Fr[{]) =0 , { € X also
holds.
Conditions (E) and (F) imply that formula (1) and condition (C)
hold every where in B and that the restricted map Tﬂm‘”’ﬂ which is bijective
[£" 1 <>T" [£*” ] is then bicontinuous. -
When conditions (A), ...,(D) hold , by [#] Proposition 1 , T"is
ergodic with respect to A and the endomorphism ( between measurable
spaces) (T ,u ) is exact. We observe that its proof is simple in the sense

specified in Section 1.
In the sequel we assume that all conditions (A), ...,(F) are fulfilled.

Let Lo B, 2., )\ ) be the collection of functions /' € L' with
| /| = €8S Sup , < 5 | f ()| < oo under the norm | -|,,. We shall write simply L.,
instead L B, 2,1 ).

-



We denote % () , simply ¢ for brevity the collection of
complex bounded functions f defined on B continuous on every cell Ee c/”
(to mean that when € > 0 there exist o(¢) = ¢ > 0 such that if w,u € E and
lw-u| < o,]fiw)-Au)| < ¢€). Endowed with the norm | - |,
| /] : =sup ,g|fiw)|, this is a Banach space.

We denote (), simply & for brevity the collection of complex
functions f belonging to % (s%”),Lipschitz continuous on every cell of o7
We endow it with the norm ||| f||| :=|f] + s(f) ,where
s(f):=max jc-s(£J) and s(;,))=sup [| Aw) - Au) l/ | w—u|] , where sup
is considered over w,u € W', w# u .Then & is a Banach space and we have
ZcCc L, .

By Proposition Al, the operator A takes & (and resp % ) into
itself. Also, if f € & , by this proposition the sequences {s(4" /)},» and
{Il 4" £} nz21 are bounded. Specifically ||| A" f]|| < /\7”]]‘][[ ,neN , where
N=max (N{+N;, Ny Ny }. 2
Remark that the upper bound of s(4” /), n>1 given in Proposition
A1 (hence under condition (F)\is the analogous of the bound obtained in
[4] Proposition 3 (hence under the stronger condition (F)’). It does not
imply condition labeled 2 in [6] from ergodic theorem ITM which is an
immediate consequence of [6] Proposition 3. Also , by Proposition A: the
property of 4 on & to be Doeblin — Forbet operator is not implied , like it is
by [4] Proposition 3 under condition (F)'.
On the same lines, if we define conformly [1] the random system
((B,2), (X, X)), V(E),Ux{[]}) where ? (X)) is the collection of all
subsets of X and U is the Perron — Frobenius operator associated with 7T
under the probability n defined by (7) below , the bounds given in
Proposition Al do not entail its contraction property. Our proof of main
results does not use these properties explicitely or implicitely.

1 r—1 i
Ay =1y 4 2)

For any re€ N we denote 4, the linear bounded operator on L

Proposition 1. There exist in & a solution of functional equation

Af =7 3)



Proof . The sequence 4,1 , re N contains a subsequence which
converges to a function belonging to &, 4 say (see Proposition A2 ).
Let r(¢), te N be the indices of a converging subsequence of 4,1, re N;
hence r(t) — o as ¢t — o and we have

| Ayl -h|—>0 ast— . (4)

Let n,s,t;,t,€ N, t; < t, be such that r(t)) <s <r(t, +1), r(ts) <n <r(t; +1).
Then IA 1- 4,1 l<|As/(t,)(Al(1J1 "h)| +[A IH({)(A 1(1)1 ~h )‘

Using (1) we have

o L Al
"l i R
where the supremum 1§ ‘considered over feZ , f#0eZ Hence
| As1- A,1 | S N3(| A oyl = B + (A 4yl =) = 0 as ns — o0 ; we conclude
that the sequence 4,1 , re N is fundamental in % .

Then by (4) we get

4| =

|41 -h|—>0 asr—>ow,reN. (6)

We also have

]
A

’/1/4/'71_—/1141’=|l/4"1~— 101 Sl(1+N3)~>0
= r

P
Using the last two limit relations and the identity

| Ah—h|=|Ah-AA 1+ A4]1 - A1+ A1 -h],
it is immediate that the equality 0 = As — /4 follows. 0

Let p be the measure on . defined as

w(E)=Jghdr, E e (7)
The equivalence relation between the measures v, and v, on 2, will be
indicated by v, = v, ; the relation ,, v, is absolutely continuous with respect
to v, “ will be indicated by v; « v, ..

Proposition 2 . The measure [ is preserved by 7'and | =

Proof. Integrating with respect to A the equality 4 = A4h on
arbitrary E € > we have
W(E)= g hdh= [y Ahd\=pn(T'E).
Hence T is W preserving.

as r—> oo

= 1] = 3 reN (57T



Convergence in the norm | - | is equivalent to weak convergence in
% , hence with punctual convergence . Therefore by (6) we also proved that

h(u) = 1im,_y0, (4,1)(1) ,ueW , Wea/l' (8)

By [4] Proposition A3 , 4 belongs to & and clearly (8) implies that % is a
solution of (3) . We note that in (8) the convergence is uniform on cells.
Integrating (8) with respect to A on B we get
w(B)= [ hdh=lim, ., [A,1dA=1.
It follows that L is a probability on . .
By (1), (2) and (8) we have /"', 4 < N; ; then by integrating the last
inequalities with respect to A on arbitrary E € 2., we conclude that = A.

Lemma 3. The probability p on 2. defined by (7) is the unique one
absolutely continuous with respect to A which is preserved by 7.

Proof. Assume for a contradition that is exists a probability {{ on
>, f#n, T« which is preserved by 7. Let o be ;l(é its A - density. Then
de L, and satisfies equation (3). s

Let {1 be the sign measure on . defined as fl=p-pandlet =
I"- 1 be the Jordan decomposition of {i .We claim that as i, also i" and
are absolutely continuous with respect to A .Indeed , if Ne2. is such that
A(N) =0, then [y gxdk = [y adA =0, hence w(N) = {i(N) =0, so that
=@ =o.

Since by [4] Proposition 1, T'is ergodic with respect to A it results
that it is ergodic with respect to {i" (resp fI*) too.

Forany g € L' we denote g'(1) = max { ¢(r), 0 } and g'(1) =
max (-g(1) , 0), teB , the nonnegative and nonpositive parts of g. We denote
B" and B the sets of a Hahn decomposition of B with respect to [i .

Assume that 0 < [i( B") < 1.The real function on B defined as
a ='&, - o satisfies (3). It is immediate that the equality A& = & implies A&
=a" a.s.in B (and resp A& =& a.s. in B). Integrating this equality with
respect to A on B' (resp on B™) we see that B' (resp B") is a set invariant to T
with respect to [i" (resp 1" ). Under our assumptions on {l (B ) this
contradicts the fact that 7 is ergodic with respect to {i" (resp t” ). This in turn
contradicts its ergodicity with respect to i .

Assume that 1 (B )=0.Then n(V)=0, Ve 9)




Let W €3 be such that 0 < {i (W) < 1 .Then denoting W' the complement
of W in B, we have [l (W’ )< 0 and this contradicts (9) .Hence in (9) only
equality can hold and this contradicts the assumption [ 1L .

Similarly &6 proves that the assumption i (B" ) = 0 leads to a
contradiction , too.

Assume that i (B~ ) = 1.Then since h(B)= ﬁ (B")-1 has to be
nonnegative only i (B" ) = 0 in the last equality is possible and this leads to
a contradiction by the above alineatj. o

One can observe that the proofs of Propositions Al and 2 below
and of [#] Propositions Al and A3 used in this section are simple in the
sense specified in Section 1. Then also the proofs of propositions from this
section are simple in the same sense.

We note that propositions 2 and 3 can be proved in weaker
assumptions using another approach but much longer preliminaries are
necessary and the proof is no more simple ( see I'. Schweiger The Metrical
Theory of Jacobi — Perron Algorithm LNM 334 Springer Verlag 1973 ).

3.The ergodic behaviour of Perron — Frobenius operator

A on Z(S7) and on G ().

We begin this section with Theorem 4 by which one proves in fact
that the operator 4 is ergodic with respect to % . Then we consider the more
general Perron — Frobenius operator A of T under an arbitrarily probability bs
equivalent to 2 and we prove the Kuzmin type Theorems 6 and 7.

Using that [4] Theorem 6 extends to operator A on % and on &

under the assumptions from this paper at the end also prove Theorem &.
We record that by assumptions from previous section , conditions

(A),...,(F) are supposed to hold.

Theorem 4. For any function f/ belonging to % one has
| Af - hffdL] -0 asr—>o (1)

Proof. F13< arbitrary function f belonging to - % Applying
Proposition A2 we coficlude that there exists a subsequence (A, ), where
{r" }= N (depending on /) and a function o7y (f) = oy € @ for which

| Af -y | >0 asr’— o (2)



Parallelizing the argument used in the proof of Proposition 1 {in fact simply
replacing with 4,/ resp h Jfd\ the functions A,f, resp /) to derive starting
with relation (2.4) relation (2.6) one obtains from preceeding formula

| Af - Ao | =0 asr—> o ,re N (3)
Hence (A4,f )ren converges in the norm | - | to 4;.

Parallelizing the argument used to show in the mentioned proof

starting with (2.6) that 44 = h ,one obtains starting with (3) that 4 o/ =c%,.
Hence [6] Proposition 2 applies to o7 = o/ ( f); we can conclude that
there exist £ € C such that o7 (= & & a.s. (actually the equality holds
everywhere in the present case).

Integrating this equality with respect to A on B we obtain

E=[Ehdh= [oydM.
By (3) we know that the punctual convergence
lim,A4,f= o asn — o ,neN (4)
holds and is uniform on every cell. Integrating (4) with respect to A on B we
get
[ et ydh =1lim,[A,fd\= [fdhr

Hence & = £ d\ and then

oot o=h Jfd\ )

The relation (1) follows by (3) and (5). o
Justified by (5) we define the linear bounded operator 4™ as
A f=h [fd\, fel (6)
Remark. Theorem 4 can be restated as : The operator 4 is ergodic
with respect to % and its limit in the norm | - | is given by (6).

On account of the fact that the proof of Proposition A2 below and
that of [6] Proposition 2 are simple in the sense precized in Section 1 it is
seen that so is also the proof of the last theorem.

We record that we denoted A an arbitrarily fixed probability cn 2,
equivalent to A ; let &, :=d)\/d\ .Then there is a constant N, > 1 such that & ,
&' < N, , as. . In all next propositions we shall assume at least that Q
belongs to % ; then the last written inequality holds everywhere.

We denote 4 the Perron — Frobenius operator associated to 7
under & .Then we have

Af=UAraya, "~ reN,fels | (7)
We observe that A = A implies I3 = g |
We denote a the X density of ., 4 = du/d/fn.
By the Radon—Nykodim theorem we have & = h/&. Hence ess inf & > 0.

10
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Lemma 5. Assume that & € ( resp% ).Then a function f € &
(resp %) satisfies functional equation
Af=f (8)

if and only if / equals 4 multiplied by a constant (complex in general).

Proof. Because of (7) equation (8) is equivalent with A/Q = fQ and
by [6] Proposition 2’ this equality implies f& = & 4 with a e C. Since
inf& >0 and &eZ (resp®) also f= & W/ € Z(resp¥). Hence f=4 E.
The converse is obvious and we omit the proof. 0
Motivated by formulas (6) and (7) we introduce the linear bounded

operator A“ on L' defined as
af=(peye )

It is easely seen that A4“= 4“4 = A” (extension of Kuzmin’s theorem in the

Borm|-1))

s,
D . N : »
Theorem 6¢, Assume that & € % . Taen there exists a positive

constant O < 1 such that
| A"—a [-dh |=0(0") ,n> 1.

Proof. Fix arbitrary function f belonging to % . By Theorem 4
there exists a subsequence (4" 1), where { 7’} N, of (4'f),en (depending on
/) such that

A f-hffAA| =0 asr'—> o , {r}cN (10)

Parallelizing the argument used in the proof of Proposition 1 to derive
starting with relation (2.4) relation (2.6) we obtain starting with (10)

| A'f- hffdh| >0 asr— o, {rfd N (11)/\@16
For any » > 1 we can write
A -affdl] = A Fa-hffA) & | <|AFE-RIfEANIN,

Since fA belongs to % (11) applies so that

| AF-affdh| >0 Casr—o ,reN (12)

11



By (2.1) and by its very definition A” is a bounded operator on % ; then
(12) implies that 4 is aperiodic with respect to %

It is well known (see e.g.[L] Lemma 3.1.19 ) that if U is a linear
bounded operator aperiodic with respect to a Banach space (R, | 1)

then there exists a positive constant ¢ < 1 such that
NT-U| | =o(") s €N (13)
where U”:= lim,; U’ as s— o in the norm || | | .
Applying this result to 4 on & , by (13) the stated assertion
follows. jy

Theorem 7.(extension of Kuzmin’s theorem in the norm Il ) .
Assume that 0.e & .Then there exists a positive constant O< 1 such that
A~ af-dill =o@®" as r—> o.

Proof. Let v be the linear bounded operator on L' defined as
Vi=(-A") .Onehasthen Vf=A4f-a[fdk,;j>1 (see(9)).
Fix arbitrary f € Zand We &7 ; let u,weW , u # w . By (12) we
have

v fw) v ) 1> 0 as o0 (14).

—
|

|

Therefore given any € > 0 there exists jo(€) = jy such thatvp"gjo the quantity
in the left side of (14) is dominated by € . Then , s(V /f;W ) <,/ > j, . This
implies lim ;_,, s(V /f:W ) < &. Since ¢ is arbitrary we also have
lim ;e s(V /fsW ) = 0. Hence the relation

s(v'f)y—>0 ,as 7 —> © (15)

also holds . Having in view (12) and (15) we obtain

WA f—af /ARl =|v "f|+s(v"Ff)—>0 asn—o.
Therefore A is aperiodic with respect to & .The assertion stated results by
applying (13) once more. O ;

We note that the proof of [1] Proposition 3.1.19 is a simple one in
the sense specified in Section 1. Then so are also the last two proofs.

12



In the next statement we employ standard notions of ergodic
theory (see [L] as basic reference or see [4] ). In the sequel & stands for
either the space @or & in the assertions valid for each of these spaces.

By Lemma 5, when a € &, 1 is an eig'envalue of operator 4 on & .
We denote &(c; & )={fe & ; Af=cf)} forany 6 €C ; hence &(c; &)
is the subspace of proper functions corresponding to the eigenvalue ¢ of 4

on & .

Theorem 8. Assume that & belongs to % (resp Z). Then 4 is weak
—mixing with respect to @(resp ). If Ge &, then (1, €)= (1, 2).

Proof. Since by Lemma 5 dim & (1, &) = 1, the multiplicity of the
eigenvalue 1 is 1. To prove that 4 is weak-mixing with respect to &
amounts now to prove the fact that 1 is the unique eigenvalue with modulus
1 of 4 considered on &/

We record that by [4] Theorem 6 we proved that 4 is weak-mixing
with respect to Z' (") .We observe that the proof is valid unchanged under
our assumptions, that is with condition (F) replacing (F)’, for 4 with domain
either @ or &. Thus it results that 4 is weak-mixing with respect to &

The complex number ¢ is an eigenvalue of A on & when and
only when there exist ¢ €% (c; &), ¢ #0 € & such that A4p = c¢ .This
equality is equivalent with Ap& = G(pﬁ, Since 4 is weak-mixing with respect
to & ,c# 1 when ¢ #0 € & in the last equality is impossible. Hence
when o # 1, ¢(o; &) ={0}.

Assume that & € &3 thena e . Let ¢ €&'(1; ¢'). By Lemma 5,
¢ = OF forak € C , hence ¢ €Z. Whence €(1; € ) c € (1; & ).The
opposite inclusion also holds since & < % . Therefore the stated equality

follows. o
Appendix. Throughout the Appendix we assume that all

conditions (A),...,(F) hold.
Proposition Al. The operator A applies the space & (resp &) into

itself. If ¢ €<, then

s( A" ) <s( @ )N, N3+ || N ,neN .

13
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Proof. Clearly conditions delimiting the class of fibred systems
we deal with in this paper is different from that used in [6] only by
condition (F).

a. The proof of [§] Proposition Al remains valid when condition
(F) replaces (F)’ because in its proof condition (F)’ intervenes only once,
namely to write relation (A2) and there only its weaker from coinciding with
condition (F) is in fact written . Hence also the Remark to [6] Proposition
Al remains valid.

b. In the proof of [6] Proposition 3 condition (F) is applied only
to find a superior bound to the sum denoted there ¥'.Condition (F) is

condition (F)’ where 8(n) is relaxed to 1 . If in the bound of 3! we replace -

8(n) by 1 inequality (3.8) from [4] becomes
| A"p(w) - A"p(u) | < [w—u | (s(@ N2 Ns + 9| N1) ,ueN, 9 €Z,
for any w,u €W , any We # . The stated inequality follows.
The Lipschitz continuity of (4"¢)| fw\_also holds ; since W was
arbitrary from 7 , A"¢ € Z follows. |
Using (2.1) the inequality
1 4"p(w) - A"o() | S s(@ )N2 N3 +[¢ | (Ni+ N3)
immediately follows from the definition of the norm ||| - ||| .
We record that the operator 4, is defined by (2.2).

Proposition A2. Let f € & (resp %) . The sequence { 4,1 Yos @
contains a subsequence which converges in the norm | - | to a function
belonging to Z(resp %) .

Proof. Fix f € & . Proposition Al implies that { 4, f },en 18
bounded in the norm ||| - ||| . Hence Af € & follows from [6] Proposition A3
whose proof is valid unchanged under present assumptions.

Now assume that 7 is a real function belonging to ¢ . We denoted
in [6] the contmuous extension to H,of (4"f);=(A4"f)| u by (4 f)J :
reN,j=1,.,7 (wherey’= card % ). By the Remark to [6] Proposition Al
the sequence of functions ( 4 f )i» ¥ 2 1 is equicontinuous for each j =1,...,y";
this implies that also the sequence ( 4 f ), r=1is equlcontlnuousq}u, J<y’
By (2.1) thefe sequences are equally bounded in the norm | - | ; hence
theorem Arzela — Ascoli can be applied.

The proof continues with successive selections of converging
subsequences like the proof of [4] Proposition A3 which deals with the

(more general) sequence denoted there {X,},>1 .

14



The extension to complex functions f is clear and we omit it.
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