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Abstract. We generalise the ulffaproducts method from classical model theory to an institution-independent (i.e. inde-
pendent of the details of the actual logic or institution) framework based on a novel very general treatrnent of the semantics
of some important concepts in logic, such as quantification, logical connectives, and ground atomic sentences. Unlike pre-
vious categorical abstract model theoretic approaches to ultraproducts, our work makes essential use of concepts central
to institution theory such as signature morphisms and model reducts. The institution-independent fundamental theorem
on ultraproducts is presented in a modular manner, different combinations of its various parts giving different results
in different logics or institutions. We present applications to institution-independent compactness, axiomatizability, and
higher order sentences, and illustrate our concepts and results with examples from four different algebraic specification
logics. In the introduction we also discuss the relevance of our institution-independent approach to the model theory of
algebraic specification and computing science, but also to classical and abstract model theory.

1. Introduction

The theory of institutions (Goguen and Burstall, 1992) is a categorical absffact model theory which
formalises the intuitive notion of logical system, including syntax, semantics, and the satisfaction
between them. Institutions constitute the modem level of algebraic specification theory and can
be considered its most fundamental mathematical structure. It is already an algebraic specification
tradition to have an institution underlying each language or system, in which all language/system
constructs and features can be rigorously explained as mathematical entities. Most modern alge-
braic specification languages follow this tradition, including CASL (Mossakowski, 2001), Maude
(Meseguer, 1993), or CafeOBJ (Diaconescu and Futatsugi, 2003). There is an increasing multitude
of logics in use as institutions in algebraic specification and computing science. Some of them,
such as first order predicate (in many variants), second order, higher order, Horn, type theoretic,
equational, modal (in many variants), infinitary logics, etc., are well known or at least familiar to
the ordinary logicians, while others such as behavioural or rewriting logics are known and used
mostly in computing science.

The original goals of institution theory are to do as much computing science and model theory as
possible, independent of what the actual logic may be (Goguen and Burstall, 1992). This mathemati-
cal paradigm is often called 'institution-independent' computing science or model theory. While the
former goal has been greatly accomplished in the algebraic specification literature, there were only
very few and rather isolated attempts towards the latter (Tarlecki, 1986a; Tarlecki, 1986b; Salibra
and Scollo, 1996). This situation contrasts with the feeling shared by some researchers that deep
concepts and results in model theory can be reached in a significant way via institution theory.
This paper can be regarded as a new step towards this goal, part of a coming series of works in
institution-independent model theory.

The significance of institution-independent model theory is manifold:

It provides model-theoretic results and analysis for various logics in a generic way. Only a lim-
ited number of model-theoretic properties are usually studied for the logics in use in computing
science and algebraic specification, however it is important to have as deep as possible under-
standing of the model-theoretic properties of the underlying logic because the specification or
software engineering properties of the logic depend intimately on the former ones ((Diaconescu
et al., 1993) is one of the works that support this argumen|. We sometimes notice that the
failure of some speciflcation properties of a logic is due to the rather subtle wrong definition of
some details of the logic. We also notice that often the right definition of a logic can be checked
through its model-theoretic properties, otherwise said good model-theoretic properties lead to
good specifi cation properties.

@ 2002 Rdzvan Diaconescu.
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It exports model-theoretic methods from classical logic to other logics. Classical first-order
predicate logic has developed very rich a powerful model-theoretic methods, which exported
to an institution-independent framework can become available for the multitude of computing
science or algebraic specification logics.

It provides a new way of doing model theory. While the points we made above have a more
application oriented significance, this point has a pure mathematics methodological signifi-
cance. The institution-independent way of obtaining a model theoretic result, or just viewing a
concept, leads to a deeper understanding of why a certain model theoretic phenomenon holds.
Such top-down understanding is not suffocated by the details of the actual logic, it decompose
the model-theoretic phenomenon (in various layers of abstract conditions), and provides a clear
picture of its limits.

Although these points are largely valid for any form of abstract model theory, they are especially
relevant for the institution-independent abstract model theory. One of the reasons for this is that
up to our knowledge, the theory of institutions provide the most complete definition of abstract
model theory, the only one including signature morphisms, model reducts, and even mappings
(morphisms) between logical systems, as primary concepts. Also, as mentioned above, the current
algebraic specification logics and an increasing number of computing science logics are formalised
as institutions.

This work exports one of the most important and powerful classical model theory methods,
namely the ultraproducts method (C.C.Chang and H.J.Keisle11973), to an institution-independent
framework. This framework not only clarifies the conditions that are necessary for the develop-
ment of the ultraproducts method, but also develops a simple but effective institution-independent
approach to quantification and logical connectives. In this approach the concept of variable and
valuation is presented in a more uniform and much simpler way than in the usual presentations of
logic, without the need to distinguish between closed and open formula and naturally including
higher order variables. We think that this very simple and general institution-independent 'intemal

logic' is one of the main contributions of this work, reflecting the benefits of the way of doing model
theory promoted by the theory of institutions.

Since the categorical definition of the ultraproduct construction, there have been a few abstract
model theoretic approaches to ultraproducts, (Andr6ka and N6meti, 1978) being one of the most
representative. If we compare it to (Andr6ka and N6meti, 1978), our institution-independent ap-
proach to ultraproducts is different in many essential aspects. For example, we work with the
given sentences of the institution rather than defining a semantics-oriented concept of sentence
and satisfaction as in (Andr6ka and N6meti, 1978) which leads to extremely complex combinatorial
definitions and proofs. Besides gains in simplicity and clarity, our approach make the applications
much easier and the understanding of the ultraproducts method smoother. This is a direct conse-
quence of the more fundamental difference of using institutions rather than simple categories as
the basic framework for the ultraproducts method. By using institutions rather than categories, we
are able to make use of essential model theoretic concepts such as signature morphism and model
reduct and expansion, which is not possible in other abstract model theoretic approaches (Andr6ka
and N6meti, 1978).

1.I .  SuuTuRRy AND CoNTRIBUTIoNS oF THIS WOnT

In the preliminary section, besides briefly revising some terminology, concepts, and notations about
filters, categories, and institutions, we introduce the novel institution concept of representable sig-
nature morphism and explore some of its basic properties. Representable signature morphisms can
be regarded as an abstract institution-independent formulation of the concept of first-order signature
entities (such as variables or constants),

The next section is devoted to an institution-independent study of logical connectives, quan-
tification (in both existential and universal form), and of basic sentences, which are the simplest
sentences matching the model theoretic structure of the institution. We show that in the applications,
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all sentences can be obtained by iteration of some of the logical connectives and some quantifica-
tion over the basic sentences. This decomposition of the satisfaction relation between models and
sentences into satisfaction ofbasic sentences, oflogical connectives, and ofquantification, is one of
the contributions of this section. While the institution-independent concept of logical connectives is
obvious and the concept of basic sentence is based upon a simple form of satisfaction via injectivity
in the sense of (Andr6ka and N6meti, 198 1), the key contribution of this section lies in our approach
to quantification. In the applications, the latter includes naturally both first-order and higher-order
forms of quantification.

The main section of the paper starts by recalling the categorical definition of reduced products

and ultraproducts, then studies the interaction between reduced products and model reducts. The

latter plays a crucial role for dealing with quantifiers in our institution-independent approach to the

fundamental theorem on ultraproducts.
By following the structure of the internal logic introduced in the previous section, our formu-

lation of the institution-independent fundamental theorem on ultraproducts deconstructs this main
result on ultraproducts into parts having individual significance. Depending of the actual institution,

these parts can be combined in various different ways and can also be used independently for

obtaining weaker preservation properties but for a larger class of sentences. This presentation of

the main result has also the benefit of enabling a clear perspective on the semantic limits of an

actual logic or institution.
The final section is devoted to some applications, such as institution-independent compactness,

elementary axiomatizability, or higher-order quantification. The applications are meant only to il-

lustrate in a rather limited way the institution-independent ultraproducts method, the emphasis of

this paper being on the fundamentals. Wider applications is topic for further research based on this

work.
The concepts introduced and the results obtained are illustrated with examples from four different

institutions: first-order predicate logic (with equality), rewriting logic, partial algebra, and hidden

algebra for behavioural logic. All these four logics are very briefly presented in the Appendix,

mainly for setting up some notation and terminology. The reader is required to have some familiarity

with them or else to study the corresponding literature. Although the examples from these actual

institutions serve also as application ground for the results of this paper, they are mainly used for

helping the understanding of the concepts introduced by this work.

2. Preliminaries

2.1. Frlrens AND ULTRRn[reRs

In this section we recall the basic concepts and definitions about filters and ultrafilters, restricted to

the case of the partial order of the subsets of a subset. Let I be a nonempty se-t. We denote by 2t the

set ofall subsets of1. Recall thatafilter F over I is defined to be a set F g 21 such that

I € F ,

X a Y € F i f X e F a n d Y € F , a n d
Y e F i f X C Y a n d X € F .

A filter F is proper if and only if F is not 2I and it is an ultrafilter if and only if

X  e  F  i f  andon ly i f  (1 \X)  eF

for all X € 21. Notice that ultrafilters are proper filters.
A set S C 2I has the finite intersection property if h)Jzn.. .aJn I A fot all J1,J2,... ,Jn e S.

The following classical result is known as the 'Ultrafilter Theorem':

THEOREM l. (C.C.Chang and H.J.Keisler, 1973) If S -C 2rhas the finite intersection property,

then there exists an ultrafilter U over 1 such that S c U' tr
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2.2. CATEGoRIES

This work assumes some familiarity with category theory, and generally uses the same notations
and terminology as Mac Lane (Maclane, 1998), except that composition is denoted by ";" and
written in the diagrammatic order. The application of functions (functors) to arguments may be
written either normally using parentheses, or else in diagrammatic order without parentheses, or,
more rarely, by using sub-scripts or super-scripts. The category of sets is denoted as Se/, and the
category of categoriesl as Cal. The opposite of a category C is denoted by CoP. The class of objects
of a category C is denoted by lCl; also the set of arrows in C having the object a as source and the
object b as target is denoted as C.(a,b). The isomorphism of objects in categories is denoted by -.

A diagram D in acategory C is just a functor I 4 C, when ,I is a small category.
For any object a, the comma category af C,has

zrrrows f e C(a,b), as objects, and

arrows heC.(b,bt) such that f;h: f', as arrows between f e C(a,b) and ft eC(a,bt).

2.2.1. Finiteness
A category J is directed if to any two objects i and j there exist arrows i -* k *- i. A limit (colimit)

of a functor I !, C. is directed if the category J is directed.
There are many approaches on finiteness concepts at the level of category theory most of them

very similar; our categorical treatment to finiteness, has already been used in a serie of papers on
the so-called 'category-based equational logic' (Diaconescu,1994; Diaconescu, 1995; Diaconescu,

2000). We say that an object a in a category C is quasi-finite if and only if for any afiow a !- d to

the vertex of acolimiting co-cone y": D+d of adirecteddiagram l lC.there exists i e l,/land an

anow a 4 Ol)such that f : fi;tti.
Notice that our concept of finiteness is slightly more general than that defined in (Henlich and

Strecker, 1973) by the fact that C(a,-) ' C --+ Se/ preserves small directed colimits. Finite sets,
finitely presented algebras or relational structures, etc. are all examples ofquasi-finite objects in our
sense.

2.3. INsrrrurroNs

In this section besides briefly reviewing some of the basic concepts of institution theory, we also
introduce some novel concepts necessary for this work. Besides the seminal paper (Goguen and
Burstall, 1992), (Diaconescu et al., 1993) contains many results about institutions with direct appli-
cation to modularisation in algebraic specification languages.

From a logic perspective, institutions are much more abstract than Tarski's model theory, and
also have another basic ingredient, namely signatures and the possibility of translating sentences
and models across signature morphisms. A special case of this translation is familiar in first-order
model theory: if I -+ X' is an inclusion of first-order signatures2 and M is a X/-model, then we can
form the reduct of M to E, denoted M f2. Similarly, if e is a X-sentence, we can always view it as a
I'-sentence (but there is no standard notation for this).

Institutions formalize the concept of 'logic' from a categorical abstract model-theoretic perspec-
tive. The key axiom, called the satisfaction. condition, says that truth is invariant under change of
notation, which is surely a very basic intuition for classical logic.

DEFINITION 1. An institution $: (Slgn,Sen,MoD,l) consists of

1. a category Sigru, whose objects are called signatures,
t W. ,r.". .lear of any foundational problem related to the "category of all categories"; several solutions can be found

in the literature, see, for example (Maclane, 1998).
2 Called "languages" in (C.C.Chang and H.J.Keisler, 1973).
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2. a functor Sen: Slgn --+ Se/, giving for each signature a set whose elements are called sentences
over that signature,

3. a functor Moo: SignoP ---+ C,at giving for each signature X a category whose objects are called
Z-models, and whose arrows are called Z-model homomorphisrus, and

4. a relation fr c lMoo(>)l x Sen(>) for each X e jSign l, calledZ-satisfaction,

such that for each morphism {p: X ---+ I/ in Slgru, the satisfaction condition

M' lo sen(<p)(e) itr Mon(g)(M') ?>"

holds for each M' e lMon(>/)l and e e Sen()). We may denote the reduct functor Moo(rp) by
-f9 and the sentence translation Sen(<p) bV q(-). Also, we will sometimes say that the signature
morphism rp has a certain property 'P' if Mon(<p) has the property 'P'. When M : M'fe, we will
say that M' is an expansion of M along q. J

DEFINITION 2. Let X be a signature in an institution 5 : (Sign, Sen,MoD, F).

-  Foreachsetof )-sentencesE,let  E*:{M e Moo(X) IMF>e foreach ee E},and
- Foreachclass M of Z-models, let  M*: {e e Sen(X) lM+2e foreach M eM}.

If E is a set of sentences and e is a single sentence, then e € E** is denotedby E I e.
Two models M and Mt of the same signature are elementarily equivalent (denoted as M : M') if

they satisfy the same set of sentences, i.e. {M}- : {M'}-.
Two sentences e and et of the same signature are semantically equivalent (denoted as e = e') if

they are satisfied by the same class of models, i.e., {e}* : {et}*. z

DEFINITION 3. In any institution 5, a class ( of models for a signaturc is elementary if rt is
closed, i .e. ,  K** :  K.D

REMARK l. Each elementary class of models is closed under elementary equivalence. !

DEFINITION 4. Let $ : (Slgn,Sen,MoD, F) be an institution. (X,E) is a theory when X is a
signature and E is closed set ofX-sentences, i.e., E : E**.

A theory E is presentedby Es ifEo F e for each e e E, andisfinitely presented ifthere exists a
finite E6 which presents E.

A theory morphism g: (I, E) --+ (2t ,Et) is a signature morphism g: X ---+ X' such that <p(E) C E' .
LetTh denote the category of all theories in 5. D

REMARK 2. For any institution 5, the model functor MoD extends from the category of its signa-
tures Sign to the category of its theories 1fh(5), by mapping a theory (X,E) to the full subcategory
Moo(X,E) of Mon(I) formed by the )-models which satisfy E. !

DEFINITION 5. (Diaconescu et aJ.,1993) A theory morphism q: (I, E) --* (Z' ,E') is conservative
if and only if each (I,E)-model has an expansion to a (Z',E')-model, i.e., for each X-model M
satisfying E, there exists a X/-model M/ satisfying E/ such that Mt l,p : M. a

An important particular case for this work is that of conservative signature morphisms. In classical
model theory, a signature morphism {p: ) -+ X/ is conservative if and only if <p does not add new
operations of sorts that are 'empty' (i.e., without constants) in X. Consequently, if X has only 'non-

empty' sorts, then each signature morphism {p: X --+ X' is conservative.

DEFINITION6. Atheorymorphismrp:(2,E)--+(Zt,E')isliberalifandonlyifthereductfunctor
-f,p: Mon(I',8') * Moo(X,E) has a left-adjoint (-;e.
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r4,r ,r("*exisrs a unique ft,

M'12, E' M'lo Mt
The institution S is liberal if and only if each theory morphism is liberal. tr

DEFINITION 7. An institution g : (srgn, sen, MoD, |) is exact if and only if the model functor
Moo: SiSrop ---+ Cat preserves finite limits. S is semi-exact if and only if Moo preserves only
pullbacks. tr

EACT 1' consider a semi-exact institution 5, a pushout of signatures

t  
e t  o > t

'l j-
2 z  

* * Y

and two models, a X1-model M1 and a X2-model M2 such that M1lQ, : Mzfq2. Then by the semi_
exactness, there exists an unique E/-model M/ such that Mtlq,, : Mt and y,lV, Mz. We call this
model the amalgamation of Mr and Mz and denote itby MrdMz.

A similar amalgamation concept can also be defined for model homomorphisms. tr

Exactness properties for institutions formalise the possibility of amalgamating models of different
signatures when they are consistent on some kind of intersection' of the signatures (formalised as
a pushout square).

2.3.1. Representable signature morphisms
The topic of this subsection represents a novel categorical generalisation of the concept of (first-
order) 'variables' from conventional logic to the framework of institutions.

Let us have a brief look at the conventional concept of variable in general algebra or first-order
predicate logic (Appendix A). Given a signature I and a set of variables X for { *" *uy consider
the extended signature XUX by regarding the variables as constants. Then each XUX-model is
just a X-model M plus an interpretation of the elements of X into M. But the interpretations of X
into M are in canonical bijection with the )-moder homomorphisms rp(x) ---+ M, where r>(x) is
the free x-algebra over X. Therefore, a lUX-model is the same with a l-model homomorphism
f>(X) - M with M a Z-model. This can be regarded as a categorical property of the signature
inclusion )'--+ )UX, suggesting the following institution-independent definition:

DEFINITION 8. Let $ : (Sign, Sen,MoD,l) be an institution. A signature morphism 0: I --+ I/
is representable if and only if there exists a )-model Mq (called the representation of $) and an
isomorphism iq of categories such that the following diagram commutes:

M o n ( Y ) ' ' .  ( t t o l t v t o D ( > ) )
\
vroo)l-* [forsetful

Mon(>)
If the representation Mq is quasi-finite in Moo(>), we say that Q is finitary representable. E

Informally, this definition says that each )/-model is just a l-model plus an interpretation of the
representation model into the )-model.
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EXAMPLE 1. In the institution of first-order predicate logic (Appendix A) each extension of sig-
natures Q: (),n) -- (y,il) only adding constants to X is representable by the free (),fl)-model
over the added constants. If Q adds a finite number of constants, then Q is finitary representable.

Similarly, signature morphisms only adding constants are also representable in rewriting logic
(Appendix B), partial algebra (Appendix C), and hidden algebra (Appendix D). !

Although the next result is not used anywhere in this paper, it shows some basic and expected
composability properties of representable signature morphisms. The informal meaning of the former
three items of Proposition 1 is that the 'union of variables' exists, is associative, and has the 'empty

set' as identity, while the meaning of the latter fourth item is the this 'union' is commutative too.

PROPOSITION 1. In any institution

1. the composition of representable signature morphisms is representable,

2. the identity signature morphism is representable if and only if the coresponding signature has
initial models,

3. if each signature of the institution has initial models then the representable signature morphisms
form a subcategory of the category of signatures, and

4. if the institution is semi-exact and its categories of models have finite coproducts, then the
subcategory of representable signature morphisms creates pushouts.

.

Proof. L. Consider the following representable signature morphisms > 4 >'$ >'. W" show that

0;0' is represented by MV fq where Mq, is the representation of Q/.
For each X"-model M" , we define l6,y (M") : ia,(M")lo.

On the other hand, given any m: (Mq)lq --, M, we define i;[,(m) : ia,r Qir @)) (notice that

m: h --+ h;min MqlMoo(>) where h: iO(MV)).
2. is immediate and 3. follows immediately from 1. and 2.
4. Consider the following pushout of signature morphisms

>  
t t  => ,

1"
2 z  

* * E l

We need to prove that Q! and $l are representable when Q1 and Q2 are representable.

Let the l-model M6, represent Q1 and the l-model Mq, represertt Q2. Let Mq, ll Mq, 1- Mq, ?

Mq, be the coproduct of Mq, and M6. Then the conclusion follows from the fact the following
diagram of forgetful functors is a pullback (we leave this simple calculation as exercise to the
reader):

'l

Moo(

i
M 6, I Moo (2) * m2 I (M q, I MoD (>) ) = (M q, + M q,) I Moo (I) - ry I (rw q, lwoD (t) )

3. Internal Logic

In this section we define a method of describing the sentences supporting our results on institution-
independent ultraproducts. If we fix the institution, these are sentences of this institution rather

Mq,lMoo(Z)

1
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than being new sentences constructed on top of the sentences of the original institution via some
institution-independent building operations such as logical connectives and some form of quan-
tification (such as (Tarlecki, 1986b) does for the sentences defining the quasi-varieties of models
in arbitrary institutions). This description of the sentences supporting our results on institution-
independent ultraproducts will allow us to notice easily that, in most of the institutions used in
algebraic specification or computing science theory, these sentences are in fact all the sentences of
the institution; this gives a wide range of applications to the results of this paper.

At the basic level we have the basic sentences which are the basic constituents for the sentences
supporting our results on institution-independent ultraproducts. The complex level is obtained from
the basic level by iterations of logical connectives and an abstract form of quantffication (both
universally and existentially). Although this description might have a strong first-order flavour, it
goes well beyond conventional first order logic because of two reasons. On the one hand, this is done
in an arbitrary institution, almost without any technical restrictions. On the other hand, the level
of generality of our concept of quantification is much higher than the conventional quantification
with first-order variables, particular conventional cases including second order quantification, for
example.

3.1. Besrc SENTENcES

In the actual institutions, the basic sentences are the simplest sentences matching the structure of the
models of the institution, i.e. which are preserved by the model homomorphisms, and they usually
constitute the bricks from which the complex sentences are constructed by using logical connectives
and quantification.

Notice that the satisfaction of basic sentences is a particular case of injectivity' satisfaction in
the sense of (Andr6ka and N6meti, 1981).

DEFINITION 9. Given a signature X, a l-sentence e is basic if there exists a )-model M, such that
for each X-model M, M =, e if and only if there exists a model homomorphism M" ---+ M.

We say that an basic sentence e isfinitary if the model M, is quasi-finite in the category Mon(X)
of X-models. I

REMARK 3. In any institution basic sentences are preserved by model homomorphisms, i.e., N f e
whenever M | " 

and there exists a model homomorphism h: M --, N. D

EXAMPLE 2. First-order predicate logic.
In the case of first-order predicate logic with equality (Appendix A), the ground atoms are finitary
basic. Recall that a ground atom is either an equality between ground terms or a relation (predicate)
with ground terms as arguments.

If we consider a ground equation (VQ t = tt for an algebraic signature ), then let T2lE be the
(quotient) initial l-algebra satisfying (V0) t = tt. In this case E is the congruence generated by
the pair (r, r/). Then, an algebra A satisfies (V0) r = / if and only if there exists a homomorphism
T2lE --+ A.

If we consider a ground atomic relation n(t1 ...tn) for a first-order predicate logic signature
(t,n), where /1 ,...,t, is a list of Lterms, then we consider the (I,ll)-model Z such that as an
algebra, ?" is the initial term l-algebra T>, and which interprets all relation symbols as the empty
relat ion except Tn: {(h, . . . , t ")} .ThenM ln(t t . . . tn) i f  and only i f  there exists a homomorphism
T -- M, for each (X,ll)-model M.

Finite conjunctions of ground atoms would also be finitary basic, but in the case of infinitary
logic, infinite conjunctions of ground atoms would be only basic. I

EXAMPLE 3. Rewriting logic.
In the case of the rewriting logic (see Appendix B), the (atomic) ground equations and the ground
transitions are finitary basic.
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Forexample,givenagroundtransit ion(V0)t :1 t ' forasignatureX,let(Z>,<)bethepreorder
model where Z2 is the initial term X-algebra, and ( is the preorder compatible with the X-operations
generated by the pair (t ,t') . One can notice easily that for each preorder model M , M => (V0) r :1
r/ if and only if there exists a preorder model homomorphism (Zp, <) ---+ M. a

EXAMPLE 4. Partial algebra.
In the case of partial algebra (Appendix C), we show that the strong ground equations are basic. Let
(V0) I 3 / be astrong ground (X,A)-equation for a partial algebraic signature (Z,A) with S the set
of sorts. By Proposition 3, consider the initial total ) U AU l-algebra 6ulur,rulr:r,1 for the theory
f U {(V0) t = t'}.Its corresponding partial (X,A)-algebra by Proposition 3 is (the total algebra)
T>u^n, where E is the ) U A-congruence generated by (t ,/) on the initial > U A-algebra IpLr6.

Notice that, by Proposition 3, for each partial algebra A, Al $0)1: { if and only if A I
(V0) I = tt if and only if there exists a total (> u nu l)-homomorphism h: Z>rlur,ru {t:t1 

-+ A if
and only if there exists a partid (X,A)-homomorphism h: T>u\r -+ A.

Finally, a strong ground equation is finitary basic if the signature if finite. The reason for this
is that in this case I is finite and therefore 6uaur,rulr:r,1 is finitely presented, which means that
T>ut,r is finitely presented and thus quasi-finite in the category of partial (X, A)-algebras. tr

3.2, LoGICAL CoNNECTIVES

The institution-independent approach to logical connectives is straightforward. We only give here
the definitions for negation and conjunction because all other logical connectives can be generated

from these.

DEFINITION 10. Given a signature !,

for each X-sentence e,let -e be a new sentence, called the negation of e, and

for all I-sentences e and et , let e A et be a new sentence, called the conjunction of e and e' .

Given a )-model M, we extend the satisfaction to negations and conjunctions by

M f2 -e if and only if M ft2 e, and

M lz e A et if and only if (M ?2, e and M ?> "').

These naturally determines extensions of the original institution 3 to its

negation closure $- : (Slgn, Sen-, MoD, l), and

conjunction closure 5n : (Slgn, Sen^, Moo, l)

where

Sen-(X) : Sen(X) U {-" I e e Sen(X)} and <p(-g) : -<p(e), and

Sen^(I) : Sen()) U {eA e' I e,e' e Sen(>)} andcp(e Aet) : t1@) ncp(e').

for each signature I and each signature morphism <p: I -+ I/.
For each set S C Sen(I) let

-g : {e e Sen(X) | e : -et for some e' e S} be its negation closure, and

nS: {e e Sen(X) | e: et Ae" for some e' ,e" € S} be its conjunction closure.

The institution S

admits negation if and only if for each e e Sen(X) there exists e' e Sen()) such that e' = -e,

and
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admits conjunction if and only if foreach e',e" e Sen(X) there exists e e Sen(X) such that
e :  e '  A e "

for each signature X. tr

The institution-independent semantics of other logical connectives, such as disjunction, implication,
equivalence, etc. can be defined directly in a same way. This can also be extended to infinitary
versions of the logical connectives, such as infinitary conjunctions and infinitary disjunctions.

3.3. QunNuFrERs

DEFINITION 11. Given a signature morphism >J- Y, a !-sentence e is universaL/existential
y-quantffication of a 2/-sentence et if and only if for each X-model M

M ?, e if and only if (M' lz e/ for alllsome X/-models Mt with M'lx: M)

tr

This is a very abstract and general concept of quantification, which, for example, in the particular
case of classical model theory includes the second order quantification. Notice that this internal-
isation of the quantification does not use the ordinary concepts of open formule and valuations
(of unbounded variables), but rather considers the "variables" as part of the signature and treats
the "valuations" as model expansions along the signature extension defined by the addition of the
"variables" to the signature. This is exactly what happens in applications because each valuation
of variables into a model can be regarded as an expansion of the model to the signature extended
with the variables. Otherwise said, for quantification we need only to mark a part of the signature
over which the quantification is done. Although this way of thinking about variables and quantifi-
cation might be quite alien in the usual presentations of classical logic, it is actually quite common
in algebraic specification logics where it underlies the so-called 'theorem of constants' (Goguen,
2002).

DEFINITION 12. Let S c Sen()) be a set of )-sentences and let} LY be asignature morphism.
Then the universqUexistential X-quantificotion closure o/S is defined as

{e e Sen(X) | e is universal/existential 1-quantification of et for some e' e Sen(}')}.

and is denoted by V1.S, respectively :X.S. tr

EXAMPLE 5. Given a signature (X,fI) in first order predicate logic, the ordinary first order quan-
tificationbyasetXofvariablesisthesamewiththeX-quantification,wherel: (I,fI).--+(IUX,fI).
Notice that in this case 1is representable (Definition 8), and is finitary representable when X is finite.

The cases when 1: (X, fI) .--t (>', fI') is any signature inclusion correspond to the second order
quantification by the operations I/ \) and predicates (relations) n'\|I.

Quantifications higher than second order can be modelled by Definition 11 provided that the clas-
sical concept of first order predicate logic signature is extended in order to accommodate symbols
denoting higher order structures.

While quantification in rewriting logic (Appendix B) and hidden algebra (Appendix D) are
modelled by Definition 11 in the same way as in first-order predicate logic, some special notice
is needed for the case of partial algebra.

Given a partial algebra signature (I, A) (Appendix C), the ordinary first order quantification by a
setXofvariablesisthesamewiththel-quant i f icat ion,wherel :  () ,1).--+(>UX,A)isthesignature
inclusion. Notice that the variables X aretreatedas total rather than partial constant symbols because
the valuations of the variables in partial algebra are total. This is possible due to having explicit
declarations for total operations as part ofthe partial algebra signatures. tr
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4. Ultraproducts in Institutions

4.1. CarBcoRIcAL REDUcED pRoDucrs

The reduced product construction from classical model theory (see Chapter 4 of (C.C.Chang and
H.J.Keisler, 1973)) has been probably defined categorically for the first time in (Matthiessen, 1978)
and has been used in some abstract model theoretic works, such as (Andr6ka and N6meti, 1978).
The equivalence between the category theoretic and the set theoretic definitions of the reduced
products is shown in (Griitzer, 1979).Let us recall here the category theoretic definition of the
reduced products:

DEFINITION 13. Let C be a category with small products and small directed colimits. Consider a

family of objects {Ai}ier. Each filter F over the set of indices 1 determines a functor F 15 C such

thatAp(JcJt) : f l ret ,Ai2!n,rr foreach J,Jt€Fwith,I  c l t ,andwithnl, , lbeingthecanonical
projection.

Then the reduced product of {A;}iq1 modulo F is the colimit p,: Ap } flpA; of the functor Ap.

fIiet,

If F is ultrafilter then the reduced product modulo F is called an ultraproduct. a

REMARK 4. Notice that F is a small directed category because as a filter is a directed poset, hence
under the assumptions of Definition 13 the reduced products always exist. tr

EXAMPLE 6. For each signature in first-order predicate logic (Appendix A), rewriting logic (Ap-

pendix B), partial algebra (Appendix C), or hidden algebra (Appendix D), its category of models
has reduced products.

In all these cases, the forgetful functor from the category of models to the category of many-
sorted sets mapping each model to its underlying carrier creates small products and small directed
colimits. While this observation is obvious in the case of the products, in the case of the directed
colimits it is a direct consequence of the finiteness of the arities of the operation or relation symbols
of the signature (see Proposition 2, Chapter IX of (Maclane, 1998) for the case of [varieties of]
many-sorted algebra).

Notice also that in the case of the partial algebras, this argument is obtained via Proposition 3. D

DEFINITION 14. Let G: Ct --+ C be a functor and F be a filter over a set 1' Then

- G preserves the reduced product y', Br +llrBi (for {B;};.7 a family of objects in C'), if
y'G: np;G + llr G(B;) is also a reduced product in C of {G(Br)}t€1, and

- G lifts the reduced product 1t": Ap ) flpA; (for {A;}ier a family of objects in C), if for each
object B in C/ such that G(B) :flpAt, there exists {8,},r, a family of objects in C' such that
G(B i ) :A ; fo reach le landthereex is tsareducedproduc t l ,Br=+Bsuchtha ty 'G:1 t .

Given a class f of filters, we say that functor p reserttes/lifts f -reduced products if it preserves/lifts

all reduced products modulo F for each filter F e f .D

In general, in the applications, the preservation of reduced products is an easy property that holds
naturally without other conditions. On the other hand, the lifting of the reduced products holds only
for a restricted class of signature morphisms.

AiLflrct

X /
llrA;

A;
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FACT 2. Any functor preserving small products and small directed colimits preserves reduced
products. D

EXAMPLE 7. Any signature morphism in first-order predicate logic (Appendix A), rewriting logic
(Appendix B), partial algebra (Appendix C), and hidden algebra (Appendix D), preserve the reduced
products of models.

The model products are preserved by the signature morphisms because in all these institutions
the signature morphisms are liberal and all limits are preserved by right-adjoint functors (Maclane,
1998).

The directed colimits of models are created, and thus preserved, by the signature morphisms by
the generalisation of the argument that the forgetful functors from the categories of models to the
categories of many-sorted sets mapping each model to its underlying carrier creates small directed
colimits (see Example 6). tr

As mentioned above, by contrast to the preservation of the reduced products, in general, only a
restricted class of signature morphisms lift the reduced products in the applications. The following
result gives a general class of signature morphisms that lift the reduced products in any institution.

PROPOSITION 2. In any institution the finitary representable conservative signature morphisms
lift all reduced products. !

Proof, Consider a finitary representable conservative signature morphism Q: I --+ 2t . Let Mqbe
the Dmodel representing $. Recall that there exists an canonical isomorphism iq of categories such
that the following diagram cornmutes:

Moo(/) 
'', 

lMrlMoD(t))- \  l ^
vroot)\ Ilorsewt

Moo(I)

Consider a family {Ai} ia of X-models and a filter F over 1. Let p,: Ap =+ l[.A; be the corresponding
reduced product and let Bbe a X'-model such that BfO : IIrAr.

Let i6 (B) : b : Mo - fir Ai. Because M6 is quasi-finite, there exists -I € F and b1 : Mq t fliet Ai
such that bJ;l.U : D. For each j € J, let bi: b1;n1,1, where n1,i: fl;.1Ar - Aj is the projection
from the product to its 7-th component. Then we define Bi : iir (b) for each j e J and, because

Qisconservat ive, let  Bibeanarbi traryexpansionofA;toaX/-model i f  i /J.Letbi :  lq(B;) for
each i e 1, and for each Jt e F let (by the universal property of the product) b1 : MO - flir1, Aibe
the unique anow such that b1;ny,; : bi for each i € "/'. If we show that p is a colimiting co-cone
defining the reduced product b :lIrbi in MqlMoo(I), then this proposition is proved because of
the canonical isomorphism between MqlMoo(>) and Moo(X').

flietnt,At

i r z
t o  , a
| -'t 

ut'

We first show that p.: bp + b is a co-cone, where bp: F --+ M6lMoo(2) is the functor withbp(J'):
by for each J'e F and wlth bF(JI C Jtt) : n7,,7. Consider an arbitrary J' e F. Then by;1t"1 :
b1riTE1r,1n1r;1t1oJ, : bJnJ,ll-LJnJ, : bJ)TEJ,Jnl;lqnJt : btitrIt: b. (Notice that here we have used the
crucial fact that J nl e F because both J,Jt € F and each filter is closed under finite intersections.)

Now consider another co-cone v : bp ) b' with b' : Mq --+ A' . By the forgetful functor
M6lMoo(2) --+ Mon(X), v: Ap + A/ is a co-cone, therefore by the colimit property in Mon(X),

M6
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there exists an unique h: llp Ai -- A/ such that p;h: v. All we still have to prove is that h: b -+ b'
in M6fMoo(>). But we have thatb;h: btil i l ih: br;\,tr : bt.

EXAMPLE 8. Any signature inclusion I .-+ X U X in first-order predicate logic (Appendix A),
rewriting logic (Appendix B), partial algebra (Appendix C), and hidden algebra (Appendix D) lifts

the reduced products of models where X is a finite set of arbitrary constants and when X does not

introduce a constant on a sort which does not have constants in I.
Such signature inclusions are finitary representable by the free X-model over X, and the fact

thatX does not introduce a constant on a sort which does not have constants in ) guarantees that

) + XUX is conservative too. tr

4,2, THE FUNDAMENTAL THEOREM

For this section we assume a fixed institution 3 : (Slgn, Sen, MoD, p) such that all its categories

of models have small products and small directed colimits.

DEFIMTION 15. Let f be aclass of filters. For each signature I, a X-sentence e is

- preservedby f -reducedfactorsif f[pA; lp e implies {; e I I Ail>e} e F,
- preservedby f -reducedproducts if {, € I lAil>e} e F implies flpAi 12e, and

for each filter F e f over a set 1 and for each family {Ai}ia of )-models.
A sentence is aLoi-sentence whenis preserved by all ultrafactors and all ultraproducts. D

The following theorem is the fundamental result of this paper.

THEOREM 2. For any class f of filters,

1. The basic sentences are preserved by all reduced products.

2. The finitary basic sentences are preserved by all reduced products and all reduced factors.

3. The sentences preserved by f-reduced products are closed under existential X-quantification,
when 1 is conservative and preserves f-reduced products.

4. The sentences preserved by f -redrced factors are closed under existential 1-quantification,
when l lifts f-reduced products.

5. The sentences preserved by f -reduced factors and the sentences preserved by f -teduced prod-

ucts are both closed under conjunction.

6. The sentences preserved by f-reduced products are closed under infinite conjunctions.

7. The l-os-sentences are closed under negation'

!

Proof. l.Let F be any filter over 1 and let {A;}ier be a family of of X-models for a signature ).

Let e be a basic sentence and consider 1 : {i e I I Ai ?z e } . There exists a model homomorphism

Me - A; for each j € "/, therefore by the universal property of the products, there exists a model

homomorphism Mr -TIretAr. When composing this with fIr€JA, !-fIrA,, we get a model

homomorphismM, -lIrAi, which implies that flpA; p e.
2. Consider a finitary basic )-sentenae e. By 1. we have to prove only that e is preserved by

reduced factors. If flpA; I e, then there exists a model homomorphism Mn - fIrAi.Since M, is

quasi-finite, there exists a model homomorphism M, - flret Ar for some nonempty J e F , which,

by the productprojections, means thatA;I efor alli eJ. Therefore {; e I I Ai?>e} e F because

J C { i e I l A i ? r r } .
3.Lety: I --+ 2/ be a signature morphism which is conservative and preserves reduced products.

Let et be a )/-sentence preserved by reduced products, and let ebe an existential 1-quantiflcation of
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e/. Consider a filter F € f over a set 1, and let {Ai}iqbe a family of )-models such that 1 : {i e
I I Ai F> ej e F.We have to prove thatflp Ai |2 e.

Foreach ie JletB;beaX/-modelsuchthat Bi lx:AiandBiF>, e' .Becausel isconservat ive,
foreach i/.J,letB;beaY-modelsuchthat Bilx:Ai.Becausee'ispreservedbyreducedproducts
and because J g {i e I I B; Fy ,'} and ,I is filter, we have that llpBi Fy e'. Because ,( preserves
reduced products, we have that (flpB;)fx : llrA;, which implies that flpA; lp e.

4.Let7": ) -+ )'be a signature morphism which lifts reduced products. Let etbe a }-sentence
preserved by reduced factors, and let e be an existential X-quantification of e/. Consider a fllter
F e F over a set 1, and let {Ai}ia be a family of )-models such that llpA; Fr e. We have to prove
t h a t { i  e I l A i 1 2 e } e F .

Let B be a 1-expansion of f[pA; such that B ?y ,'. Because 1 lifts reduced products, for each
i € 1 there exists a I'-model B; such that B;lx: Ai and such thatflp B;: B. Because e' is preserved
byreducedfac tors ,  J :  { i€ I lB i l z  " ' }  

e  F .  But  J  C { ie  I IA iF>r ) ,  there fore  { ;e  I  I  A i?>
e leFbecauseF is f i l te r .

5. This follows from the following:

{ ;  e r  I  Ai l  e}  :  { i  € I  l  Ai? e ' }  n{ i  e I  lAi? ""} ,
Jt nJt' € F if and only if Jt ,Jtt € F, and

llr Ai ? e if and only if llr Ai F et andflp A; I ett .

wherethesentenceeistheconjunct ion of etande" inasignature>,,F e f  isaf i l teroveraset l ,
and {A;};61 is any family of l-models.

6. Given a signature ), for each family {"t}g of X-sentences preserved by f -reduced products,
assumethat{ i  e I lAi}e1 foreach I  e t}  €F,where F e F isanyf i l teroveraset land{4;} ;67is
any fami lyo f l -mode ls .Thenforeach l€ .L , { ie  I lA i l " t } ) { i€ I lA i }e1  fo reach I€L}e  F ,
thus {i e I I Ai l rt} eF, therefore IIrAi F e1 for each I e L.

7.Let e be the negation of a l-oS-I-sentence et for a signature X. Then, for each ultrafilter U over
a set l and for any family {Ai}ia of )-models, we have thatflllAilze if and only if ll11A;f2e'
i f  andonly i t  { i€I  lA; F> " ' }  iU and, because U is ul traf i l ter,  i f  andonly i f  { ie I lAi lze} eU.

The following Corollary can be regarded as an institution-independent generalisation of the
so-called 'Fundamental Theorem on Ultraproducts' for first-order predicate logic (C.C.Chang and
H.J.Keisler, 1973), originally due to LoS (Lo6, 1955).

COROLLARY 1. The Lo6-sentences contain all finitary basic sentences and are closed under logi-
cal connectives and any X-quantification for which 1 is conservative and preserves and lifts reduced
products. tr

Proof. Although this Corollary follows directly from Theorem2, a special notice is needed for
the case when the institution does not admit negations of its sentences. This is needed because the
universal quantification can be expressed in terms of existential quantification and negation, and all
logical connectives can also be expressed in terms of conjunctions and negation.

For example, consider e/ an universal 1-quantification of a Lo5-sentence e. Then e' : -(1X.-e) in
the negation closure 3-. Therefore e' is al-oS-sentence in 5-, which implies that it is a l-o6-sentence
in the institution 5 too.

Corollary I can be specialised by using Proposition 2:

COROLLARY 2. The LoS-sentences contain all finitary basic sentences and are closed under log-
ical connectives and any X-quantification for which 1 is conservative finitary representable and
preserves reduced products. tr

DEFINITION 16. The institution 5 is a tr-oi-institution if and only if all its sentences arc LoS-
sentences. !
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EXAMPLE 9. First-order predicate logic (Appendix A), rewriting logic (Appendix B), and partial
algebra (Appendix C) are Lo6-institutions. This follows from Corollary 2by noticing that:

- each sentence offirst-order predicate and rewriting logic and each strong equation in partial
algebra is obtained from the finitary basic sentences (cf. Examples 2,3,4) by conjunction,
implication, and universal quantification and, the existential equations in partial algebra are
obtained via Proposition 3 from finitary basic sentences by conjunction, negation, and universal
quantification, where

- the quantification of all these sentences is finitary representable (cf. Example 5 and Example
8) and preserves the reduced products (cf. Example 7).

The same observation holds when the sentences of those institutions are extended to full first-order
sentences built on top of the corresponding basic sentences.

On the other hand, in general, the behavioural sentences in the hidden algebra institution (Ap-
pendix D) are not l-oS-sentences. This is due to the infinitary nature of the behavioural satisfaction,
because each ground behavioural equation (V0) r - l/ is semantically equivalent to the set of (uni-

versally quantified strict) equations {(VX) clzltl = c[zlt')l c visiblebehavioural context] where
X denotes the set of the variables of c.

However, we can prove that existentially quantified behavioural unconditional equations (also

called behavioural queries) (Goguen et a1.,2002) are preseffed by ultraproducts. This is a conse-
quence of the fact that the universally quantified (strict) equations are l-o6-sentences and of 6. and
3. of Theorem2 for f the class of ultrafilters. tr

5. Some Applications

In this section, the institutions are implicitly assumed to have small products and small directed
colimits for their categories of models.

5.1. x l  sENrENcEs

Recall (C.C.Chang and H.J.Keisler, 1973) that a El-sentence in first-order predicate logic is a

second-order sentence all of whose relation and operation quantifiers occur at the beginning and
are existential. The following Definition generalises the concept of Xl-sentence to any institution:

DEFINITION 17. In any institution, e is a Xl-sentence if it is an existential X-quantification of a

l-o6 sentence, where 1 is any conservative reduced products preserving signature morphism. !

The following Corollary follows from Theorem 2 and can be regarded as an institution-independentt
generalisation of the result of (C.C.Chang and H.J.Keisler, 1973) stating that the Xl-sentences
in first-order predicate logic (Appendix A) are preserved by ultraproducts. Notice that, unlike in

the particular case of first-order predicate logic, this result follows directly from the fundamental
theorem 2 due to our general concept of quantification.

COROLLARY 3. In any institution each Xl-sentence is preserved by ultraproducts. tr

We encourage the interested readers to explore the significance of the X]-sentences in other
institutions of interest other than first-order predicate logic.

5.2. Corv{pecrNess

The following result is not only an institution-independent generalisation of the compactness via

ultraproducts result of (Frayne et a1., 1962) (see also (C.C.Chang and H.J.Keisler, t973)), but it is
also obtained for a more general class of sentences, which for example in the particular case of

first-order predicate logic (Appendix A) include a class of second-order sentences (see Section 5.1)

or in the case of hidden algebra (Appendix D) include behavioural queries (cf. Example 9).
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THEOREM 3. In any institution, let E be a set of sentences preserved by ultraproducts. Let l be
the set of all finite subsets of E. Consider a model A; for each finite subset i e 1. Then there exists
an ultraproductfht A; such that llu Ai = E. n

Proof.LetS: {{t € 1lp e ;} lp € E}. Shas the finiteintersection propertybecause

{ h , p z , . . . , p n }  e  { ,  € 1  |  o r  e  ; } n { t  €  1  |  o z  e  ; } n . . . n  { i  €  I  I  e ,  €  i }

By the 'Ultrafilter Theorem' l,let U be an ultrafilter such that S C U.
Foreachp €8 ,  wehavetha t  { ie t lp  €  t }  g  { ie  I  la i  Fp} .Th ismeanstha t  { t  € I lA i  Fp}  e  U.

Because p is preserved by ultraproducts, it implies thatffll Ai I p. Because p € E is arbitrary it
follows that flyA; f E.

COROLLARY 4. Let E be a set of sentences preserved by ultraproducts, and let e be a sentence
preserved by ultrafactors such that E p e. Then there exists a finite subset Et C E such that E' F e.

Proof, Let us assume the contrary, i.e., that for each finite j C E, i p e. This means that there
exist models A; such that Ai I ibat A; f e.

Let 1 be the set of all finite subsets of E. By Theorem 3, there exists an ultraproduct such that
lluAi? E. Therefore fluAi? e. Because e is preserved by ultrafactors, {l e I lAil r} e U. But

{; e I I Ai? 
"}:0 

which is acontradiction sinceas ultrafilterU is aproperfilter.

DEFINITION 18. An institution is compact if for each set of sentences E and each sentence e, if
E ? "then 

there exists a finite subset E' g E such that Et I e. z

COROLLARY 5. Any l,oS-institution is compact. tr

EXAMPLE 10. Cf. Example 9, first-order predicate logic, rewriting logic, and partial algebra are
compact. These results are expected because, for example, first-order predicate logic and rewriting
logic are complete. Less expected are probably compactness results involving Xl-sentences (Cf.
Corollary 3): "if E ? " 

where E is a set of X{-sentences and e is an ordinary sentence, then there
exists a finite subset Et C E such that Et f e." z

5.3. AxToUATIzABILITY

The results of this section are institution-independent generalisations of the basic axiomatizability
results in first-order predicate logic of (Frayne et al., 1962) (see also (C.C.Chang and H.J.Keisler,
r973)).

THEOREM 4. Let S be a LoS-institution that admits negation and conjunction. Then a class of
models is elementary if and only if it is closed under ultraproducts and elementary equivalence. tr

Proof. The implication that any elementary class of models is closed under elementary equiv-
alence and ultraproducts follows immediately from Remark 1 and the definition of l-oS-sentences
15.

For the opposite implication, consider a class of models ( closed under ultraproducts and
elementary equivalence. Let E : K.. We prove that (: Moo(E,E).

Let B e Moo(I,E). Consider 1 the set of the finite subsets of {B}-. For each i € /, there exists
A ; € ( s u c h t h a t A ; l i . ( O t h e r w i s e f o r a l l A e K , A + - ( e 1 A . . . 1 1 " n ) , w h e r e i : { e r , . . . , e n } , w h i c h
implies that -(er n ... n en) e E, which further implies that B I -(e1 A ... ntn) which contradicts
the factthatB I etA...Ae)By Theorem 3, there exists an ultrafilter U overl such thatfluA;l

{B}-. This implies thatflllAi: B (otherwise if there exists a sentence e such that flyA; p e but
B ft ,, then B F -e and therefore TIu Ai ? -e which is a contradiction). Because ( is closed under
ultraproducts and elementary equivalence, it follows that B e K.
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COROLLARY 6. In a LoS-institution that admits negation and conjunction, a class of models for a
signature is the class of models of a finitely presented theory if and only if both it and its complement
are elementary. tr

Proof. If E : {rt,...,er} is a finite set of X-sentences, then the complement of MoD(t,E) is
M o o ( X , - ( e 1 A . . . A e n ) ) .

For the opposite implication, consider Moo(I,E) an elementary class of models such that its
complement is also elementary. We show by that there exists Eo C E finite such that Moo(I,E) :
Moo(X,Ee). If us assume the opposite, then for each Ee e E finite there exists a model A in the
complemento fMoo(X,E)  suchtha tA lEs .Le t l : {EoeElEof ln i te } .ByTheorem3, there
exists an ultraproduct ffyA; over 1 such thatlly A; I E and A; / Moo(X,E) and Ai ? i for each
i € /. But because the complement of Mon(I,E) is closed under ultraproducts, we also get that
fluAi / Moo(X,E), which is a contradiction.

6. Conclusions and Future Research

We generalised the ultraproducts method from classical model theory to an institution-independent
framework based on a very general institution-independent treatment of quantification, logical con-
nectives, and basic sentences (simplest sentences preserved by model homomorphisms). We showed
some immediate applications of the fundamental theorem on ultraproducts, such as institution-
independent compactness, axiomatizability, and f,l-sentences. We illustrated the concepts and re-
sults of our work with examples from four different logics or institutions.

Our development of the institution-independent ultraproducts method also lead to several novel
concepts in the theory of institutions, such as

representable signature morphisms - used to abstract the concept of first-order variables to
institutions, and

a general institution-independent treatment of quantifiers, naturally including higher-order qu-
antifiers - resulting in a simpler presentation of logics without open formule, valuations of free
variables, etc.

This work opens up several future research directions:

extend the area of the institution-independent applications of the ultraproducts method started
in this paper by generalising other results from classical model theory,

study of the model theoretic properties of the various institutions in use in algebraic specifica-
tion and computing science by applying the institution-independent ultraproducts method,

further explore the significance of our internal logic, especially our approach to quantifica-
tion, and apply it for exporting other methods from classical model theory to an institution-
independent framework, and

extend our internal logic approach to other logical features not discussed here, such as various
modalities, for example.
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Appendix

In the Appendix we give very brief presentations of a number of institutions which are used in this
paper as examples for illustrating some of the concepts introduced by this work and some of the

applications of the main results. Although we assume some familiarity with these institutions, the
reader is encouraged to consult the recommended references for more details. Also, some notations

and terminology used in some sections of the Appendix rely on notations and terminology from
previous sections.
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A. First-order Predicate Logic

The role of this very brief presentation of (many-sorted) first-order predicate logic (with equality)
is mainly for fix some notations and conventions. A detailed definition of the first-order predicate
logic institution can be found in (Goguen and Burstall, 1992).

Recall that a (many-sorted) signature in first-order predicate logic is a tuple (S,I,lt) (often

denoted just by (>, n)) where S is the set of sorts, ) is the set of (S-sorted) operation symbols, and
fI is the set of (S-sorted) relation symbols. By Xr*, we denote the set of operations with atity w

and sort s, and by II, we denote the set of relations with arity w.
Given a signature (>, |I), a model M of first-order predicate logic interprets:

each sort s as a set Mr,

each operation symbol O €:w-r as a function Mo: M* --+ Ms,where M* stands for Mt, x ... x

Mr, for ]t : sl . . . Jn, and

each relation symbol fi e fIw as a relation Mn C Mu,.

Any ground (i.e., without variables) )-term t: o(tt...rn), where o is an operation symbol and

tr, . . . , tnaresubterms,getsinterpretedasanelement M1 inaX-model Mbyff i :Mo(M,, .  M,,) .

A(2,1I)-mod.elhomomorphivnh:M---+Mtisanindexedfamilyoffunct ions {hr:Mr-M'r) 'es
such that

h is a}-algebra homomorphism M -- Mt , i.e., h(M6(m)) : M'"(h(m)) for each o € Xr-' and

eachmeM*,3 and

h(m) e Mt" it m € Mn for each relation TE €flw and each m e M*.

The sentences are the well-known first-order closed formula (including equations), and their sat-

isfaction by the models is the well-known Tarskian satisfaction (see (Goguen and Burstall, 1992;

C.C.Chang and H.J.Keisler,1973) for details). In the many-sorted case we restrict the quantification

of the senten ces to conservative sets of variables for a signature, i.e., which do not have variables for

the 'empty' sorts, which are sorts not having constants in the signature. This condition on the quan-

tification in the many-sorted case was noticed for the first time in the context of the completeness of

many-sorted equational logic (Goguen and Meseguer, 1985).
A signature morphism 0 : (Qto.,Qop, Orel) : (S, X,|I) --+ (S/, )/,l[') consists of a function between

the sets of sorts Qton, S --+ ,S/, a function between the sets of operation symbols Qop: ) --+ X/, and a

function between the sets of relation symbols 0"1: |I -- lI/ such that Qop(Xr*"; c 2f*"1r)-0,on(s)

and $'"I(flr) c fl[*.1w) for any string ofsorts u/ € S* and each sort s € S.a

Given a signature'morphism $: (S,X,|I) -* (S/,],fI/), the reduct Mt16 of a (S',Y,fl')-model

M' is defined by (M'1't)" : Mf*.1r; for each sort r € S, (M'fO)o : M'Wo(") for each operation symbol

o € t, and (MtlO)" : Mbr@ for each relation symbol fi € fI.

The sentence translaiion'along Q of any sentence is defined inductively on the structure of the

sentences by replacing the symbols from (S,X,fI) with symbols from (S',t',fI') as definedby S.
Notice that by discarding the relational part, we get the many-sorted algebra institution with full

fi rst-order equational sentsnces.

B. Rewriting Logic

Rewriting logic (Meseguer,1992) is emerging as one of the most important new algebraic specifi-

cation logics. Here we refer to a simplified variant of rewriting logic which is used for defining the

CafeOBJ institution (Diaconescu and Futatsugi, 2003), however this example can be extended to

the original definition of rewriting logic without any difficulty.
-t 

sy n@) we mean in facr h,(m), where h*: Mp - Mt* is the canonical component-wise extension of ft.
4 Foranys t r ingofsor ts ) l , : r l  . . . sp ,byQsor t (w)wemeanthes t r ingofsor tsQsor t (s1) . . .Qtou( " r ) '
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Recall (from (Diaconescu and Futatsugi, 2003)) that our rewriting logic signatures are just or-
dinary (many-sorted) algebraic signatures. The models arc preorder models which are (algebraic)
interpretations of the signatures into IFre (the category of preorders) rather than in Sel (the category
of sets) as in the case of ordinary algebras. More precisely, given a signature ), a model M interprets:

each sort s as a preordet Mr, and

eachoperat iono€X,n*sasapreorderfunctorMoiM,---+Mr,whereM,standsfotMr,x. . .x
M r ^ f o r l d : J t . . . J n .

The sentences are either ordinary equations or transitions, both in their unconditional or con-
ditional form. For example, the unconditional X-transitions for a signature X, are sentences of the
form

(vx) t :> /

where X is a conservative many-sorted set of variables for X and t,tt are X-terms with variables
X. Conditional sentences in rewriting logic are universally quantified implications where the hy-
potheses are finite conjunctions of transitions or equations and the conclusion is a transition or an
equation.

The signature morphisms, the model reducts, and the sentence translations along signature mor-
phisms are defined in the same way with ordinary (many-sorted) algebra (Appendix A).

A preorder model M satisfies a transition M = (VX) t :) tt, if and only if Ml < Ml, for
each expansion Mt of M along the signature inclusion X.--+ ZUX. The satisfaction of conditional
sentences extends the satisfaction ofequations and transitions to the conditional case; we leave this
as exercise to the reader.

More details of this institution of rewriting logic can be found in (Diaconescu and Futatsugi,
2003), while (Meseguer,1992) has the details of the institution of full rewriting logic.

C. Partial Algebra

There are many approaches to partial algebra, two classical references being (Burmeister, 1986;
Reichel, 1984). Our formalisation of the partial algebra institution is tailored to the needs of this
paper but without affecting the logic and model theory of partial algebra.

A partial algebraic signature is a pair (>, A), where X is the set of the total operations and A is the
set of the partial operations.s A partial (2, L)-atgebraA is just like a I U A- algebra but interpreting
the operations of A as partial functions rather than total functions. A homomorphism h: A --+ B
between partial algebras, is a family of partial functions {hr: A, -++ Bs}ses indexed by the set of
sorts S of (X,A) such that either both h(A"(a)) and B"(h(a)) are undefined or they are defined and
equal, for each operation o € (> U A)r-" and each argument a e A*.6

The interpretation A1 of a ) U A-ground term t in a partial (X, A)-algebra is defined inductively
by

A1 is undefined if Alo is undefined for some k e {I, , . . ,n} or (A,r, . .. ,Ay,) does not belong to
the definition domain of Ao, otherwise
A ,  :  A o ( A , , , . .  , A , , ) .

where / :  o(/r . . . rr)  is a term with o any (X,A)-operat ion and /1 , . . . , /n subterms.
Signature morphisms, model reducts, and sentence translations are defined similarly to the case

of the total algebra (see Appendix A).
The sentences are either strong or existential equations, both in their conditional or unconditional

form. For any unconditional strong (IuA)-equation (VX)r I r', where X is a conservative many-
sorted set of variables for (X, A), a partial (I, A)-algebra A satisfies it if and only if

t ftt ttrir notation we ignore the set of sorts, which are of course common to the total and the partial operations.
6 Notice that by convention h(a) is defined if and only if is defined on all components of a.
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A! and A',, are both undefined, or

A!, and. At,, are both defined and A!, : A1,,.

for each expansion A/ of the partial algebra A along the signature inclusion (X, l) '-r (t U X, A) .

For any unconditional existential () u A)-equation (VX) t L t' , where X is a many-sorted set of
variables for (X, A), a partial (X, A)-algebra A satisfies it if and only if

At, and, At,, are both defined and A!, : !t,,.

for each expansion A/ of the partial algebra A along the signature inclusion (>,1) '-- (> uX, A).
These definitions extend without any problems to the conditional case. We leave it as exercise to the
reader.

The following result show how this version of partial algebra is equivalent to an equationally
defined class (i.e. variety) oftotal algebras, which is very useful for establishing some properties of
partial algebras. We omit here its straightforward proof.

PROPOSITION 3. For any partial algebra signature (X,A) with S the set of sorts, let I: {I'}'es
be an indexed set of new constant symbols and let f be set of the equations

(Vx1. . .V . rn )o(x r . . .  I ,  . . . xn)  :L t

for all operations o € >UA.
Then the functor mapping each partial (X, A)-algebra A to the total (IU AU I, f)-algebra A such

that

- ,4r, : Ar u {Is} for each sort s € S,
- for each operation o € >UA, Ao1a1 :4o1a) rf abelongs to the definition domain of Ao, and
- Ao@):Is otherwise, where s is the sort of o,

and mapping each partial algebra homomorphism h: A --+ B to the total algebra homomorphism
h: A --. B such that for each sort s,

- Er(") : hr(a) if a belongs to the definition domain of fur, and
- Er(o):rs otherwise.

is an isomorphismbetween the category of partial (),A)-algebras and the category of total ()U

AU I,f)-algebras.
Moreover,

A F>,o (VX) t !- / ir A F"ror1 (VX) t = /

for each strong equation (VX) r 4 /', and

A F>,a (VX)/ ! /  in A Frrorr ((VX)/ = t t  and -( lX)r: I )

for each existential equation (VX) t 2 / . a

D. Hidden Algebra

Hidden algebra is the institution underlying behavioural specification, which is one of the most

important new algebraic specification formalisms. In the literature there are several versions of

hidden algebra, with only slight technical differences between them (Diaconescu and Futatsugi,

2000; Hennicker and Bidoit, 1999; Goguen and Rogu, 1999). Here we adopt a slightly modified

version of coherent hidden algebra (abbreviated CHA) of (Diaconescu and Futatsugi, 2000).
A CHA signature is a tuple (11, V,),)D), where
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Il and V are disjoint sets of hidden sorts and visible sorts, respectively,

X is a FI U V-sorted signature,

>o q > is a subset of behavioural operations such that o € X[, has exactly one hidden sort in
w.

A CHA model M for a signature (H,V,Z,>b) is just an ordinary X-algebra.
CHA sentences can be ordinary (strict) equations, behavioural equations (both in conditional

or unconditional format), or coherence declarations (see (Diaconescu and Futatsugi, 2000; Dia-
conescu and Futatsugi,2003) for details). Recall ((Diaconescu and Futatsugi, 2000; Diaconescu and
Futatsugi, 2003)) that coherence declarations are semantically equivalent to conditional behavioural
equations and that the strict equations are treated in the same way as in the case of the ordinary
algebra. An unconditionalbehavioural equation is a sentence ofthe form

(YX) t - tl

where X is a conservative set of variables and t,t' are X-terms over X.
Recall thataZ-context c[z] is any l-term c with a marked variable z occurring only once in c. A

context c[z]isbehaviouraliff all operations above' z are behavioural.
Given a X-algebra A, two elements (of the same.sort s) a and at are called behaviourally equiv-

alent, denoted a -s o/ (or just a - at), iff At : A! for each visible behavioural context c, where
Aa andAd are any expansions of A along the signature inclusion X + )Uf, where f is the set of
variables of c, and such that Al, : A1' for each y € f \ {z}, A?. : a, and A{ : o' .

Then, a X-algebra A satisfres an (unconditional) behavioural equation A p (VX) t - /, iff
AI - Ai for each A/ expansion of the algebra A along the signature inclusion ) '--+ I U X.
This definition extends without any problems to the conditional case. We leave it as exercise to the
reader.

Recall also that a CHA signature morphism 0, (F/, % X, >o) -- (H' ,V' ,Y ,>'o) is an many-sorted
signature morphism (H uV,2) --+ (HIUV' ,2') such that

(M1) 0(Y) CVt andO(H) c Ht,

(M2) o(tb) : I 'b and 0-t(>'o) q >0,

Finally, model reducts and sentence translations along CHA signature morphisms are the same with

those from ordinary many-sorted algebra (Appendix A).

7 Meaning that e is in the subterm determined by the operation
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