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ON THE STATISTICS OF THE FIRST EXIT TIME IN THE PERIODIC
TWO-DIMENSIONAL LORENTZ GAS

FLORIN P. BOCA, RADU N. GOLOGAN AND ALEXANDRU ZAHARESCU

ABSTRACT. We consider a billiard in the punctured torus obtained by removing a cross-shaped
pocket from T?, with the trajectory starting from the center of the puncture. In this case the
phase space is given by the initial velocity w of the particle. Let 7(w), and respectively re(w),
denote the first exit time (length of the trajectory), and respectively the number of collisions
with the side cushions when T? is identified with [0,1). We prove that the probability measures
associated with the random variables e7. and er. are convergent as € “\, 0, providing explicit

formulas for the limits.

1. INTRODUCTION AND MAIN RESULTS

Various ergodic and statistical properties of the periodic Lorentz gas were studied during the
last decades (see [20], [1], [6], [7], [8], (9], [17], [12], [10], [11], [14], [15], [13], [5] for a non-exhaustive
list of references). In the case of uniformly distributed circular obstacles of radius 0 < € < % in

R?, one considers the region
Z, = {z € R?; dist(z,Z%) > ¢}
and the first exit time (sometimes called free path length)
7. (z,w) = inf{r > 0; z +7w € 0Z;}, TEY = ZE/ZZ, we T.

Equivalently, one can consider the free motion of a point-like particle in the billiard table ¥,
obtained by removing pockets of the form of quarters of a circle of radius €. If we identify
T? = R?/7? with [0, 1)2, then Y. can be regarded as a punctured two-torus. The reflection in the
side cushions of the table is specular and the trajectory between two such reflections is rectilinear.
Assume that the particle has constant speed, say equal to 1, and leaves the table when it reaches
one of the four pockets. In this setting 7.(z,w) coincides with the exit time from the table (or
equivalently the length of the trajectory) in the case where the initial position is = € Y. and the

initial velocity is w € T. The average

I = / / () dve (2, )
T
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2

of the exit time 7. (which is a Borel function, possibly unbounded) over the phase space o =
{(z,w) € 0¥ x T; w-n(z) > 0}, where n(z) is the inward unit normal at z € dY; and v, the

Liouville measure on £, was evaluated by Chernov in [10] (see also [11], [15]). It was found that

_ n|Ye] _ (1 —me?) 1-me® 1 L0,

Y| ome 2 2e

le

o

It is natural to replace the phase space (37, ve) by its suspension (Yz x T, u1¢), where dpe (B =

’—gff&ﬁi', and to study the distribution of 7, defined by

Pe(t) = // X[tm)(n(az,w)) dpe (z,w) = pe({(z,w) € Ye x T; Te(zyw) > t}).

YexT |
|
As proved by Bourgain, Golse and Wennberg [5], there are constants C1,Cq ‘> 0 such that

(L.1) G962

Co
g €

Lo

€
as € \, 0. In this paper we shall replace the circular obstacles of radius € by small crosses
C. = [—€,¢€] x {0} U {0} x [~¢,¢], situated at all integer lattice points with the exception of the
origin. Thus the billiard table T? is obtained from the unit square [0, 1]? by removing pockets
of length € > 0 from each corner. We shall only consider the case where the trajectory starts at
O = (0,0) with initial velocity w € [0,7] and exit time (length of the trajectory) 7e(w), and we

shall average over w only. In this situation we will give very precise estimates about the average

€ g
,,,,,, o

€ - ~ag e
o T
Q\\ /,/
o~ o

€ .- Jw T~ e

(e} T

FIGURE 1. The billiard in T?

over w of the exit time and of the number of collisions of the particle with the side cushions.
In contrast with the techniques employed to estimate the position-velocity average of the exit
time, which are of geometric nature, our computations build on results and ideas concerning the
distribution of consecutive Farey fractions ([2],[3]). They ultimately rely on estimates ([16],[19])
of Weil type ([21]) for Kloosterman sums with non-prime modulus. The related problem of



evaluating the moments
/2
s = / 7o (w)" dw, r >0,
0

was raised by Ya. G. Sinai in the case of circular obstacles in a seminar at the Moskow University
in 1981. An answer for the model of cross-shaped obstacles described above was given in [4],

where it was proved that

B
(1.2) /ﬁ(w)r dw = crape " + Or,g(e_’u’%_‘s), Vr >0, V6 >0,
with
B
. 12D, / dw
e T T cos” w
(6%
and
= 1-5+n2 1-5 +1—2,.—1+r 1 i(—1)k~1(k:~1)(rgl)
" r(r+1) r2 (r+12 r(r+1) P k2k ’

In particular this formula shows that the mean of the first exit time is

w/2
6In2In(2 2 5 742792
/ Te(w) dw = I n(2 +v2) +0s(e757%) ~ u
e €
0
Since all the probability measures fiq,8,, defined by
q B
hasel§) = 5= [ PRt o, J € Culf0,000),
a

have the support included into a common compact (cf. Lemma 2.1), the equality (1.2) implies
that the measures pq g . converge weakly to a probability measure fiq g with compact support on
[0,00) as € N\, 0. Although the moments of pq p are recovered by

B

/wr dpto,p(W) = Crap, r >0,

(87
it is not obvious how to compute explicitly the density of fio,3. In this paper we give a direct
proof for this convergence. Besides, the method employed here leads to the computation of the
probability measure pq g in closed form. To state the main result, we consider the repartition
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function Fy g of page defined by

B
1 . [{w € o, B]; eTe(w) < 1}
Fopelt) = nage10) = 5= [ Xoa (7)) dw = i .
6]
We also consider the function
1—s S
(1.3) P(s) = . (1+ln1_8>,

and prove

Theorem 1.1. For every 0 < a < B < % and everyt 2 0, the limit Fy p(t) = ell\r‘r(l) Fop(t) exists.

Moreover,
tcosa
(B — a)tcosf +/(arccos% — ) ds = t(sin§ — sinc) if t € [0, 70—,
tcos B
1/2 tcos o
(B — a)tcosf +/(arccos% —a)ds +/7,b(s)(arccos $~a)ds
tcos B 1/2
tcosa
:tsinﬁ—%%—%arccos?—t—%\/ —I—/w (arccos § — a)ds
9 1/2
Fo gl = s if ¢ € [3eo5a TeosB)
Fg(ﬁ_ a) tcos B tcos « “ ”
5= (34 [ ) + [ ameeost ~@)ds it 1€ [y
142 fc;)s,[i
tcos B
(B - )(2—{—/1/1 > /¢ arccos;—a)ds ift e [cosa’colsﬂ]
tcosf
i—a( /1/1 ) ifte[ﬁ,oo).
1/2

According to Lemma 2.1 we have sup Te(w) < \/ﬁ[—;—] < Y2 Hence all functions Fope: and
w

thus their limit F, 3, are constant on the interval [\/5, 00), and this constant is equal to 1. As a

w2 1
/”} s=13 73"

1/2

result we gather

With the change of variable = = z we get the following amusing



Inz 72
.2, ——dz = — —In2.
Corollary 1.2 /x(l o)’ dz 3 In
1

The continuous function Fy g represents the repartition function of an absolutely continuous

probability measure j, g supported on [0, COSB] with density fo 3. That is, Fi, g(t ffa,ﬂ

From Theorem 1.1 we infer by a direct computation

Corollary 1.3. The probability measures piqp,. converge weakly to a probability measure jiq g as

e\, 0. Moreover, uqp has compact support and is absolutely continuous, with density

2

sin 8 — sin e [0gsls

arccos 1/(2t)

sin 8 — V4t2 L.y /wtCOSt)cowrdr 1fz‘e[z(ow,2mgd

/o)
/1/1(tcosm)cosxda: ifte [QCOS,B’CO;&]

«
8

P (t cosx)cos z dx ift € [(Ow (oiﬂ}

arccos 1/t
0 1f7‘€[mqﬂ,oo)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 Qw2
0.25 0.5 0.75 1 1.25 1.5 1.75 0.5 1 1.5 2

FIGURE 2. The repartition function F07% and the density function fog

The average of the number of collisions r¢(w) of the particle with the side cushions was also

estimated in [4], where it was proved that
3
/ ro(w)de = cape™t + Os(e870), V6 >0,

[e3



1.2

1 1
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0.6 0.6

0.4 0.4
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0.25 0.5 0.75 1 1.28 1.5 0.25 0.5 0.75 1 1425 Led

FIGURE 3. The repartition function Fo = and the density function fo,—g

0.25 0.5 0.78 1 1:25 15

FIGURE 4. The repartition function Fz = and the density function f

L
674 64

as € N\ 0, where

cos 3

6(8—a+1In COSO‘) In2
Ca,p — 2 .
As in the case of the length function, we shall consider the probability measures v4, g on [0, 00)
defined by

B

/ 1 (ere(w))dw,

a D
«

1
LQLﬁﬁ(f)'_ B

with repartition function

Gope(t) = Vape([0,4]) = 1o € [a,[;] ;f:j(“’) S e 10,00).

In this case we prove
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Theorem 1.4. For every 0 < a < B < § and every ¢ > 0, the limit Gap(t) = li\;r(l)Ga’ﬂ,g(t)
£

exists. Moreover,

B
in B .
L(p-atmiimt) g [t e fo begee],
(07
—at(1-t) arc;an(2t—1)+tﬁ g % .In ((sinﬁ + cos B) /1—_22512&_%_2 >
t
14-tan o
+ /z,b(s) (arctan(2 — 1) — a) ds if ¢ € [HHtana, H—L;”ﬁ],
1/2
o t ot
1+tan 1+tan o 1+tan o
et / P(s)ds — / P(s)ds + /w(s)arctan(g —1)ds
1/2 1/2 -
if t €[l +tana, 1+ tanp],
1+ttamﬁ 1
ﬁ <+ /1/) ds—a/z/) s)ds + /w(s)arctan(g— 1)ds
1/2 1/2 1+tl:'1n[3

if t € [1+tana,1+ tanp],

ﬁ—a( /1/1 > if t € [1 4 tanf,00) .

1/2
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Corollary 1.5. The probability measures Vo, g,c CONVETGE weakly to a probability measure Vo, g aS

e\, 0. Moreover, vap has compact support and is absolutely continuous, with density given by

(B
d 3 14+tan o
/1+t:nx ift € [0’ 2 ]7
(6%
8 arctan(?t—l)( )
&
d Y\ izanz : l4tane 1+tan8
/ 1+t§nm + / H:;nz ifte [ 2 0 2 ]7
(t) 12 ar;tan(2t~1) «
9a,8\l) = 57—~ (=t
-« an L 1+tan B
7o) | [l e ree (22,
«
/ wd’v if t € [1 +tana, 1+ tan ]
14+tan x - ’ )
arctan(t—1)
\O if £ € [1 + tan 3, 00).
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
T . 0.5 1 1.5 2 0.5 1 1.5 2

FIGURE 5. The repartition function Go,% and the density function go =

It is easy to see that the use of small diamonds |z — m| + |y — n| < € centered at lattice
points (m,n) does not change anything significant in Theorems 1.1 and 1.4, or in their corollaries.
However, the problem becomes more complicated in the case where the disks (z—m)2+(y—n)? <
€2 are the obstacles.

It would also be interesting to study whether the probability measures fie considered in [5] have
a weak limit as e \, 0, sharpening (1.1). If this is the case, then the limit cannot have compact
support, as it happens in the case when the initial position is O and one only averages over the
initial velocity. Another interesting problem is the study of the distribution of the average over w
of 7(xy,w) when 2 is a particular point in [0, 1)2. The latter seems to. be related to (seemingly

non-trivial) inhomogeneous Diophantine approximation topics.



2. FORMULAS FOR SECTORS ENDING AT FAREY POINTS

For each integer @ > 1, let Fg denote the set of Farey fractions of order @, i.e. irreducible
rational numbers in the interval (0,1] with denominator < Q. It is well known that if % < ‘;—: are

consecutive elements in Fg, then

dg—ad =1 and q+¢ >Q.
Conversely, if ¢,¢' € {1,...,Q}, ¢+ ¢ > Q and a'g — ag’ = 1 for some a € {1,...,q — 1} and
o' €{1,...,4 — 1}, then —Z— < —‘(—;; are consecutive elements in Fg (see for instance [18]). We keep
throughout the paper 0 < a<f <7, t>0and 0 <e < % fixed, and set

1 1
Q= [—} = the integer part of —.

€ g
A key remark whose proof relies on the basic properties of Farey fractions is that every line of

slope between 0 and 1 which pass through O will necessarily intersect the set
C. = Ce +{(q,0); a/q € Fq},

which consists in

Q 30?
No=#Fq =) pln) =3 +0(QInQ)

=1

obstacles identical to C., distributed at the points (g, a), with % € Fg. More precisely, we prove

Lemma 2.1. For any w € (O, ﬂ we have
{Dw; A >0}NC: #0.

Proof. Let tp denote the slope of the line OP. We use the inequalities ¢ + g >Q+1> % >

() > max(q,q’) to infer

a —¢ a+e a
/ < tN = S t/l/ = VR

q q q

¢,a), N = (g,a+e), N' = (¢, d'+e), S = (¢,a—¢),-8" = (¢'a'—¢),
). This clearly shows that any line of slope w that passes through

Xtgr=

thg =

e

where we set A = (g,a), A’ =

W = ((1——53(1’)7 WI - (q/*€,
O will necessarily intersect C.. Thus every trajectory will end near a point (q,a) with % € Fo.
O

S

Moreover, this point is uniquely determined by w.

Remark. We have actually shown that the intervals I, = [9;—5, %ﬁ], v = g— € Fo, cover
the interval [0, 1], and that I, and I, are disjoint if and only if v and ' are consecutive in F.

Moreover, in this case we have

I,NI, = [tf’aanJ - [E 0’_/}

7 ' q q q
For each w € (0, %], we put l,. = (q,a) if the half-line R, w first intersects C¢ + (q,a) among
the components of C.. We need a few more things about consecutive Farey fractions. Suppose



10

\VAR N
Ny (a+ &)3)
0 2 q
S’
N I
aq
323 Yo @ -
s . <
S
——
O
FIGURE 6. The case ¢ < ¢
N
% g, =20
S 0 9 3
W A 1 N
S’(Q» '——(a’_ Qq )
S AO q7
N
-
w A s
W | A
S’ /
S
0 o) .

FIGURE 7. The case ¢ > ¢ and tg < tyy, respectively ¢ > ¢' and tgr > tw

that % & % < g—:: are three consecutive fractions in Fg. Then the relation aq' —a'q = 1 gives
¢' = a (mod q), where a denotes the multiplicative inverse of a (mod q). Since ¢' € (Q — ¢,Q),
then ¢ — @ is the unique multiple of ¢ in the interval (Q —¢ —a,Q — a). Hence ¢ —a = q[Q;&},

and therefore

—a
(2.1) g = q{ +a.
q |
Employing a’q — ag” = 1 and ¢" € (Q — ¢,Q], we arrive in a similar way at
ploymg
(2.2) q":q{Qﬂl ~ 8.
q |

Taking into account (2.1) and (2.2), we see that
¢>q = a<Q—q



1.1

and

¢">q = a>2-Q,

whence

Lemma 2.2. min(¢,q") >q <= Q@—-q¢>a>2q-Q.
¢ <q<q’ < a>max(2¢-Q,Q—-qg+1)
¢ <q<q & a<min2¢-Q-1,Q-¢).
g >max(q,q") <= 2¢-Q>a>Q—q.

We denote by wy,q the angle determined by the trajectories which end near the lattice point

(¢,a). that is
weo = {w € (0,7/4); lue = (3, 0)}]-
We also consider

Saplt g) = Z elgy. i

a/gEFoN[tan a,tan f
> +a’<t?Q?

The proof of Lemma 2.1 and the triangle inequality show that
(2.3) Sap(t — et — 2, ) <(B—a)Fape(t) < Sa,/g(t + et + 2e,¢).

To evaluate the sum S, 5(t,€) we first need to estimate wg,q in each of the four situations from

Lemma 2.2. First we analyze the cases -1V making use of the formulas

h :
arctan(z + h) — arctan a2 + O(h?)

h .
=+ 0, 5 O
1+ (z + h)? +0(h?), z€l0,1] and h > 0 small,
1 1 1 ;
5:*+0<_>=—+()527

and of the inequalities (¢ + ¢')e > (Q +1)e > 1 and (¢ + q"e > 1.
Case I: min(¢’,q¢") > q.

. . ! -
In this case “= < %5 and “7= < (i;'—g, thus

2e
a+e a—¢€ ry 2
Wq,e = arctan — arctan = i +0 (8—2>
q q 1+ (%%) q
2eq g

2 2
2eq ea € \

=40 = — +0 " e s
¢* + (a —¢)? ((12> q* + a? <6q @+a) @)

2eq g 2q &
= _40|= )= +0(— |
¢’ + a? (q2> Q(g? + a?) ( q
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A A
(q" "_ 8) ( 1" u )
(@, at+e), -7 (q, ate), -7
: (q,f), T /(q",a’- €) 4 y (q,)
" (q’a' 8)
(9, a- €) 7 @.a’+e)
O @)

FIGURE 8. Cases I and II respectively

Case IL: ¢’ < g < ¢".

In this case “£ < ‘“’E <e<EFEL< ate. With h = e -4 o

1—e(g—9¢")

+e a +e S 1—elg—q)\°
Wy,a = arctan a4 — arctan —— = o s+0 (__ﬁl._q_)>
q ¢ 1+ (W) 9

1—e(g—¢ g 1—elg—¢ ga g2
:qI(Q (g q)2)+072 :(J(IQ(Q 2<1))+O<_q7_ fa e
q'(¢* + (a+¢€)?) q q'(q* + a?) ¢ (¢#+a°)° ¢
Smco q > q dIld q+q > Q, we have g > Q. Hence the error in the formula for wg, above is

L = q /2 << ,2 < £ 77 and we find

—q 2. 1
y :q(l‘ﬁ(q-q’))JrO e :q(l‘q‘c;q_) i 2 @ €
g,a (]’((12 + a2) q/2 q/(qz +a,2) q/q2 q/2
_ / 2
_ @ 2q+%)+0 ey
Qq'(¢* + a?) 7
Since ¢’ = a (mod ¢) and ¢’ < g, we have ¢ = a, and so

_q@Q-q+a) e?
“e0 = Qalq? + a?) " O(?)

Case IIIL: ¢ >q>q

In this case ¢" = q — a. Moreover, we have 9—5 2 & +€ < 3 =, 9% As a result, we may

take h = %n = 026 l—%’——), gathering
n_ g g—e e 22
Wq,a = arctan — arctan o) a9 3 + O (_H_2_>
q q 1+ (<) q

_ 4@ -a) &
Qg —a)(¢? + a?) * O<q”>'



| )
(g,ate) @,ate)
P @, a'te) h
g (4,3)_ -~ e (q,a)
(q"la”_ 8? - - (q’"a’"— 8) & ’/\/)‘
(g, - €) (@, a- €)
(q,a’+e)
0 T« g
FI1GURE 9. Cases III and IV respectively
Case IV: ¢ > max(q¢’,q").
In this case ¢ < % <4< “—,;%E < “T”, and we gather
a’ —¢ a +e
Wq,o = arctan — arctan = w,(]’lg + wg?g,
with
l—eq 2
CL” — €& a 77 ]_ — € _
wf]]g = arctan — — — arctan — = 9 el ”q = —%L)Q— +
‘ q ¢ 1+% aq Qq"(¢* +a?)
1—eq
a a +e¢ o 1—¢ -
wﬁ = arctan — — arctan —— = o =+ 0 < ”q = _q,(QT%
’ q q 1+% qq Qd'(¢* + a?)

Since in this case ¢ = ¢ — @ and ¢’ = a, we arrive at

- q(Q — q) q(@ —q) of 1 1
“ie = D@ ) T QalE ad) O <€ (q/ " q"> )
- qz(Q*Q) 2 l i
= 0@ +aalg—a T ° (5 <q’ - q>> ‘

13

52
(@)

o2)

3. THE EXISTENCE AND COMPUTATION OF THE REPARTITION FUNCTIONS [ 3 AND Ga g

To estimate the sum Sy g(t,€) we utilize
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Lemma 3.1. Let ¢ > 1 be an integer and let ,J C R be intervals of length lesser than q. Let
f:IxJ—=Rbea C! function, and let T > 1 and § > 0. Then

> st =22 [[ sy dnay

a€Z,beJ
ab=1 (mod q) St

1 5 TIPS oo
+05(T2q%+‘5|\f||oo+Tq3+5an||oo+U—‘:ﬁ—&),

where ||+ Jloo = || - lloo,zx7-

Proof. By [3, Lemma1.7]) we have
(3.1 Moz, 2) = B2 121171+ 034,

where N, (Z,J) denotes the number of pairs of integers (z,y) € Z x J for which zy =1 (mod q).
We partition the intervals Z and J respectively into T intervals Zy,...,Zr and J1,...,Jr, of

equal length ‘—;—[ and respectively |7i We wish to approximate f(z,y) by a constant whenever

(z,y) € Z; x J;. For, we choose for each pair of indices (i, j) two points z; ; € Z; and y; ; € J; for

which

(3:2) // Pz y) do dy = [T | T3 (@50 vi)-

IiX.jj
We have
a0 (L.
F@,y) = F(@i5,90) + O (& 1Dl

whenever (z,y) € Z; x Jj, which gives in turn

,
o fa=Y Y f@y)

acT bed i,j=1 (z,y)€L; xJ;
(3.3) ab=1(mod q) zy=1(mod q)
T q T
= 3 No(T T @iy i) + O(f 3 Nm;,f_j)rﬂfuoo).

Since |Z;],|7;| < g, the estimate (3.1) applies to the intervals Z; and Jj, providing

(3:4) N(L;, Ty) = %(31 T T3] + Os(q3 ).



As a result of (3.4) and (3.2), the expression in (3.3) becomes

T
S No(Ti T (129i) + 05 (1702 [ flloo)

i,j=1
T
¥ 05(% > (? T 14 +q%+5) an||00>

17]:1

T
= 57 N(Zi, T f (i i) + 05 (T2 *°| flloo)

w&((so_(%\m +Tq%+«s)|wfnoo)

T
:%_2:: //f:z:ydxdy+05( qﬁéHfH )

I; xJ;

+05<(‘I'1’7’ + 74 ) 1011 )

=29 [] fay)daay + 0y (Tzq%”nfuoo " (%ﬂ " Tq3”> HDfHoo>-
IxJ

If we put I = [gtan a.gtanB] N[0, /12Q? — ¢], then

[q tan a, ¢ tan f] if ¢ € [1,tQ cos f],
I= [qtana,\/tZQQ—qQ] if g € [tQ cos f3,tQ cos a,
0 if ¢ € [tQ cos a, 00).

We also set
L =[1,g— 1N (—oo0,min(@—q+ 1,2 - Q)),

IQ = [17(]_ 1]ﬁ [m1n<Q_Q+la2q #‘Q)’maX(Q‘CLQq#Q# 1)}7
Iy =[l,q — 1] N (max(Q — ¢,2¢ — @ — 1),00) = ¢ — I,

, qF;(y)
f](xvy) = fj(Qaanay) = Wa where
—q+1
Rw=-2 veh  RE="TY yen,
3 Q-1 —
Fyy) = 2 =FR(g-y), yeL, Fy(y) = 4@ —a) y € Io.
g—y y(g —y)

Since Zq 1 ) < é the analysis of cases I-IV and Lemma 2.2 provide

St €) = S 5(t, £) + Sy (t,€) + ngﬁ(t,a)wgﬁ(t,a)+0(s),
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where we set

2q
I —
So,p(t:€) = Z Ol +a2) Z Z fi(a,b),
a/qeFoN[tan a,tan B] 1<g<Qmin(2/3,tcosa) a€l,bel>
q<2Q/3 ab=1 (mod q)
¢*>+a?<t?Q?
acls
I _ q(@-q+a) _
ST s(t,e) = S D " ¥, Y falab),
a/qEFgN[tan a,tan f] 1<g<Qmin(L,tcosa) a€l,bEI3
P+a?<t2Q? ab=1 (mod q)
acls

Stlxl,lﬁ(t’ e) = Z Q( ij_Qaz_)(a)_ a) - Z Z f3(a,b),
a/qeFoN[tan a,tan B q q 1<g<Qmin(l,tcosa) a€l,bel
P ta<t2Q? ab=1 (mod q)
acl

2(0) —
s = Y Ol 5 S fuland)

2 —
Q(q w i ) (q a) 20)/3<g<Q min(1,t cos c) a€l,bel
ab=1 (mod q)

0/qE€FoN[tan a,tan B]
g>2Q/3
P +a2<t2Q?
acls

Lemma 3.2. For every j € {1,2,3,4} we have

1
i ; L —
(i) Ifilloo 0a
(i) |[Pfilloe € =555 -
ISl € 5=y
Proof. (i) In case I it is clear that Fy(y) = 2.
In case IT we have y > @ — g, thus 0 < Q~yq_+y = F(y) < 2.

In case III we have y < 2¢ — Q. Hence Q —y < 2¢ — 2y and 0 < Fs3(y) =

||fi||oo<<Qq
In case IV we get 2¢ — Q >y > @ — q. Hence ¢ — il = g, and so Q — ¢ < min(y,q —y). If

then 0 < Fy(y) = 499 < € < 2. Ty < §, then 0 < Fiy(y) < *&2 <2, 50 [[Fylloo < 2.
29 __ 9 ‘

Hence ||f ch S @q— Q¢
(ii) In case II we have |Fy(y)| = %}—q < (g:qq)z < (Q?qfl)z < Q*iﬁ-l'
In case I we have ¢ —y > Q —q+1 and F3(y) = ((?_y‘)] < (Q?q‘fl)Z = ﬁ since g —y > Q —q.

Q—y
= < 2, s0

L=}

'1/>~

In case IV we get |Fy(y)| = ‘—Q q+ 2‘ < Q{qu))Q sincey > Q—g+landg—y > Q—q+1.
Summarizing, we collect
ofi| 2= i
%)= g 0 < gp
and
8fj q 1
oy | Q(g* +2?) W< o=+
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Hence
1 1

Qq2+Qq(Q—q+1) <<q2(Q—q+1)'

D fjlleo <
O

We shall next apply Lemma 3.1 to the functions f1, f2, f3, f1, to T = I and J one of the
intervals I, I, I3, and to T = Q% It is clear that |Z| and |J| are no greater than g. We first

employ Lemma 3.2 to estimate the error term, and note that

Q 9 @
1 I _1 1 1
T22q2+5||fj”oo<<azq 310 & T2Q) 2+ = Q=59

q=1 q=1
Q Q Saf Ll —146
3 q? q 2 q 2
TS Dl < TY mp i =T 2 g-gvi T 2 g qr1
=1 =117 (@-g+1) 1§q§Q/2Q_Q+1 Q/2<QSQQ_Q+1
< TQ M +TQ 3 1InQ < Q5 InQ,
Q@ 2
1 q 1 _l+5
— — 1 g =-h@QKQ .
L q; ¢?(@—g+1) T
So, if we set
B —« if ¢ € [1,tQ cos f],
L(q) =L(q,t) = / q—Q%LE_? dr = { arccos % —a if ¢ € [tQcos B, 1Q cos af,
0 if ¢ € [tQ cos a, 00),
—q+
H](Q):ZUQ':2/d% Hy(q) = /—Q—Uq—qdy,
[2 }'% '
Q) —1 dy " dy
() = [ ff; Ly~ Hole). Hila) =0(@~0 [ As=2e-a [
]1 ' }2 12
then
1 (g 1
Spltd=75 O 2D L) Hi(g) +05(@ 4,
1<g<Q min(2/3,t cos ) 1
1
o=y > S 1@m@ + 0@ )
1<g<Q min(1,tcos @) q
1 q 1
$iLe) = 5 P9 1 q) () + O5(Q577),
“ 1<g<Q min(1,tcos a) q
1 v(q) 1
v _ 5
Sesbe) = 5 > 2 L@ Hig) +0s(@Q 5 ).

2Q/3<g<Qmin(1,t cos )

If ¢ < % then I =I5 = 0§ so Hy(q) = Hy(q) =0, and Ip = [1,q — 1] thus H, (q) = 2(q — 2).
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IfQ%rl < g < z%ﬂ, then I; = [1,2¢ — Q) thus Hs(q) = 2(1—Q—1+(Q—q)ln%1_%7 snd

I, =[2¢ — Q,Q — q] thus Hi(q) = 2(2Q — 39)-
If QQ“ <qg< @ then ; =[1,Q-q+ 1] thus Ha(q) = Q—q—i—(Q—q)lnﬁq—@—l, and

I3 = (2q —Q—1,q— 1] thus Hy(q) = 2(Q —¢)In _c%_QJ-T Summarizing, we find for all § > 0

1 & plg) “lis
Sa,ﬁ(t,a:@Z—q—-Wq)w&(Q 519),
1

)
Il

where V (q) = V(g,t) = 2L(q)W (q) and we set
1—% 1f1<q<m1n<th0sa,Q+ ),
—1 499 .p &L fQ+1<q<m1n<thosa 2Q+1>,

if 29%1 < ¢ < Qmin(1,tcos ),

0 if ¢ > Qmin(1, ¢ cos ).

To estimate S, (¢, €) we shall employ [2, Lemma 2.3], which requires estimates for the supremum
and for the variation of V on [1,Q]. It is easy to see that ||L[loc < 1 and [W]leo < 1, thus

(3.6) [V]leo < 1.

To estimate the variation of V, we first write

Q

/IV )ldg < /w @ldg+ [ 1E(@W ()l dg

1
Q

<</i <\dq+/u: @ldg < 1+ [ W) da.

But we see that

(Q+1)/2 0
' +1
W(q)|dg =W (*5—) - W(1) <1
1
and by a direct computation
1
sup  |Wa)] < "2
>(Q+1)/2 @

Thus

Q
(3.7) /\V’(q)ldq<< 1+InQ < InQ,
1
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and we may apply [2, Lemma 2.3], employing (3.5), (3.6) and (3.7), to gather

o 6 7
Z‘i?— —2/v )dg + O(1n? Q).
q s
q=1 1
This leads immediately to
6 Q
(3.8) Sast:8) = 755 [ Via)da+ Ol ™),
1
Using now the inequalities
Q 1 7 Q
—q q q— — 9
O</ <1n -1 )d;/——ln(1+—>d<</——<<1
q Q-q Q-4a)" q —1)™ 1
Q/2 Q/2 Q/2

Q Q
Q—q< g—1 g-1 > dq
0</ —In diz | —=—dy &1,
q Q-q Q=g+l 1 Q—q 4
Q/2 Q/2

together with (3.8),(3.5) and fQ 49 — 1n Q, we arrive at

(3.9) Sa(tse) =—2Q/ g) dq + O(e5™),

where we set

1 if()gqngin(—%—,tcosa),
(3.10) Wi(q) = % L. % -In quq if % < q¢ < Qmin(l,tcos ),
0 if ¢ > Qmin(1,tcos @).

The change of variable ¢ = Qs, together with (3.9) and (3.10) lead to

1
12
(3.11) Sup(tye) = —2/L1(3)W2($)d8—|—05(6é'6),
0
where
B -« if s € [0, ¢cos f],
(3.12) Li(s) = Li(s,t) = { arccos £ —a if s € [tcos B,tcos a],

0 if s € [t cos o, 00),
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and
1 if s € [0 min(tcosa, %)],
(3.13) Wa(s) = Wa(s,t) = S ¢(s) ifs€ [3, min(1,cos )],
0 if s € [min(1, ¢ cos a), 00),

with 1 as in (1.3). Then (3.11), (3.12), (3.13) and (2.3) prove Theorem 1.1. To estimate Gop(t)

we follow literally the proof of Theorem 1.1, replacing only Sog(t,€) by

Ra,ﬂ(t,&?) = Z Wq,a»

a/qEFoN[tan a,tan f]
g+a<tQ

and approximating (8 — @)Ga,pg.(t) by Rop(t,€) as in (2.3). The interval I is being replaced in

this instance by J = [¢tan @, g tan f] N [0,1Q — q]. We clearly have

[gtan o, gtan ] if g € [ ’ﬂ%gﬁ] gtana,tQ — g > qtana,tQ) — ¢
J = [qtaﬂfl-qtanﬁ] N[0.tQ — q] = ifg € [J—H;gnﬂ’ 1+ii2naJ

0 1fq€[1—+§m,oo].

and arrive using similar arguments at

Q
12
(314) Gaﬁe = Q/ dt+05< 16 )7
0
where
p-a if s € [0, min (1550 3))
p— ) — t ] 1 i
(3.15) Lo(s) = La(s,t) = { arctan (g - 1> —a ifs€ [5min (1, 57)]
0 if s > min (1, ~1+—t'an~&),
and
1 if s € [0, min (Ht;m, 3]
(316) WB(S) = VV3(Sat) = 10(5) if s € [%’min (1’ H—Lilna)]’

0 ifs>min(1,]—m).
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By (3.13), (3.14), (3.15) and (3.16), we find that

( 1+ttana
fgi;g% + / (arctan(é ~1)—a)ds if t € [0, 1—*12‘”&],
1+ttanB
1/2 yER
fgi;:% + / (arctan(% -1) - a) ds + /1/1(5) (arctan(g —1) - a) ds
e 1/2
ifte Pi%mgvli%ﬂﬁk
e s
G s(t) = 2(;2 ; ) (B-a) (% +- /z/)(s)ds> + /1/1(3) (arctan(t —1) — @) ds
1+tan B
ift € [H—g’m—ﬂ,l +tana],
TFianp 1
(B - a) (% + /¢(s)ds) + /1/1(5) (arctan(% —1) — @) ds
L/ s
if t € [1+ tanc,1 4 tan ],
1
(ﬁ—a)<%+ /1/)(5)d3> if t € [1 + tan3,00).
1/2

Theorem 1.4 follows now from the previous equality and some straightforward computations.

6.
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