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Abstract

This paper is devoted to the study of the secondary oil recovery process: the oil
contained in a porous medium is obtained by pushing it with a second fluid (water).
We consider the Hele-Shaw approximation. If the second fluid is less viscous, the
fingering phenomenon appears, first studied by Saffman and Taylor (1959). To min-
imize this instability, an intermediate polymer-solute region (i.r.), with a variable
viscosity p, is considered between water and oil (see Gorell and Homsy (1983)).
This viscosity increases from water to oil. The linear stability of the interfaces are
governed by a Sturm-Liouville problem which contains eigenvalues in the boundary
conditions. The characteristic values are the growth constants of the perturbations.
The stability can be improved by choosing an optimal viscosity profile p which gives
us a smallest growth constant. A finite-difference procedure and the Gerschgorin’s
localization theorem were used by Carasso and Paga (1998) to solve the above prob-
lem and to get a formula of an ezponential optimal viscosity profile in (ir.). In
the present paper we consider the Rayleigh quotient to estimate the characteristic
values of the above Sturm-Liouville problem. We get a class of optimal viscosity
profiles in (i.r.), including linear and ezponential profiles. The corresponding total
amount of polymer and the (i.r.) length are estimated in terms of the limit value of
1 on the (i.r.)-oil interface. We give lower estimates of these above parameters for
a given improvement of the stability , compared with the Saffman-Taylor case. The
present results are compared with the previous theoretical optimal viscosity profiles.

Keywords: Flow in porous media, Hele-Shaw model, oil recovery, Rayleigh quo-
tient, Sturm-Liouville eigenproblem.

Mathematics Subject Classification: 34B24, 34L15, 76D27, 76505.

1 Introduction

We study the secondary oil recovery process: the oil contained in a porous medium is
obtained by pushing it with a second immiscible fluid (usually water). We consider a
homogeneous porous medium and the Hele-Shaw approximation, then an interface exists
between the two immiscible fluids. If the second fluid is less viscous then the fingering
phenomenon appears, first studied by Saffman and Taylor (1959) and Chouke et al. (1959).
An improved stability is obtained by applying a surface tension on the interface.

An intermediate region (i.r.), containing a polymer solute with a variable viscosity p, is
considered between water and oil (see Gorell and Homsy (1983)). Then we consider three



immiscible fluids: water, polymer and oil, separated by two interfaces. A surface tension
can be considered on the water-(i.r.) and (i.r.)-oil interfaces. The unknown viscosity 4 in
(i.r.) is a parameter which is used to improve the interfaces stability. It increases from
water to oil. We suppose that y is an invertible function of polymer concentration. Gorell
and Homsy considered a continuous viscosity on the interface water-(i.r.). Therefore
the viscosity is discontinuous only on the (ir.)-oil interface and a surface tension acts
only on this interface. The three regions are moving due to the water velocity U far
upstream. The flow is given by Darcy law, the continuity equation of the velocity and
the ”conservation” law of the viscosity p. On the two interfaces, the Laplace’s law was
used to describe the contact conditions between the immiscible fluids. A steady basic
solution, with straight initial interfaces, has been considered by Gorell and Homsy (1983).
The interface stability is governed by a Sturm-Liouville problem, containing eigenvalues
in the boundary conditions. The characteristic values are the growth constant (in time)
of the perturbations. An improved stability of the interfaces means to have a smaller
characteristic values in the above problem, compared with the Saffman-Taylor case. A
numerical exponential viscosity profile has been obtained, giving an improved stability,
according to previous experimental results of Mungan (1971), Pearson (1977), Shah and
Schecter (1977) and Uzoigwe et al. (1974).

An asymptotic analysis is given in Paga and Polisevski (1992), in the case of a small

quantity of polymer.

An existence theorem for an optimal viscosity in (i.r.) has been obtained by Pasa
(1996), by using the Rayleigh quotient.

An explicit formula for an optimal viscosity in (i.r.) has been obtained by Carasso and
Paga (1998). The above Sturm-Liouville problem was discretizated by the finite-difference
method. The Gerschgorin’s localization theorem was used to estimate the characteristic
values. The obtained optimal viscosity profile in (i.r.) is ezponential, according to the
numerical results of Gorell and Homsy (1983). To justify the previous discretization, a
convergence theorem has been proved by Carasso and Paga (2000).

A 7very slow” viscosity profile in (i.r.) was obtained in Pasa (2002), by using the
result of Carasso and Paga (1998). This "very slow” ezponential profile gives us a growth
constant which is similar to the corresponding Saffman-Taylor value: the water viscosity
was replaced by the limit value of the viscosity on the (i.r.) - oil interface.

In the present paper we consider the Rayleigh quotient to get a class of optimal
viscosity in (i.r.), including ezponential and linear profiles. In this paper we get an exact
estimate of the characteristic values of the considered Sturm-Liouville problem. We use
the initial stability problem, without any discretization. The obtained exponential profile
is coherent with previous theoretical and numerical results. The linear profile is more
favorable: a smaller amount of polymer and (i.r.) length are necessary to get the same
growth constant. Moreover, this new class of optimal viscosity allows us to consider
variable coefficients in the Sturm-Liouville equation. The corresponding total amount
of polymer and the (i.r.) length are estimated in terms of the above limit value of the
viscosity on the (i.r.) - oil interface. We compute the above parameters corresponding to
a given improvement of the stability, compared with the Saffman-Taylor case. The values
of the maximal growth constant, obtained with the ezponential viscosity profile of Carasso
and Paga (1998) and with the new linear and ezponential viscosity profiles, are compared.
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2 Review of the stability problem

We study here the model introduced by Gorell and Homsy (1983) — see Fig. 1. Numerical
results concerning this model were obtained in Daripa et ol. (1986), Daripa (1987), Daripa
et al. (1988), Daripa et al. (1988). The model was studied also in Paga and Polisevski
(1992), Paga (1996, 2002), Carasso and Pasa (1998, 2000).

A homogeneous porous medium is considered in the plane z,0y and the Hele-Shaw
approximation is used. The medium is saturated with three immiscible fluids: water
(with the constant viscosity j), polymer (with the unknown variable viscosity ) and oil
(with the constant viscosity up). The three regions are moving due to the water velocity
U at infinity upstream in the positive Oz, direction. The polymer is contained in the
intermediate region (i.r.). We have two sharp interfaces: water-(i.r.) and (i.r.)-oil. In
the intermediate region, the expected viscosity 4 is an increasing function of the distance.
The main point is to consider that the viscosity is an invertible function of the polymer
solute.

Some limitations exist if we consider a miscible water-polymer mixture in (i.r.). Pe-
titjeans and Maxvorthy (1996) and Lajeunesse et al. (1999) proved that exist a viscosity
ratio and a velocity U above which the Hele-Shaw flow becomes unstable and a three-

dimensional pattern appears.
In the three regions of the porous medium, the flow is given by the continuity equation

for the velocity and the Darcy law.
In the intermediate region (i.r.). we consider a given amount of polymer — denoted

by M in the following — then we obtain a ” continuity” equation for the viscosity p.

On the interfaces we consider the Laplace’s law: the pressure drop is balanced by the
curvature times the surface tension ; moreover the velocity is continuous.

Therefore the flow is governed by the following system:

du/dx, 4+ 0v/0y =0, =z € R, z; ¢ interfaces, y € R, (
OP/0x; = —pu, 1 €R, z; ¢ interfaces, y € R, (
OP/0y = —uv,  z1 € R, x1 ¢ interfaces, y € R, (3
O/t +udp/0z, +vou/dy =0, = € (ir), yeR (

where (u,v) is the velocity of the fluid and P is the pressure. The above equations admit
the following basic solution describing the steady displacement:

wu=U, v=0, p=mz —Ut), P:—U/ub(s—Ut)ds.

We introduce the moving reference system z = x; — Ut. The above basic solution let us
consider an intermediate region (i.r.) with constant length [ at the left of the origin in the



moving coordinates zOy. We emphasize that pp is an arbitrary function which verifies

the following properties:

€ CHir), m < (@) < pa, mp(z) >0, z€(ir). (5)
y
POLYMER
WATER SOLUTE OIL
z
Ty = Ut —1 T = Ut
Fig. 1.

We have two sharp straight interfaces in the moving reference zOy: the water-(i.r.)
interface, which corresponds to z = —I and the (i.r.)-oil interface, which corresponds to

z = 0. On the interfaces we consider the above Laplace’s law.
We study the linear stability of the interfaces defined above. We consider the small

perturbations (v, v, P', ') and then we get the following system:

ou' [0z +0v' /oy =0, zeR, z¢ {10}, yeR, (
OP' )0z = —p/'U — v/, z€R, ¢ {-,0}, yeR, (
OP' [0y = —u', z€R z¢{-[,0}, y€eR, (

' Jot +u' - duy/dz =0, =z € (=1,0), yeR (

The last relation is proved in Gorell and Homsy (1983) and also in Pasa (2002). As the
problem (6)—(9) is linear, we can decompose the perturbations in Fourier components.
We start with the horizontal component of the velocity perturbation:

u'(z,y,t) = f(z)exp(iky + ot), (10)

where f(z) is the amplitude of the perturbation, k is the wavenumber in the Oy direction
and o is the growth constant in time. The corresponding expressions for v/, P'and ' are
given by applying (6), (7) and (9). As in Gorell and Homsy (1983) and Paga (2002), cross
differentiating (7) and (8) let us obtain the second order differential equation for f in the
intermediate region:

. kWU
/Lb[fm: - szJ o= (,Ub)z/‘x + 7<Mb>xf - 0, VS (“—l, O>7 (11>
where f, refers to df /dz. In the above Sturm-Liouville equation (11), f are the eigen-

functions and 1/o are the eigenvalues. We need two boundary conditions to solve the
equation (11). We consider that a surface tension S acts on the interface v = —[ and a



surface tension T acts on z = 0. The contact conditions on the interfaces are given by the
above Laplace’s law. All the details concerning the contact conditions on the interfaces
are given in Gorell and Homsy (1983) and also in Paga (2002). We have:

WD) = (b + Do - 0]+ 55, (12
i O50) = 1Ok + Do — o) - 75, (13

where the superscript ~ and * denote the "left” and the "right” limits.

The Sturm-Liouville problem (11)-(13) can be used to study the case of Saffman and
Taylor, where no intermediate region is considered, that is / = 0. In this case we have
only one interface at z = 0 and a surface tension T" acts on it. The value of the basic
viscosity is p1 for z < 0 and uy for z > 0, therefore the corresponding eigenfunctions will
be exponentials. As perturbations must be zero far enough, Gorell and Homsy (1983) got

the well-known formula of Saffman and Taylor (1959):

— gy )Tk = TR

oy e L2 ) . (14)

M2 T+ p

A maximum value o7 is obtained for the wavenumber kprsr:
2 —u)U

oMsST = o o = )V kumsr, (15)

3 pet
kst = {(p2— p)U/3T}H. (16)

We use the above relations to get the following dimensionless quantities, as in Gorell and
Homsy (1983):

O = —F= WM = ==
3vV/3 - opsr 1 kmsTV3

a = /i%, [ kMST o \/g) L= k‘M‘gT - \/g7 (17)
H1

' 1 ;
F* = 2 Ai=—, M:= jBL (¥ 1da®.
o

U’

WATER LR. OIL

Fig. 2.



We remark that the maximum value o%,gp of the dimensionless growth constant ogr

is given by

2
Oypep = —=- (18)
MST = 577
As in Gorell and Homsy (1983), we consider the simpler case when the viscosity is contin-
uous on z = —, therefore we have a viscosity jump only on the (i.r.)-oil interface. This

interface is the only one where a surface tension T acts. Finally, p (=) =prand S =0
in (12): then we get a simpler form of the condition (12):

fE(=1) = kf(=0). (19)

In the following we will omit the superscript * and we will use the notation df /dz = f'.
Then the relations (11), (12) and (19) give us the problem:

—(f") (z) + K2p(z) f(z) = \E*Bp! (2)f (2), = € (=L,0),
f'(=L) = (M + B)f(-1), (20)

f'(0) = (A\C' + D) £(0),

where
p=2t ey
and
A:=0, B:=k,
C = Bk’[o — p(0) — k*( = 1)]/n(0), (22)
D = —ka/u(0).

The main point is to find the optimal viscosity p which gives us the smallest growth
constant . In the following section we give a theoretical framework of the above problem.

3 Stability Analysis

This section is devoted to a brief study of the above problem (20).
Let @ and b be two real numbers such that a < b. Let X := Wy (a,b) and p be an
arbitrary positive strictly increasing function on (a,b) — accordingly to the property (5)
~ and we suppose moreover that it is sufficiently regular on this interval. We consider
the following Sturm-Liouville eigenvalue problem: find f € X and A € C such that

—(uf') (z) + K u(2)f (2) = A2 B/ (z) f (), = € (a,b),
f'(a) = (AA+ B) f(a), (23)

f'(b) = (AC + D) f(b),



where k and 8 are real positive numbers. We suppose that

A<0, D<0, B>0, and C >0. (24)

3.1 Weak formulation - Rayleigh quotient
Let define the following bilinear forms ¢ : X x X - Rand ¢ : X x X — R by:

8(f.9) = / uf'g + R / wfg + B(ufg)(a) — D(ufg)(b), (25)

$(f,g) = kB / W g — Alufg)(a) + Clufa)(®), (26)

where (pfg)(a) stands for p(a)f(a)g(a). Then an equivalent form of the problem (23)
is (see Courant and Hilbert (1965)): find f € X and A€ C such that

¢(f,9) = (f,g), forallgeX. (27)

Let define ® : X — Rand ¥ : X — R by

b

b P
8(f) == o(f, f) = / u(f)? + K / uf?+ B(uf?) @) - DufH(),  (28)

a

W(f) =90 ) = KB / WP = Auf?) (@) + Cluf) ). (29)

Then ® and ¥ satisfy the following properties:

i) @ is a convex functional (because ¢ is a bilinear positive form).

ii) ® is continuous on X.

iv) @ is coercive.

)
1)
iii) @ is Géateau differentiable and d®(f)g = 2¢(f, 9).
)
v) U is weakly continuous on X if u € W5 (a,b).

Let consider the following minimization problem: find u # 0 such that

B) _ [ 20)
S =it { gty £ €% s #0f- o

The properties i)-v) imply (see Céa (1971)) that the above problem admits a solution
u € X. Following Courant and Hilbert (1965), u is an eigenfunction for the problem (27)

o
corresponding to the smallest eigenvalue Ag := %, which is a real positive number.
U



3.2 Upper estimate of the characteristic value

1
Let Ag be the smallest eigenvalue of the problem (23) and let define op := PV The
R
following theorem gives an upper bound for o in terms of the data of the problem.
Theorem 1 Let u be a solution of (30) and p € C*(a,b) and define

v:= sup #'(z) = max p'(z) < +oo.
z€(ab) z€(a,b)

Then

_ U(u) _ max[k®By, u(b) max(—A, C)]
R = Fw) S minlk?, min(B, —D)jula) 81)

Proof: Let u be a solution of (30). As u is a strictly increasing continuous function

o) > pla)(k / u? + Bu?(a) — Du*(h))
> p(a) min[k?, min(B, —D)](/ u? + u?(a) + w(b)).
Moreover j' is a continuous function, so
b
V) < BPy [ o+ u)(-Avi(a) + O ()
< maxkBy, u0)max(~A, Ol | +ui(e) + 4 (B),

which ends the proof.

4 Optimal viscosity profiles

We now apply the result of the previous section to the second oil recovery problem. The
problem (20) corresponds to the problem (23) with data (21)-(22). The instability on
the (i.r.)-oil interface only appears when the limit value of the viscosity on the (i.r.) - oil
interface is smaller than the viscosity of the oil. So we suppose that

1 < u(0) <« (32)
Moreover, we are only interested in the case when C' > 0, i.e. when
_ (00 V2
0<k< (ga—_/L%) <1. (33)

Indeed, if (33) does not hold, the above problem (23) is not well-defined.

Our aim is to control the maximum characteristic value og. As we supposed that C' > 0
and as A := 0, we get max(—A,C) = C. Condition (33) implies that min(B, —D) = &*.
Finally, by Theorem 1,

or < D) max[zeraagfo) w'(z), o — p(0) — k*(a — 1)]. (34)




A class of optimal viscosity profile. The previous inequality (34) can be used to
define a new class of optimal viscosity profiles: indeed, we remark that if u satisfies the

following condition

() < a— pu(0 35
D (z) < o= p(0), (35)
then 5
op < ———(a — u(0)). 36
Let define the corresponding new maximum growth constant ojg by
orin = — o (o= 0). (37)
p(—L)

If condition (35) holds, we can choose p(0) which gives us a maximum growth constant
less than the Saffman-Taylor — dimensionless — value o}, defined by (18). In the
following we give two families of profiles which satisfy condition (35) — see Fig. 2.

4.1 Linear optimal profiles

In this section we build a family of linear profiles which belong to the new class of optimal
profiles defined above. Let pp and L be real positive numbers satisfying the following

conditions:

—1
|y, B (38)
o — Ho

Then consider the viscosity linear profile, defined on (—L,0) by

plz) = 22 Yo D)1 (39)

Then p(—L) =1 and p(0) = po. Moreover, following (38), the inequality (32) holds and,
for all z € (=L, 0),

Finally, the condition (35) holds and then, by (36), we get
OR Sﬁ(a—uo). (40)

Therefore py — « implies o — 0. This means that we can choose po to get a growth
constant smaller than the Saffman-Taylor value. The above relation is used to get a lower

estimate for the total amount of polymer M:

b 2

w(0) —1 o —1 (o —1 ps — 1
M = 2 AT = —_ > l} = —F"——. 41
/ap,(LI)dl L( ; +1>_ 5 2 = ) (41)

o — [ho

We can remark that pg — « implies L, M — oo.



4.2 Exponential optimal profile

In this section we build a family of ?sub-exponential” profiles which satisfy condition (35).
Consider a profile defined on (—L,0) which verifies the following conditions:

w is a strictly increasing function, (42)

p(=L)=1 and 1< p(0)<a, (43)
!/

K)o @ forallz e (<L,0). (44)

u(z) = p0)

Following (42), for all z € (—L,0), u(z) < p(0) and then condition (44) implies that,
for all z € (—L,0), ¢/(z) < a — 1(0). This implies that rFag(O) p(z) < a— p0) ie.
z€(—L,

condition (35) holds. Finally, we get the same previous result obtained for a linear profile:
or < Bla— p(0)). (45)

Now, we will give some lower-estimations for L and M in terms of p(0). Let define

& = % — 1 ; by integrating both sides of inequality (44), we get
L

Va € (=L,0), p(z) < expl(z+ L)Q]

That is why the profiles (42)-(44) are called “sub-exponential”. We remark also that
1(0) < exp(LQ) and then
1
L > —1Inp(0). 46
0 (0) (46)

Moreover, following conditions (42) and (43) we get trivially
M = / z)dx > / dp= L. (47)
%

Finally
0)—1
a L In 14(0). | (48)

M>L>

The previous inequalities implies that if 4(0) tends to a then L and M tend to infinity.
Example 1 (exponential profile) Let g be such that 1 < po < « and let define

Lo= In geo. (49)

@ — Ho

We can now consider the following profile defined on (—L,0) by

o) = oxp (w4 1P (50)

which satisfies conditions (42)—-(44). Then we get

o . .
M = o — 1). 9.
a_uo(/lo ) (51)

10



4.3 Comparison with previous exponential profiles

The exponential optimal viscosity profile in (i.r.) obtained by Carasso and Paga (1998)
depends also on 1(0), but the condition for the limit value x(0) involves L and M. There-
fore it was not possible to get some estimations of L and M directly in terms of u(0).
However, the corresponding maximal growth constant — obtained by the Gerschgorin’s
localization theorem — and denoted by o¢ in the following was obtained directly in terms

of u(0):
9 — 1(0))%?

o< og = Bl s (52)
3a /3(a—1)

for the following exponential profile:

pla) 2 (e p0)" -

2
u(z) ~ 3a V3l —1)

We recall that & > 1 and 1 < p(0) < a and then we get

e 2 a—p(0) 2 +/a— u0) o 2

= < ,
omr  3V3 ava-—1 3V3 Va-—1 3v/3

ie
2
0o < —= oyr  where  oyp = f(a— p(0)). (54)

3v/3

Therefore the upper bound given by Carasso and Pasa (1998) is smaller than the present
upper bound : as we consider a more general class of optimal viscosity profiles — we allow
variable coefficients in the problem (23) — this result is coherent. However, we emphasize

that (45) and (52) give us 0 — 0 when p(0) = o

4.4 Comparison between linear and exponential profile

This section is devoted to the comparison between the lengths of the (ir.) and the
corresponding total amounts of polymer obtained with the linear profile (39) and with
the exponential profile (50).

Let L, (resp. Ly) be the smallest suitable length of the (i.r.) obtained with the linear
profile (39) (resp. with the exponential profile (50)), and by M; (resp. by M) the
corresponding total amount of polymer. Then, following (38), (41), (49) and (51),

-1
=2 Ly = " Inp,
Q — Ho @ — Mo
2
po — 1 Ho
M = ——— M, = —1).
1 2(06—“/,11())’ 2 OZ_‘U() (/’1’0 )

We remark that, for all z > 1, 1+ z(Inz — 1) > 0, and then as 1 < pp < a,

Ly < Ly.

11



Moreover,

M 1( 1)
—=—_l1+—] <1l
M, 2 o

Finally, for a given po in (1, ), that is for a given maximum growth constant oyr, the

linear profile (39) — with the smallest suitable (i.r.) length — involves a smaller (i.r.)
length than the exponential profile (50), and it involves also a smallest total amount of

polymer.

4.5 A given improvement of the stability

The aim of this section is to get a given improvement of the stability in the (i.r.)-oil
interface, by considering above viscosity profiles and by choosing a suitable 1(0):
Let p be a real number such that 0 < p < 1 and let define 1(0) by

2 2p a—1

u(O)::a—mp:a—%m, 0<p<l. (55)

Asa>1>p>0,
2p 1

— <1,

3V3a+1
and then u(0) is such that 1 < u(0) < a. If we consider the linear or exponential profiles
defined above, we get

2p
ouyr=Bla—u0)=—F%==0 X P, o6
mr = B( 14(0)) 3/3 MST X P (56)
where 0 < p < 1, that is we get a given improvement of a ratio p of the stability.
Once we defined ©(0) by (55), we get lower estimates for the (ir.) length L and for
the total amount of polymer M, depending on the choice of the viscosity profile:

~ in the linear case we get the estimations (38) and (41).

~ in the sub-exponential case, we get either the estimation (48) or the relations (49)
and (51).

5 Conclusions

The three regions model (1)—(4) was first studied by Gorell and Homsy (1998).

A theoretical formula for an exponential optimal viscosity profile in (i.r.) has been
obtained by Carasso and Paga (1998), according to the numerical results of Daripa et al.
(1986, 1987, 1988), Gorell and Homsy (1983), Shan and Sechter (1977) and Uzoigwe et
al. (1974).

Carasso and Paga (1998) have obtained the maximal growth constant og given by
the relation (52). A finite-difference approximation of the Sturm-Liouville problem (11)-
(13)-(19) and the Gerschgorin’s localization theorem were used. The value o has been
obtained in terms of the limit value of the viscosity on the (i.r.) - oil interface, denoted

12



by 1(0). The value 1(0) has been involved in a condition, in terms of the (i.r.) length and
the total amount of polymer contained in the (i.r.), denoted respectively by L and M.
Therefore it was not possible to estimate L and M directly in terms of x(0). The main
point of this above paper was the following: if the chosen profile y satisfy condition (53),
then ©(0) — « implies that og — 0, where o is the ratio between the oil and the water
viscosities.

In the present paper we suggest a new class of profiles which give the new estimate (36)
of the ezact growth constant og. This estimate is also in terms of the above limit value
1(0). To prove this result, we use the Rayleigh quotient (30) of the initial Sturm-Liouville
problem (11)—(13)—(19) without any numerical treatment.

We use the relation (34) in order to obtain a new class of theoretical optimal profiles of
viscosity in (i.r.), characterized by the condition (35). This condition allows us to obtain
the general formula (37) for the maximum growth constant. The condition (35) gives us
two particular optimal viscosity profiles: the linear profiles defined by (38)—(39) and the
sub-ezponential profiles satisfying (42)—(44).

The linear profiles allows us to consider variable coefficients in the problem (11)-(13)-
(19), while the exponential case (50) gives us only constant coefficients, as in Carasso and
Paga (1998).

For both linear and exponential profiles we obtain the same maximal value g of the
growth constant, given by (37). We have oppr — 0 when p(0) — «, as in Carasso and
Paga (1998). Therefore the formula (37) and a value z(0) close enough to « give us an
improved stability, compared with the Saffman-Taylor case.

Tn the sections 4.1 and 4.2 we obtain lower estimations of the (i.r.) length L and of the
amount of polymer M, directly in terms of p(0), then we generalize the previous result
of Carasso and Paga. We have the relations (38) and (41) for the linear case and the
relations (46) and (47) for the sub-exponential case.

In the section 4.3 we give the comparison (54) between the present maximal growth
constant opp (45) and the previous maximal value og (52). We have o < ong. This is
not surprising, because we consider now a more general case, including variable coefficients
in the stability problem (11)-(13)-(19).

In the section 4.4 we prove that the linear case is more favorable: indeed, we need
smaller L and M to get the same growth constant oz compared to the exponential case.

In the section 4.5 we compute L and M corresponding to a given improvement of the
stability, compared with the Saffman-Taylor case. For this we define 14(0) by (55) and then
our verifies (56), where oargr is the dimensionless maximal growth constant of Saffman
and Taylor. Once u(0) is fixed, some estimations of L and M are given, in terms of o and
p — the given ratio of the improvement — depending on the considered profile:

~ in the linear case we get the estimations (38) and (41).

_ in the sub-exponential case, we get either the estimation (48) or the relations (49)
and (51).

In conclusion, a new class of optimal viscosity profiles is given in the present paper, by
considering the three regions model of Gorell and Homsy (1983). This class contains
linear and an exponential profiles. We use the initial stability problem, without any

13



approximation. The formula for the exponential profile is coherent compared to previous
theoretical and numerical results. We emphasize that the linear case is more favorable
than the exponential one. Finally we compute the (ir.) length and the amount of polymer
corresponding to a given improvement of stability, compared with the Saffman-Taylor case

— without (i.r.).

References

Carasso, C. and G. Pasa, 1998, An optimal viscosity profile in the secondary oil recovery. M2AN 32(2),
211-221.

Carasso, C. and G. Paga, 2000, A modified Green function for a control problem in oil recovery. Comput.
Meth. Appl. Mech. Engng. 190(8-10), 1197-1207.

Céa, J., 1971, Optimisation - Théorie et algorithmes. Dunod, Paris.

Chouke, R. L., P. Van Der Meurs and C. Van Der Poel, 1959, The stability of a slow, immiscible,
viscous liquid-liquid displacement in a permeable media. Trans AIME 216, 188-194.

Courant, R. and Hilbert, D., 1965, Methods of Mathematical Physics. Intersciences Publishers Inc.,
New-York, 1965.

Daripa, P., Glimm J., , Grove J., Linnquist B., and McBryan 0., 1986, Reservoir Simulation by the
Method of Front Tracking. Proc. of the IFE/SSI seminar on Reservoir Description and Simulation with
Emphasis on EOR , Oslo, 18 pages.

Daripa, P., 1987, Instability and Its Control in Oil Recovery Problem. Proc. of 6th IMACS Int. Symp.
on Computer Methods for Part. Diff. Eq. - VI, ed. R. Vichnevetsky, Bethellem PA., 411-418.

Daripa, P., Glimm J., Lindquist B., and McBryan O., 1988, Polymer Floods: A Case Study of Non-
linear Wave Analysis and Instability Control in Tertiary Oil Recovery. SIAM J. Appl. Math. 49, 353-373.

Daripa, P., Glimm J., Lindquist B., Maesumi M., and McBryan O., 1988, On the Simulation of Het-
erogeneous Petroleum Reservoirs. Numerical Simulation in Oil Recovery, IMA Vol. Math. Appl. 11, ed
M. Wheeler et. al., Springer, New York, 89-103.

Gorell, S. B. and Homsy G. M., 1983, A theory of the optimal policy of oil recovery by secondary
displacement process. SIAM J. Appl. Math. 43(1), 79-98.

Lajeunesse, E., Martin J., Rakotomalala N., Salin D., and Yortsos Y. C., 1999, Miscible displacement in
a Hele-Shaw cell at high rates. J. FI. Mech. 398, 299-319.

?lt/éur?)l%an, M., 1971, Improved waterflooding through mobility control, Canad. J. Chem. Engr. 49,
Pearson, H. J., 1977, The stability of some variable viscosity flows with applications to oil extraction,
Cambridge Univ. Report..

Petitjeans, P. and Maxvorthy T., 1996, Miscible displacements in capillary tubes. Part 1. Experiments.
J. Fl. Mech. 326, 37-56.

Pasa, G., 1996, An existence theorem for a control problem in oil recovery. Num. Funct. Anal. Optimiz.
17(9-10), 911-923.

Pasa, G. and PoliSevski D., 1992, Instability of interfaces in oil recovery. Int. J. Engng. Sci. 30(2),
161-167.

Pasa, G., 2002, A new Optimal Growth Constant for the Hele-Shaw Instability. Transport In Porous
Media 49(1), 27-40.

Saffman, P. G. and Taylor G. I, 1959, The penetration of a fluid in a porous medium or Helle-Shaw
cell containing a more viscous fluid. Proc. Roy. Soc. A 245, 312-329.

Shah, D. and Schecter R., 1977, Improved Qil Recovery by Surfactants and Polymer Flooding. Aca-
demic Press, New York.

Uzoigwe, A. C., Scanlon F.C., and Jewett R. L., 1974, Improvement in polymer flooding: The pro-
grammed slug and the polymer-conserving agent. J. Petrol. Tech. 26, 33-41.

14



