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SNvMTg PROOFS OF EXTENSIONS OF KUZMI].{'S TFIEOREM WITH

EXpOttgNTIAL CONWRGENCE FOR A CI-RSS OF FIBRED SvSrEuS

ADRIANA BERECHET

Abstract. Let $ be a compact and convex subset of Rd' One considers a fibred

system ($,T) in a class defined by conditions near to that used in [6] but weaker' finite

range condition included. Let $t- be the parrition of /,. incruced by the finite range

structure. one denotes A the penon-Frobenius operator associated with r under an

arbitrarily fixed probability equivalent to Lebesgue measure' One also considers the

;;";"; ,0u"" {, t J/. ) (and r.rp. X ( lt ) containing c.ntinuous (and resp'Lipschitz

continuous functions on every cell of .J't and one proves lor A acting orr e&ch of these

spaces a Kuzmin type theorem with exponential convergence in its norm' Then one also

proves that A is weak-mixing with respect to (( .[ ; lresp' (y")

Introduction.Conten t Let B be a compact convex subset of R''l' I the Borel

algebra itr-:,),the Lebesgue measure on I, T. 3 *' 3 a map such that ( ! ,T) is a

fibred system.

In [a] by condition (A),'..,(F),(G) one defines a class of fibred Systems for which

the basic theorems known for piecewise monotone transformations (abr: p.m't ) also hold'

Let A be the Perron-Frobenius operator associatecl with ? under l" one proves that the

conclusion of Kuzmin,s theorem (in the supremum norm) l emains valid when A

is acting on a collection denoted l, of strictly positive functions; the rate of convergence

is fi for aq 4 (0,1).
In trll one considers a class of fibred systems delimited by conditions (A)''"'(E)

from [{] and a stro,,pger than (F) condition, (F)'' Following [1] one det-ines the Banach
'-.t 

",'t{1"?* }t is tte partition of .B induced by the finite range condition aad
spacef  l (X) -h
one proves, using the ergodic theorem Ionescu Tulcea and Marinescu (named ITM for

brievity) a Kuzmin type theorem with exponentiai ct;nvei-gense frJr the operator A acting

on X.1)L ) in the norm of this space'

Int6] for thecaseofmult ic l imensionalcont inur:dfract ionsal iuzmintheorem

with exponential. convergence is given,using ITIVI' It is pi'oved on the same lines as ITM'

r 5..;l :.11; ;;.; ..



but, being formulated in a special with respect to LTltl case and using particular

properties valid in that case to obtain a more direct one it has smail relation with the

original proof and is interesting in its own.

In this paper we consider the class of fibred systems defined by conditions

(A),.,.,(F) fiom 16]. We describe this class in Section 2. That section also contains

propositions I - 3 which pr$dide basic properties of I most of them are known for

different classes of fibred systems (see [1] and [{] - t6l) 
'fo make easier the iecture of

this article we repeat in Section 2 the conditions(A),...,(F) and some definitions given in

t4l
Section 3 contains the main results. Theorem 4 is the intermediate result

concerning the asymptotic behaviour of the sequence of the iterates of the operator A
L , .

acting on 6 ([ ); it is the only ergodic theorem used in the proofs of main results.

Then we consider the Perron-Frobenius operator A associated to T under l. where

i ir un arbitrary fixed probability on I equivalent to l, and we prove extension of

Kuzmin's theorem for the operator A acting on 1(1 H ),1 l) (Theorem6) and acting on

(I ()4 ),lll lll) (rheoremz)
Because ofthe special nature of the spaces ( tV I and f, ( 1[ ), proofs using only

the apparatus of classical mathematical analysis, mainly convergence properties of

sequences of continuous functions on compacts and Ats;zeld-Ascoli theorem and only

fundamental probability theory notions (Flahn decomposition of B with respect to sign

measures included) are possible and presented here. lVe mention that also a proof of the

uniqueness of the endomorphism of B avoiding {unctional techniques needing

additional prerequisites was possible (see Lema 3). Imitating the title of the article []J we

use the qualificative "simple" to mention this characteristic of proofs. .
At the end, to complete the description of properties of A on ( t l(,) anA "I ( Yil )

we prove that A is weak-mixing with respect to these spaces (Theorem 8). Then all

conclusions proved in t4l for A on X f )-f ) follow for A considered on either t 1[1 or

1(It)
The Appendix contains completions of propositions from [6] needed in this paper-

The class of fibred systems considered in this paper contains the Jacobi-Perron

algorithm, the nearest integer continued fraction expansion g-Qdic expansions.

We indicated by [{lProposition 4'the Propqsition 4ret'erelce [X].

r l  + . ,  \  \ /  |  i l  i r
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2.Descr ip t ionofac lassofergodic f ibredsystem

Let ll.ll b. a norm in R'/ , I be the Borel algebra in (8. ll ' l l ).we

assume that l,(B):1.Let T:B-+B be a measurable and nonsingular map such

that (B,T) is a measurable with respect to I. fibred system following the

definition given in t4l .Let X be the denumerable set of digits and {ltl,teX}
be the collection of-fundamental intervals (more usually called cylinders) of

first order from this definition .
We assume that [t] is connex and ],( Fr [t]):0, I eX; here for any EcB ,

Fr E indicates frontier of E in (8, ll ' l l).
For any 2{i ):711,..., t ) eX , j>l onldefines recursively the set

y2ri \ cn by t{ 
r)yy t(i ')l a T-i n tll","tr. With Zwe associate the label

,.qu"n.. (o,(')),,* defined by a(w): t. if w€[t] , ar(w) . a(Ti-tw)',i>!'

whenever this is possible. If a{w),..., ai(w) exist ind aT(t'v).: | (it fol

some 1{i .yi,  then yt( i  )1.:1w I oi,(r): qrit  } + 0. The sets Vti;t  ,1(t) eXi

such that ),([t ( i )]) >0 form a partition (mod 0 ) of B ; we call them the

fundamental intervals of order 7 of the fibred system' The set X61 c X i

containing every x ( | got which r([s ( i l1; >0 will be called the set of

admissible sequences of lengthT , that is withT terms of the fibred system'

We denote N: {L,2, . . . }  ; le t  O be the set  of  points we B for  which

ai(w)exists for anyi > 1.For eachwe f) we 'define the/'vaiued rnap <p

called the representation map of the fibred system by cp(r) : (ai(w) ) = ' '

The subset cp(f) ) c,C-will be called the set of admissible infinite sequences

of the fibred system. Under our assumptions tp is well clefined ar.s. and

l .  (e i ; :1.
A fundamental interval $ti rt is said to be proper or ftrll when

B : T j g r i 1 .
Let , forany 1{D .y i  andi  2 I  ,  bethe map Vg{ i t  ) : (T i  lLr t f ' l t  ) - '  '

where ftls indicates thb restriction to E, eI of the map.h on B . ,,
tett be any probability on I ; as usual , L' (B ,L , )" ) means the

co l lec t ionof  complexrandomvar iab les  cp  onB fo rwh ich  I t ,p i  d l 'Q . r t  I
under the norm Yrp il ,, J": I l,pl at . We shall use the shorthand notations /' | |

Lit , Lt and resp i,r,p Jl" for spaces Lt ( 8, L tr ) , I,,' ancl resp the qr-rantity

l rq  dtu.

r{+fi4 i,r,bfii: r;,



The defining equation of
associated with I under f, is

fy-rp hdT" : I,,ih dX , E e I ,  h . l i . '

We denote A , resp A the Perron - Frobenius operator associated to T
under 1. , resp f,, where X, is aiarUitrarily chosed probability on I equivalent
to ), ; we mentain unchanged this probability throughout the whole paper.

Lety be the function defined as X {tJ; w}:l when w e Ij;:O
when wEIJ, for any Uc B and,we B . For every 1(D .yj and j z r we
define a.s. in B the function o( t0\ = Aj X {tt1\;). Then a( (,) can be
nonnull only in f' fW.' In this paper we deal with the class of fibred systerns satisl ying
conditions (A),...,(F) stated below; they are the same as that identically
iabeled in [4].
(A) d0) ' : max diam lt(i\ -+ 0 as7-+ 0
where the maximum is taken over all l(' eX 6; .
(B) (finite range condition). There are finitely many subsets of B, 'ol(,

| <j <ysuchthat forany fundamentai.interval of any order m ,there exists , ,
i:i (1('l ) < y such that the equality T*1"'n'!.)f : at( holds. "-.-- .9.*'

(C) (condition of Renyi). There is a constant rj > | for which , whatever
l(D eX tu) and,n e N , the inequality

@((n) ,  u) < $((n) ,  i l  c
holds a.e. in T'\A*.)J \ ;.,
(D) Every set q/j, 1 < j < y contains a proper furLdamental interval. 

'\-

For each rz e N ,let Z(n) be the o algebra generated by the collection of
fundamental intervals of order n, , Y*,,:.12'ry be the o algebrei generated by
the collection Z@ , n € N of o algebras. Clonclition (A) implies that
Y*,:r}(u :  I  (see [A],  $ 9.1.5).

By conditions (B) and (D) the sets al(, I < j < y cannot have null
l " -measure;  therefore min ts j<yL (q4) : I  lLoSl  fora Lo> l .
S ince the co l lect ional ( ,  1  < j  <y conta ins B , i t  is  a  cover ing of  B.We
denote a7f the finite partition of B induced by this covering.

Let (w,r) 1 : 1 (r) eX r,t such that w e T' Lt 
{''l 

,}. When yt o) 
1is

proper ,l(o e (*,r) for any v, eB.Since by Lernrrra 5 frorn [d] , fur any r > I
onehas proper  in terva ls  l t ' '  l , ( - , r ' )+at -or  any w eBancl  r>  l .

Perron Frobenius operator A

J t't

r--- I f.i)
I/' (. !-

+



By the general definition of Perron - Frobenius operators , using
the previous notation on has

A'f(r) :L(,,,n)/(V67at ) r) r,r( l(') , u) ?.S.,
"  n e  N , / e Z l .

Hence the function A'f has the same expression in all points
' belonging to the same cell of e7( and has in general different expressions

on different cells.
Summing over lo) e(u,n)the inequality

)"(t@ l) C' sa(() ,  u) 3x|(1t@ ]) c a.s. in r" l( t ' ) l
which holds by condition ( C )we obtain

C - t < A n I < L o C ,  a . s , n ) l  ( 1 )

Like in 16l we denote A/: : : Lo C (see (2.4)).Then //3 > 1
We denote formulas in the current section with one number ; to

formulas from other sections we add the number of the section.
The last conditions are :

(E) There is a constant 1/1>0 such that whatever l('u e X 69 and rz e N

l a ( 2 { n ) , w )  -  a ( l ( n ) ,  t )  |  <  l l * - "  l l  A / r } ' ( t t  " ' f ) ,
w,ue T" l (1. ' )1.

(F) There is a constant I{2>0 such that lvhatever l$/ e X r,t we have

l lv (t@ ), - v71{') Tull < ll w -ull iv' , rv,ue T' l(t' )1.
When condition (F) holds the assumption f(Fr[t]) :0 , I e X also

holds.
Conditions (E) and (F) irnply that formi-rla (1) and condition (C)

hold every where in B and that the restricted rnap l_fitt@tlrhich is bif ective _/--1_
It@ I <+T' Vro , is then bicontinuous.

When conditions (A), ...,(D) hold , by [d] Proposition I , I is
ergodic with respect to l" and the endomorphisrn ( between measurabie
spaces) (T ,pt ) is exact. We observe that its proof is simple in the sense
specified in Section 1.

In the sequel we assume that all conditions (A), ...,(F) are ftilfilled.

Let Ll B ,2, l" ) be the collection of functions f e L' wrth

l-f1,,:-- ess sup u. nlf @) < oo under the norm | '1",. We shall write simply I,"

instead LJ, B, I , l. ).



We denote V @7f ) , simply V for brevity the collection of
complex bounded functions/defined on,B continuous on every cell Ee e/(
(to mean that when e > 0 there exist o(e) : o > 0 such that if wp e E and

l l * - " l l
l/l : :sup *.yWw)|, this is a Banach space.

We denote Z@/f'), sirnply 9'for brevity the collectiorr of cornplex
functions/ belonging to V(a7(),Lipschitz continuous on every cell of a/(.
We endow it with the norm lll/lll :: If | + s(/) ,where
s(/)::max rc.yrs(f)J) and s(fJ):sup'll/(r) - /(") I I ll, - 

" lll, where sup
is considered over ,,u e lI/, w* u.Then I isa Banach space and we have
7c.Vc.L- .

By Proposition A1, the operator A takes I (and resp ? ) into
itself. Also, if f e I ,by this proposition the sequences {s(l'f)},,1 and

,J,lll A" flll\ n21 are bounded. Specificalty lll A'flll < /Vllf lll , n e N , where
N=max [iVi+1vi ,Nz N: ].

Remark that the upper bound of s(A' -f ), r>l given in Proposition
Al (hence under condition (F)\is the analogous of the bound obtained in
[{] Proposition 3 (hence urh.r the stronger condition (F)'). It does not

imply condition labeled 2 in 16l from ergodic theorem ITM which is an
immediate consequence of [6] Proposition 3. Also , by Proposition Ar the
property of A on I to be Doeblin - Forbet operator is not implied , like it is
by [4] Proposition 3 under condition (F)'.

On the same lines, if we define conformly [1] the random system
((B ,I), (X , 3 (X)), V (.),UX{t. l :}) where ? (X ) is the coilection of al l
subsets of X and U is the Perron - Frobenius operator associated with I
under the probability tt defined by (7) below , the bounds given in
Proposition Al do not entail its contraction property. Our pr:oof of main
results does not use these properties explicitely or implicitely.

Z'r-=t oun

, / I

A  _ r
\ / )

For any re N we denote A,the linear bounded operator on L'

Proposition 1. There exist rn I a solution of functional equation
Af :"f . (3)

6



Proof . The sequence 1,1 , re N contains a subsequence which
converges to a function belonging to I , h say (see Proposition A2 ).
Let r(t ) , te N be the indices of a converging subsequence of 1,.1 , re N;

hence r(t ) -+ co as / -) oo and we have

l A , r , t I - h l - + 0  a s / - ) c o .  ( 4 )
Letn,s , t1 , t2e N,  /7  < /2  be such that r ( t1)  <s S r ( t ,+1) ,  r ( r2)  1n 1r ( t t - t l ) .

Then I A,l- A,L | ! | A ,-,rt,t( A ,@l - h )l + | A ,-,(t )( A t.(t )l - h )l .
Using (1) we have

ln l= ,,rW-= *r,*lrlt, = l,<o,rl < r,,:

where the supremum i.'3 considered over .f.9 , /+: 0e 9' .Hence

lA, l -  A, I  l<1vr( l  A r ( t , ) I  _  h) i+ ' (A,a) -1 h l )  -+  0 as n,s  - )  oo ;  we conc lude
that the sequence A,I , re N is fundamental in V .

Then bV @) we get

\,1

l A , L - h l - + 0  a s r ) o o , r e  N .

We also have
l r  r  I  r

lrtrtnt -,!ntl=l - n'' t - -L tt}tl = -(l + N.) -+ 0'  l r  r  I  r

Using the last two limit relations and the identity

I  Ah -  h l :  I  Ah -  AA, l  +  AA, l  -  A, . l  +  A, . I  -  h  l ,
it is immediate that the equality 0: Ah - ft follorvs. n

Let p be the measure on I defined as
p (E):  Jn h d)" ,  E e I

(6)

The equivalence relation between the measures V1 and v2 on I will be
indicated by u, : y2 ) the relatioo ,, Vr.is absolutely continuoLrs with respect
to v2 " will be indicated by V1 (( V2

Proposition 2 . The measure pL is preserved by T and !L = v .

Proof. Integrating with respect to )' the equality h : Ah on

arbitrary E e Iwehave
p (E) : J r: h dX: I o ,qnaX: pL 1r-rF).

Hence Z is pL preserving.

as /'--) co

(7)

T



Convergence in the norm | . I is equivalent to weak convergence in
V ,,hence with punctual convergence . Therefore by (6) rve also proved that

h(r):  l imn-- @,1)(u) ,  z re  W ,W ea / ( '  (8 )

gV K] Proposition A.3 , h belongs to Z and clearly (B) iniplies that h rs a
solution of (3) . We note that in (8) the convergence is r-mi{brm on cells.
Integrating (8) with respect to l" on B we get

p(B) :  I  hd l . : l imn- r .  [ ,q , td ] . :1 .
It follows that p is a probability on I .

By (1) , (2) and (8) we have h-t , h < A/3 ; then by integlating the last
inequalities with respect to l, on arbitrary E e I , '\.^/e conclude that pL = )".

Lemma 3. The probability pr on I defined bV (7) is the unique one
absolutely continuous with respect to l, which is preserved by 7.

Proof. Assume for a contradition that iii exists a probability I on
I, fi * p ,'E u I which is preserved by T. Letd. Ae tig its ]" - density. Then
&"e L- and satisfies equation (3).

Let fi be the sign measure on I defined as fi: p - [ ancl let fi:
0- - 0- be the Jordan decomposition of fi .We claim that as fi, also fi* and ii
are absolutely corltinuous with respect to l" .Indeed , if Ne I is such that
l .(N):0, then Jr &rdl": J* dAi,:0 , hence p(N): frN):0 , so that
0.N) :0- (X) :  O.

Since UV t4] Proposition l, T is ergodic with respect to l" it results
that it is ergodic with respect to p* (resp it-) too.

For any g e L' we denoteg (l) : nrzlx t g(t), 0 ) anc'l.q-(l) ==

max (-g(r) ,0), teB, the nonnegative and nonpositive parts of .g . We denote
B* and.B-the sets of a Hahn decomposition of B with respect to 0 .

o Assume that 0 < fi( B- ) < 1.The real function on B defined as

&":&- d satisfies (3). It is immediate that the equality A&: d implies l&,*
: &,* a.s. in B* (and resp A&- : &- a.s. in B-). Integrating this equality with

respect to l" on B* (resp on B- ) we see that B* (resp B- ) is a set invariant to I

with respect to irn (resp 0- ). Unaer our assumptions on 0 tf ) this
contradicts the fact that 7 is ergodic with respect to 0' (resp fi- ).fhis in tr-rrn
contradicts its ergodicity with respect to fi .

A s s u m e t h a t f i ( B - ) : 0 . T h e n p L ( V ) > 0 ,  V e I  ( 9 )

B

'  : i l .  .:; ." .,. .. '  .:, ' .;



Let W eI be such that 0 . fi (W ) < 1 .Then denoting W' the cotnpietnent

of W in B,we have 0 tW')< 0 and this contradicts (9) .Hence in (9) only

equality can hold and this contradicts the assumption [+ pt '

Similarly AS proves that the assumption 0 (4. ) : 0 leads to a

contradiction, too.
Assume that f i  (B ) :  l .Then since 0 tr-) :0(8. )-1 has to be

nonnegative only i, (n. ) : 0 in the last equality is possible and this leads to

a contradiction by the above alineatfl' I

One can observe that the proofs of Propositions Al and 2 beiow

and of ffl propositions A1 and ,{3 used in this section are simple in the

sense rp".in.A in Section 1. Then also the proofs of propositions ltom this

section are simple in the same sense.

we note that propositions 2 and 3 can be proved in weaker

assumptions using another approach but much longer prelirninaries are

necessary and the proof is no more simple ( see Ii. Schweiger Tire Metrical

Theory of Jacobi-Perron Algorithrn LNM 334 Springer Verlag 1973 )'

3.The ergodic behaviour of Perron * Frobenius operator

A on g(ef ) and on Vt"Z().

We begin this section with Theorem '4 by which one proves in fact

that the operator,4 is ergodic with respect to V ' Then we consider the more

general Perron - Frobenius operat o, i of I under an arbitrarily probability l"

equivalent to l, and we prove the Kuzmin type Theorems 6 and 7 '

Using that [tll Theorem 6 extends to operator .zl on ?' and on g

under the assumptions fi'om this paper at the end also prove Theorern 8'

We record that by assumptions from previous section , conditions

(A),...,(F) are supposed to hold.

Theorem 4. For any functronf belonging to V one has

l A , f - h f f d ? , " l  + o a s r - ) c o ( 1 )

P r o o f . . . F i x a r b i t r a r y f u n c t i o n f b e l o n g i n g t o % A p p l y i n g
propositi on A2*. 

"diidtfidethat 
there exists a sr-rbsequ ence (A," f)," where

{,, \cN (clepending on/) and a function o:o{ ()(/.): oQl 11 e %, for r,vhich

I A,.'f - o{o I -+ 0 asr'-) a (2)



Parallehzing the argument used in the proof of Proposition 1 (in fact simply
replacing with Aof ,resp hlfd\ the functions A,f , resp h ) to derive starting
with relation (2.4) relation (2.6) one obtains from preceeding fbrrnula

I A,f -.{o I -+ 0
Hence (A,f),.* converges in the norrn | ' I to 6 .

as r*) co , re N (3)

Parallelizing the argument used to sirorv ir-r the trrentioned proof
starting with (2.6) that Ah : h ,one obtains starting rvith (3 ) that A aey' o: ca/g,

Hence [6] Proposition 2 applies to eols : alls (,f ); *. can conclude that

there exist [ € C such that 6,/ o: \ h a.s. (actually the equality holds

everywhere in the present case).
Integrating this equality with respect to )" on B we obtain

E: I t h d]," : I e;t/ sd],".
BV (3) we know that the punctual convergence

. A
./ fT

,4

lim"Af : oilo as n -) co , ne lrl

holds and is uniform on every cell. Integrating (a) with respect
get

I g/odl.: lim,[,arfd],: Ifdr\
Hence E: If dLandthen

ailo: h IfdX
The relation (1) follows bV (3) and (5). I

Justified bV (5) we define the linear bounded operator A- as
A-f : :  h I fdL, / ' .  L '

(4)
t o l " o n B w e

(5)

(6)

Remark. Theorem 4 can be restated.as : The operator A is ergodic

with respect to V and its iimit in the norm | ' I is given bV (6).

On account of the fact that the proof of Proposition A2 below and

that of [6] Proposition 2 arc simple in the sense precized in Section 1 it is

seen that so is also the proof of the iast theorem.

We record that we denoted t an arbitrarily fixecl probability cn !
equivalent to l, ; let & ::dild)".Then there is a constant 1/4 > 1 such that 0 ,
&-' < ryo , ?.S. . In all next propositions we shall assume at least that d,
belongs to V; then the last wri t ten inequal i ty holds everywhet 'e.

We denote I the Perron - Frobenius operator associated to I

under t .Th.n we have
A'y-- 1,t';&yta , rc  N / -  c l  r r l

) J  - " l s (7)

We observe that l" ='i, imPlies I'i' : L' .
We denotg 6 the 1, density of F , i : dp/cii..

By the Radon-Nykodim theorem we have 6: h|6.. Hence ess inf e > 0.

1 0



Sincef;, belongs to V (11) applies so that

( resp%).Then a functionf e I

(B)

Lemma 5. Assume that & eZ
(resp ?) satisfies functional equation

Af: f
if and only if f equals 6

Proof. Because of (7) equation (8) is equivalent with A/0":/0. and

rg)\ -  , /

theorem in the

multiplied by a constant (complex in general).

bV [6] Proposition2' this equality implies.f&:Eh with a 6.C. Since
inf & > 0 and &,eZ (respV) alsof: \hl& eg(respT). Hence/: a €.

The converse is obvious and we omit the proof. n
Motivated by formulas (6) and (7) we introduce the linear bounded

operator A* onZr defined as
^ \ /

A-f : (A*fe,)l A
It is easely seen that AA*: A*A: Aq (extension of Kuzmin's
n o r r n l . l ) J

, , 4 - _ _

Theorem 6). Arru-e that i e ?. Then there exists a positive

constant0< l suchthat

l A ' - e J . d l "  l : o ( o ' )  , n ) L

Proof. Fix arbitrary function f belonging to %'' . By Theorem 4

there exists a subsequ ence (A''f),,where { "'}. 
N, of (A''-f),.N (depending on

/) such that

I  A'f  -  h [ fd^,|  -+ o aS r ' -+ .o  ,  {  r ' }C  N ( i 0 )

deriveParallelizing the argument used in the proof of Proposition I to
starting with relation (2.4) relation (2.6) we obtain starting with ( 10)

I A'f - h[fd)" | -+ 0 as/'*) * ,{rftN ( i r )  / r  \ t "
For any r 2 I we can write

I  A ' f  -a t fd l l  : l (A ' f  & " -h l fdb&- ' l<  lA ' - fA -h [ f  & "dx l I , {  4

1 1

I I

I A'f - alfdi'l -+ o a s r - ) o C r , f e  N (r2)



By (2.1) and by its very definition A*' is a bouncled operator on F ; then
(12) implies that A is aperiodic with respect to %'.

It is well known (see e.g.[I]  Lernma 3.1.19 ) that i f  Uis a l inear
bounded operator aperiodic with respect to a Banach space en ,lll.ll I )
then there exists a positive constant q < I such that

l l l  r/- tr i l  I  :  o(q') ,s e N (13)
where (./':: lim, t/ as ,s-+ co in the norm lll.ll I

Applying this result b A on V , by (13) the stated assefiion
fol lows.;

Theorem 7.(extension of I(uzmin's theorem in the norm lll.lll ) .
Assume that d,e I .Thenthere exists a positive constant 0< 1 such that

lll A' - a [.at n : o (0 '') as r-> oo.

Proof. Let vbe the linear boundecl operator on Ir det-rned as
vf: (A - A* V . One has then vi.f: l7- alfaft,, j > I (see (9)).

Fix arbitrary f  e Z and We &f ; let u,t ' r€W , u * w. By (12) we
have

#- | ur f(*) - v' .ffti l-+ c as/->co ( l4).
llr'-tr ll 

.J^*
Therefore given any e > 0 there exists,ro(e):/e SUCh thatj 2.1s the quantity

in the left side of (1a) is dominated by e . Tiren, s(v 'f ;W ) 3 e,i >7s . This
implies limy-"" s1v if ;W ) < e. Since e is arbitrary we also have
lim;*. s(v rf ;W ): 0. Hence the relation

s ( v ' f ) - + 0  , a s r - > q o  ( 1 5 )

also holds . Having in view (12) and (15) we obtain
l l l  A ' f -a  t  fdL i l  : l  v ' f l+s(v  ' - f  

) -+0 asn-+@.
Therefore A is aperiodic with respect to I .The assertion stated results by
applying (13) once more. n

We note that the proof of p,] Proposition 3. 1 . 19 is a simple one in
the sense specified in Section 1. Then so are also the last two proofs.

T2



In the next statement we employ standard notions of ergodic
theory (see [[,] as basic reference or see t4] ). In the sequel { stands for
either the space Vor I in the assertions valid for each of these spaces.

By Lemma 5, when 6t eU, I is an eigenvalue of operator A on A .
We denote 6(o; g) : {f e U ; Af:o/} for any o eC ; hence ff (o; g/ )
is the subspace of proper functions corresponding to the eigenvalue o of A
o n g .

Theorem 8. Assume that d, b.lotrgs to ?(resp g). Then I is weak
-mixing with respect to ?(resp g).If &e 9, then 6(1, V ) : 6(1, g).

Proof. Since by Lernma 5 dirn V (I, 8/): 1 , the rnultiplicity of the
eigenvalue I is 1. To prove that A is weak-mixing with respect to 8/
amounts now to prove the fact that 1 is the unique eigenvalue with modulus
I of A considered on A.

We record that bV [{] Theorem 6 we proved that A is weak-mixing
with respect to Y@7A.We observe that the proof is valid uncharrged under
our assumptions, that is with condition (F) replacing (F)', for I witir domain
either W or 9. Thus it results thatA is weak-mixing with respectto $.

The complex number o is an eigenvalue of A on & when and
on lywhenthere  ex is t  <p  eT i (c ;  g ) ,q+0 e  & suchtha t  A ,p :  o 'cp . ' l ' h is
equality is equivalent with A<p&: o.g6.; Since I is weak-mixing with respect / i

to  U,6*  l  when q*0  e  A  in the  las tequzr l i t y is  imposs ib le .  Hence
w h e n o ; r  1 , 6 ( o ; g ) : { 0 } .

Assnme that & e Z; therr i e 9l .l-et rp e tI (l ; ?i" ). By Lemrna 5,

A : d,€ fora€ € C, hence rp e9. Whence tr (t;  V ) . Vi (t;  I  ).T'he
opposite inclusion also holds since I c. V . Therefore the stated equality
follows. r

Appendix. Throughout the
conditions (A),...,(F) hold.

Proposition A1. The operatorl applies the space ?'(resp 9) into

itself. If cp e 9,then

s(A''rp ) < t( (p )N2 AI3 + ltpl N'

Appendix we assLlrne that all

1 3
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Proof. Clearly conditions delimiting the class of fibred systems
we deal with in this paper is different from that used in t{] only by

condition (F).
a. The proof of [4] Proposition A1 remains valid when condition

(F) replaces (F)' because in its proof condition (F)' intervenes only once,
namely to write relation (AZ) and there only its weaker from coinciding with
condition (F) is in fact written . Hence also the Remark to [6] Proposition
A1 remains valid.

b. In the proof of [6] Proposition 3 condition (F)' is applied only

to find a superior bound to the sum denoted there ll.Condition (F) is

condition (F)' where 6(n) is relaxed to 1 . If in the bound of Ztwe replace '

6(z) by I inequality (3.8) from ftl becomes

l A " q ( w ) - A ' q @ ) l  <  l l ,  - " l l ( s ( q ) N r 1 V 3 + l q l  N ' )  ,  z e N  , Q  € 2 ,

for any w,u eW , zfly W ee% . The stated inequality follows.

The Lipschitz continuity of (A'q)l-l$\*also holds ; since W was .i\-

arbitrary from & , A'q e9 follows.
Using (2.t) the inequalitY

lll A'q(*) - A"e@) lll < t( q F/, N: + lcp | (ln + 16 )
immediately follows from the definition of the norrn lll ' lll .

We record that the operator A, is defined bV Q.2).

Proposition A2. Letf e 9(resp V) . The sequence { A,.f },,0
contains a subsequence which converges in the norm | ' I to a function

belonging to 9(resp V) .
Proof. Fix / e I . Ptoposition A1 implies that { A, f }".N is

bounded in the nonn lll lll . Hence Af e I follows from [6] Proposition ,{3

whose proof is valid unchanged under present assumptions.
Now assume thatf is a real function belonging to V . We denoted

in [6] the continuous extension to H, of ( A'f)i : ( A;fl| Hi by (W)i ,
re N ,7 : 1,..,y'(where y' : W e). By the Remark to [6] Proposition A1

the sequence of functions (A'f)i,r2L^is equicontinuous for eachi:I,.,T",

this implies that also the sequence (,{hJ , r } | is equicontinuoust i 3 y' .

lt By (2.1) the/e sequences are equally bounded in the norm | | ; hence

theorem Arzeld- Ascoli can be applied.
The proof continues with successive selections of converging

subsequences like the proof of t{l Proposition ,{3 which deals with the

(more general) sequence denoted there {[,],.t .

i  b ,
v  - - ! l

' t /  
i

, 4  t  A ' : t  t i/ \

T4
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The extension to complex functions/ is clear and we omit it.
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