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Domain decomposition Schwarz method

for strongly nonlinear variational inequalities

L. BADEA®

Abstract

We prove the convergence for a subspace correction method applied to strongly
nonlinear variational inequalities in a general reflexive Banach space, provided that the
convex set verifies a certain assumption. In the following we prove that this assumption
holds for the Schwarz method in which the convex set is described by constraints on
the function values at the points of the domain. Also, this assumption holds for the
one and two-level Schwarz method in the finite element space, and we explicitely write
the constants in the error estimation depending on the domain decomposition and
mesh parameters. Numerical examples are given to illustrate the convergence of the
method with both one and two levels, for the two-obstacle problem of a nonlinear
elastic membrane.

Keywords: domain decomposition methods, Schwarz method, subspace correction, non-
linear variational inequalities, finite elements, multilevel methods, obstacle problems
AMS subject classification: 65N55, 656N30, 65J15

1 Introduction

The literature on the domain decomposition methods is very large and it is motivated
by an increasing need on the solution of large-scale problems since these methods provide
numerical solvers which are efficient and parallelizable on multi-processor machines. The
multiplicative and additive Schwarz methods for elliptic linear problems have been studied
by many researchers, among them Lions [23]-[25], Chan, Hou and Lions [7], P. Le Tallec [22],
A. Quarteroni and A. Valli [30], Bramble, Pasciak, Wang and Xu [5], and Badea [1], for the
multiplicative methods, and Dryja [9], Dryja and Widlund [10], [11], and Nepomnyaschikh
[29], for the additive version. For problems related to variational inequalities, we can cite
the papers written by Hoffman and Zou [16], Kuznetsov and Neittaanmaki [19], Kuznetsov,
Neittaanmaki and Tarvainen [20]-[21], Lii, Liem and Shih [26], Zeng and Zhou [39], Badea
[2], Badea si Wang [3], Tai [32]-[34], and Tai and Tseng [36]. Also, the multilevel and
multigrid methods can be viewed as domain decomposition methods and we can cite the
results obtained by Kornhuber [18], Mandel [28], and Smith, Bjgrstad and Gropp [31].
However, very few papers deal with the application of these methods to nonlinear problems.
We can cite in this direction the papers written by Tai and Espedal [35], Tai and Xu [37]
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for nonlinear equations, Hoffmann and Zhou [17], Lui [27], and Zeng and Zhou in [40] for
inequalities having nonlinear source terms. Evidently, the above lists of citations is not
exhaustive and it can be completed by many other papers.

Almost exclusively, the convergence of the domain decomposition methods for varia-
tional inequalities coming from the minimization of a functional is studied in the case when
this functional is quadratic. The main goal of this paper is to give the error estimates for
the one and two-level Schwarz domain decomposition methods applied to the minimization
of the non quadratic functionals over general convex sets. The most of the papers consider
the convex set decomposed according to the space decomposition as a sum of subconvexe
sets. This is a easy condition when we deal with the obstacle problems. We have tried to
extend our analysis to other types of convex sets, and when we use the Sobolev or finite
element spaces, we consider convex sets which are described by constraints on the function
values at the points of the domain, K = {v € Wy*(Q) : |v(z)| = 1/v(z)? < b(z) a.e. in Q},
for instance. Evidently, such a convex set is of the two-obstacle type, but its d dimensional
corresponding, K = {v = (vy,---,v4) € [Wp*( Q)] : |v(z)| = vu1(2)? + - +va(2)? <
b(z) a.e. in Q}, can not be easily decomposed as a sum of subconvex sets. Consequently,
when we look for solutions in W1#(Q), our convex sets are of one or two-obstacle type, but
if they lie in [W1*(Q2)]%, then they may be of other types, too. We shall characterize more
precisely the convex sets we consider in Section 4. For the writing simplicity, we have con-
sidered in the next sections problems having the solution in W1#(£), but all the obtained
results hold reading [W'*(Q)]¢ in the place of W*(1).

The convergence of a domain decomposition algorithm solving variational inequalities
coming from the minimization of quadratic functionals over convex sets defined by con-
straints on the function values at the points of the domain is proved in [2]. In [37], it is
proved that the multiplicative space decomposition method applied to the minimization
without constraints of a differentiable and convex functional defined in a reflexive Banach
space uniformly converges. In [4], using the subspace correction techniques in [5] and [38],
and more general conditions in [35] on the convex functional, it is proved that the conver-
gence rate for the one and two-level domain of the algorithm in [2] is of the same order as
the convergence rate of the linear elliptic jump coefficient problems [6]. We generalize in
this paper the results in [4] and [37] to the minimization of the non quadratic functionals.

The paper is organized as follows. In Section 2, we state the multiplicative Schwarz
method for nonlinear variational inequalities as a subspace correction method in a general
reflexive Banach space for the minimization of non quadratic functionals, and we prove
the convergence of this algorithm provided that a certain assumption holds. In Section 3,
under a little stronger assumption, which essentially introduces a constant depending on the
convex set and the space decomposition, we estimate the error of the algorithm. Section 4
is devoted to the convergence of the method in Sobolev spaces, proving that the introduced
assumptions hold. For the Sobolev spaces the algorithm is exactly a variant of the Schwarz
method. In Section 5, we present an analysis for the one and two-level Schwarz method in
the finite element spaces, where the assumptions hold, too. In these cases, we are able to
explicitely write the constant introduced in the assumption in Section 3 depending on the
mesh and domain decomposition parameters. The proof for the two-level method is based
on a lemma which can be viewed as a Friedrichs - Poincaré inequality for the finite element
spaces. Finally, in Section 6, we illustrate the convergence of the method with both one
and two levels by numerical examples concerning the two-obstacle problem of a nonlinear
elastic membrane. Also, we give in this section some details concerning the procedure we
have used in the computing code to solve the problems on subdomains.




2 General convergence result

Let V be a reflexive Banach space and Vi, --,V,,, be some closed subspaces of V. Also,
we consider a non empty closed convex set K C V, and we make the following

ASSUMPTION 2.1. For any w,v € K and w; € V; with w + Z;’:l wj € K,i=1,---,m,
there exist v; € Vi, i = 1,--- ,m, satisfying

i—1
(2.1) w+ij+vi€Kfori=1,---,m,
=1

m
(2.2) v—w -——Zvi,
=1

and the application
(23) V x Vi Xoeee X Vm =) (U_w7w17"' 7wm) — (Ul,"' ,'Um) EVl X e X Vm

is bounded, i.e. it transforms the bounded sets in some bounded sets.

A similar assumption has been introduced in [2] to prove the convergence of the Schwarz
method for variational inequalities coming from the minimization of quadratic functionals.
It looks to be complicated enough, but, as we shall see in Section 4, it holds for problems
in which we use the Sobolev spaces and the convex set K is defined by constraints of the
function values at the points of the domain. We consider a Gateaux differentiable functional
F : K = R, which will be assumed to be coercive if K is not bounded. We assume that
for any real number M > 0, if we write Ly, = sup ||[v — ul|, there exist two

[[ol], ||ul| < M
v,u € K
functions aaz, Bas @ [0, Las] — RY, such that

(2.4) ay is continuous and strictly increasing on [0, Lys], and apm(0) =0,

(2.5) B is continuous at 0 and Sx(0) =0,
and satisfying
(2.6) < F'(v) — F'(u),v —u >> ap(||v — ul|), for any u,v € K, ||u]|,||v]| £ M,
and
(2.7) Bu(lv = ull) > [|F'(v) = F'(u)|lv+, for any u,v € K, |[ull,||v|| < M,
where F' is the Gateaux derivative of F.
We know (see [13], Proposition 5.5, page 25) that if (2.6) holds for any M > 0, then the
functional F' is strictly convex. Also, it is easy to prove that if (2.7) is true for any M > 0,

then F is continuously differentiable. Reciprocally, we can prove in a similar way to that
given in [14] (Lemma 1.1, page 61) for the case of the Euclidean spaces, that if the closed



unity sphere is compact in the strong topology of the space Banach V', F” is continuous and
F is strictly convex, then for any M > 0 and for a 7 € [0, L],

apy(t) = inf < F'(v) — F'(u),v —u >
lv —ull =7, |[v]], [[ul] < M, v,u € K

exists, and this function ajs satisfies (2.4) and (2.6). Also, if the closed unity sphere is
compact in the strong topology of the space Banach V and F’ is continuous, then for any
M > 0 and for a 7 € [0, L],

Pu () = sup IF' (v) = F'(w)llv,
v = ull =7, [l [lull <M, v,u € K

exists and satisfies (2.5) and (2.7). We see that if u,v € K, ||v||,||u|| £ M, and if for a
7 < ||lv—ul| we define v, = (1— ”vzu”)u—l-”viunv, then v, € K, ||v;|| < M and ||v,—ul| = 7.
Consequently, we get from the definition of Ly, that the above functions aps and S can
be defined for all 7 € [0, Ls].

It is evident that if (2.6) and (2.7) hold, then

ap(|lv —ull) << F'(v) = F'(u),v — v >< Bu(llv — ul])lfv —ul],

(2.8)
for any u,v € K, ||u|],||v|]| £ M.

Following the way in [14] (Lemmas 1.1 and 1.2, pages 61-63), we can prove that

< F'(u)yv —u> +Am(lv — o) < Fv) — F(u) <

25 < F'(u),v —u > +up(|lv — ul]), for any u,v € K, ||u]|,||v|]| < M,
where
(2.10) () = [ a7,
and
2.11) uae(r) = [ Bus(0)as
Now, we consider the minimization problem
(2.12) u€ K : F(u) < F(v), for any v € K.

It is well known (see [13]) that if V' is a reflexive Banach space and F' is strictly convex,
differentiable, and coercive if K is not bounded, then the above problem has a unique
solution, and it is also the unique solution of the problem

(2.13) vwe€K: <F'(u),v—u>>0, for any v € K.

From (2.9) we see that, for a given M > 0 such that the solution u of (2.13) satisfies
l|lu|| < M, we have

(2.14) A ([|lv —ul]) < F(v) — F(u), for any v € K, ||v|]| < M.

The proposed algorithm corresponding to the subspaces Vi,--- , V;, and the convex set
K is written as follows



ALGORITHM 2.1. We start the algorithm with an arbitrary u® € K. At iteration n + 1,

having u™ € K, n > 0, we compute sequentially for i =1,--- ,m, 'w?“ € V; satisfying
(2.15) Wit =ang _min G(v;), with G(v;) = I*"(u"“Lir_n1 + v;),
u"tm 4+ v; € K ‘
v; €V;

and then we update

i—1

n+ un+ W A w;H-l'

U m =

This algorithm does not assume a decomposition of the convex set K depending on
the subspaces V;, and it has been proposed in [2] in an equivalent form. The above form
of this algorithm has been proposed in [4]. As for problem (2.12), since the subspaces V;
are reflexive Banach spaces, problem (2.15) has a unique solution and it also satisfies the

variational inequality

wf“ eV, u"m +'w:-“Irl €eK: <F'(u""= +'w?+l),vi - 'w;H”l >> 0,

2.16 i
(2.16) for any v; € V;, um +v; € K.

We have the following general convergence result.

Theorem 2.1. We consider that V is a reflezive Banach, V1,--- , Vi are some closed sub-
spaces of V, K is a non emply closed convez subset of V, and F is Gdteauz differentiable
functional on K which is assumed to be coercive if K is not bounded. If Assumption 2.1
hold, and for any M > 0 there exist two functions am and By satisfying (2.4)-(2.7), then,

for any ¢ = 1,---,m, utm — u, strongly in V, as n — oo, where u is the solution of

problem (2.12) and u™m are given by Algorithm 2.1 starting from an arbitrary given ul.

Proof. From (2.16) and (2.9), we have

i—1

=) — F(u™m > Au(|lw?tY]), forany n >0andi=1,--- ,m,
7

(2.17) F(u™*
and therefore, using (2.12), we get
(218)  F(u) < F(u™m) < Fu™'%) < F@®), foranyn >0 and ¢ =1,--- ,m.

Taking into account the boundedness of K or the coerciveness of F, it follows that there
exists a real constant M > 0 such that

(2.19) llull < M, |[u0]] < M, |[u+|| < M, foranyn>0andi=1,--- ,m.

From (2.17) we also get

m
(2:20) F(u™) — F(u™t!) > ZAM(HUJ?HH), for any n > 0.
i=1
o0
Consequently, from (2.18), the series Z )\M(l|wi”+1||) is convergent for any ¢ = 1,--- ,m,
n=1
and therefore
(2.21) ”’UI?JAH—‘)O, asn — oo, forany¢=1,---,m.



Applying Assumption (2.1) for w = u"+%, v=u,and w; = w?“, we have a decomposition

UL, Uy Of u— w5 From (2.1), we can replace v; by u; in (2.16), and we get
< Pl ) — P, u — o™ > + < P/, u; - wf ™ >0,

Using (2.2) we have

m .
Z < F'(u™m) — F'(u™),u; — w?“ >+ < F'l(u),u —u™! >> 0.
=1
Using this inequality, from (2.19), (2.9) and (2.7) we obtain
F(u"t) — Fu) + Apr((Ju — u™]) << F/(ut),u™t —u ><

< F'(u"’+%) — F'(u™),u; — wlt! >=

NE

1

™,
Il

m m 5 p

Z Z < F’(u"“#) — F'(u™tm),u; — witt ><
(2.22) i=1 j=it1

m m ;i i

33 I @) - B e — wf <

i=1 j=i+1
m

m
> Bl D T — wi .
=1 =1

From (2.21) and (2.3) we get that the sequence {} % ||ui — w?||}» is bounded. Also,

from (2.21) and (2.5) we have > ", Bar(|lw?||) = 0 as n — co. Consequently, F(u™?) -
F(u) = 0 and Ay (||u — u™*1]|) = 0 as n — co. Now, from (2.4) and (2.10) it is clear that
u™ — u as n — oo. O

3 Error estimate

The error estimate essentially stands on the convergence order of the functions o (7) and
B (7) to zero as 7 — 0. In the following we take these functions of polynomial form

(3.1) an(r) = Ay, Bu(r) = Byt

where Apr > 0, Byr > 0, p > 1 and ¢ > 1 are some real constants. We have marked here
that the constants Ay and Bjs depend on M, and we see from (2.8) that we must take
p > ¢q. Now, from (2.10) and (2.11) we get

(3.2) Mr) = AMrP, p(r) = 2,
Naturally, the convergence rate will depend on the spaces V1, -« , Vi, and we shall consider

the following form of Assumption 2.1 having condition (2.3) slightly modified

ASSUMPTION 3.1. There ezists a constant Cy such that for any w,v € K and w; € V; with

w+2§-:1wj €eK,i=1,---,m, there exist v; € V;, i = 1,--- ,m, salisfying
i—1

(3.3) w+y wi+v €K fori=1,---,m,
j=1



m
(3.4) v—w= Zvi,
=1

and

(3:5) > Il < C§ (llv —wllP+) |IwiH”> -
i=1 =1

In the case of the minimization of the quadratic functionals in [4], the above assumption
has been introduced for p = 2.

The introduction of some parameters ¢;; > 0, 4,5 = 1,--- ,m, is useful to obtain some
sharper error estimations, especially in the case of minimization of the quadratic forms.
Following this way we shall assume that for a given M > 0, ifv € K, ||[v|| < M, and v; € V;,
satisfying v +v; € K, |[v+v]| < M,i=1,--- ,m, then we have

(3.6) < F'(v+v;) — F'(v),w; >< e4;Bulfvil |~ ]wj]]

for any w; € Vi, i = 1,--- ,m. Evidently, using (2.7), we may always take g;; = 1, ¢,j =
1,---,m, in (3.6).

The following theorem is a generalization for nonlinear inequalities of the result in [37]
concerning the convergence of the method for nonlinear equations.

Theorem 3.1. On the conditions of Theorem 2.1 we consider the functions apy and By
defined in (3.1) and we make Assumption 3.1. If u is the solution of problem (2.12) and
u", n > 0, are its approzimations obtained from Algorithm 2.1, then we have the following
error estimations:

(i) if p = q we have

P - Fw) < (%) [F@) - Fw)],

3.7 n
0 e~ < &8 (2%)" [F(9) - F(w)].

(i) if p > q we have

F(un) _ F(U) < F(u%)—F(u) ,
[1+né(F(u0)—F(u))&L:?] -

(3:8) Il — u|]P < % (Fo)-F (u))gtT

i

|
-

q—1 2
](p 1)31' q)

[H—(n V)G (F(u0)—F(u)) 4=1

The constants C, C and C are given in (3.11), (3.14) and (3.16), respectively.
Proof. As in (2.22), using Ay given in (3.2), (3.6), and (3.5) in which we take v; = u;,



+1 , we have

v=u, w=u" and w; = w}
Fu*1!) — F(u) + 23 ||u — u™H||P <

m m
S eiBullwd 0 us — wit| <
i=1 j=i+1

t]_‘
m ,1.7 m m =1 | 7
B (zuui—wzmup) (3 ety <
=1 i=1 \j=i1+1
m m
Buleij] (lew“lll”) (leuz—wnﬂll”) <
- <t [ 2 m \b
Bules (znwnﬂuv) (an:’“nf’) + (zw) } .
=1 1
m g—_l i
Bulei| (lew"ﬂup) (1+ Co) (lew"+lll”> +Oo||u—u"n} :
i=1
where we have written
p—g+1 _{_1 ?
m m =
(3.9) el = (D Y ef™ <ms,
i=1 \j=i+1

Therefore, using (2.14) with v = u™, (2.20), and A\ps given in (3.2), we have

F(u ”“) F(u) + 22l — u™H|P <

Ba (54— Vblei;| (Fu?) — Pa™+Y)
[(1+Co)(( ") = F(u)? + Co (F(u") — F(u))7] <

g=1

BM(E)pigijl (F(u™) - F(u™))
[(1+200) (F(u") — F@r)) 7 + Co (F@) - F(u)

s =

]

But, for some given n > 0 and ¢( > 0, we have {x% —nx < (%)rﬁ, for any x > 0.
Consequently, for a 0 < n < 1, subtracting n(F(u"*!) — F(u)) from both sides of the last
inequality, we get

F(u") — F(u) +

Anm
(3.10) ) L
C [F(u") = F(u"”)] p1

fu —um P <

where

- C = C(m, Co,u) = Bar(£)? lei] [(1 +2Cp) (F(u0) — F(u)) =D +
3.11 P
(Bl lsl) ™ G 1 1 =),



We have marked above that the constant C depends on m, Cy and u°, and we have used
(2.18) to write F(u") — F(u"*!) < F(u®) — F(u). From (3.10) we have

(3.12) [Furt!) — F(u)] < C [F(u®) — F(um+h)] =

Using again (2.18) we have F(u") — F(u™*!) < F(u"™) — F(u), and from (2.14) and (3.2) we
get AthHu"“L1 —u||P < F(u™*1) — F(u). From these two last inequalities and (3.10) we get

(3.13) llu — w1 < € [F(un) — F(u)]>T
where

~  (2-n)Ay
i C="a-mp

Now, if p = ¢, we can easily find (3.7) from (3.12) and (3.13). If p # ¢, we get from (3.12)
that

n+1 1 n+1 p=1 n
F@"™) = F(u) + = [F(u""") — F(u)]+T < F(u") - F(u),

p=l

Ca1
and applying Lemma 3.2 in [37] we get

Fu™!) - F(u) < [0+ (F@") - F(u) & |7,

or
(3.15) F(u™) = Fu) < [<n +1)C + (F(’) - F(u)) “] o
where

(3.16) = p—q By

(p— 1) (F(0) — F(u))+t + (¢ — 1)0a1

Equation (3.15) is another form of the first estimate in (3.8), and the second one can be
obtained using (3.15) and (3.13). The value of 7 in the the expression of C' and C can be
arbitrary in (0,1). On the other hand, we see that the constants in the error estimations
of F(u™) — F(u) in (?).7) and (3.8) are some increasing functions of C, and there is an

no € (0,1) such that C(ny) < C(n) for any 5 € (0,1). However, this value 79 can be found
by solving a nonlinear algebraic equation. Ll

4 The multiplicative Schwarz method as a subspace correc-
tion method

In the previous sections we have proved that the subspace method given in Algorithm 2.1
converges, for a general reflexive Banach space, provided that Assumption 2.1 holds. Also,
under a little stronger Assumption 3.1, and some polynomial behaviors of the functions as
and fBjs in the neighborhood of zero, we have given error estimations. We shall prove in
the following that for the problems in which we seek for the solution in a Sobolev space,
Assumption 3.1 holds (and implicitly, Assumption 2.1, too) for any decomposition of the
domain and any convex set described by some constraints on the function values at the
points of the domain. In order to more precisely characterize the convex sets K for which
our results hold, we assume that they satisfy the following



PROPERTY 4.1. Ifv,w € K, and if 0 € C1(Q) with0 < 0 <1, then fv + (1 —O)w € K.

Let Q be an open bounded domain in R with Lipschitz continuous boundary 9. We
take V = WO1 *(Q), 1 < s < 00, and a convex closed set K C V having the above property.
We consider an overlapping decomposition of the domain {2,

(4.1) =]

in which €; are open subdomains with Lipschitz contlnuous boundary We associate to

the domain decomposition (4.1) the subspaces V; = (Q ), i =1,--- ,m. In this case,
Algorithm 2.1 represents the multiplicative Schwarz method

Remark 4.1. For the simplicity, we have chosen the above spaces V and V; corresponding
to Dirichlet boundary conditions. Similar results can be obtained if we consider mized
boundary conditions. We take 02 = TLuUTy, T'1NTy = @ a partition of the boundary such
that meas(l'1) > 0, and we consider the Sobolev space

={veWh¥(Q) : v=0 on I}

This space corresponds to Dirichlet boundary conditions on T'y and Neumann boundary
conditions on T'y. The subspaces V; using domain decomposition (4.1) will be defined in this
case as

= {v; € eWh(Q) :v;=0in Q—Qy, v; =0 in 0 NT1},
i=1,---

We shall denote in the following by || - ||1 sand || ||0 s the norms in W5(Q) and L*(Q2),
respectively, and by | - |1 s the semi-norm in whs
Concerning the decomposition (4.1), we assume that there are some functions 6‘

cYQ),i=1,---,m, j =4%,--- ,m such that for any s = 1,--- ,m we have
. e . m . m
(4.2) supp(6?) C (), 0<6; <1, for any j =4,--- ,m, and ZH; =1in UQJ"

This is a easy enough constraint on the domain decomposition (4.1). In [23] or [1], for
instance, some conditions in which a domain decomposition satisfies (4.2) are given. The
following result assures us that Assumption 3.1 holds for the above defined domain decom-
position and convex sets. The proof is similar to that given in [2].

Proposition 4.1. If the domain decomposition (4.1) satisfies (4.2), then Assumption 3.1
holds for any convexr set K having Property 4.1.

Proof. Let us consider w € K, w; € V; such that w + Z] ,w; € K, +=1,---,m and

let v be another element in K. We recursively construct v; € V;, © = 1 - ,m, satlsfymg
(3.3)—(3.5) in Assumption 3.1.

We take
(4.3) v; = 0L (v —w) + (1 — 6})u

Because suppfi C Q; and w + v; = 0{v + (1 — 0})(w + w1) we have

(4.4) v € Vi and w+ v € K.

10



Since v — vy +wy = (1 — 0})v + 0} (w + w1) we have
(4.5) v—wv +w € K.

Since 1 — 0} =0 +--- + 0!, we get v—w—v; =(0+---+6L)(v—w+wp) and hence

v—w—uv € W' Q;),
(4.6) L€ W (9

v—w—wv =0in Q\UZ,Q;.

In the following, for the domain UJ% 291, we take v — w — vy in the place of v — w
Assume now that up to an s = 1,--- ,m — 2 we have defined v, € V3,--- ,v; € V; and

we have the following relations corresponding to (4.4)—(4.6),

i—1

(4.7) v; € V;and v +w+ Y w; €K,
i=1
i i
(4.8) U—Zvj—I-ijeK,
=l j=1
7 m
v —w— Zvj € Wol’s( U ),
(4.9) J=1 J=itl
1
’U-—’LU—Z’U]' :OinQ—U;'_‘__Hle.
i=1

In the following we verify relations (4.7)—(4.9) which correspond to 7 + 1. We define
(4.10) vir1 = 01 (0 —w =) v;) + (1~ 6 Dwisr.

From (4.10) we get v;41 € Viq1. Also, using (4.8) we get viy1 +w + E] g W = Hzﬂ(
1 By +ZJ Lw;)+ (1 =0711)( fw+Z’+11 wj) € K. Therefore, (4.7) corresponding to ¢ 41

hofds i .
Using (4.8) corresponding to i, we get v — Z;ill vj + ;+11 wj = (1-04)(v - i1+
Z; L wj) + Hzﬂ (w+ EZ"HI wj) € K. Therefore, (4 8) which corresponds to 7 + 1 holds.
We have v —w — Z’tll vy =1~ 0:1%) v—w— Z — w;t1). From the definition of Hfﬁ
and (4.9) we get that (4.9) corresponding to i + 1 holds
In this way we have proved that (4.7)—(4. 9) hold for any ¢ = 1,- -1
Now, for i = m, from (4.9), with i =m — 1, we get v —w — }: o v] € Wol’s(Qm) and

it vanishes in Q — Q,,. We define

m—1
(4.11) U =V — W — Zvj,

j=1
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and we see that v,, € Vj,. Hence, (3.4) in Assumption 3.1 holds. Also, (4.4) and (4.7), for
i=2,+-- ,m— 1, prove that (3.3) in Assumption 3.1 holds for ¢ =1,--- ,m — 1. Moreover,
from (4.8) for i = m — 1 we get vy, +w + Z;nz_ll wj =v— Z;"z—ll vj + Z;":_ll w; € K, and
consequently, (3.3) in Assumption 3.1 holds for i = m, too. Finally, from (4.3), (4.10) and
(4.11) we obtain that (3.5) in Assumption 3.1 holds, where Co depends on unity partitions

O

(4.2), but it is independent of w, v, w; and v;.

5 One and two level multiplicative Schwarz method

Since the finite element spaces have a finite dimension, the existence of the functions o
and By is assured if we assume that the functional F' is strictly convex and continuously
differentiable. As we saw in Proposition 4.1, Assumption 3.1 holds for any closed convex K
having Property 4.1, but the constant Cy depends on the domain decomposition parameters.
Consequently, since the constants C and C in the error estimations in Theorem 3.1 depend
on Cp, then these estimations will depend on domain decomposition parameters, too. The
goal of this section is to prove, for the one and two level multiplicative Schwarz methods,
that Assumption 3.1 also holds for any closed convex K satisfying Property 4.1. In these
cases we can explicitly write the dependence of Cy on the domain decomposition and mesh
parameters.

5.1 One-level multiplicative Schwarz method

Let us consider first that the domain © C R% has a non overlapping domain decomposition
{Oi}1<i<m and a simplicial mesh partition 75, of mesh sizes h. We assume that Tp, is regular
(ie. there exists a constant C' > 0, independent of h, such that each 7 in T, contains a ball
with the diameter of Ch, and evidently, it is contained in a ball with the diameter of h;
see [8], pag. 124, for instance) and it supplies a mesh partition for each subdomain O,
i=1,---,M, too. For each O;, we consider an enlarged subdomain Of C , consisting of
the elements 7 € T, with dist(r,0;) < 8, where § is a positive real number. In this way,
{Of hi<i<m is an overlapping domain decomposition of Q) with overlaps of size §. We assume
that there exist m colors such that each subdomain Of can be marked with one color, and
the subdomains with the same color do not intersect with each other. For suitable overlaps,
one can always choose m = 2ifd =1, m < 4ifd=2,and m <8 if d = 3. Let
be the union of the subdomains 035 having the color 7. In this way we have obtained an
overlapping decomposition (4.1) with overlaps of size 4, and we can take the unity partitions
10 }j=i,yms = 1,-++ ;m, defined in (4.2), to satisfy

(51) |a’11k9;| SC/(S, foranyi=1,---,m, j=4,--- ,m, and k=1,--- »d,

too. Asin (5.1), we denote in the following by C' a generic constant which does not depend
on either the mesh or the domain decomposition parameters.

In this section we prove for the finite element spaces a similar result to that given in
Proposition 4.1 for general Sobolev spaces. The proof is also similar to that given in [4] for
the minimization of the quadratic forms. We consider the piecewise linear finite element
space

(56.2) VP ={veC%Q) : v|, € Pi(r), T € Thy, v=0 on 0},
and also, for i = 1,--- ,m, we take
(5.3) Vi ={vec®Q): v, € Pi(7), T € Th, v =0 in Q\Q}
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as some subspaces of V" corresponding to the domain decomposition 1,---,{n. The
spaces V* and Vih, i = 1,---,m, are considered as subspaces of Wbs, for some fixed
1 < s < 00, and we use the usual norms || - ||os, || - ||1,s, and the seminorm | - |1 ;. Contrary
to the previous section, we may use the norm of W"° for s = 1 and s = oo because the
finite element spaces have a finite dimension, and consequently, they are reflexive Banach
spaces. '

In the following, I, will always be the P,-Lagrangian interpolation operator which uses
the function values at the nodes of the mesh 7. The convex set K h will be defined as a
subset of V" by some constraints acting at the mesh nodes and satisfying

PROPERTY 5.1. Ifv,w € K", and if @ € C*(Q) with 0 < 0 < 1, then In(Qv+(1-0)w) € Kh.

In order to prove that Assumption 3.1 also holds in this case, we follow the same way as
in the the proof of Proposition 4.1. It is easy to see that, taking into account the additivity
of the Lagrangian interpolation I, (3.3) and (3.4) in Assumption 3.1 can be proved taking

(5.4) v = Iy, (6 (v — w) + (1 — 0})w1)

and

(5.5) vip1 = Ip, Bﬂj(v —w— Evj) +(1- Hgﬂ)wiﬂ
i=1

in the place of v; and v;y1 defined in (4.3) and (4.10), respectively. Evidently, we consider
in the new proof the spaces V" and Vih and the convex set K" in the place of V, V; and
K, respectively. Also, we keep the same definition, (4.11), for v,. To prove inequality (3.5)
in Assumption 3.1, we first notice that, starting from v; given in (5.4), by the recurrent
application of (5.5), and then taking v,, given in (4.11), we get that v;, 4 =1,--- ,m, are of
the form

i
(5.6) vi = I Té(v—w)+ZT]’:wj ,0=1--+,m.
j=1

By a simple calculus we get that

=6k r=1-6},

=1 — 6 (1—0Y), =16l 7i=—6i(1-6i2]) - (1-69),
fori=2,---,m—1,j=1,---,i =1,

=1 —gmh e (1= 6}), TR =077 = —(1-6nT7),

T =Gt — 6 E) - (1)), forj =1, ,m—2.

Consequently, from (4.2) and (5.1), we have

(5.7) il <1and |05, 7} < C(m—1)/6, i=1,---,m, j=0,---,i, k=1,---,d.

For a v € VP, we can get (see Theorem 3.1.6, in [8], pag. 124, for instance) that
70 = In(7i0)llo,s < Chlrivlys, lIrfv — In(rjo)ll1s < Clrjoli,s,

and therefore

(5.8) |lIh(T;U)|11,s < CHT;UHLS, with v € V*,
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forany i =1,--- ,m, j =0,--- ,i. On the other hand, from (5.7) we get

; ) m—1
lIrivllo,s < IIollos,  |7j0lLe < CIvls + —5—llvllos), for any v € whi(Q),
and therefore, using (5.8), we get
; m—1 h
(5.9) 14 (mj)ll1,s < C(Illns + —5—llollo,s), for any v €V,

where T;, i=1,---,m, j=0,---,i, are given in (5.7). Now, by a application of (5.9) to
(5.6) we get

m—1 : .
(5.10)  foillis < CA+—5=) | lv —wllys+ Y |lwjllys |, foranyi=1,---,m.
j=1

Using this equation we get (3.5) in Assumption 3.1, and we have

Proposition 5.1. Let (4.1) be the overlapping domain decomposition of the domain  with
overlaps of size § which has been defined in this section starting from the non overlapping
domain decomposition {O;}i=1,..m. Then, Assumption 3.1 holds in the piecewise linear
finite element spaces, V = VP and V; = V;h, 1=1,---,m, for any convex set K" defined
by constraints acting on the function values at the mesh nodes of Tp and having Property
5.1. The constant in (8.5) of Assumption 3.1 can be taken of the form

ptl m—1

(5.11) Co=C(m+1)» (1+——),

where C is independent of the mesh parameters and the domain decomposition.

Remark 5.1. We notice that the number m of the subdomains §2; in the decomposition of (2
is in fact the number of the colors of the overlapping domain decomposition {Of h<i<m, and
it depends only on the dimension d of the space R®. Consequently, error estimations (3.7)
and (8.8) in Theorem 3.1 depend only on the size 6 of the overlaps through the intermediary
of the constant Cy given in (5.11).

5.2 Two-level multiplicative Schwarz method

We consider a simplicial mesh partition 75, of the domain Q@ C R? of a mesh size h, and
a simplicial coarser mesh Ty with a mesh size H, T, being a refinement of 7y. The mesh
size h is assumed to approach zero and we shall consider a family of mesh pairs (h, H). We
assume that both the families, of fine meshes and coarse meshes are regular.

With k and H fixed, using the coarse mesh Ty we consider some non overlapping subsets
{Oi}1<i<m of Q, each subdomain O; being an union of elements 7 € T, and we assume
that there exists a constant C, which is independent of H, such that

(5.12) diameter(0;) < CH, i =1,--- , M.
Using the finer mesh 75, and the subsets {O;}1<i<m, We construct the overlapping subsets
{0? h<i<m and {Qih1<i<m of Q, with overlaps of size d, as in the previous section. Here

we assume that O = UiAiIOi might be different from (2, but the overlapping subdomains
{Of}lﬁiSM and {Qi}ISiSm cover 2.
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Now, we introduce the continuous, piecewise linear finite element space corresponding
to the H-level

(5.13) W = {ve Cc’O) : v|, € Pi(r), T € Ty, v=0o0n 90},

and extending the functions of V7 with zero in Q\O, it becomes a subspace of V*. As in
the previous section, the convex set K* C V? = V is defined by constraints acting at the
mesh nodes of V* and having Property 5.1.

The two-level Schwarz method is also obtained from Algorithm 2.1 in which we take
V = VP, K = K" and the subspaces V = V%H, Vi=VVa=V}, -, Vip = V2 Asin the
previous subsection, the spaces V', V{)H , Vi, V2h, .-+, VP are considered as subspaces of
WS for 1 < s < co. We notice that this time the decomposition of the domain {2 contains
m overlapping subdomains, but we use m + 1 subspaces of V', Vy, V1, - -+, Vj,, in Algorithm
2.1. Naturally, this algorithm will converge in this case if Assumption 2.1 or its stronger
form, Assumption 3.1, written for m + 1 subspaces, will be satisfied for the above choice of
the convex set K and the subspaces Vy, Vi, ---, Vi, of V. As in the previous subsection
we prove that Assumption 3.1 holds and find the constant Cy depending on the mesh and
domain decomposition parameters. First, we have the following lemma in which inequality
(5.14) can be viewed as one of Friedrichs-Poincaré type for the finite element spaces.

Lemma 5.1. Let w C R® be a domain of diameter H, and w;, i = 0,1,--- , N, be an
overlapping decomposition of it, w = Uil\iow,-. We consider a simplicial reqular mesh partition
Th of w and assume that it supplies a mesh partition for w;, i = 0,1,--- , N, too. Let z° € @y

be a node of Tr,. We assume that the overlapping partition of w satisfies:

(i) for any = € @y, the line segment [z°, z] lies in @y,

(i) for N > 0, if wyNwj # @, 0 < i # j < N, then for any z € @;, y € @; and
z € w; Nwj, the line segments [z, z] and [y, 2] lie in &; and @;, respectively.
On these conditions, if v is a continuous function which is linear on each T € Ty, and
v(z) = 0, then

(5'14) ||’U”0,s’w S C(N7 S)C(d? S)HCd,s(H, h)l’U|1,s,w,
where
1 ifd=s=1o0or1<d<s<o0
d—1
(5.15) Cis(Hyh) =4 (In#E+1) 7 ifl<d=s<oo
d—s
(£) fl1<s<d< oo,
C fd=s=1lorl=s<d< o
s—1
s=1}) ¢ i
(5.16) cld,s)=4 © (ﬁﬁ—d) i sdes e
Cda ifl<d=s<o0
IR | .
C(d2) ifl<s<d<oo.
and
o 1 if N=0
.1 N = s
(5.17) (N 9) (N +1)CE00 -1 ey 2

|
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with
||
1 C, = L .. TN
(5.18) v w,-IﬂItlui'};{éQ) |wz- N w]-|
In (5.18) we have denoted by | | the measure of a set, and we have marked in (5.14) that
the norm and the semi-norm in W15, 1 < s < oo, refer to the subdomain w. The constant

C in (5.16) is independent of H, h, d, s and the decomposition of w.

Proof. In this proof, we use the polar coordinates. The Jacobian determinant of the trans-
formation from the rectangular coordinates to the polar coordinates can be written as

J(r,p) =" E(p),

where E(yp) is an algebraic expression of cosines and sines of the component angles of .

We first consider that N = 0, ie. the decomposition of w in the statement of the lemma
has only one element, wp = w. Consequently, for any z € , the line segment [0, z] lies in
@. We take the origin of the system of coordinates at the point z°, and, using the polar
coordinates, a point & = (1, ,%4), will be written as & = (r, ), ¢ being the system of
d — 1 angles giving the direction of the vector . We denote by r, the maximum size of
the radius in the direction ¢ of the points in &, and consequently, the points on dw will be
written as (ry, ). We denote by o the union of the 7 € 7, having a vertex at 20, let 7o
be the distance from z° to 80\Ow, and we consider the open ball with the center at z0 of
radius o, By, (z°). For two points z' = (r',¢) € wN By, (2°) and z = (r, ) € w\By,(2°),
we have

(5.19)
lo(@)] = [v(r,9)| < (', @) + 1 [T 5o, 0)dpl = |32 @)l + 1 [7 3 (o, )dpl <
22 (r', ) + -+ + vage(r, ) + | [ (Vl%l(p, )+ + vage(p, w)) dp| <
(2, @)+ + 2 (r, o)) + [3F (!5“—;’1(/),90)! +oo 4 |5%(P,<P)|> dp,

where (v1,--- ,v4) is the unity vector giving the direction of z = (r,y) in the rectangular

system of coordinates (21, -+ ,Z4). In the following we shall start from (5.19) for the various

values of d and s.
Ford=s=1or1<d<s<oo,wetake r' =0 in (5.19). If d = s =1 we get

lo(@)] = lo(r, )] < /0 " |§;’—1<p, o)ldp.

Here, we may have ¢ = 0 and ¢ = 7 if 2° is a inner point in w, and only p =0 or p =7
if 20 € Ow. Integrating again from 0 to 7, < H, we get (5.14) for N=0and d=s=1. If
1 <d < s =00, we have

ov
v(z)| < rpd max  sup |7—(p,p)| < CdH|v .
o(o)| < rocd g, sup 2, < OB oo

If 1 <d< s < oo we have

s _ Te 1-d s—1 T a a
lv(z)|® < d° * [/ Ps_ldp} / (Il(p,(p)|s+...+l_v(p’(p)|s pd_ldp.
0 0 0z

Ba:d
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Multiplying the above inequality by r4=1 and integrating from 0 to r, < H we get
Jo? Io(r, <p)|3 ldr <
il
(4222) cmy 77 (1220, 0+ + 1820 0)1°) " do

By multiplication of this equation with the Jacobian part depending on ¢, E(yp), and
integrating over the d — 1 dimensional domain of the angles ¢, we get (5.14) for N =0 and
1<d< s<oo.

Now, from (5.19) for an arbitrary 0 < r’ < ro, we get

lv(z)] = [o(r, )| <

(5.20) (l@ml( ',<P)|+"'+|aaw (', ) frO-{—fTO (lazl (o, )| + - |a$d(P7(P)|) dp.

Also, since for a fixed o, %}%(r’ , ) is constant for ' € (0,79), we have

Iv(w’)is—iv(r’ sa)ls<4—f 122(p, p)|*p% " dp <
=207y 70 (122 (0, @) + - + £ o, ) ) 0.

Multiplying the above inequality by (r')%~!, and integrating from 0 to ro, we get

"o g2 ro [/ Qv ov
s _d—1 < s S ... s d—1
520 [ oo < Eong [ (175l o Il ) 64

Now, if 1 = s < d < oo we get from (5.20),

Iv( )I<l (2 (0, ) + - + |5 (o, @) )P dp+
Iazl(p, @)+ - +lazd(p, o)) p*~tdp <
ro |ax1(/” o)+ |3xd(p, ©)|) p¥dp.

Using the regularity of the mesh 7, we have "2 < CH and therefore,

[ oo, )l tdp < CH (1) [ (|az1(l)7 O+ + 20, 0)]) o .

From this last inequality and (5.21) we get (5.14) for N =0 and 1 = s < d < oo by a
multiplication with E(y) and integrating over the domain of the angles ¢.
Starting again from (5.20), for 1 <d=s<ooor 1< s <d < oo, we get

()l < (24)*" 1(%@2@18+~--+|§"’—<r',so>|s>r3+

eyt [ [ o=t an]) fiy (|aw1(p, DI+ + |22 0)I") oo =
2 1ars = [ (182 (o o)l +- |azd<p, )I)pd Ldp+
iy (1

(2d)°! [f”’ps 1dp]s 122 (p,@)I° + - + |2 (py w)ls) p~tdp.
Consequently,
g \v( w)ls e 1dp<
(522) (@4 iy (1%1 ()l + - +|axd(p,<p)ls) o Ldp+

S
gs-1ge=2rd | [T = “tdp f[“’ 2 (p,9)|° + - + |2 (0, 0) I ) p*dp.
0 0 d
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Now, from (5.22), if 1 < d = s < 00 we get
I8 (o, 9)|%p*tdp <
d—1
2‘1_17"1 max {dd“l, dé—2 (ln ﬁ‘i) }
7 (12200l + -+ + 122 o, 0)IY) o dp.

Using regularity of the mesh 7, we get

e Jo(p, 9)4p*dp <
a1 (CHY (m 2+ 1) 7 (120, @)t + -+ + 122 0, ) ) 0 dp.

This inequality together with (5.21) prove (5.14) for N=0and 1 <d = s < 0.
Finally, if 1 < s < d < 0o, we get from (5.22),

d—s s—1
fTTOw |’U(p, )ls d— 1dp<2s lma.x ds— 1 d s d ds 2 (d_l)s—l l:(%) =1 _1:| }
ve (122,00l + -+ 1820, 0)1°) P dp,

and consequently,

Jt (o @) 0% dp <
@52y cHY (D) e (120,00 +- + 12 (0,0)1°) o dp.

Using again (5.21) and the last inequality we get (5.14) and for N =0 and 1 < s < d < oo.

Assume now that N > 0, ie. we have more than one subdomain w;, ¢ = 0,1,--- , N in
the overlapping decomposition of w. Such a decomposition is considered when there exist
points z € @ for which the line segment [z%, ] do not wholly lie in @. Let w; and wj, i # j,
be two fixed subdomains such that w; Nw; 7é (. We consider a fixed point z € w; Nwj, and
denoting by 2* and ¢, the nodes of 7}, in @; N @; and the corresponding functions in the
nodal basis, respectively, for an 1 < s < oo, we have

l1v]lo,5,0; = IZ (@) * < [l =Y v(z)r(2) o505 =

k

nz(v—v )m( no“,,<2uv—v 0,005 85(2).

Since v — v(2*) vanishes at 2%, we get from the first part of the proof and the last equation
that

l19]l0,5,; — IZ ©) (2 ||w]|1/8<20dsHCds(Hh)lvhw,m(z)
C(daS)HCd,s(Hah”Ull,s,wj:

and integrating over w; N w;, we get

|wi Vwjll[vl]o,s; < ijll/s/ |v] + |w; Nw;|C(d, 8)HCy,s(H, h)|v]1,60; <

wiNw;

le,l/slwi n wj|(s—1)/5||v||0,3,winwj + |w; Nw;|C(d, s)HCq,s(H, h)l’Ull,s,w,--
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Consequently, we have

1/s

Wi

629 Iolloses < (G2L) " Molloaus + O VHCun (B Bioh e
i [ Wj

It is easy to see that equation (5.23) holds for s = oo, too. Taking into account that

(5.24) [|v]]0,5,w0 < C(d,8)HCy5(H,h)|v|1,5w0,

from (5.23) and (5.24), we get (5.14) for N > 0. |

Remark 5.2. As we have said at the beginning of this subsection, we are interested in the
error estimation when H,h — 0. In general, since the mesh Ty, is regular, the overlapping
decomposition of w in Lemma 5.1 can be taken such that the number N and the constant
C,, in (5.18) are bounded when H,h — 0. In this point of view, the constants C(d,s),
C(N,s) and C,, written in (5.16)-(5.18), can be considered as independent of H and h,
and assimilated to the generic constant C. In the following we write (5.14) as

(5.25) lvllo,s0 < CHCa,s(H, h)|v]1,5.0,
where C = C(N, s)C(d, s) and Cqs(H,h) is given in (5.15).

The above lemma can be very useful in the various error estimations. The following
result, for instance, generalizes that in Lemma 2.3 in [6].

Corollary 5.1. Let w be a subdomain of diameter H with a simplicial regular mesh parti-
tion Tr,. Ifv is a continuous function which is linear on each T € T, then for any 1 < s < 00
we have

83—

(5.26) oo < CHS

d
- Cd,s(Ha h’)ll’””l,s,w,
where Cyqs(H,h) is given in (5.15), and C is independent of H and h.

Proof. Let z° € @ be the point where |v(z°)| = ||v||0,00w, and T € w a current point. We
point out that z° is a node of 7. For 1 < s < 0o, we have

[o(2%))° < 227 Ho(2®) = v(@)]* + 27 ()%,
and integrating it over w, using (5.26), we get
wll[o]l§ 00 < 257 HI0(2°) = v(@)[§ 5,0 + 2 HIw(@)13 500 <
251 (CHCys(H, 1))* (@)} 50 + 227 HIv(@)I1§ 6 -
If s = 0o, the proof is similar. O

Coming back to the two-level method, let us denote as above by z* a node of Ty, by ¢;
the nodal basis functions in V¥ associated with z', and by w; the support of ¢;. Given a
v € VP, let I v = mingeg, v(z)~ and I;'v = mingep, v(z) T, where v(z)~ = max(0, —v(z))
and v(z)* = max(0,v(z)). Since v is piecewise linear, I, v and I;v are attained at a node
of Tp,. For a v € V", we define

(5.27) Igv = Z (I7 v)¢i(z) and Ifv = Z (I v)di(z),

z¢ node of Ty z¢ node of 7y
and we write
(5.28) Igv = Ifv — Igv.

The following result extends that given in [34] where the operators I;” have been introduced.
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Lemma 5.2. For any v € V?, we have

(5.29) HIH'U - 'U”O,s < CHCd,s(Ha h')lv'l,s
and
(5.30) av|l1,s < CCas(H, h)||v]|1,s,

where Cys(H,h) is defined in (5.15) and C' is independent of H and h. Moreover, if K is
a convex and closed set in V", described by some conditions at mesh nodes of Tn, having
Property 5.1, and 0 € K, then for any v € K we have Igv € KN W

Proof. Let us take an w;, the support of the basis function ¢; in VOH corresponding to the
node z* of T, and a v € VP, If v vanishes at a point in @;, then I;'v = I v = 0, and if
v # 0 at any point of @; then either vt = Iz-+ v=0or v~ = I; v =0. Consequently, there
exits at least a node of 7y in @; at which v — Ii+v + L v= vt —v™ — I;Lv + I; v vanishes.
Applying Lemma 5.1, since Ii+ v — I; v is a constant, we get

(5'31) llv - I’L_‘—’U + IZ_UHO;s,wz S CHCdys(H’ h)l’ullys$wi'

We point out that since for any z € @; the line segment [z*, z] lies in @;, we can take a
decomposition as in Lemma 5.1 of w; having N < 1. Assuming that N = 1, let wjp and
wi1 = w this decomposition. Since w;y contains at least one 7 € Ty and the mesh T is
regular, then, according to (5.18), C,,; can be taken independent of H and h. Consequently,
C(N, s) in (5.17) is independent of H and h. Let ay,(v) = ﬁ ) »; U De the average of v over

w;. Since diameter(w;) < CH, we have

(5'32) ”U - awz (U)”O’S:wl < CHllullasywl'

Using (5.31) and (5.32), we get

1w = aw@llosw = 1| D (o= L7 = 0w, (0)illo.sw: <
zi node in Ty
Yo G v = I v = ag (0)llosw <

zi node in Ty
S (o= Iro—vllosw + 10 = 2w ®)llo,ew ) <
zi node in Ty
CHCd,S(H7 h) Z |'U|1,s,w,- S CHCdas (H7 h)[vll,s,Wi'
zi node in Ty

We used in the last inequality the fact that, since the mesh is regular, the maximum number
of simplexes having a node z7 in common is bounded, independent of H. From this equation,
and using again (5.32), we get

[ Igv — v“O,S,Wi < |mv - Qw; (v)HO,S’wi + ”a‘wi (v) - vHO:S"*’i =
CHCy,(H, B)|vl1,s,0; -

As we said at the beginning of this subsection, O = U;=1 pw; might be different from (2,

but dist(0,99Q) < § < H. Consequently, since Igv = 0 on Q\O and v = 0 on 99, the
above inequality holds on Q\O, too. Therefore, we get (5.29) from this remark and the last
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equation, since the regularity of the mesh implies that the number of w; which intersect a
fixed w; is independent oh H.
It follows from (5.29) that

(5.33) ITrvllo,s < CHCaus(H, h)|[v]l1,s
From the definition of I;"v and I; v we have for any € w;,
(5.34) 0< I'v—I7v <w(z) ifv(z) >0, and 0 > I;'v — I; v > v(z) if v(z) < 0.
Therefore,
|Fv — I7v| < |v(z)]| for any z € w;,
and, from Corollary 5.1, we get

a5 = | Z (If” - If"’)qull,s,wi < Z |(Ig+'” - Ij_v)‘lsj‘l,s,wi <

zé node in Ty zi node In Ty

d
Cds H™ 5 |[v]lo00w; < d*CCus(H, h)|[0]l1,5,0:-

We have again used above that Ty is regular. The last inequality together with (5.33) prove
(5.30).
From (5.34), (5.27) and (5.28), we get that for any z € 2 we have

0 < Igv(z) <v(z) if v(z) >0, and 0 > Igv(z) > v(z) if v(z) <O

Finally, if 0,v € K, and K is described by some conditions at mesh nodes of 7;, and having
Property 5.1, then we get from the above equation that Igv € K. |

Now, we can prove the following proposition which shows that the constant Cp in As-
sumption 3.1 is independent of the mesh and domain decomposition parameters if H/§ and
H/h are constant when h — 0. This result is similar to that given in [4] for the inequalities
coming from minimization of the quadratic forms. In the first part of the proof, the con-
struction of v;, 1 = 1,--- ,m, is similar to that given for one-level method. In the second
part we define an appropriate vy using the previous lemma.

Proposition 5.2. Let (4.1) be the overlapping domain decomposition of the domain S} with
overlaps of size § defined in this section. Then Assumption 3.1 is verified for the piecewise
linear finite element spaces, V = VP and Vy = V})H, Vi = Vih, i =1,---,m, defined in
(5.2), (5.3) and (5.13), respectively, and any convez set K = K" defined by constraints on
the function values at the nodes of Ty, and having Property 5.1. The constant in (3.5) of
Assumption 8.1 can be taken of the form

H

(5.35) Co=Cm+2)% (1 +(m ~ 1)~

CanlEL 1))

where C is independent of the mesh and domain decomposition parameters, and Cys(H,h)
is given in (5.15).

Proof. Let us consider w € K, w; € V; such that w + Ej‘:o w; € K,1=0,---,m, and let
v be another element in K. In the following we use the unity partitions (0;) e s gy OF Bhe
domains UTY;  Q;, ¢ =1,--- ,m, with the properties in (4.2) and (5.1).

=i,m
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Step 1. We assume that we have vy € Vp satisfying
(5.36) w+ vy, v+ wy — v € K,

and we shall construct recursively v; € V;, i = 1,--- ,m, which will satisfy (3.3) and (3.4)
in Assumption 3.1. We define

(5.37) vy = I, (0} (v — w — o) + (1 — O)w1)
and, as in the previous section, we get

v € Viand w+wy+v1 € K,
v—1vg—v1 +wy+w; € K,

m
v—w—vy— v € Wol’s(U ;) and
j=2

v—w—vo—m:OinQ—U’JﬂﬁQj.

Also, for i =2,--- ,m — 1 we take
. i_l -
(5.38) vi=1Ip | 0w —w—Y v;)+ (1 — 6w |,
Jj=0

and we prove

i—1

v; € V; and vi+w+ij € K,
j=0

i i
U—Zvj-{—ij € K,
§=0 §=0

U m
v—w— Z’Uj e Wy U ;) and
=0 j=i+1

K3
v—w Zv] =0in Q -UT, ., 8;.
J=0

Finally, we take
m—1
(5.39) Uy =V — W — Zvj
§=0

and we get that (3.3) and (3.4) in Assumption 3.1 hold.

Step 2. We shall define a vy € Vp satisfying (5.36) and prove that condition (3.5) in
Assumption 3.1 is satisfied with the constant Cy given in (5.35). It is easy to see that (5.36)
is equivalent with

(5.40) vo —wp € (K — (w+wp)) N (v — K),
and also, since w, w +wy € K, we get

(5.41) v—w—wy € (K — (w+w))N(v—K).
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We write K = (K — (w +wp)) N (v — K), and from the above equation and Lemma 5.2 we
get that Ig(v — w — wo) € K. From (5.29) and (5.30) we have

(5.42) llv —w —wo — I (v — w — wo)llo,s S_CHCd,s(H, h)|lv — w — wol1,s
and
(5.43) 11z (v — w — wo)ll1,s < CCa,s(H,h)[Jv —w —wollrs,

where Cy s(H, h) is defined in (5.15). Now, we take
(5.44) vo = wo + I (v — w — wo),

and we see that it satisfies condition (5.36). To prove condition (3.5) in Assumption 3.1,
we first notice that, starting from v; given in (5.37), by the recurrent application of (5.38),
as in the proof of Proposition 5.1, we get v, 1 = 1,--- ,m, of the form

i
(5.45) v = I(rd(v —w—vo) + Y mhwj), i =1,--- ,m,
Jj=1

where 78, i =1,--- ,m, j = 0,--- 1, satisfy (5.7). Using (5.7) and (5.8), we get

. . . m—1
n(Tiw))ll1,s < ClImjwsllo,s + Im5wsl1,s) < Cllwllo,s +

< T—Ilello,s + |wjl1,s)-

Since w; € V; and the diameters of the connected component of Q; are less than C(H + 9),
we get from the classical Friedrichs-Poincaré inequality,

(546) “Ih(T,;wj)”l,S < C[l + (m - 1)?”“’]"1,37 i=1,---,m,j=1,---,1.
On the other hand, taking into account the definition of vo, (5.42), (5.7) and (5.8), we get

|1 Tn(ré(v — w — ))||1,s < Cllv —w — wof1,s + (1 + 255)|Jv — w — wollo,e] =
Cllv —w —wol1,s + (1 + m‘;:l)Hv —w—wy — Ig(v —w—wo)llo,s] <

C [IU —w —vgl1,s + (m — 1)Cqs(H, h)%"” —w— w0|1,s] <

C(lv — wli,s + |vol1,s) + C(m — 1)Cy s(H, h)%(l"’ —wlys + [wol1,s)-

Consequently, we have

(7 (v — w = v0))|1,s <
(5.47) o )
C [1 + (m — 1)Cd,s(H, h)T} (|'U - wh,s + I'w()|1,s) + Cl”OIl,sa 1= 1, cee M.
Also, from the definition of vy and (5.43) we get

lvol1,s = [wo + I (v — w — wo)l|1,s < |wolu,s + [TH(v —w—wo)l,s <
lwol1,s + CCa,s(H, h)|lv — w — woll1s,

and therefore,

(5.48) lvol1,s < C[L + Cas(H, B)](|lv — wll1,s + |lwoll1,s)-
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Now, taking into account that § < H, from (5.47) and (5.48), we get

I (r§(v = w = vo))ll1,s <

5.49 .
( ) C[1+(m_1)Cd,$(H7h)%{—] (HU—U)||1,5+“’(U0H1’3), Zzla"' , m

Finally, from (5.45), (5.46), (5.48), and (5.49) we obtain that condition (3.5) in Assumption
3.1 holds with Cj given in (5.35). d

Remark 5.3. As in Remark 5.1, we notice that, since the number m of the subdomains
Q; is the number of colors of the overlappmg domain decomposition {O h<i<m, the error
estimates in Theorem 3.1 depends only on Cy given in (5.35). Therefore, if the overlapping
size & and coarse mesh sizes H and h are chosen such that H/h and H/é are constant, then
the convergence rate of the two-level multiplicative Schwarz method is mesh and domain
decomposition independent when H, h — 0.

6 Numerical example

For a domain @ C R?and an 1 < s < oo, let K CV = WOI’S(Q) be a closed and convex
set. Given an f € V' = W~1'(Q), 1/s + 1/s' = 1, we consider the problem

(6.1) u€K: / |Vu|*"2VuV (v — u) > f(v — u), for any v € K,
Q

which is equivalent with

(6.2) u€K: Flu)= 11}116111(1F( v),

- [} [ wor - 5]

We know (see [15]) that if 1 < s < 2, then there exist two positive constants a and 3 such
that

where

Hv_"’H% s

/ _ e -
< F'(v) 1*:( )0 = U > QT Tl
Bllv —ulli s > [|[F'(v) — F'(u)|lv,

for any v,u € WO1 *(Q2). Consequently, the functions introduced in (3.1) can be written as

aIBM() :331a

a

am(r) = @Mz 5T

and therefore, Ap; = ﬁm, By =8,p=2and q=sin (3.1). If s > 2, then there exist
two positive constants « and 3 such that (see [8] )

< F'(v) = F'(u),v —u >2> aflv —ull{
Bllolls + ulle)*2llv — ullys > [1F'(v) = F'(w)llv,

for any v,u € W,”° (). Therefore, for given M > 0, we have

am(t) = ar®, Bu(r) = B(2M)* 2
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and therefore, Ay = @, By = B(2M)*~%, p=s and ¢ =2 in (3.1).

We can conclude from the above comments that Algorithm 2.1 can be applied for the
solving of problem (6.1) if the convex set K has Property 4.1. Naturally, all the error
estimations in the previous sections hold.

We have tested the correctness of the error estimations given in the previous sections, by
an numerical example concerning the two-obstacle problem of a nonlinear elastic membrane.
This is a problem of type (6.1) in which Q C R? and the convex set is of the form K = [a, ],
where a,b € WO1 (), @ < b. In our numerical tests, the exterior forces f are zero, ie. we
have considered the two-obstacle nonlinear problem,

u € [a,b] : [ |Vul*"2VuV (v —u) > 0, for any v € [q,b].

15 2 25
X Axis Y Axis

X Axix

Figure 6.1. (a) Meshes Ty, Th, and the domain decomposition, (b) Obstacles a and b.

In the numerical experiments, the domain  is the rectangle (0,4) x (0,3). The meshes
Ty and Tp contains right-angled triangles, which are obtained by partitioning the sides
of the rectangular domain in the same number of segments. We show these meshes in
Figure 6.1.a, where we have considered 30 segments for 73, and 6 segments for 7y, on each
side. In the same figure we have shown the domain decomposition, the number of the non
overlapping subdomains O; being 9, and evidently, the number of the subdomains €2; is 4.
The width of the overlaps in this figure is of 2 triangles in 7. The obstacles a and b are
shown in Figure 6.1.b for a mesh 7, having 60 nodes on a side of the rectangular domain.
The obstacle a is given by the plane z = 0 with a circular cylinder having a basis on this
plane and the other one, in the plane z = 3.0, is ended with a semisphere. The cylinder
has the radius of 1/6, and the center of its first basis is at the center of the rectangle Q.
The obstacle b is the plane z = 3+ 1/6 with a circular cylinder having a basis on this plane
and the other one, in the plane z = 1/6, is ended with a semisphere. The cylinder has the
radius of 1/6, and his axis passes through the point (4/3,3/4,0).

The computed solutions for s = 2.0, s = 1.5 and s = 3.0 are plotted in Figure 6.2 for a
mesh 7}, having 60 nodes on a side of the rectangular domain £.

We have seen in the previous sections that the constant Cy depends on 1/6 in equation
(5.11), in the case of the one-level method, and on H/h and H/¢ in equation (5.35), for the
two-level method. We have tried to verify it by numerical tests for the nonlinear membrane
problem taking various values of H, h and 4. In all the numerical tests the calculus has been
stopped at a relative error of 1.E-03 at the nodes of 7, between two consecutive computed
solutions. The solution on the subdomains have been calculated by the relaxation method,
which is a particular case of the Schwarz domain decomposition method. The computing
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of the solutions on subdomains has been stopped at a relative error of 1.E-05 at the nodes
of T;, between two consecutive computed subsolutions.

(@

X Axix
() ©

A
W

TNV
IO

ORI
70, l:.:.t‘\“\‘:‘:\\‘:\\\\&

AR
R
22

X Axix X Axix

Figure 6.2. Solution for: (a) s=2, (b) s=1.5, (c) s=3.

The tests in Figure 6.3 have been made for H/h = 6 and H/é§ = 2, and the points on
the two curves are obtained for various coarse meshes Ty corresponding to 20, 18, 16, ... ,
2 segments on a side of the rectangular domain 2. We see that the number of the iterations
is bounded for the two-level method, and it is in concordance with the fact that Cy in (5.35)
is constant. Also, the number of iterations is an decreasing function of H for the one-level
method. Since H/J is constant, it follows that the number of iterations is an increasing
function of 1/, and it is in concordance with Cj in (5.11).

In the tests in Figures 6.4, 6.5 and 6.6, two of the parameters H, h or § are constant
and the third is variable.

For the tests in Figure 6.4 we have taken H = 5.0/12, h = 5.0/120 and é = 1h, 2h,--- , 10h.
We see that, in both cases, the number of iterations is a decreasing function of d, and it is
concordance with the expressions of Cp in (5.11) and (5.35).

The tests in Figure 6.5 have been made for H = 5.0/6, 6 = 5.0/12, and h corresponds to
partitions 7y with 2-6,4-6,6-6,--- ,20-6 segments on each side of the rectangular domain
). We see that the number of iterations is constant for h < 5/24 in the case of the one-level
method, and it is in concordance with Cj in (5.11). In the case of the two-level method,
the number of iterations is a decreasing function of A for s = 1.5 and s = 2, and it is also
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in concordance with Cp in (5.35). For s = 3 > d = 2, the number of iterations should be
constant, Cy s(H,h) in (5.15) being equal to 1 in this case. In Figure 6.5.b, we see that the
three curves are similar; however it is not excluded the fact that, as h — 0, the number of
iterations slowly increases for s = 1.5 and s = 2, and it remains bounded for s = 3.

Iterations
T T

L L L L L 1 s ' L i L L ' 1 L L
0 0.05 0.1 0.15 02 025 03 035 04 045 ] 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45

Figure 6.4. Tterations for H and h constant, and ¢ variable: (a) one level, (b) two levels.

In the tests in Figure 6.6 we have taken h = 5.0/120, 6 = 5.0/20 and H = 5.0/20,
5.0/12, 5.0/10, 5.0/8 and 5.0/6. Since the number of the subdomains 0! depends on H,
even if inside an iteration we have found the solution first for the subdomains Of of the
first color, then for those of the second color, and so on, from Figure 6.6.a we see that the
number of iterations for the one-level method depends on the number of the subdomains
O?. In the case of the two-level method, the number of iterations is an increasing function
of H which is in concordance with our constant Cy in (5.35).

Finally, we see from our numerical tests that the number of iterations for the two-level
method is always less than that for the one-level method.

In the end of this section, we give some details concerning the method we have used in
the computing code to solve the problems on subdomains. As we have already said, the
subproblems, the subproblem corresponding to the coarse mesh included, have been solved
by the relaxation method. Consequently, for a fixed subdomain, we have to solve iteratively
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one-dimensional problems. Since the functional is strictly convex and the convex set is a
one-dimensional segment, the solutions of these nonlinear problems can be found by the
same method as for the quadratic functionals: we solve first the one-dimensional nonlinear
equation corresponding to the inequality, and then we project it on the convex set. This
projection is very simple for the subdomains covered with the mesh Tr. because the convex
is an interval and the constraints of the convex set operate on the function values at the
nodes of the fine mesh. In the case of the domain with the coarse mesh, the projection
is a little more complicated because the constraints operates at the nodes of 75 and the
functions belong to VOH . We shall explain in the following how this projection is made in
our computing code.

L L ) I 1 I i ) H H H H H | i
0 0.05 [A] 0.15 02 N 025 03 0.35 04 0.45 0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45
h

Figure 6.5. Iterations for H and § constant, and h variable: (a) one level, (b) two levels.

: : : : : : : H : A 3

i i H i i H ; . H H i ; ; ;
02 0.3 0.4 0.5 0.6 0.7 0.8 09 02 0.3 0.4 0.5 06 0.7 08 08

Figure 6.6. Iterations for h and ¢ constant, and H variable: (a) onHe level, (b) two levels.

We have two vectors u(k) and w(k), k runs from 1 to the number of nodes in Ty,

o i—1
containing the values of ™" m and w?“ obtained from Algorithm 2.1. At the iteration

n, for a given subdomain i, the values of w(k) are obtained by the relaxation method, and

we update u(k) with w(k), in order to obtain u™*m , after the obtaining of the values wprt

with the wanted error. Naturally, we have two vectors a(k) and b(k), containing the values
of the two obstacles at the mesh nodes in 7.

Assume now that we are computing the solution on a subdomain ; and we seek for
the value w(k) of the correction at the node k of 7. As we have already said, we first find
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the solution v of the corresponding nonlinear equation, and then we project it as usually:
if a(k) — u(k) < v < b(k) — u(k), then we take w(k) = v; if v < a(k) — u(k), we take
w(k) = a(k) — u(k); and if b(k) — u(k) < v, we take w(k) = b(k) — u(k).

In order to compute the corrections at the nodes of the coarse mesh 7x, we have in-
troduced the matrix c(l, k), where [ runs from 1 to the number of the nodes of Ty, and k
takes the values from 1 to the number of nodes of 7} contained in the support of ¢;, the
function in the nodal basis in V. The coefficients c(l, k) depend on the relative position of
the mesh nodes [ and k, and they give the correction introduced by ¢; at the node k£ when
the correction at the node ! is 1, ie. c(l,k) = ¢;(z*). Consequently, with a new correction
w at the node [ in the place of the old one, w(l), the new correction at the node £ will be
w(k) + c(l,k)(w — w(l)). Therefore, the new value satisfies the constraint of the convex at
the node k if

(6.3) a(k) < u(k) +w(k) + c(l, k) (w — w(l)) < b(k),
c(lfk) [a(k) — u(k) — w(k) + c(l, k)w(l)] L w < c(lfk) [b(k) — u(k) — w(k) + c(l, k)w(l)] .

Now, if v is the solution of the nonlinear equation corresponding to the inequality in the
relaxation method at the node [, in order to obtain the real correction satisfying also the
constraints at the nodes k, we have to project it on the interval [a;, b;], where

w = max{a(l) — u(l), max W%) [a(k) — u(k) — w(k) + c(l, kyw)]}

br = min{a(l) — u(l), min s () = u(k) = w(k) + <(l, Kw(@)]},

where max;, and miny are taken over the nodes k of 7}, contained in supp¢;. We point out
that since before the new correction we had u(k) + w(k) € K", from (6.3), we get that
w(l) € [a;,b;]- The projection of v on [a;,b;] is made as in the relaxation method for the
subdomains §2;, and if w, is this projection, the new updated corrections will be: w(l) :=w,
and w(k) := w(k) + (I, k)(wp — w(l)), k being the nodes of 75 in suppd;.

We notice that the projection for the two-level method is a little more complicated than
that in the one-level method, but since the number of iterations is less in the two-level
method than that in the one-level method, the two-level method is more efficient in point
of view of the computing time. For instance, we see in Figure 6.3 that for H = 5.0/10,
h = 5.0/60 and 6 = 5.0/20, the number of iteration is: 23 for s = 1.5, 19 for s = 2.0, and 15
for s = 3.0, in the case of the one-level method, and 13 for s = 1.5, 10 for s = 2.0, and 9 for
s = 3.0, in the case of the two-level method. The computing time obtained on a PC with one
processor Intel Pentium IIT of 600MHz was: 18min45sec for s = 1.5, 6minl6sec for s = 2.0,
and 17min8sec for s = 3.0, in the case of the one-level method, and 13minb54sec for s = 1.5,
4mind3sec for s = 2.0, and 14min27sec for s = 3.0, in the case of the two-level method.
Naturally, the computing time for s = 2.0 is less than that for s = 1.5 or s = 3.0 since
in this case we solve linear equations in the relaxation method. This case corresponds to
the minimization of a quadratic functional. The finite element problem in these computing
time tests has 3481 unknowns.
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