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Abstract

This paper is devoted to the study of the secondary oil recovery process: the oil

contained in a porous medium is obtained by pushing it with a second fluid (water).

We consider the Hele-Shaw approximation. If the second fluid is less viscous, the

fingering phenomenon appears, first studied by Saffman and Taylor (1959). To min-

imize this instability, an intermediate polymer-solute region (i.r.), with a variable

viscosity p, is considered between water and oil (see Gorell and Homsy (1983)).

This viscosity increases from water to oil. The linear stability of the interfaces are

governed by a Sturm-Liouville problem which contains eigenvalues in the boundary

conditions. The characteristic values are the growth constants ofthe perturbations.

The stability can be improved by choosing an optimal viscosity profile pr which gives

us a smallest growth constant. A finite-difference procedure and the Gerschgorin's

localization theorem were used by Carasso and Paqa (1998) to solve the above prob-

lem and to get a formula of. an erponenti,al optimal viscosity profile in (i.r.). In

the present paper we consider the Rayleigh quotient to estimate the characteristic

values of the above Sturm-Liouville problem. We get a class of optimal viscosity

profiles in (i.r.), including l,inear and. erponenti,al profiles. The corresponding total

amount of polymer and the (i.r.) length are estimated in terms of the limit value of

p on the (i.r.)-oil interface. We give lower estimates of these above parameters for

a g,iuen improuement of the stabi,lity, compared with the Saffman-Taylor case. The

present results are compared with the previous theoretical optimal viscosity profiles.

Keywords: Flow in porous media, Hele-Shaw model, oil recovery, Rayleigh quo-

tient, Sturm-Liouville eigenproblem'

Mathematics subject classification: 34824, 34LL5, 76D27, 76505.

1 Introduction

We study the secondary oil recovery process: the oil contained in a porous medium is

obtained by pushing it with a second immiscible fluid (usually water). We consider a

homogeneous porous medium and the Hele-Shaw approximation, then an interface exists

between the two immiscible fluids. If the second fluid is less viscous then the fingering

phenomenon appears, first studied by Saffman and Taylor (1959) and Chouke et al. (1959)'

An improved stability is obtained by applying a surface tension on the interface.

An intermediate region (i.r.), containing a polymer solute with a variable viscosity pr, is

considered between water and oil (see Gorell and Homsy (1983)). Then we consider three



immiscible fluids: water, polymer and oil, separated by two interfaces. A surface tension

can be considered on the water-(i.r.) and (i.r.)-oil interfaces. The unknown viscosity p in

(i.r.) is a parameter which is used to improve the interfaces stability. It increases from

water to oil. We suppose that p is an invertible function of polymer concentration. Gorell

and Homsy considered a continuous viscosity on the interface water-(i'r.). Therefore

the viscosity is discontinuous only on the (i.r.)-oil interface and a surface tension acts

only on this interface. The three regions are moving due to the water velocity U far

upstream. The flow is given by Darcy law, the continuity equation of the velocity and

the "conservation" law of the viscosity p,. On the two interfaces, the Laplace's law was

used to describe the contact conditions between the immiscible fluids. A steady basic

solution, with straight initial interfaces, has been considered by Gorell and Homsy (1983)'

The interface stability is governed by a Sturm-Liouville problem, containing eigenvalues

in the boundary .onditionr. The characteristic values are the growth constant (in time)

of the perturbations. An improved stability of the interfaces means to have a smaller

characteristic values in the above problem, compared with the Saffman-Taylor case. A

numerical exponential viscosity profile has been obtained, giving an improved stability,

according to previous experimental results of Mungan (1971), Pearson (L977), Shah and

Schecter (L977) and Uzoigwe et al. (L97$.

An asymptotic analysis is given in Paga and Polisevski (1992), in the case of a small

quantity of polymer.
An existence theorem for an optimal viscosity in (i.r.) has been obtained by Paga

(1996), by using the Rayleigh quotient.

An explicit forrnula for an optimal viscosity in (i.r.) has been obtained by Carasso and

paqa (1998). The above Sturm-Liouville problem was discretizated by the finite-difference

method. The Gerschgorin's localization theorem was used to estimate the characteristic

values. The obtained optimal viscosity profile in (i.r.) rs erponenti'al, accotding to the

numerical results of Gorell and Homsy (1983). To justify the previous discretization, a

convergence theorem has been proved by carasso and Paqa (2000)

A ';very slow" viscosity profile in (i.r.) was obtained in Paga (2002), by using the

result of Carasso and Paqa (1993). This "very slow" erponent'ial profile gives us a growth

constant which is similar to the corresponding Saffman-Taylor value: the water viscosity

was replaced by the limit value of the viscosity on the (i t ) - oil interface.

In the present paper we consider the Rayleigh quotient to get a class of optimal

viscosity in (i.r.), including erponentialand li,nearprofiles. In this paper we get an eract

estimate of the characteristic values of the considered Sturm-Liouville problem. We use

the initial stability problem, without any discretizaiion. The obtained exponential proflle

is coherent with previous theoretical and numerical results. The linear profile is more

favorable: a smaller amount of polymer and (i.r.) length are necessary to get the same

growth constant. Moreover, this new class of optimal viscosity allows us to consider

uari,o,ble coefficients in the Sturm-Liouville equation. The corresponding total amount

of polymer and the (i.r.) length are estimated in terms of the above limit value of the

viscosity on the (i.r.) - oil interface. We compute the above parameters corresponding to

a g,iuen i,mprouement of the stabi,li,ty, compared with the Saffman-Taylor case. The values

of the maximal growth constant, obtained with the erponenti,a/ viscosity profile of Carasso

and Paga (1998) and with the new li,near and erponent'ialvrscosity profiles, are compared.
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2 Review of the stability Problem

We study here the model introduced by Gorell and Homsy (1983) - see Fig. 1. Numerical

results concerning this model were obtained in Daripa et al. (1986), Daripa (1987), Daripa

et al. (1988), Dafipa et al. (1988). The model was studied also in Paqa and Polisevski

( i992), Paga (1996,2002), Carasso and Paqa (1998, 2000)'

A homogeneous porous medium is considered in the plane rtOy and the Hele-Shaw

approximation is used. The medium is saturated with three immiscible fluids: water

1*itn tne constant viscosity p1), polymer (with the unknown variable viscosity p) and oil

(with the constant viscosity Fz).The three regions are moving due to the water velocity

U at infinity upstream in the positive Or1 direction. The polymer is contained in the

intermediate region (i.r.). We have two sharp interfaces: water-(i.r.) and (i.r.)-oil' In

the intermediate region, the expected viscosity p is an increasing function of the distance.

The main point is to consider that the viscosity is an invertible function of the polymer

solute.
Some limitations exist if we consider a miscible water-polymer mixture in (i.r.). Pe-

titjeans and Maxvorthy (19g6) and Lajeunesse et al. (1999) proved that exist a viscosity

raiio and a velocity [/ above which the Hele-Shaw flow becomes unstable and a three-

dimensional pattern aPPears.
In the three regions of the porous medium, the flow is given by the continuity equation

for the velocity and the DarcY law.

In the intermediate region (i.r.). we consider a given amount of polymer - denoted

by M in the following - then we obtain a "continuity" equation for the viscosity pr.

On the interfaces we consider the Laplace's law: the pressure drop is balanced by the

curvature times the surface tension ; moreover the velocity is continuous'

Therefore the flow is governed by the following system:

\uf 0r1* luf 0y : g, 11 € IR, 11 ( rnterfaces, g € IR' (1)

0Pl0q: -FU, 11 € IR, 11 (intetfaces, y € lR, \2)

APIA7 : -FU, /r € lR, 11 ( intetfaces' E € IR, (3)

,tt,l,t * u\pr,f 0q * u7p'f 0v : g, z1 € (i'r'), 3/ € R, 14)

where (u, u) is the velocity of the fluid and P is the pressure. The above equations admit

the following basic solution describing the steady displacement:

We introduce the moving reference system I : trr - Ut. The above basic solution let us

consider an intermediate region (i.r.) with constant length I at the left of the origin in the

tr,: [J, ,t) :0, lt: l-to(rr - Ut), P : -(J 
I fu! - ut)d's.

J



moving coordinates rOA' We

the following properties:
emphasize that p"6is an arbitrary function which verifies

pb e  CL0. r . ) ,  p r  <  Pu( r )  1  Fz ,  t 'u@)  >  0 , (5 )

r r : U t - l r t : U t

Fig.  1 .

We have two sharp straight interfaces in the moving reference rOy: the water-(i.r')

interface, which corresponds to r : -l and ihe (i.r.)-oil interface, which corresponds to

r :0. on the interfaces we consider the above Laplace's law.

We study the linear stability of the interfaces defined above. We consider the small

perturbations (u', u',P', p'') and then we get the following system:

/r .

0u' f0r  *  }ut f0g :9,

0 P ' l 0 r : - p ' U - F b 1 t r ' ,
0P'l0Y : -lrb't)',

0p' l0t * u' . dp,6f dr : o,

r € l R ,  r f  { - 1 , 0 } ,  g e  I R ,

r € l R ,  , # { - 1 , 0 } ,  E e  R ,

r € l R ,  * # { - 1 , 0 } ,  y e  I R ,
r e  ( - 1 , 0 ) ,  E e  I R .

(6 )

(7)

(s)
(e)

The last relation is proved in Gorell and Homsy (1983) and also in Paga (2002). As the

problem (6)*(9) is linear, we can decompose the perturbations in Fourier components.

We start with the horizontal component of the velocity perturbation:

u' (r, y , t) : f (r) exp(i,ky -l ot), (  10)

where /(r) is the amplitude of the perturbation, k is the wavenumber in the Oy direction

and o is the growth constant in time. The corresponding expressions for u', P' and p' are

given by applying (6), (7) and (9). As in Gorell  and Homsy (1983) and Paga (2002), cross

differentiating (7) and (8) let us obtain the second order differential equation for / in the

intermediate region:

t )u[ f  , ,  -  k ' f l  *  0ro), f  , .  ry i ru)*f  
:0,  r  € (- t ,o) , ( 1 1 )

where /" refers to df ldr. In the above Sturm-Liouville equation (11), / are the eigen-

firnctions and If o are the eigenvalues. We need two boundary conditions to solve the

equation (11). We consider that a surface tension S acts on the interface r: - l  and a

POLYMER

SOLUTE



surface tension ? acts orrfr:0. The contact conditions on the interfaces are given by the
above Laplace's law. All the details concerning the contact conditions on the interfaces
are given in Gorell and Homsy (1983) and also in Paga (2002). We have:

where the superscript 
- 

and + denote the "left" and the "right" limits.

The Sturm-Liouville problem (11)-(13) can be used to study the case of Saffman and

Taylor, where no intermediate region is considered, that is I : 0. In this case we have

only one interface at r : 0 and a surface tension T acts on it. The value of the basic

viscosity is p1 for r 10 and p,2 f.or r > 0, therefore the corresponding eigenfunctions will

be exponentials. As perturbations must be zero far enough, Gorell and Homsy (1983) got

the well-known formula of Saffman and Taylor (1959):

0 ' r - p ) U k - T k 3
U S T . -

l-tz * ltt

A maximum value ousr is obtained for the wavenumbet kx4sv:

t teqf1D :  f  eD{p l r ,  +Trr , -  p i l ( - l ) l  *  #1,
/ , ; (0) / ; (0)  :  f  (o) { -k t  r+( fur -  / r t (o) l  - { t ,

2 (t", - ttt)U ,
O t v f s f  : :  ; '  -  

' t t M s ' f ,

J l-tz t ltt

kusr :: {0t, - 11,)u l3T}1t2.

(12)

(13)

(r4)

( 1 5 )

(16)

We use the above relations to get the following dimensionless quantities, as in Gorell and

Homsy (1983) :

2 . o .  x /  \  .  L tu@)  L4  ._
U  l T l : :  - ,  t t  . -

llt

ltz

l-tt

3 / 5 . o M S r ' k*srf 3'

,  r*  ' . - -  kmsr '  , '  , /5,  L : :  kusy t '  \ /5,

) ' : l , M ..: I!"p.(r.)d.r-

F is .2 .

5

(r7)

r * f
t  ' -  

[ J '



We remark that the
is given by

maximum value oiusr of the dimensionless growth constant olt

(18)
).

U  A T Q T  . -

3/3

As in Gorell and Homsy (1983), we consider the simpler case when the viscosity is contin-

uous on r: -1, therefore we have a viscosity jump only on the (i.r.)-oil interface. This

interface is the only one where a surface tension ? acts. Finally, pf (-l) - pr1 and 'S : 0

in (12): then we get a simpler form of the condition (12):

f :(-t): kf (-t).

In the following we will omit the superscript * and we will use

Then the relations (11), (12) and (19) give us the problem:

(  - fuf ' ) ' ( r )  + k21t(r ) f  ( ' ) :  )k2Bp;(r) f  ( r ) ,  r
I
\  r { -D :  ( ^A+  B ) f  ( - L ) ,
I
|. / '(o) -- (^c + r)/(o),

where

(20 )

a * l (2r)R . -
1 )0 . -  r

and

A ' . :  0 ,  B  : :  k ,

s 7 Bk2la - p(0) - k'(o - t)l l  pQ),

(1e)

the notation df ldr ,: f''

€ (- r ,0) ,

( ) ) . \

D ::  -kalp(0)

The main point is to find the optimal viscosity p which gives us the smallest growth

lonstant o. In the following section we give a theoretical framework of the above problern.

3 Stability Analysis

This section is devoted to a brief study of the above problem (20)'

Let a and b be two real numbers such that a I b. Let X ,: W] (a, b) and p be an

arbitrary posi,ti,ue strictly zncreasing function on (o,b) - accordingly to the property (5)
- and we suppose moreover that it is sufficiently regular on this interval. We consider

the fbllowing Sturm-Liouville eigenvalue problem: find / € X and ) e C such that

(  - fu f ' ) ' ( r )  +  k2pt ( r ) f  ( r )  :  )k20p;( r ) f  ( r ) ,  r  e  (a ,b) ,
I

I  t '@):  ( )A + B) f  (a) ,  (23)
I
I  

" ' , ,  
n \  P / ' \  :

| .  / ' (b) :  (^C + D)f (b),



where ft and B are real positive numbers. We suppose that

A < 0 ,  D < 0 ,  B ) 0 ,  a n d  C > 0 .

3.1 Weak formulation - Rayleigh quotient

Let define the following bilinear forms 6, X x X -+ IR. and ,1, , X x X -+ IR by:

(24)

(25)

(26)

problem (23)

(27)

(30)

dU,g), :  fouf 'o '  + t '  fowf o + B(t t f  g)(a) -  D(pfe)(b),
J o  

p b  
J n

,!U, d :: k2 g 
J,u' 

f o - A(pf g)(a) + C(p'f s)(b),

where (pf g)(a) srands tor p(a)f (a)g(a). Then an equivalent form of the

is (see courant and Hilbert (1965)): find / € x and ) e c such that

6U,g):  ) tbf f ,g) ,  for  a l l  g e x '

Let define Q : X -+ IR. and 'U : X -+ IR bY

s b  - f b
a(/) : :  a(f , f) :  J"u(f ' ) '+t"J,uf '+ 

B(pf ')(") -  D(t ' f ' )(u), (2s)

f 0

v(/) :: ,4'(f , f) - k'13 
J"r' f' 

- A(pf')(a) + c(p'f'z)(b) (2e)

Then O and V satisfy the following properties:

i) o is a convex functional (because rp is a bilinear positive form).

i i)  A is continuous on X.

i i i )  O is GAteau differentiable and dAU)g :2'p(f ,g) '

iv) O is coercive.

v) V is weakly continuous on X lf pr, eWl(a,b)'

Let consider the following minimization problem: find u + 0 such that

o ! u )  : t ' r { 9 ! { J  r  e  x . / l o }
v t " i  

- " "  
I v t f l )  " '  - - ' )  r  /  "  )

The propert ies i)-v) imply (see C6a (1971)) that the above problem admits a soiution

,u € X . Following Courant and Hilbert (1965), z is an eigenfunction for the problem (27 )

corresponding to the smallest eigenvalue )6 ,: 
$#, 

which is a real positive number'



3.2 Upper estimate of the characteristic value

Let )p be the smallest eigenvalue of the problem (23) and let define op :- L ' The
An

following theorem gives an upper bound for op in terms of the data of the problem'

Theorem L Let u be a solution o/ (30) and p, e cI(a,b) and define

Then

I i: suP P'(r) : max. P'(r) < +x'
t€(a,b)  re(a 'b) '

V (u) - maxfk2 B"Y, P(b) max(- A, C)]
o R ' . :  

0 ( d  
:

proof: Let u be a solution of (30)., As pr is a strictly increasing continuous function

^ f o
o(r)

J a

Moreover p'' is a continuous function, so

v(,) s k'h 
I: 

,' + 1,Q)(Au2(a) + cu2Q))
pb

S maxfk2 B1,p(b) max(- A, C)]( 
J " 

"' 
+ u2 (a) + u2 (b)) ,

which ends the proof.

4 Optimal viscositY Profiles

We now apply the result of the previous section to the second oil recovery problem' The

problem (20) corresponds to the problem (23) with data (21)-(22), The instability on

i6. 1i.r.;-oil interface only appears when the limit value of the viscosity on the (i.r.) - oil

interface is smaller than the viscosity of the oil. So we suppose that

1 < p r ( O )  < a .

Moreover, we are only interested in the case when C > 0, i'e' when

t  r n r . . ,  L / 2

0 < k . ( " - p \ u )  \  < 1 .
\  a - r  /

Indeed, if (33) does not hold, the above problem (23) is not well-defined.

Our aim is to control the maximum characteristic value o6. As we supposed that C > 0

and as A:-- 0, we get max(-A, C) : C' Condit ion (33) implies ihat min(B,-D) : k2'

Finally, by Theorem 1,

(31)

(32)

(33)

on t  
h-u*[" . l ]% ,u'@),a 

-  p(0) -  k ' (*-  1)] (34)



A class of optimal viscosity profile. The previous inequality
define a new class of. optimal viscosity profiles: indeed, we remark
following condition

m a x  u ' ( r \ 1 a - u ( 0 \ ,
re(_L,o)

then

(34) can be used to
that if p satisfies the

(35)

(36)

(37)

Let define the corresponding new maximum growth constant ovnbY

"r=fu(o-r,(o)).

oMR i :  - ! -^g- p(o)) .
p l -  t  )

L 1 p o 1 a ,  L > l t o - r .
a -  l t o

. . / - \  . -  l - t o  -  r , - , - r . ' \  - r  l
LL\ r )  : :  

L  
\ I  t  tL1  - r  r .

M : :  f . u u @ ) a , : t ( r y * t )  =  y ;

We can remark that Lts -+ o implies L, M -+ oo.

If condition (35) holds, we can choose pl(0) which gives us a maximum growth constant

less than the Saffman-Taylor - dimensionless - value oitsr defined by (18)' in the

following we give two families of profiles which satisfy condition (35) - see Fig. 2.

4.L Linear optimal profiles

In this section we build a family of linear profiles which belong to the new class of optimal

profiles defined above. Let p,s and L be real positive numbers satisfying the following

condit ions:
(38)

Then consider the viscosity linear profile, defined on (-L,0) bV

Then t l(-L):1 and p(0) : p6. Moreover, fol lowing (38), the inequali ty (32) holds and'

f b r a l l  r e  ( - L , 0 ) ,

p ' ( * ) :  +  1  a  -  Ho :  d -  / r ( 0 )

Finally, the condition (35) holds undih.n, by (36), we get

(3e)

o n < 0 ( t - t - t o ) . (40)

Therefore tto --) a implies on ) 0. This means that we can choose Lto to get a growth

constant smaller than the Saffman-Taylor value. The above relation is used to get a lowet'

estimate for the total amount of polymer M:

( p o -  t

\ 2

\  . . 2  1
,  \  l - t o - '* ' ) : , G :  t J  v r )



4.2 Exponential oPtimal Profile

in this section we build a family of "sub-exponential" profiles which satisfy condition (35).

Consider a profile defined on (-tr,0) which verifies the following conditions:

pr is a strictly increasing function,

p ( - L ) : L  a n d  r < P ' ( o ) < a ,

ry .  3- - r ,  for al l  r  € (-L,o).
u,@) 

- 
t t(o)

Following (42), for all r € (-L,0), p,(r) < p(0) and then condition (44) implies that,

f o r a l l  r  e  1 - 1 , , 0 ) ,  p ' @ )  S  a - p ( 0 )  T h i s i m p l i e s t h a t , . ? - % , / @ )  <  a - p ( O )  i ' e '

condition (3b) holds. Finally, we get the same previous result obtained for a linear profile:

oa < g(a -  p(0))  (45)

Now, we will give some lower-estimations for L and M tn terms of p(0). Let define

Q ,: 4- - 1 ; by integrating both sides of inequality (a\, we get
p \u )

Vr e ( -L,0) ,  t t ( r )  3  exPf( r  + L)Q]

profiles (42)-(44) are called "sub-exponential". we remark also that

and then
( 46\

That is why the
p(0) < exp(LQ)

Moreover, following conditions

(42)
(43)

( 44\

(47)M

1

L > :  l n p ( 0 ) .- a
(a2) and (43) we get

f 0  f o
, :  I  p ( r )d r>  |

" t  
- 1 ,  J  - b

trivially

) n - f .

lrinally
r , ( 0 )  -  I

M > L > r \ " /  
- l n p ( O ) .

d

The previous inequalities implies that if p(0) tends to o then

Example 1 (exponential profile) Let Lts be such that I <

r, ,: Fo ln |to.a -  l t o

We can no'w consi,der the followi,ng profi'le def,ned on (-L,0)

1,t(r) ::.*o f1r * L)ryl ,
L' t-ro J

uthi,ch sat'isfies cond.i,tions (42)-(4,4). Then we get

M :  F o  ( p o - 1 ) .
a - I'to

(48)

L and M tend to infinity.

Fo { a and let defi'ne

(4e)

(  50)

I0y

1 0

( 5 1 )



4.3 comparison with previous exponential profiles

The exponential optimal viscosity profile in (i.r.) obtained by Carasso and Paqa (1998)

depends also on p(0), but the condition for the limit value p(0) involves ,L and M ' There-

fore it was not possible to get some estimations of ,L and M ditectly in terms of p(0).

However, the corresponding maximal growth constant - obtained by the Gerschgorin's

localization theorem - and denoted by oc in the following was obtained directly in ter'ms

of  p (0) :

6  1 0 6 : :

for the following exponential profile:

p'(r)
p,(r)

(a - P'(0))3rz

t < lr(0) ( a and then we get

w h e r e  o M R : 0 @ -  / r ( 0 ) ) .

L2 : 
Ito ln /r,0,

a -  I t o

M z :  
l t o  ( p o  -  1 ) .'  

a -  F o ' '

1) > 0, and then as 1 < Ps I rt,

I  L z .

2
- 3 a

(52)

(53)

(54)

W e r e c a l l t h a t a > 1 a n d

O6

oMR

l . e .

2
1 ----;,

J V . )

2
O6 ( - - -  - o tu tR

J V J

Therefore the upper bound given by Carasso and Paqa (1993) is smaller than the present

upper bound : as we consider a more general class of optimal viscosity profiles - we allow

variable coefficients in the problem (23) - this result is coherent. However, we emphasize

that (45) and (52) give us o + 0 when p'(0) -+ a'

4.4 comparison between linear and exponential profile

This section is devoted to the comparison between the lengths of the (i.r.) and the

corresponding total amounts of polymer obtained with the linear profile (39) and with

the exponential profi le (50).

Lei t ,  (resp. L2) be Lhe smallest suitable length of the ( i .r.) obtained with the l inear

profile (39) (resp. with the exponential profile (50)), and by M1 (resp. by M2) t'he

corresponding total amount of polymer. Then, fol lowing (3s), (41) , (49) and (51),

,  F o - I
u l  -  1

a -  I t o

) t

^ t  l u \ _ ,l v t 1  : r @ _ p d ,

We remark that, for aII r > 1, 1 + r(lnr -

] J I

2 t/a - p(0)

3JS at/a=I

2 Ja - p(0)
^  / .  / ^ .  1
J V O  y u -  L

1 1



M o r e o v e r '  
M 1  1 /  1 \

A h : ,  1 t  
*  

^ )  
t '

Finally, 1or a gi,uen ps in (1,a), that is for a g'i,uen maximum growth constant o1ap, the

linear profire (so) - with the smallest suitable (i.r.) length - involves a smaller (i'r.)

l eng th than theexponen t ia lp ro f i l e (50 ) ,and i t i nvo l vesa Isoasma l les t to ta lamoun to f
polymer.

4.5 A given improvement of the stability

The aim of this section is to get a g'iuen improvement of the stability in the (i.r.)-oil

interface, by considering above viscosity profiles and by choosing a suitable p(0):

Letp be a real number such that 0 <p < l and let define p(0) bV

2  2 P  a - l
p ( o )  : : " - n f i p : a - r 6 ; f r ,  o ( p < 1 .  ( 5 5 )

A s a > r > p > 0 ,  
, o = ,  

a r .
3 t / 3 a + I

and then p(0) is such that 1 < p(0) < a. If. we consider the linear or exponential profiles

defined above, we get

oMR:  0@ -p(0) )  :  Z  :  ousr  x  P ,  (56)
3/3

where 0 <p ( 1, that is we get a giuen improvement of a ratiop of the stability.

Once we defined p(0) bV (55), we get lower estimates for the (i.r.) length .L and for

the total amount of polymer M, depending on the choice of the viscosity profile:

- in the linear case we get the estimations (38) and (41).

- in the sub-exponential case, we get either the estimation (48) or the relations (49)

and (51) .

5 Conclusions

The three regions model (1)*(4) was first studied by Gorell and Homsy (1998).

A theoretical formula for an exponential optimal viscosity profile in (i.r.) has been

obtained by Carasso and Paqa (1993), according to the numerical results of Daripa et al.

(1986, 1987, 1988), Gorell  and Homsy (1983), Shan and Sechter (1977) and Uzoigwe et

a, t .  ( Ie7Q.
Carasso and Paqa (1998) have obtained the maximal growth constant o6 given bv

the relation (52). A finite-difference approximation of the Sturm-Liouville problem (11)-

(13)-(19) and the Gerschgorin's localization theorem were used. The value o6 has been

o b t a i n e d i n t e r m s o f t h e l i m i t v a l u e o f t h e v i s c o s i t y o n t h e ( i . r . ) - o i l i n t e r f a c e , d e n o t e d

L2



bV lr(0). The value p(0) has been involved in a condition, in terms of the (i.r.) length and

the total amount of polymer contained in the (i.r.), denoted respectively by L and M.

Therefore it was not possible to estimate L and M directly in terms of p(0). The main

point of this above paper was the following: if the chosen profile p satisfy condition (53),

then p(0) -+ a implies that oc i 0, where o is the ratio between the oil and the water

viscosities.
In the present paper we suggest a new class of profiles which give the new estimate (36)

of the eract growth constant dn. This estimate is also in terms of the above limit value

p(0). To prove this result, we use the Rayleigh quotient (30) of the initial Sturm-Liouville

problem ( 1 1 )-( 13)- (19) wi'thout any numeri,cal treatment.

We use the relation (3a) in order to obtain a new class of. theoretical optimal profiles of

viscosity in (i.r.), characterized by ihe condition (35). This condition allows us to obtain

the general formula (37) for the maximum growth constant. The condition (35) gives us

two particular optimal viscosity profiles: the linear profiles defined by (38)-(39) and the

s ub - e rp o n enti, al pr ofiles s at isfyin g (+Z) - (++) .

ThL hnear profiles allows us to consider variable coefficients in the problem (11)-(13)-

(19), while the exponential case (50) gives us only constant coefficients, as in Carasso and

Paqa (1998).
For both linear and exponential profiles we obtain the same maximal value oxap of the

growth constant, given by (37). We have oun 10 when p(0) -+ a, as in Carasso and

Paqa (1998). Therefore the formula (37) and a value p(0) close enough to a give us an

improved stability, compared with the Saffman-Taylor case.

In the sections 4.1 and 4.2we obtain lower estimations of the (i.r.) length tr and of the

amount of polymer M, directly in terms of pl(0), then we generalize the previous result

of Carasso and Paga. We have the relations (38) and (41) for the linear case and the

relations (46) and ( T) for the sub-exponential case.

In the section 4.3 we give the comparison (54) between the present maximal growth

constant orvrn G5) and the previous maximal value o6r (52). We have o6 l oun.This is

not surprising, because we consider now a more general case, including variable coefficients

in  the s tabi l i ty  problem (11)- (13)- (19) '
In the section 4.4 we prove that the linear case is more favorable: indeed, we need

smaller L and, M to get the same growth constant o6 compared to the exponential case.

In the section 4.5 we compute L and M corresponding to a g'iuen i,mprouement of the

stabi,lity, compared with the Saffman-Taylor case. For this we define p(0) bV (55) and then

oTyap verifres (b6), where ovsr is the dimensionless maximal growth constant of Saffman

and Taylor. Once p(0) is fixed, some estimations of tr and M are given, in terms of o and

p - the gi,uen ratio of the improvement - depending on the considered profile:

- in the Iinear case we get the estimations (38) and (a1).

- in the sub-exponential case, we get either the estimation (48) or the relations (49)

and (51) .

In conclusion, a new class of optimal viscosity profiles is given in the present paper, by

considering the three regions model of Gorell and Homsy (1983). This class contains

linear and an exponential profiles. We use the initial stability problem, without anv

1 0
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approximation. The formula for the exponential profile is coherent compared to previous

theoretical and numerical results. We emphasize that the linear case is more favorable

than the exponential one. Finatly we compute the (i.r.) length and the amount of polymer

corresponding to a given improvement of stability, compared with the Saffman-Taylor case

-  wi thout  ( i . r . ) .
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