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Domain decomposition Schwarz method

for strongly nonlinear variational inequalities

L. BRnpR*

Abstract

We prove the convergence for a subspace correction method applied to strongly

nonlinear variational inequalities in a general reflexive Banach space, provided that the

convex set verifies a certain assumption. In the following we prove that this assumption

holds for the Schwarz method in which the convex set is described by constraints on

the function values at the points of the domain. Also, this assumption holds for the

one and two.level Schwarz method in the finite element space, and we explicitely write

the constants in the error estimation depending on the domain decomposition and

mesh parameters. Numerical examples are given to illustrate the convergence of the

method with both one and two levels, for the two-obstacle problem of a nonlinear

elastic membrane.

Keywords: domain decomposition methods, Schwarz method, subspace correction, non-
linear va.riational inequalities, finite elements, multilevel methods, obstacle problems
AMS subject classification: 65N55, 65N30, 65J15

1 Introduction

The literature on the domain decomposition methods is very large and it is motivated
by an increasing need on the solution of large-scale problems since these methods provide
numerical solvers which are efficient and parallelizable on multi-processor machines. The
multiplicative and additive Schwarz methods for elliptic linear problems have been studied
by many researchers, among them Lions [23]-[25], Chan, Hou and Lions [7], P. Le Tallec [22],
A. Quarteroni and A. Valli [30], Bramble, Pasciak, Wang and Xu [5], and Badea [1], for the
multiplicative methods, and Dryja [9], Dryja and Widlund [10], [11], and Nepomnyaschikh

[29], for the additive version. For problems related to variational inequalities, we can cite
the papers written by Hoffman and Zou [16], Kuznetsov and Neittaanmd,ki [19], Kuznetsov,
Neittaanmiiki and Tarvainen [20]-[21], Lii, Liem and Shih [26], Zeng and Zhou [39], Badea

[2], Badea si Wang [3], Tai [32]-[34], and Tai and Tseng [36]. Also, the multilevel and
multigrid methods can be viewed as domain decomposition methods and we can cite the
results obtained by Kornhuber [18], Mandel [28], and Smith, Bjorstad and Gropp [31].
However, very few papers deal with the application of these methods to nonlinear problems.
We can cite in this direction the papers written by Tai and Espedal [35], Tai and Xu [37]
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for nonlinea.r equations, Hofimann and ZhoulLT), Lui [27], and Zeng and Zhou in [40] for

inequalities having nonlinear source terms. Evidently, the above lists of citations is not

exhaustive and it can be completed by many other papers.
Almost exclusively, the convergence of the domain decomposition methods for varia-

tional inequalities coming from the minimization of a functional is studied in the case when

this functional is quadtJtic. The main goal of this paper is to give the error estisrates for

the one and two-level Schwarz domain decomposition methods applied to the minimization
of the non qua.dratic functionals over general convex sets. The most of the papers consider
the convex set decomposed according to the space decomposition as a sum of subconvexe
sets. This is a easy condition when we deal with the obstacle problems. We have tried to
extend our analysis to other types of convex sets, and when we use the Sobolev or finite
element spaces, we consider convex sets which are described by constraints on the function

values at the points of the domain, K : {u € I4d''(0) : l,u(r)l : Jiw 3 b(r) a.e. in o},
for instance. Evidently, such a convex set is of the two'obstacle type, but its d dimensional

corresponding,  K :  {a :  ( r r , . . '  ,ua)  e [Wot"(O)] ' :  lu( r ) l
b(c) a.e. in f,l), can not be easily decomposed as a sum of subconvex sets. Consequently,

when we look for solutions in Wl'"(O), our convex sets are of one or two-obstacle type, but

if they lie in [171'"(fr)]d, then they may be of other types, too. We shall characterize more

precisely the convex sets we consider in Section 4. For the writing simplicity, we have con-

iidered in the next sections problems having the solution in I,l/l'"(Q), but all the obtained

results hold reading [fi/t'"(0)]d in the place of Wt''(Q).
The convergence of a domain decomposition algorithm solving va,riational inequalities

coming from the minimization of quadratic functionals over convex sets defined by con-

straints on the function values at the points of the domain is proved in [2]. In [37], it is
proved that the multiplicative space decomposition method applied to the minimization

without constraints of a differentiable and convex functional defined in a reflexive Banach

space uniformly converges. In [4], using the subspace correction techniques in [5] and [38],
and more general conditions in [35] on the convex functional, it is proved that the conver-
gence rate for the one and two-level domain of the algorithm in [2] is of the same order as
the convergence rate of the linear elliptic jump coefficient problems [6]. We generalize in
this paper the results in [4] and [37] to the minimization of the non quadratic functionals.

The paper is organized as follows. In Section 2, we state the multiplicative Schwa"rz
method for nonlinear variational inequalities as a subspace correction method in a general
reflexive Banach space for the minimization of non quadratic functionals, and we prove
the convergence of this algorithm provided that a certain assumption holds. In Section 3,
under a little stronger assumption, which essentially introduces a constant depending on the
convex set and the space decomposition, we estimate the error of the algorithm. Section 4
is devoted to the convergence ofthe method in Sobolev spaces, proving that the introduced
assumptions hold. For the Sobolev spaces the algorithm is exactly a variant of the Schwarz
method. In Section 5, we present an analysis for the one and two-level Schwarz method in
the finite element spaces, where the assumptions hold, too. In these cases, we are able to
explicitely write the constant introduced in the assumption in Section 3 depending on the
mesh and domain decomposition parameters. The proof for the two.level method is based
on a lemma which can be viewed as a Fbiedrichs - Poincar6 inequality for the finite element
spaces. Finally, in Section 6, we illustrate the convergence of the method with both one
and two levels by numerical examples concerning the two-obstacle problem of a nonlinear
elastic membrane. Also, we give in this section some details concerning the procedure we
have used in the computing code to solve the problems on subdomains.



2 General convergence result

LeIV beareflexiveBanachspaceandVt," ' ,V*,be someclosedsubspacesof V. Also,
we consider a non empty closed convex set K C y, and we make the following

AssulrnpuoN 2.1. For any w,u € K anil  wt e V with w +Di:twi € K, i :  L:" '  , f f i t
there erist at e V, 'i : lr' ' ' ,n"1, satisfying

i-r
t l l + t  w i  *u6  €  K  fo r i ,  :  L , " ' , f f i ,

j=r
(2.1)

(2.2)

and the application

and

(2.7)

na
sau - w :  L o i ,
i =L

(2.3) V  x V l  x  . . . x  V * )  ( u  - u ) r u r , , " '  , u ^ )  4  ( u r ,  " '  , u * )  € . V 1 x  " ' x V *

is boundeil, i.e. it transtorms the bounded sets in some bounded sets.

A simila,r assumption has been introduced in [2] to prove the corwergence of the Schwarz
method for variational inequalities coming from the minimization of quadratic functionals.
It looks to be complicated enough, but, as we shall see in Section 4, it holds for problems
in which we use the Sobolev spaces and the convex set K is defined by constraints of the
function values at the points of the domain. We consider a G6teaux differentiable functional
F : K -+ .R, which will be assumed to be coercive If K is not bounded. We assume that
for any real number M ) 0, if we write LM : sup ll, - 

"ll, 
there exist two

l l u l l , l l u l l  J  M
u r u € K

functions a*r, gu : l0,Lyl4 R*, such that

(2.4) a14 is continuous and strictly increasing on [0, Ly], and ay(0) : Q,

(2.5)

and satisfying

0u is continuous at 0 and /v(O) :0,

(2.6) < F'(o) - F'(u),u - u)) o*(ll, - ?rll), for any u,u € K' llull,lloll < M,

\u\l, - ull) > llr'(r) - F'(u)llv,, for any Lr,u e K, llull,lloll S M,

where tr" is the G6,teaux derivative of F.
We know (see [13], Proposition 5.5, page 25) that if (2.6) holds for any M ) 0, then the

functional F is strictly convex. Also, it is easy to prove that if (2.7) is true for any M ) 0,
then ,F is continuously difierentiable. Reciprocally, we can prove in a similar way to that
given in [14] (Lemma L.L, page 61) for the case of the Euclidean spaces, that if the closed



unity sphere is compact in the strong topology of the space Banach V,, Ft is continuous and
F is strictly convex, then for any M ) 0 and for a r € l},Lyl,

a 1 l a ( r ) :  i n f  < F ' ( r ) - F ' ( u ) , u - u )

l l ' -  " l l  
:  r ,  l l u l l , l l " l l  <  M,  u ;u  €  K

exists, and this function oM satisfies Q.A) and (2.6). Also, if the closed unity sphere is
compact in the strong topology of the space Banach I/ and F' is continuous, then for any :
M > 0  a n d f o r  a r € [ 0 , L y ] ,

0u?): sup l lr '(r) - F'(u)l lv,,
llo - "ll: 

r,llull,ll"ll < M, u,u € K

exists and satisfies (2.5) and (2.7). We see that if u,u e. K, llrll,ll"ll < M, and if for a
r < llu-ull we define u, : (l-ffi)"+ffir, then u" e K,llu"ll I M and'llu,-ull:7.
Consequently, we get from the definition of Ly that the above functions ay ar;Ld By can
be defined for all r €l0,Ly).

It is evident that if (2.6) and (2.7) hold, then

/ ,  R\ o*r( l lu -  
" l l )  

<< F'(u) -  F'(u),u - u)4 gu(l l ,  -  zl l ) l lu -  zl l ,
\-'"'' for any Lt,u € K, llull,lloll S tut.

Following the way in [14] (Lemmas 1.L and 1.2, pages 61-63), we can prove that

/ ,  o\  < F'(u),u -  u )  +. \y( l lu -  u l l )  S F(r)  -  F(")  !
\ - ' " t  <F ' (u ) ,a -u)  + t t tw( l lu  -u l l ) ,  fo r  any  u ,u  €K,  l lu l l , l l u l l sU,

where

(2 .10)  \u( r ) :  f  o*@)* ,
J o  u

and

(z.rr) t,u?): f pM@)do.
J O

Now, we consider the minimization problem

( 2 . t 2 )  u € K :  F ( u ) < F ( o ) ,  f o r a n y  u e  K .

It is well known (see [13]) that if I/ is a reflexive Banach space and .F' is strictly convex,
differentiable, and coercive if K is not bounded, then the above problem has a unique
solution, and it is also the unique solution of the problem

( 2 . 1 3 )  u € K :  < F ' ( u ) , u - u ) ) 0 , f o r a n y u e  K .

Flom (2.9) we see that, for a given M > 0 such that the solution z of (2.13) satisfies
ll"ll < M, we have

(2.14) ^ur(lla - ull) 3 F(r) - F(u), for any u e K, llull3 M.

The proposed algorithm corresponding to the subspaces Vt,. . . ,V* and the convex set :
K is written as follows



Alcorurnrr,r 2.1. We start the algori,thm with an arbi,trary u0 € K. At iteration n*L,
haui,ng un e K, n )- 0, we computi squentially for i :1, " ' , *, 4*' €. Va satisfyi,ng

*T+t : *g ,-,-io G(rr), with G(u;) : F(u"+* * u),
u ' + i  * q e  K

at e V

(2.15)

anil then we update

un*# :un*# +*T*r.

This algorithm does not a,ssume a decomposition of the convex set K depending on
the subspaces ft, and it has been proposed in [2] in an equivalent form. The above form
of this algorithm has been proposed i" [4]. As for problem (2.L2), since the subspaces I/';
are reflexive Banach spaces, problem (2.15) has a unique solution and it also satisfies the
variational inequality

/ ^ i ^ \  ,T * ' eV ,u "+*  + .? * '€K :  1F t (u "+#  + r f ; * ' ) , rn - rT* t  >>0 ,
\z'Lv) 

for any uc €V, un+# *a,i € K.

We have the following general convergence result.

Theorem 2.L. We cons'ider thatV is a refl,eni,ue Banach, Vtr"' ,V* o,re some closed sub-
spaces of V, K ,i,s a non empty closed conuefr subset of V, and F is Gdteaur differenti'able

functional on K whi,ch is assumed to be coerciue if K is not bounded. If Assumpti,on 2.1
holil, and for any M > 0 there erist two functi,ons aM and B1a satisfying (2.il-@.7), then,

for any i: Lr.-. ,ffi, u:*'h -) u, strongly inV, as n -+ x, whereu is the solution of

problem (2.12) anitul+* are giuenby Algorithm 2.1 starting from an arbitrary giuenu0.

Proof. Fhom (2.16) and (2.9), we have

(2.17) Ffu"+*1 -  F(u"+*;1 > xu( l l .T+l ; ; ; ,  for  any n )  0 and i  :1," '  1n1,,

and therefore, using (2.L2), we get

(2.1S)  F(u)  3F(u"+ i ;1  < F(u"+#)  < f ( , r0) ,  forany n>-0 andi :  L , " '  , f f i .

Taking into account the boundedness of 1( or the coerciveness of F, it follows that there
exists a real constant M > 0 such that

(2.1e) l l " l l  < u,  l luol l  I  M, l lu"+hl l .  u,  for  any n) 0 and i  :  L," '  , f f i .

From (2.17) we also get

F(u*) - F(un+r) aixr(llr +'l l), for any n ) 0.

J.
Consequently, from (2.18), the series If'.(llrf*tll) is convergent for any'i,:1,... ,ffi,

1
and therefore

(2.20)

(2.2r) llrT+'ll -+ 0, as n -+ &,) for any i: L,"' )n'1.



Applying Assumption (2.1) for w : un*# t a : u,and tu4 : w?+r, we have a decomposition

,ttrrt... ,r.rm of u - un++. Fbom (2.1), we can replace uiby u6 in (2.16), and we get

1 Ft (u"+*) - F, 1u"*t),ut - rT*' > * < F' (u"+'),uu - rT*t > 0.

Using (2.2) we have

n'L

t a Ffu"+*1 - Ft(u"+r\,u,i - wT+r > + < Ft(un+t1,u-un*r >> 0.
i= I

Using this inequality, from (2.19), (2.9) and (2.7) we obtain

F(un+t1 - F(") + .\y(l lu - ,r"+1ll) 1< F'(un+r),un*r - u )1
n'L

t a Ft(u"+*,;1 - Ft(un+t1,u4 - wf;+L 2:
i=1
tn n'L

f f 1 F'(u"+*) - F'1u^+fi),u; -.7+' ><
i,=I j-d+I
n1, nI

t D llF'(u"+#) - F1u"+*)llv,llr; - rf*tll <
i=I j:i,*l
m n-L

lr,r{l l*?*'l l)f l l"u - *T+'ll.

Fyom (2.21) and (2.3) we get that the sequenc" {D3r lluu - rT+'ll}" is bounded. Also,

from (2.21) and (2.5) *e haue D?;, gu$rr*t ll) -+ 0 as n J *. consequently, F@!+L) -

F(u) -r 0 and fivr(lli - u"+t11'1 Jb * 
" 

j oo. Now, from (2.4) and (2.10) it is clear that

I-tn -+ tt as ?z -+ oo. n

3 Error estimate

The error estimate essentially stands on the convergence order of the functions av(r) atd'
gu|) to zero as r -+ 0. In the following we take these functions of polynomial form

(3.1) ouT):  AMrP,  Luk) :  BMrQ-r ,

(2.22)

i=7 i=I

(3 .2)

Naturally, the convergence rate will depend on the spaces Vt,"' ,V^, and, we shall consider

the following form of Assumption 2.1 having condition (2.3) slightly modified

AssutvrptloN 3. l- . There erists a constant Co such that for o,ny w ) u e K and w; €. V with
w +Di l=twi  €  K,  i :Lr" '  , f f i t  there ex i 's tue e V, ' i :1 , " '  ,n1, '  sat i 's fy ing

where Au ) 0, Bu ) 0,, p ) L and q > L are some real constants. We have marked here

that the constants Av and By depend on M, and we see from (2.8) that we must take
p> q.Now, from (2.10) and (2.11) we get

,\(r) : *ro, tr(r): Tro.

i - L

, + t  w i  I  a 6  €  K  f o r i  :  I , " ' , f f i t
j = l

(3.3)



In the case of the minimization of the quadratic functionals in [4], the above assumption
has been introduced for p - 2.

The introduction of some parameters e,ii ) 0, i, i : L,,' ' ' tffit is useful to obtain some
sharper error estimations, especially in the case of minimization of the quadratic forms.
Followingthisway weshallassumethat foragiven M > 0,i f  u e K,l lr l l  < M,andut €V,
sat is fy ing u la, ie  K, l lu  +r , ; l l  <  M, i :1 , " '  , rn ,  thenwe have

(3.6) < F'(o 1o) - F'(o),wi )3e61B1alludlq-tl lr i l l

for any ut €V,'i: I,..' )n't. Evidently, using (2.7), we may always take eii : l, i,,i :

1 , . . . , r n ,  i n  ( 3 . 6 ) .
The following theorem is a generalization for nonlinear inequalities of the result in [37]

concerning the convergence of the method for nonlinear equations.

Theorem 3.L. On the condi,tions of Theorem 2.1 we consider the tunctions d,M and' By
defi,ned in (3.1) and, we make Assumpti,on 3.1. A u is the solution of problem (2.12) ond,
u,n, n ) 0, are its approni,mati,ons obtai,nel, from Algori,thm 2.1, then we haue the following
error est'i,mat'i,ons :

(i) if p: q we haae

(3.4)

and

(3.5)

(3.7)

( i , i ) i , f p ) q w e h a u e

u _  rn  : ion ,

r n / m \

5 llur llp < cE I llu - ,llo + t |1t,r llp I .
t r \ t d /

F(u") - F(u) s (;fl ')" [r(',0) - F(u)),

llu" - ullp < + (#)" lr(uo)- r(")l

F(zo)-F(z)

r  p - , o t F l t
l+ne@tuo)-F(d)t l le-q
L  J ,

F(r") - F(") S

(3.8)
llu - u"11n <

The constants 0, e and 0 are giuen i,n (3.11),

Proof. As in (2.22), using .\y given in (3.2),

q - 1
p - L

(3.1/r) and (3.16), respectiuely.

(3.6), and (3.5) in which we take ui : uit

g (P("')-r("))o-
c (- 

lr+t,-tlc1r1,o;-r1,;; 
6*]



a : u t

where

(3.10)

where

(3.11)

: un and w,i,: ut*L, we have

F@n+t1 - F(") + ffllu - u"+rlle 3
fn n1

t I e6iBlallwi+tllo-tll.rn - rT+tll <
i=l j=i,jl

"-(fri'n-,7*',,,)* l* (,-t ,uuit in,n-')

Butetit(ir-r.',,")* (f ,,", -.7*'rr,); s

Bnrteti (E r-T*',,") 
* 

f(: 
rr,r*'rP) 

t . (t

Br,,tteti (rtt,,r*'rp)* 
[,, 

+co) (f , ' ,r. ' ,,");

, have written

* ]  * =

, , r , ,*) t ]  =

+ Csllu - *,,1 ,

l * ( *  , \ # 1 +
(3.e) tuuit: lt I D, ,f-*I | <*'-1.

li=t \j=i+t / I

Therefore, using (2.14) with u : 'ttrn, (2.20), and )irz given in (3.2), we have

F(un+r1 - F(") + fll" 
- u"+rllp S

n, ffil# @6il (r @\ - n 6"+'yy*

Itr + co) (p(u") - r(2"+r;;i + co(F(u") - 11"11i] 3
B * (h)# leal (F (u\ - r 1u"*r;*

lf r + ial (pfu") - F(u"+t',)i + co (F(r"+') - rl"y;i] .

But, for some given r7 > 0 and ( ) 0, we have (r* -qr 1(ff1n, for any z ) 0.
Consequently, for a 0 ( rl I L, subtracting ,t(F(u"+t) - F(")) from both sides of the last
inequality, we get

Ffu"+t1 - F(") + ffill" 
- un+rllo 1

0lr1u"1 - F(un+\l# ,,

0 :0(*,co,u0): Bpr(e*L)f i1r,r1 
l1r 

+2c0) (r(ro)
/  -  o  r = \  P =  r  I

IBM(h)iluuil)'-' ct-' l,ri- | l$ - d.

.  . .  p - q
-  F ( " ) )  P ( P - 1 )  *



We have ma^rked above that the constant C depends on nL) Co and u0, and we have used
(2.18) to write F(u") - F(un+t'1< F(,ro) - F("). Ftom (3.10) we have

(3.12) lF1u"+t1 - F(u)l 3 0lr@\ - F(un+\1fr .

Using again (2.18) we have F(u") - F(un+t1 < F(u") - F(r), and from (2.1,4) and (3.2) we
get {llu"*t 

- ull, 3 F(u"+t1 - F(u).Fbom these two last inequalities and (3.10) we get

(3.13) llu - r"+tll, < glF(u") * F(QI# ,
where

(3.14) ^  ( 2 - d A u
lJ : -----:-----------:- .

(L -  q)p

Now, i fp:(r wecaneasilyf ind (3.7) from (3.12) and (3.13). I tp* q, weget from (3.12)
that

F(un+r1- F(u)+ ̂ Ltrtun*r) - F(u)l# < Ffu") - F(u),
c;=r

and applying Lemma 3.2 in [37] we get

f  -  ,  
o - 1

F(un+r1 - F(u) = le * @fu") - rfu\ffi1* ,)
or

(3.15)

where

(3.16) Q -
p - q

F(un+t1 - F(") S It,+tlo+ (r(uo) - e@))*l* ,

b - r) (F(ro) - F(u))# + @ - r)e#'
Equation (3.15) is another form of the first estimate in (3.8), and the second one can be
obtained using (3.L5) and (3.13). The value of 4 in the the expression of C and C can be
arbitrary in (0,1). On the other hand, we see that the constants in the error estimations
of F(un) - F(") in (3.7) and (3.8) are some increasing functions of C, and there is an

4o € (0, 1) such that C(4e) < }Qi for any 4 € (0, 1). However, this value 4s can be found
by solving a nonlinear algebraic equation.

4 The multiplicative Schwarz method as a subspace correc-

tion method

In the previous sections we have proved that the subspace method given in Algorithm 2.1
converges, for a general reflexive Banach space, provided that Assumption 2.1 holds. Also,
under a little stronger Assumption 3.1-, and some polynomial behaviors of the functions ay
and. By in the neighborhood of zero, we have given error estimations. We shall prove in
the following that for the problems in which we seek for the solution in a Sobolev space,
Assumption 3.1 holds (and implicitly, Assumption 2.1, too) for any decomposition of the
domain and any convex set described by some constraints on the function values at the
points of the domain. In order to more precisely characterize the convex sets K for which
our results hold, we assume that they satisfy the following

n



pnoppRrv  4 .L .  I f  u , t 0  €K ,  and ,e f  0eCL(A)  w i , t h0<0<  L ,  t hen0a+(L -0 )ue  K .

Let ft be an open bounded domain in Rd with Lipschitz continuous boundary E0- We

take V : I,4''(g2), 1 < s < oo, and a convex closed set K C I/ having the above property.

We consider-an overlapping decomposition of the domain O,

(4.1) o: U f l r
i=l

in which O4 are open subdomains with Lipschitz continuous boundary. We associate to

thedoma indecompos i t i on (4 .1 ) thesubspacesu_}7o ' ' " ( f , ) , ) , i : 1 , . . . ,m , . I n th i scase ,
Algorithm 2.1 represents the multiplicative Schwa^rz method.

Remark 4.L. For the simplicity, we haue chosen the aboue spacesV anilV6 corresponding
to Dirichlet bound,ary cond,itions. Sjrnilar results can be obtained il we consi,der mired

bound"a rycond , i t i ons 'Weta leeEQ:FrU f2 ,11 f l f 2 :Aapar t i ' t i ' ono f theboundarysuch
that meas(tr) ) 0, and we consider the Soboleu space

V :  {u  € Wi ' " ( f , ) )  . 'u :0  ont l }

This space correspond,s to Dirichtet boundary conditions on 11 and Neumann boundary
conditions onl2. The subspacesVa us'ing domain decomposi,ti,on (1.1) wi'll be defined i'n this
case &s

V: {ae € I ' l l l ' t (CI) i  u,;:0 in Q - { lu, ,o:0 in 0Q; O 1.1},

i  : 1 r . .  -  , n 1 , .

We shall denote in the following by ll. llt," and ll.lls," the norms in Wl'"(CI) and -L'(ft),
respectively, and by I . 1r," the semi-norm in Wl''(CI).

Concerning the decomposition (4.1), we assume that there axe some functions 0] e

C l (O) ,  i  :  L , " ' , f f i ,  j  : ' i , " ' , f f i  such  tha t  f o r  any  i  :  L , " ' , f f i  we  have

(4 .2)  supp(g l )  c(Oi ) ,  0S4i (1 ,  for  anv i -  i , " ' ,m,  andi t , :1 in  0n,
j : i  j=i

This is a easy enough constraint on the domain decomposition (4.1). In [23] or [1], for
instance, some conditions in which a domain decomposition satisfies (4.2) arc given. The
following result assures us that Assumption 3.1, holds for the above defined domain decom-
position and convex sets. The proof is similar to that given in [2].

Proposition 4.1. If the domain decomposition (1.1) satisfies (/1.2), then Assumption 3.1
holds for any conuer set K hauing Property 1.1.

Proof .  Let  us consider  w € K,  wi  €U such that  w*D' i= twi  €  K, ' i :  I , " '  ,m and
let o be another element in K. We recursivelv construct it €V, i: I,"' ,ffi, satisfying
(3.3)-(3.5) in Assumption 3.1.

We take

(4.3)  a t :01@ -  w)  + ( t  -  0 f  )u . '1 .

Because suppdl C f,)1 and u * u1:Llu + (1 - frl)@ a rr) we have

(4.4) u1 e Vl and 'u.r I q e K. j

t0



Since u - tr1

(4.5)

Since 1 - 0l

(4.6)
a - w - ' t)r:0 in CI\U|12CIi.

ln the following, for the domain UTzQ* we take a - 'Iu - u1 in the place of u - w.
Assume now that up to an' i  :  1, . . . ,  m - 2we have def ined \  € V1r" '  rui  € % a,nd

we have the following relations corresponding to (4.4)-(4.6),

* wr - (l - 0!)a + e!(w a ,i we have

a - u r * w t e K .

:  0L + . . .  + el"we get a -  u - , t r r  :  (01 + . . .  + | l ) (a -  u * t r1)  and

a - u - u r e l T o t ' ' ( L J Q n ) ,

i - l

a i € V i a n d u ;  * w * f w i e  K ,
j= l

s- f-
u - )  o r + )  w ; e  K ,

4J r /-l r

j = I  j = l

(4.7)

(4.8)

(4.e)

i m

u - w -Dut e I/01''( LJ oi),
j=l  j=i lL

i
\-l'u -'u - 
Lri : 0 in Q - UfL,iatgi.
j : l

In the following we verify relations (4.7)-(4.9) which correspond to i + 1. We define

(4.10) ai+r : eilit, -,u) -I rr) + (1 - lill).;*t.
j : I

From (4.10) we get at+t € I/a11. Also, using (4.8) we get u*t*, +Ditq :|ill@ -

D'1=ra1+D1.:, ,)+G-0:Ir@+D;li ,) e K. Thereforc, (4.7) corresponding to'i* 1
holds.
Using (4.8) corresponding to i, we get u - D*\ri + D;ii wi : (r - f/'iilt, - D'i=rui +

D|=ru) + eill@ t_E;.-li ,i e K. Therefore, (4.8) which corresponds to 'd * t holds.
We have a-w-D'1!^ri: (1- 0:]; i)@-w-Di=rri-wr+). Flom the definit ion 

"f 
0:Il

and (4.9) we get that (4.9) corresponding to i + t holds.
In this way we have proved that (4.7)-(4.9) hold for any 'i : 1,' ' ' ,m - l.

Now, for i :rr ls from (4.9), with a :rn- 1, we get u -w -DT;tuj €W;'s(A-) *d
it vanishes in f,t - 0-. We define

m-l
\-a

a ^ : u - w -  )  u ;" r , L  L  
- J )

; - 1
J - L

(4 .11)

1 1



and we see that u* €Vyo. Hence, (3.4) in Assumption 3.1 holds. Also, (4.4) and (4'7)' for

i = 2,... ,ffi- 1, prove that (3.3) in Assumption 3.1 holds for i - I,'" ,rn - L' Moreover,

from (4.8) for i : m - Lwe get a* * w +DT=rt ui : u -DT:i oi +DTL'arx' € K, and

consequently (3.3) in Assumption 3.L holds for i:'trlt too. Finally, from (4'3)' (4'10) and

(a.11) we oUi"i" that (3.5) in Assumption 3.1 holds, where C6 depends on unity partitions

ia.z), n"t it is independent of ur, u, wi and u6. n

5 one and two level multiplicative schwarz method

Since the finite element spaces have a finite dimension, the existence of the functions aitr

and, B1a is assured if we assume that the functional F is strictly convex and continuously

differentiable. As we saw in Proposition 4.1, Assumption 3.1 holds for any closed convex K

having Property 4.1, but the consta,nt Cs depends on the domain decomposition para,meters.

Consequently, since the constants C and d in the error estimations in Theorem 3.1 depend

on C6, then these estimations will depend on domain decomposition parameters, too. The
goal of this section is to prove, for the one and two level multiplicative Schwarz methods,
ihut A5o*ption 3.1 also holds for any closed convex K satisfying Property 4.1. In these

cases we can explicitly write the dependence of Co on the domain decomposition and mesh
pa,rameters.

5.1 One-level multiplicative Schwarz method

Let us consider first that the domain f,l C Rd has a non overlapping domain decomposition

{O}ryt<u and a simplicial mesh partitionTn of mesh sizes h. We assume that'71, is regula,r
(ie. tGG exists a constant C ) 0, independent of h, such that each r inTn contains a ball
with the diameter of. Ch, and evidently, it is contained in a ball with the diameter of h;
see [8], pag. !24, for instance) and it supplies a mesh pa,rtition for each subdomain O;,
i :\:: .-. ,fu,, too. For each O,;, we consider an enlarged subdomain O6u c A, consisting of
the elements r € Tn with dist(r,,O) 1 d, where d is a positive real number. In this way,

{O!)t<oS* is an overlapping domain decomposition of Q with overlaps of size d. We assume
that t[ere exist rn colors such that each subdomain Of can be marked with one color, and
the subdomains with the same color do not intersect with each other. For suitable overlaps,
o n e  c a n  a l w a y s  c h o o s e  m : 2 i f . d :  l , m  ( - 4 i f  d : 2 ,  a n d , m  1 8  i f  d : 3 .  L e t  O 6
be the union of the subdomains Oj having the color 'd. In this way we have obtained an

overlapping decomposition (a.1) with overlaps of size d, and we can take the unity pa,rtitions

{|i}i=t,...,rnt 'i :1, ' ' ' ,rn, defined in (4.2), to satisfy

(5 .1 )  l 7 "k? i l  <  C l6 ,  f o r  any  i :  I , " '  )m)  i  : ' i , " '  t f f i t  and  f t  : 1 , " '  , d ,

too. As in (5.1), we denote in the following by C a generic constant which does not depend
on either the mesh or the domain decomposition parameters.

In this section we prove for the finite element spaces a similar result to that given in
Proposition 4.1 for general Sobolev spaces. The proof is also similar to that given in [ ] for
the minimization of the quadratic forms. We consider the piecewise linear finite element
space

(5.2) Vh :  {a € Co(R) :  u l ,  e &(r) ,  r  €Tn, o :0 on 0f ,1} ,

and also. foli : 1. . . . . rn. we take

Vh : {r€ Co(O) : ul, e h(r), r €Tn,, u : 0 in Cl\C4}

t2
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as some subspaces of.Vh corresponding to the domain decomposition,fll, "' ,Q^. The
spaces Vh aiAVO, i,- 1,.-. ,ffit are considered as subspaces of WL"r.for some fixed

f  <r  < oo,  andweusetheusualnorms l l  . l lo , r ,  l l ' l l t r ,  andtheseminorm | ' l t , ' .  Contra^ry
to the previous section, we may use the norm of WL" for s : 1 and s : oo because the
finite eiement spaces have a finite dimension, and consequently, they are reflexive Banach
spaces.

In the following, .Iy, will always be the P1-Lagrangian interpolation operator which uses
the function valuei at the nodes of the mesh [. The convex set Kh will be defined as a
subset of Vh by some constraints acting at the mesh nodes and satisfying

PRopuRrv 5.L. I f  u,w e Kh, and,if  0 € Cl(0) with0 S0 <L, thenll ,@u+(L-0)w) e Kh.

In order to prove that Assumption 3.1 also holds in this case, we follow the same way as
in the the proof of Proposition 4.1. It is easy to see that, taking into account the additivity
of the Lagrangian interpolation fir, (3.3) and (3.a) in Assumption 3.1" can be proved taking

(5.4)

and

(5.5)

at : Ih @l@ - tl) + (1 - elwr)

ai+t :  Ih (r,*t,, 
- w -L,,5+ (1 - 4il),,.,)

( ',,, -w)+p,,,,,),

in the place of u1 and u;a1 defined in (4.3) and (4.10), respectiv.ely. Evidently, we consider

in the rr"* ptooithe spaces Vh and,V! and, the convex set Kh in the place of V,V and

K, respectively. Also, we keep the same definition, (4.11), for u^. To prove inequality (3.5)

in Assumption 3.1, we first notice that, starting from u1 given in (5.4)' by the recurrent

application of (5.5), and then taking u- given in (4.11), we get that u6, i:1,"' )n'L) are of

the form

(5.6) q - - I n i  :  I r . ' ,  1 n ' 1 .

By a simple calculus we get that

, t - - r l , r I : r -o l ,
,3 : li1 - 0:-l)"' (1 - 0l), rl - 1 - el, r] : -e'o$ - q:0 "' (r - |rj),
f o r  i  :  2 , . . .  r m  -  I ,  i  : 1 , " '  , i  -  L ,

rff  :  (L - T\-i l . . .(1 - 0l), "H 
:O,rft-r: -(1 - 0T,-l),

"T 
:TH-IG - eT-i l  " '  (1 - i l) ,  to' j  :  r," '  ,m - 2'

Consequently, from (4.2) and (5.1), we have

( b . 7 )  V j l  <  |  a n d , 1 0 , * r j l  3  C ( m  -  r ) 1 6 ,  i :  L , " '  , n 1 ' ,  i  : 0 , " '  , i ,  k :  L , " '  , d .

For a u € Vh, we can get (see Theorem 3.1.6, in [8], pug. L24, for instance) that

lVlo - 11,(rla)lls,, < Chlriul1,,, ll'iu - I{r}u)111,, ! Clriul1,,,

and therefore

(5.8) l l l1,(rja)111,, !Cllrlull l ,s' with u e Vh,
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f o r a n y ' i , : L r " ' ) m ' r i : 0 r " ' r i ' O n t h e o t h e r h a n d ' f r o m ( 5 ' 7 ) w e g e t

l lrjullo,,s llrllo,", lr]rlr,,< c(lrlr,, *+llrlls,'), for anv o € w1'"(o),

and therefore, using (5.8), we get

(5.e) l l l1,ft ju)111," s c(l lr l lr  , ,*Tl l , l lo,"), for anv a evh,

w h e r e  r ] , i , : 1 , . . . , m , i : 0 , . " , i , a , r e g i v e n i n ( 5 . 7 ) .  N o w , b y a a p p l i c a t i o n o f  ( 5 ' 9 )  t o

(5.6) we get

' r /  ;  \
( b . 1 0 )  l l r r l [ , " < c ( t  * T )  [ f t r - u l [ , , + f  l l r i l l t , ,  l ,  f o '  a n v ' i , : 1 , " ' , f f i .

- \ j = r l

Using this equation we get (3.5) in Assumption 3.1, and we have

Proposition 5.L. Let (1.1) be the ouerlappi,ng domain decomposition of the domai,n Q with
oa"rTops of si,ze 6 whi,ch has been defi,ned in thi,s sect'i,on starti,ng from the non ouerlapping
d,omain ilecompositi,on {O,;},;:t,...,u. Then, Assumption 3.1 holds in the piecewise I'i,near

f inite element spaces, V : 'Vh anitV6:Vh, i :  I ," '  , f f i t  for any conaer set Kh defined
by constraints acting on the function ualues at the mesh nodes of Tn anil hauing Property
5.1. The constant in (3.5) of Assumption 3.1 can be taken of the form

(5.11) co:  c(m+ 1)+(1+ 11#),

where C i,s independent of the mesh parameters and the domain decomposition.

Remark 5.L. We notice that the number m ol the subdomains Qa i,n the decompositi,on of {l
is i,n fact the number of the colors of the ouerlappi,ng domai,n decomposition {0!}41,374, anil
it ilepenils only on the d,imension d, of the space Ftd. Consequently, error estimations (3.7)
and (3.8) in Theorem 3.1 depend only onthe si,ze 6 of the ouerlaps through the intermedi,ary
of the constant Cs giuen in (5.11).

5.2 Two-level multiplicative Schwarz method

We consider a simplicial mesh pa,rtition Th of the domain O c R,d of a mesh size h, and
a simplicial coarser mesh Ts with a mesh size H, Tn being a refinement of. Tn. The mesh
size h is assumed to approach zero and we shall consider a fa,rnily of mesh pairs (h, f/). We
assume that both the families, of fine meshes and coarse meshes are regular.

With h and I/ fixed, using the coarse mesh ?rtr we consider some non overlapping subsets

{Ot}ryt<u of f,), each subdomain Q being an union of elements r € Tu, and we assume
that there exists a constant C, which is independent of I/, such that

(5.12) d iameter (O, i )  <  CH,  ' i :  I , . . .  ,M.

Using the finer mesh 7n and the subsets {Ot}ryt<u, we construct the overlapping subsets

{Ol}r<n<* and {Q6}15 Em_of Q, with overlaps of size d, as in the previous section. Here
we assume that O : UYtOt might be different from O, but the overlapping subdomains

{Of}tSt<* and {0;}1ai<'n cover f,).
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Now, we introduce the continuous, piecewise linear finite element space corresponding
to the I/-level

(5.13) V{ : {u e ColO) : al, e Pt(r), r eTu, u : 0 on 0O},

and extending the functions otV{ with zero.in 0\O, it becomes a subspace of.Vh. As in
the previous section, the convex set KD C Vn :I/ is defined by constraints acting at the
mesh nodes of Vh and having Property 5.1.

The two-level Schwarz method is also obtained from Algorithm 2.1 in which we take
V : Vh, K : Kh and the subspaces Vs-7 VqH, V! : V!, V.z : V*, -.., V* : VA. As in the
previous subsection, the spaces Vh, Vf; , V!, U*, - - . , V*, are considered as subspaces of
Wr,t for l" ( s ( m. We notice that this time the decomposition of the domain O contains
rn overlapping subdomains, but we use m*l subspaces of V,VgrVt,...,V*,in Algorithm
2.1. Naturally this algorithm will converge in this case if Assumption 2.L or its stronger
form, Assumption 3.1, written for m * 1 subspaces, will be satisfied for the above choice of
the convex set K and the subspaces Vo, Vt, . -. , V*, of V. As in the previous subsection
we prove that Assumption 3.1- holds and find the constant Cs depending on the mesh and
domain decomposition parameters. First, we have the following lemma in which inequality
(5.14) can be viewed as one of Friedrichs-Poinca.r6 type for the finite element spaces.

Lemma 5.L. Let u C Rd be a domain of di,ameter H, and, wi, i  :0,1,.. .  ,  N, be an
ouerlapping decompositi,on of it, u : U[sti,.i. We consider a simpli,ci,al regular mesh partition
Tnof  u andassumethat i , tsuppl i ,es ameshpar t i , t ionforw, ; , ' i :0r1, . . . ,  N, too.  Let ro €ws
be a node of Tn. We assume that the ouerlapping parti,ti,on of w sati,sfies:

(i) for any r e ws, the line segment lr0,r] li,es in ws,
(ii,) forN ) 0, if w6nai * A, 0 < i + j < N, then for any r e w,;, y € ai and,

z € u,;Owi, the l'i,ne segments fr,zl and fy,zl li,e i,n A,; and, aj, respectiuely.
On these conditions, if u is a continuous function which is linear on each r € T1r, and
a@\ -- o, then

(5.14)

where

(5.15)

(5.16)

and

(5.17)

ca,r(H,r) : 

{

I l, I lo,'," < C(lf, s)C (d, s) H C a,,(H, h)1u1t,,,,,

L  i t d , : E : I  o r I < d < s ( o o
d - L

( t n f ; + t ) ?  i , f r < d : s ( o o

G ) T  x f L S s < d < o o ,

"(r, ") 
: 

{

C  i f d : s : L o r 1 : s ( d < o o
,  r g l

c \ ! * )  "  i f  r < d < s ( o o

C d +  i f r < d : s ( o o
C @ ; l +  i f r < s < d < o o .

I  i l  N : 0
^ ( N * L ) / e  '

i f ( N + t ) e #  r f N + 0'  C i ' "  - t
c(-nr, s; :
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with

(5.18) Cr: rrffir#rl
In (i.18) we haue itenoted by | | the measure of a set, and we haae marked, i'n (5.11 that

the' norm anil the semi-norm in Wr,t , 1 ( s ( a, refer to the subdomai,n u. The constant

C in (5.16) is indepenilent of H, h, d,, s andthe decomposition of u'

Proof. In this proof, we use the polar coordinates. The Jacobian determinant of the trans-

formation from the rectangular coordinates to the polar coordinates can be written as

J(r,p) -- rd-tE(p),

where E(@ is an algebraic expression of cosines and sines of the component angles of tp.

We first consider that .l[ : 0, ie. the decomposition of c,; in the statement of the lemma
has only one element t b)o:r^.r. Consequently, for any r € r,.r, the line segment l*o,qj lies-in

r^r. Weiuku th" origin of the system of coordinates at the point r0, and, using the polar

coordinates, a poinf r: (rt,... ,fia), will be written as r: (r,p), <p being the system of

d - 1 angles giving the direction of the vector r. We denote by rp the maximum size of
the radiui in lhe direction g of the points in r,.r, and consequently, the points on 0w will be
written as (r,p.,g). We denote by o the union of the r €Tn having a vertex at r0, let 16
be the distan'ce'from r0 to 0o\0i, and we consider the open ball with the center at r0 of
radius rs, Brr(r0). For two points r' : (r',g) e w nB"o(r0) and r : (r,9) € c,r\B''(t0),
we have

(5.1e)

lu(r)l : lo(r,p)l I lu(rt ,s)l + | ff, #(p,p)dpl : IHV',p)lr' * | [i, #b,ddpl S
lrr#(r',e) + " . + ud#(r',p)lr' + | t;f (rrflh@, d + . .. + "a#,(0, d) ap1 3
(lff;(, ' ,,p)l + . . '  + l#(r',p)l)r ' + ffr (t#to,,p)l +' " + l#(p,v)l) ap,

where (q,... ,,u7) is the unity vector giving the direction of r : (r,g) in the rectangular
system of coordinates (r1, ... ,ra). In the following we shall sta.rt from (5.19) for the various
values of d and s.
F o r  d : s : 1 o r  L < d <  s  (  m ,  w e t a k e  r t : 0  i n  ( 5 . 1 9 ) .  I f . d , :  s :  l  w e g e t

lu(r)l : l,(r,p)l t fo" l#to,p)ldp.

Here, we may have g : 0 and g : n ifr0 is a inner point in a.r, and only tp : 0 or I : r
i f  r0 e Ec.r. Integrating again from0 torrl  H,we get (5.1a) for.f[ :0 and d,: s:L. I f
I < d < s : o o , w e h a v e

l' (") | s' rd f<ito oii!,,| ft O' <p)l 1 c d'Hl u I r,-,''

If 1 < d < s < oo we have

l,(")t, < d,-L ll,'. o* or1'-' Io" (,#r,e)t" + .. + t#(e,df) pd-,dp.

16



Multiplying the above inequality by yd-t and integrating from 0 to r, ( .[/ we get

I[o lr(r,9)l"rd-rdr <

(r5})"-' (cH)' I? (t#to,'p)l' + '' ' + l#(p, r)l') pd-'d'p'

By multiplication of this equation with the Jacobian part depending on 9, E(9)' arlLd

integrating over the d - 1 dimensional domain of the angles tp, we get (5.14) for N : 0 and

1 . < d < s ( o o .
Now, from (5.19) for an a,rbitra^ry 0 < r' < r0, we get

Io(c)l :  la(r,p)l  S(5'20) '(l#lr,',a|t 
* .. + l#(r',p)l)ro + I:: (t#htolp)l +' " + lilhb,w)l) ap

Also, since for a fixed g, ff?' ,g) is constant fot rt e (0, 
"o), 

we have

lo(* ') l  - lo(r ' ,e)l '  < vY I[ ' lTb,p)l 'pd-Ldp <

4s-z1rt1s-d' t[" (tgte,e)1" + " +l#(p,r)l') pd-rd,p.

Multiplying the above inequality by ("')d-1, and integrating from 0 to 16, we get

(5.21) lo" lrto,p)l'pd-'d,p =*,", Ir" (t#rp,p)l' +...+ tffito,df) oo-'ao-

Now, if 1 : s ( d < oo we get from (5.20),

l,(")l s *,1-o fi '(flfr@,e)l +. ..+lShb,dDpd-'dp+
,t-o t:: (l#to,dl + . . ' + l#(p,dl) oil 'd,o <
,t-o fi ' (t#to,p)l + "'+ l#,(p,v)l) od-'ao'

Using the regularity of the mesh T1r, we have f a C#, and therefore,

ff{ lu(o, p)lpd-t dp < c H (#)o-' fi' (l#b, v)l + "' + l#(p, v)l) od-' ao'

FYom this last inequality and (5.21) we get (5.14) for,lf :0 and 1, : s < d < oo by a

multiplication with E(p) and integrating over the domain of the angles 9.
Start ingagainfrom (5.20), for L < d,:s l  oo or 1( s ( d1x, weget

l,(")1" < (2d)"-'(l #rU,p)1" + *l#(r',e)l')rfi+

(2a1'-' lt:: o='ol'-' #{ (tgto,p)l' + + | thb,df) od-'ao:
2s-t 4sri-d' tf (t3t^to,_p)1" * . . . + l#(p, r)l') pd-rdp+

Qa1'-' lt:: o# arl'-' I;: (l*hto,p)l' + ' '' + l#(p, r)l') pd-'d,p.

Consequently,

ff{ lu(o,p)l'pd-|dp <

(b.22) (ia1'-1,$r'o-o $" (tflhto,p)|" + "' +l#(p, r)1") pd-'d'p+

2s-L4s-2d lt:: o* ol'-' #{ (tflhtr,p)l' + -.. + l$b, r)l') pd-'d,p.
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Now, from (5.22), if 1< d:s l oo we get

ff: lr(p,p)ld pd-'dp <

,li- rg ̂ r* { da-t, oa-z (tntr) "t 
}

r;' (i*to,Llto * "'+l#(p,v)lo) pd-'d,p-

Using regularity of the mesh fr, we get

ff{ la(o,p)ldpd-tdp <

ii-' 1sHf 0" # + r)o-' fi, (fihfr, p)ld + -.. + l#(p, r)1") pd-'d,p.

This inequality together with (5.21) prove (5.14) for N : 0 and L I d, :s ( m.
Finally, if 1 < s < d <oo, we get from (5.22),

(  ,  ,  -  
"  

- ^  o  - r . - .  f  z -  r * = *  l " - t l

ff{ lu(o,p)l'pd-'dp s2'-t -a* 
{a"-1r(or3-0,a"-2rg(*)"-t L(ff) 

"-' - tl 
}

It' (t**tp, e) l" + ' ' ' + l#(p, r) l') pd-t dp,

and consequently,

f[{ lu(o,p)f pd-tdp s

d#)'-'(ct)' (#)o-' $, (tfl*tp,p)l ' +...+ lffi@,dl') od-'ao.

Using again (5.21.) and the last inequality we get (5.14) and for N:0 and 1 < s < d < oo.
Assume now that N ) 0, ie. we have more than one subdomain a;, i :0,1, "' , N in

the overlapping decomposition of r.,r. Such a decomposition is considered when there exist
points r € A for which the line segment l*4,*l do not wholly lie in t.r. Let w; md wi, i + i,
be two fixed subdomains such that u,;flwi * A. We consider a fixed point z €. w,inwi, and.
denoting by zk and Qp, the nodes of. Tn in O,; fi ui and the corresponding functions in the
nodal basis, respectively, for an 1 ( s ( oo, we have

l lrl lo,,,,r - It u(zk)qpQ)llri lt l 'S ll, - Du("u)du(z)llo',,i :

l lI (, -,r!-D dn@)llo,,,,i< I l lu -,(,\l lo,,,,i[x(z).
k k

Since o - ak\ vanishes at zk, we get from the first part of the proof and the last equation
that

I l, I lo,",,i - I I u (zk) 61,(2111, ilt l' < I c (d,, s) H C a,, (H, h)1u11,,,, i d*(z) :
k k

C (d,, s) H C 6,,(H, h)1aft ,,,, i,

and integrating over wi(1wi, we get

lw6 n w1lllull0,,,,i ( lrrl'/' I pl + lw6 n wilC (d,,s)HCa,,(H, h)luh,",,i 3
J uinu j

lui lu' lw6fiuil?-t)/sllullo,,,r,n,i *lw,inwlc(d',s)HCa,,(H,h)lulr,,,, i .



Consequently we have

(5.23) Ilrl10,,,,, = (,j#) "' Ilol10,,, a6 * c(d,,s)Hca,,(H,h)lult,,,,i.

It is easy to see that equation (5.23) holds for .s : oe, too. Taking into account that

(5.24) llrllo,",,o < C(d,s)HC6,'(H,h)lult,",,o,

from (5.23) and (5.24), we get (5.14) for N > 0. n

Remark 5.2. As we haue said at the beginning of this subsection, ue are interested in the
error estimati,on when H,h -+ 0. In general, since the mesh 71, is regular, the ouerlappi,ng
decomposi,ti,on of w in Lemma 5.1 cnn be taken such that the number N and the constant
C, in (5.18) are bounded when H,h -+ 0. In this point of uiew, the constants C(d,s),
C(N,s) and Cr, written in (5.16)-(5.18), can be considered as independent of H and h,
and assimilated to the generic constant C. In the tollowing we write (5.11 as

(5.25) I lrl lo,r,, 1 C H C a,s(H, h)lulr,r,r,

where C : C(N,s)C(d,s) anil Ca,r(H,h) is gitten in (5.15).

The above lemma can be very useful in the various error estimations. The following
result, for instance, generalizes that in Lemma 2.3 in [6].

Corollary 5.L. Let u be a subd,omain of diameter H wi,th a simplici,al regular mesh parti-
tion Tn. If a is a continuous functi,on whi,ch i,s li,near on eaeh r e Tn, then for any L 3 s ( oo
we haue

(5.26)

where Ca,r(H,h) i,s giuen i,n (5.15), and C is independent of H and h.

Proof. Let r0 € r,r be the point where lr(ro)l : llullo,oo,r, and r € w a current point. We
point out that r0 is a node of Tn. For 1 ( s ( oo, we have

l r ( "0) l '  <  28-r la(n0)  -  r ( " ) l '  +  2s-r lu( r )1" ,

and integrating it over ar, using (5.26), we get

lrlllrl16,*,, < 2'-rllu(ro) - r(")113,,,, * 2'-tllu(r)116,,,, <
2s-t (C H Ca,,(H, h))' lo(") 1i,,,, * 2s-tl lr(") I 13,,,".

If s : oo, the proof is similar. n

Coming back to the two-level method, let us denote as above by ri anode of Tn,by dt
the nodal basis functions in Vfl associated with ri, and by c,4 the support of /;. Given a
u e Vh, let Iu u : min E6uu(r)- and I{u : min3666, a(r)+, where u(r)- : max(O, -a(r))

and u(r)+ : max(O, u(r)).Since tr is piecewise linear, In u and Idu ate attained at a node
of Tn. For a u e Vh, we define

I lrl lo,-,, ! C HT 6 0,,(H, h)11u1ft,",,,

xt node of Tn

(I;u)Oi@) and Ifia:: T
node

(I{u)Si(r),(5.27) Iolu: :

and we write

(5.28)

of Tn

Isu: I f iu- I ru .

The following result extends that given in [34] where the operators .I, have been introduced.
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Lemma 5.2. For any a €Vh, we haue

(5.2e)

and

(5.30)

ll,IHu - olls,g< CHCap(H,h)1aft,'

l l/rullr, ' { CCa,s(H, h)llollr, ',

in Tu

where ca,r(H,h) i,s defined i,n (5.15) anil c i,s i,ndependent of H and h. Moreouer, if K is

a conuer and, closed, set in Vh, described by some condi,tions at mesh nodes of Tn, hauing
Property 5.1, anil0 e K, then for any u € K we haue Isu € KnU{ .

ProoJ. Let us take an w6, fne support of the basis function $,; in V{,corresponding to the
node ri of Tn, and a u e vh. If o vanishes at a point in dl, then I{u: 16 a:0, and if

u f 0 at any point of r..r; then either a+ : I{u:0 or a- : I; a:0. Consequently, there

exits at least a node of 711 in wiat which u - I{u + Iu u :'t)* - a- - I{a + In u vanishes.

Applying Lemma 5.1, since I{o - Iu u is a constant, we get

(5.31) llu - I{u I 16 ulls,',,. 1CHC4p(H,h)lul1,s,,'.

We point out that since for a,ny f € t^.ra the line segment [c', z] lies in 6;,, we can take a

decomposition as in Lemma 5.1 of ar6 having N < 1. Assuming that N : 1, let {er;s and

ui! : t^r this decomposition. Since dio contains at least one r € Tn and the mesh Tn is

regular, then, according to (5.18), Crn can be taken independent of I/ and h. Consequently,
C(W,s) in (S.tZ) is independent of H and h. Let aru(u): # Irnubethe average of o over

a.r;. Since diameter(a.r) < CH, we have

(5.32) llo - o,u(r) | lo,",,n I C Hlult,,,,i.

Using (5.31) and (5.32), we get

l l ln, - o,,(u)llo,',,0 : l l (If , - Ii u - a,u@))Qillo,s,w; 3
aj node in Tn

t lllf u - Ii, - a,n(u)110,,,,,4
rj node in 7a

t
node in 7a

HCap(H,h) lult,r,ru 1 C H C a,s(H,, h)lult,r,rr.

We used in the last inequality the fact that, since the mesh is regular, the maximum number
of simplexes having a node zJ in common is bounded, independent of f/. Fbom this equation,
and using again (5.32), we get

lllno - ullo,r,,u 3lllno - a,n(u)llo, s,ui 1- llo,n(o) - trllo,r,,r (

CHCa,'(H,h)|uh,",,n.

As we said at the beginning of this subsection, O : U6-1,141cr6 might be different from O,
but dist(O,AO) < 6 < H. Consequent ly,  s ince Isu:0 on Q\O and u:0 on 00, the
above inequality holds on CI\O, too. Therefore, we get (5.29) from this remark and the last

( t tr f ,  -  I i  r-ul lo,, , ,u + l l t ,  -o,n(r) l lo,", ,o) S

t
node

N

C

20



equation, since the regula^rity of the mesh implies that the number of wi which intersect a
fixed ara is independent oh fI.
It follows from (5.29) that

(5.33) ll/nrllo,' 1CHCa,,(H,h)llull1,',

Flom the definition of I{a and Iu u we have for any x € wi,

(5 .34)  0< I f  u  -  I t  o  <u(r )  i tu( r )  2  0,  and 0/ I [u-  I t  r>  u(r )  i f  u( r )  <  0.

Therefiore,

llfo - It ulSlu(r)l for any r € w6,

and, from Corollary 5.1, we get

(Ilo - I, u)Lift,,,,u I f lTfu - I, u)$ift,,,,n S
inTn ri nodeinTn

(5.35) co : c(m + D+ (t * t- - r)#c0,,(u,o))

where C i,s independ,ent of the mesh and, domain decomposi,tion parameters, and C6,t(H,h)
is giuen in (5.15).

Proof. Let us consider w e K, q e V such that ,*Dli=sw.; € K,'i,:0,"' ,ffi, and let

u be another element in ,If. In the following we use the unity partitions (0')n,...,rn, of the
domains U'lLt,*dLi, i -- \' ' ' ,ffit with the properties in (a.2) and (5.1).

t
node

llsulr,,,,; : I
EJ

c a! n-t+ ! | l, | | o,-,,u < dt c c a,,(H, h)11u111,,,,,.

We have again used above that Tn is regula,r. The last inequality together with (5.33) prove
(5.30).
Flom (5.34), (5.27) and (5.28), we get that for any n € O we have

0 < I11u(r) <u(r) i tu(r) ) 0, and 0> Isu(r) > u(r) i f  u(r) < 0

Finally, if 0, u e K, and K is described by some conditions at mesh nodes of 71, and, having
Property 5.1, then we get from the above equation that lpa e K. !

Now, we can prove the following proposition which shows that the constant C6 in As-
sumption 3.1 is independent of the mesh and domain decomposition parameters if H l6 and
H lh we constant when h -+ 0. This result is similar to that given in [ ] for the inequalities
coming from minimization of the quadratic forms. In the first pa,rt of the proof, the con-
struction of u;, i - 1,.. . ,nL, is simila.r to that given for one-level method. In the second
pa,rt we define an appropriate oo using the previous lemma.

Proposition 5.2. Let (4.1) be the ouerlapping domain decomposition of the domain Q with
ouerlaps of size 6 defined, i,n this section. Then Assumption 3.1 i,s ueffied for the p'i,ecewi,se
linear fini,te element spaces, V : Vh and, Vs : V{, V : Vhz'i : !,"' tffit defined in
(5.2), (5.3) and (5.13), respectiuely, and any conaen set K : Kn ilef,ned by constraints on
the functi,on ualues at the nodes of 71, and hauing Property 5.1. The constant i,n (3.5) of
Assumption 3.1 can be taken of the form
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Step 1. We assume that we have u6 € I/6 satisfying

(5.36) w * a g r u * w o - u g € K ,

and we shall construct recursively u; € V, 'i : 1,' ' ' , rn, which wiII satisff (3.3) and (3' )
in Assumption 3.1. We define

(5.37) ur : Ih @l@ -, - uo)+ (1 - ol)rr),

and, as in the previous section, we get

l u 1 € V r a n d w 1 - w s l u 1 e K ,

a - u 0 - \ * w o l w t e K ,

r,) - w- uo - rt e wJ'"(U or') and
i=2 -

a - w - a0 -u1 :  0 in O - Uf\zQi.

A lso ,  fo r  i :2 , . . .  ) r f l  -  l "  we take

- (  ^, ,  
i - t  

, " , . . \(5.3s) ai: Ih lqo 
-, - t ui) * (L - ai ',

\  J = o  
' - ' ) '

and we prove

i-L

q e V a n d u , i * w * l w i e K ,

i i j = o
rE- \-\

u - l u i + L w i € 1 7 ,
j=0 j=o
i m

u - w -Drt e lTot'"( LJ CI7) and
j=0 j-i+r

i

a -w-Dr t : 0 i n  O -q . ; f i .
j=0

m-L
ti1

u m : u - w - , L a i

,=0

Finally, we take

(5.3e)

and we get that (3.3) and (3.a) in Assumption 3.1 hold.
Step 2. We shall define a us € V6 satisfying (5.36) and prove that condition (3.5) in

Assumption 3.1 is satisfied with the constant Cs given in (5.35). It is easy to see that (5.36)
is equivalent with

(5.40) uo - wo e (K - (w + ws)) fi (u - K),

and also, since tr, w * wg € K, we get

(5.41) a  -  w  -  w o  €  @  -  ( r + r o ) )  n ( u  -  K ) .



We write K : (K - (tr, + ,o)) n (, - K), and from the above equation and Lemma 5.2 we
get that tx(u -, - ro) € K. Fbom (5.29) a"nd (5.30) we have

(5.42)  l l ,  - .  -w0-  In@ -  u -uo) l lo , ,  1CHCa, , (H ' 'h) lu  -w -  t ro l t , ,

and

(5 .43)  l l lu@-w- ' r rs) l l r , "  3CCa, , (H,h) l l ,  -w-  t  s lh , , ,

where Ca*(H,h) is defined in (5.15). Now, we take

(5.44)  uo: lno*  Is(u -w -wo) ,

and we see that it satisfies condition (5.36). To prove condition (3.5) in Assumption 3.1,
we first notice that, sta^rting from u1 given in (5.37), by the recurrent application of (5.38)'

as in the proof of Proposition 5.1, we get ui, i :1, '' ' , m, of the form

i

(5.45) a,i :  In(r|(a - u - ro) * Dr]r), 
' i , :  I ," '  , f f i ,

j=r

where 
" j , i :L , . . .  , r r l ,  i :0 , " '  , ' i ,  sat is fy  (5 .7) .  Using (5.7)  and (5.8) ,  we get

l l l l,Qlw)111,, ! c(llrlw1llo," + lrlwih,,) s c(llurills ,, *+ll'i l lo,, + l,uilr,,)'

Since ,ua € V and, the diameters of the connected component of 0; are less than C(.F/ * d),
we get from the classical FYiedrichs-Poincar6 inequality,

(5.46) l l l l ,Qlw)1ft ,"  I  CIL + (m -1)#l lrr l r ," ,  i  :  1,," ' ,n '1.,  i  :  L," ' , i .

On the other hand, taking into account the definition of us, (5.42), (5.7) and (5.8), we get

l l ln ( "$@ -w -uo)) l l r , ,  SCl lo  -u  - ro l r , " *  (1+ F) l lu  -u  -uo l lo , , l  :

Cll, -u - ugh,, + (1 + t#ltW - w - ws - IH(u - w -tro)llo,"l S
C ll, -. - ullt,, + (m - r)Ca,,(H,n)#1, - u - trolr,,] (

C(lo -tolr , ,  *  l rolr , ,)  +C(m-L)Ca,,(H,D#@ -wlt, ,  *  l taolr,") '

Consequently, we have

,F ,a\  l l tn?$@ - u -  uo)) l l r , '  <
(o '+{/  

c [ r  + (m -  r )cap@,h)+] ( lo -  t r l r , ,  *  l t r ro[ , , )  + c luolr , , ,  ' i :  r , " '  i rn.

Also, from the definition of u6 and (5'43) we get

luslr," : lus + IH(u - w -tro)1r,, ( ltr6lr,, + lIs(u -'u -tro)1r,, (

Ituelr," * CC6,,(H, h)llo - w - trol 1r,",

and therefore,

(5.48) luolr,, ( CIL + Ca,,(H,H)l(ll, - tullr," + lltuollr,,).



(5.4e)

Now, taking into account thai d ( f/, from (5.47) and (5.48)' we get

lll6(r${u - w - uo))llr," <
c [r  + (m - L)C6,,@,h)+] ( l l ,  - .1[, '  + l l rol [ , ' ) ,  ' i , :  t ," '  , rn.

Finally, from (5.45), (5.46), (5.48), and (5.49) we obtain that condition (3.5) in Assumption

3.1 hoids with Co ginbo itt (5.35). tr

Remark 5.3. .4s in Remarlc 5.1, we notice that, since the number m -of the subdomai,ns
Qa is the number o! colors of the ouerlapping ilomain decomposi,tion {O06}s,;,5M, the emor

eitimates i,n Theorem 3.1 depends only on Cs giuen in (5.35). Therefore, if the ouerlappi,ng

si,ze 6 and, coarse mesh sizes H and h are chosen such that Hlh and Hl6 are constant, then
the conuergence rate of the two-leuel multiplicatiae Schwarz method is mesh and domain
decompositi,on independent when H, h -+ 0.

6 Numerical example

For a domain Q C Rd and an 1 < I ( N, Let K C V :Wot''(O) be a closed and convex

set. Given an / e V' - W-r's' (Q), Lls * Lf s' : 1, we consider the problem

( 6 . 1 )  u e K :  IJa

which is equivalent with

(6.2)

where

lVul'-2YuV(, - u) > f(a- u), for any a e K,

We know (see [15]) that if 1
that

ue K:  F(u) : f t rp r ( r ) ,

F(u):  11 /  tor t ' -  / ( r ) l  .
Ls " /n 

'  . l

( s ( 2, then there exist two positive constants o and B such

< F'(r) - F'(u),u - u)) "*ffiffi
gl lo -" l l i ; '  > l lP'  (r)  -  F'  (u) l lv, ,

for any a,u € ll.ot't(CI). Consequently, the functions introduced in (3.1) can be written as

orrr(r): 
@fur2, Pu(r): or'-1,

and there fore , ,  A t r4 :  g f f i - ,  BM:0 ,P:2and 4 :  s  in  (3 .1 ) .  I f  s )2 ,  thenthereex is t
two positive constants a and p such that (see [8] )

< F'(r)  -  F ' (u) , ,a -  u ))  a l lu -  u l l f , "

9( l l r lh,"  + l l r l l r , , ) ' - ' l l ,  -u lh,"  )  l l r ' ( r )  -  F ' (u) l lv ' ,

for any u,u, e t{''(CI). Therefore, for given M ) 0,, we have

onrG) - er', /uft) : B(2M)'-2r,
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and therefore, A74 -- a, Bu -- P(2M)'-2, p : s and q : 2 in (3.1).
We can conclude from the above comments that Algorithm 2.1 can be applied for the

solving of problem (6.1) if the convex set K has Property 4.L. Naturally, all the error
estimations in the previous sections hold.

We have tested the correctness of the error estimations given in the previous sections, by
an numerical example concerning the two.obstacle problem of a nonlinear elastic membrane.
This is a problem of type (6.1) in which CI c R2 and the convex set is of the form K : la,,bl,
where a,b eW]"(O), o ( b. In our numerical tests, the exterior forces f are zero, ie. we
have considered the two'obstacle nonlinea,r problem,

u e fa,bl , [alYul'-2YuV(, - z) ) 0, for any u e la,b].

Figure 6.1. (a)Meshes Tn,Tn,and the domain d*"o*porii,iln, (b) Obstacles) and b.

In the numerical experiments, the domain fl is the rectangle (0,4) x (0, 3). The meshes
Tn and 7a contains right-angled triangles, which a^re obtained by partitioning the sides
of the rectangular domain in the same number of segments. We show these meshes in
Figure 6.1.a, where we have considered 30 segments for 71, and 6 segments for Tn, on each
side. In the same figure we have shown the domain decomposition, the number of the non
overlapping subdomains O; being 9, and evidently, the number of the subdomains Qa is 4.
The width of the overlaps in this figure is of 2 triangles in Tn. The obstacles a and b are
shown in Figure 6.1.b for a mesh fi, having 60 nodes on a side of the rectangular domain.
The obstacle a is given by the plane z :0 with a circular cylinder having a basis on this
plane a.nd the other one, in the pla,ne z : 3.0, is ended with a semisphere. The cylinder
has the radius of. If 6, and the center of its first basis is at the center of the rectangle Q.
The obstacle b is the plane z:3* 1/6 with a circular cylinder having a basis on this plane
and the other one, in the plane z : Ll6, is ended with a semisphere. The cylinder has the
radius of Ll6, and his axis passes through the point (413,314,0).

The computed solutions for s - 2.0, s : 1.5 and s : 3.0 are plotted in Figure 6.2 for a
mesh T, having 60 nodes on a side of the rectangular domain 0.

We have seen in the previous sections that the constant Cs depends onLl6 in equation
(5.11), in the case of the one-level method, and on Hlh and, Hl6 in equation (5.35), for the
two-level method. We have tried to verify it by numerical tests for the nonlinear membrane
problem taking various values of H, h and d. In all the numerical tests the calculus has been
stopped at a relative error of 1.E-03 at the nodes of.TTbetween two consecutive computed
soluiions. The solution on the subdomains have been calculated by the relaxation method,
which is a pa,rticular case of the Schwarz domain decomposition method. The computing
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of the solutions on subdomains has been stopped at a relative error of 1.E-05 at the nodes

of fi, between two consecutive computed subsolutions.

Yft

XAfr XM

Figure 6.2. Solution for: (a) s:2, (b) s:1.5, (c) s:3.

The tests in Figure 6.3 have been made for Hlh:6 and Hl6:2, and the points on
the two curves are obtained for various coarse meshes fi1 corresponding to 20, 18, 16, . . . ,
2 segments on a side of the rectangular domain f,l. We see that the number of the iterations
is bounded for the two-level method, and it is in concordance with the fact that C6 in (5.35)
is constant. Also, the number of iterations is an decreasing function of H for the one-level
method. Since H 16 is constant, it follows that the number of iterations is an increasing
function of.Il6, and it is in concordance with C6 in (5.11).

In the tests in Figures 6.4, 6.5 and 6.6, two of the parameters I/, h or 6 a,re constant
and the third is variable.

For the tests in Figure 6.4 we have taken H : 5.0112, h: 5.0f 120 and d : Lh,2h,. . . ,10h.
We see that, in both cases, the number of iterations is a decreasing function of d, and it is
concordance with the expressions of C6 in (5.11) and (5.35).

The tests in Figure 6.5 have been made for I/ : 5.016, 6 :5.01L2, and h corresponds to
partitions Tn with 2.6,4. 6, 6 . 6, . . ' ,20. 6 segments on each side of the rectangular domain
0. We see that the number of iterations is constant fot h I 5124 in the case of the one-level
method, and it is in concordance with Co in (5.11). In the case of the two-level method,
the number of iterations is a decreasing function of h for s : L.5 and s : 2, and it is also
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in concordance with Cs in (5.35). For s : 3 > d : 2, the number of iterations should be
constant, Ca,r(H,h) in (5.15) being equal to 1 in this case. In Figure 6.5.b, we see that the
three curves are similar; however it is not excluded the fact that, as h -+ 0, the number of
iterations slowly increases for s : 1.5 and s : 2, and it remains bounded for s : 3.

(b)

-0 
0.5 t 1.5 2 2.50 , 5 t " 1 . 5 2 2 . 5

Figure 6.3. Itentions for Hlh and Hf 6 constant: (a) one level, (b) two levels.

0.15 0,2 0.25 0,3 0.S 0.4 0.6
5

Fi,gure 6./1. Iterations for f/ and h constant, and 6 variable: (a) one level, (b) two levels.

In the tests in Figure 6.6 we have taken h : 5,01120, d : 5.0120 a.nd f/ : 5.0120,

b.0ll2, 5.0110,,5.018 and 5.016. Since the number of the subdomains Of depends on I/,

even if inside an iteration we have found the solution first for the subdomains Ood of the

first color, then for those of the second color, and so on, from Figure 6.6.a we see that the

number of iterations for the one-level method depends on the number of the subdomains

O!.lnthe case of the two-level method, the number of iterations is an increasing function

of H *hich is in concordance with our constant C6 in (5.35).

Finally, we see from our numerical tests that the number of iterations for the two-level

method is always less than that for the one-level method.
In the end of this section, we give some details concerning the method we have used in

the computing code to solve the problems on subdomains. As we have already said, the

subproblems, the subproblem corresponding to the coa,rse mesh included, have been solved

by the relaxation method. Consequently, for a fixed subdomain, we have to solve iteratively
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one.dimensional problems. Since the functional is strictly convex and the convex set is a

one.dimensional segment, the solutions of these nonlinear problems can be found by the
same method as foi the quadratic functionals: we solve first the one-dimensional nonlinear
equation corresponding to the inequality, and then we project it on the convex set. This
projection is very simple for the subdomains covered with the mesh fi, because the convex
is an interval and the constraints of the convex set operate on the function values at the
nodes of the fine mesh. In the case of the domain with the coaxse mesh, the projection
is a little more complicated because the constraints operates at the nodes of fi1 and the
functions belong to V{. We shall explain in the following how this projection is made in
our computing code.

0 0.6 q. l

Figure
r h

6.5. Iterations for f/ and 6 constant, and h variable: (a) one level, (b) two levels.

o.3

0.4 0.5 0.6 0.7 0a 0a
I

Fi,gure 6.6. Iterations for h and d constant, and fI variable: (a) one level, (b) two levels.

We have two vectors 
"(t).and 

ur(k), /c runs from 1 to the number of nodes inTn,

containing the values of. un+T and wf;+L obtained from Algorithm 2.1. At the iteration
n, for a given subdomain a, the values of ar(,k) are obtained by the relaxation method, and

we update z(k) with w(k), inorder to obtain u"+#, after the obtaining of the values 'urf;+l

with the wanted error. Naturally we have two vectors a(k) and b(k), containing the values
of the two obstacles at the mesh nodes in Tn.

Assume now that we are computing the solution on a subdomain f,l; and we seek for
the value u(k) of the correction at the node k of. Tn. As we have already said, we first find

0.3

{t}
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the solution u of the corresponding nonlinear equation, and then we project it as usually:
if a(/c) - u(k) S u ( b(,k) - u(&), then we take w(k) : u; if u S a(k) - u(k), we ta.ke
w(k) : o'(k) - u(fr); and if b(ft) - u(k) ( u, we take ur(ft) : b(k) - u(k)-

In order to compute the corrections at the nodes of the coa,rse mesh 7r, we have in-
troduced the matrix c(I,k), where I runs from 1 to the number of the nodes of.Tr, and k
takes the values from L to the number of nodes of fi, contained in the support of /1, the
function in the nodal basis in IroH. The coefficients c(l,k) depend on the relative position of
the mesh nodes I and k, and they give the correction introduced by fu at" the node ,t when
the correction at the node I is 1, ie. c(1, k) : $1@k). Consequently, with a new correction
ru at the node I in the place of the old one, tu(l), the new correction at the node ft will be
tu(&) + c(l,k)(w - u(l)). Therefore, the new value satisfies the constraint of the convex at
the node & if

(6.3)

or

a(k) < u(k) + w(k) + c(t, k)(w - u(,)) < b(,k),

1 1

;0fi1"(k) 
- u(k) - u(k) + c(t,k)w(I)l 1 w I 

efilb(e) 
- u(k) * w(k) + c(t,,k)w(t)] -

Now, if u is the solution of the nonlinear equation corresponding to the inequality in the
relaxation method at the node /, in order to obtain the real correction satisfying also the
constraints at the nodes k, we have to project it on the interval lot,btl, where

1
at: max{a(t) - u(l),^F 

"A;DL"&) 

- u(k) - w(k) + c(t,k)w(l)l}
I

br : min{c(I) - u(t),*j".t lO [b(k) - u(k) - w(k) + c(t,k)w(t)]),

where max6 and min6 are taken over the nodes k of Tn contained in supp/;. We point out
that since before the new correction we had u(k) +u(k) e Kh, fuorn (6.3), we get that
tu(l) e lot,bil. The projection of a on la1,b;] is made as in the relaxation method for the
subdomains fl4, and if uo is this projection, the new updated corrections will be: u(l) :: wo
and u(k) :: w(k) * c(l,k)(wu - w(I)),,k being the nodes of.71, in suPPdl.

We notice that the projection for the two-level method is a little more complicated than
that in the one-level method, but since the number of iterations is less in the two-level
method than that in the one-level method, the two-level method is more efficient in point

of view of the computing time. For instance, we see in Figure 6.3 that for H : 5.0/10,
h : 5 . 0 1 6 A a n d d : 5 . 0 l 2 0 , t h e n u m b e r o f  i t e r a t i o n i s : 2 3 f o r s : 1 . 5 ,  1 . 9 f o r  s : 2 . 0 ,  a n d l " 5
for s:3.0, in the case of the one-level method, and L3 for s:1.5, 10 for s:2.0, and 9 for
s : 3.0, in the case of the two-level method. The computing time obtained on a PC with one
processor Intel Pentium III of 600MHz was: 18min45sec for s : 1.5, 6minl6sec for s : 2.0,

and L7minSsec for s : 3.0, in the case of the one.level method, and 13min54sec for s : 1.5,

4min43sec for s : 2.0, and 14min27sec for s : 3.0, in the case of the two-level method.
Naturally, the computing time for s : 2.0 is less than that for s : 1.5 or s : 3.0 since

in this c&se we solve linea,r equations in the relaxation method. This case corresponds to

the minimization of a quadratic functional. The finite element problem in these computing

time tests has 3481 unknowns.
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