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Abstract. We generalise the method of diagrams from conventional model theory to a simple institution-independent (i.e.

independent of the details of the actual logic or institution) framework based on a novel categorical concept of elementary

diagram of a model. We illustrate the power of our institution-independent method of elementary diagrams by developing

several applications to institution liberality, institution-independent quasi-varieties, and limits and colimits of theory

models. The results obtained are illustrated systematically with examples from four different algebraic specification

logics. In the introduction we also discuss the relevance of our institution-independent approach to the model theory

of algebraic specification and computing science, but also to conventional and abstract model theory.

1. Introduction

The theory of institutions (Goguen and Burstall , 1992) is a categorical abstract model theory which

formalises the intuitive notion of logical system, including syntax, semantics, and the satisfaction

between them. Institutions constitute the modern level of algebraic specification theory and can

be considered its most fundamental mathematical structure. It is already an algebraic specification

tradition to have an institution underlying each language or system, in which all language/system

constructs and features can be rigorously explained as mathematical entities. Most modern alge-

braic specification languages follow this tradition, including CASL (Mossakowski, 2001), Maude

(Meseguer, Igg3), or CafeOBJ (Diaconescu and Futatsugi,2002). There is an increasing multitude

of logics in use as institutions in algebraic specification and computing science. Some of them,

such as first order predicate (in many variants), second order, higher order, Horn, type theoretic,

equational, modal (in many variants), infinitary logics, etc., are well known or at least familiar to

the ordinary logicians, while others such as behavioural or rewriting logics are known and used

mostly in computing science.
The original goals of institution theory are to do as much computing science and model theory as

possible, independent of what the actual logic may be (Goguen and Burstall,l'992)' This mathemat-

ical paradigmis often called 'institution-independent' computing science or model theory. While

the former goal has been greatly accomplished in the algebraic specification literature, there were

only very few and rather isolated attempts towards the latter (Tarlecki, 1986a; Tarlecki, 1986b; Sal-

ibra and Scollo, 1996). This situation contrasts with the feeling shared by some researchers that

deep concepts and results in model theory can be reached in significantly via institution theory.

This paper can be regarded as a new step towards this goal, part of a recent series of works in

institution-independent model theory starting with (Diaconescu, 2002).

The significance of institution-independent model theory is manifold:

It provides model-theoretic results and analysis for various logics in a generic way. Only

a limited number of model-theoretic properties are usually studied for the logics in use in

computing science and algebraic specification, however it is important to have as deep as

posibl" understanding of the model-theoretic properties of the underlying logic because the

specification or software engineering properties of the logic depend intimately on the model

theoretic ones ((Diaconescu et al, 1993) is only one of the works that support this argument).

We sometimes notice that the failure of some speciflcation properties of a logic is due to the

rather subtle wrong definition of some details of the logic. We also notice that often the right

definition of a logic can be checked through its model-theoretic properties, otherwise said good

model-theoretic properties lead to good specification properties'

It exports model-theoretic methods from classical logic to other logics. Classical first-order

predicate logic has developed very rich a powerful model-theoretic methods, which exported

i$ 
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to an institution-independent framework can become available for the multitude of computing

science or algebraic specification logics.

It provides a new way of doing model theory. While the points we made above have a more

application oriented iigoifi"*.", this point has a pure mathematics methodological signifi-

cance. The institution-independent way of obtaining a model theoretic result, or just viewing a

concept, leads to a deeper understandin g of why a cetltain model theoretic phenomenon holds.

Such top-down understanding is not suffocated by the details of the actual logic, it decomposes

the model-theoretic phenomenon (into various layers of abstract conditions), and provides a

clear picture of its limits.

Although these points are largely valid for any form of abstract model theory, they are especially

relevant for the institution-independent absffact model theory. One of the reasons for this is that

up to our knowledge, the theory of institutions provide the most complete definition of absfract

model theory the only one including signature morphisms, model reducts, and even mappings

(morphisms) between logical systems, as primary concepts. Also, as mentioned above, the current

algebraic specification logics and an increasing number of computing science logics are formalised

as institutions.
This work exports one of the most important and powerful conventional model theory methods,

namely the method of diagrams (C.C.Chang and H.J.Keisler, 1973), to an institution-independent

framework. This framework is based on a simple novel categorical formulation of the concept of

elementary diagram (of a model). Notice that a different institution-independent formulation of the

method of diagrams has been used by Tarlecki as part of the definition of the so-called "abstract

algebraic institutions" (Tarlecki, 1'986a; Tarlecki, 1 986b).'

1.1. SUTTAUARY AND CONTRIBUTIONS OF THIS WORT

The preliminary section gives a very brief overview of concepts, terminology, and notations from

category theory (including inclusion systems) and institution theory'
The next section is devoted to the institution-independent definition of the concept of elementary

diagram of a model. We illustrate this definition with rather detailed examples from four of the most

important logics in algebraic specification and model theory (formalized as institutions)'

In the last section we illustrate the power of our institution-independent method of elementary

diagrams by exploring several applications. Some of the results obtained by instantiating the results

of this section to actual institutions might be already known in the theory of algebraic specification,
however our goal here is to illustrate the power of the concept and to show ways of using it. The

reader may easily compare the more conventional way of obtaining some of these results, involving

rather complex proofs, to the simplicity of the results based on elementary diagrams. This simplicity
has various aspects: on one hand elementary diagrams are a natural property of institutions (provided

the details of the institution are correctly defined) easy to check, on the other hand the existence of
elementary diagrams is very rich in mathematical consequences especially when combined with
other basic properties of the institutions.

The first application concerns institution liberality, which is one of the most important properties

of algebraic specification institutions. We show that under the existence of elementary diagrams, full
liberality follows almost directly from the existence of initial models of theories (which is a special
restricted case of liberality). A related result has been obtained in (Tarlecki, 1986a) but under a much
more complex set of conditions providing a lot of additional structure to the concept of institution.

The second application develops an institution-independent approach to quasi-varieties based on
elementary diagrams and inclusion systems. Due to both elementary diagrams and the use of inclu-
sion systems instead of (the more conventional) factorisation systems, our institution-independent
approach to quasi-varieties is much simpler than "abstract algebraic institutions" of (Tarlecki, 1986a)l
and (Tarlecki, 1986b).

-fnl, O.nnition can be formulated only in institutions with additional structwe such as regular categories of models,

etc.
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The last application is perhaps the most surprising. We show how under the existence of ele-
mentary diagtams, limits/colimits of models in theories with initial model can be obtained from
limits/colimits of signatures. It is well known that in actual institutions, the categories of signatures
have easy limits and colimits2, while limits and especially colimits of theory models are rather
difficult.

The applications developed are illustrated with examples from four different institutions: first-
order predicate logic (with or without equality), rewriting logic, partial algebra, and hidden algebra
for behavioural logic. These logics are very briefly presented in the Appendix, mainly for setting up
some notation and terminology.

2. preliminaries

2.T. CATEGoRIES

This work assumes some familiarity with category theory and generally uses the same notations
and terminology as Mac Lane (Maclane, 1998), except that composition is denoted by ";" and
written in the diagrammatic order. The application of functions (functors) to arguments may be
written either normally using parentheses, or else in diagrammatic order without parentheses, or,
more rarely, by using sub-scripts or super-scripts. The category of sets is denoted as Se/, and the
category of categories3 as Cat. The opposite of a category C is denoted by CPn. The class of objects
of a category C is denoted by lCl; also the set of arrows in C having the object a as source and the
object & as target is denoted as C(a,b). The isomorphism of objects in categories is denoted by -.

We use + to denote natural transformations.
For any object a, the comma category af C.has

rurows f eC(a,b), as objects, and
uurows h e C(b,b') such that f;h: /', as arrows between f e C(a,b) and ft e C(a,bt)'

2.1.I. Inclusion Systems
Inclusion systems where introduced in (Diaconescu et al., 1993) for the institution-independent
study of structuring specifications. In (Diaconescu et al., 1993) they provide the underlying mathe-
matical concept for module imports, which are the most fundamental structuring consffuct. Mathe-
matically, inclusion systems capture categorically the concept of set-theoretic 'inclusion' in a way
reminiscent of factorization systems (Borceux, 1994); however in many applications the former are
more convenient than the latter. Weak inclusion systems were introduced in (Cdzdnescu and Rogu,
1997) as a weakening of the original definition of inclusion systems of (Diaconescu et al., 1993).

DEFIMTIONl .  ( I ,E) isaweakinc lus ionsystem foracategoryCi f  /  andlE aretwosub-
categories with l/l : lEl: lCl such that

1. .I is a partial order, and
2.  everyanow f  inCcanbefactoreduniquely  asf  :e ; iw i the€Eandi€ L

The arrows of I are called inclusions, and the affows of E are called surjections.a The domain
(source) of the inclusion i in the factorization of / is called called the image of f and denoted as
Im(/)'

A weak inclusion system (1, El is a epic weak inclusion system if and only if all surjections are
epics and it is an inclusion system if in addition .I has finite least upper bounds (denoted *) (see
(Diaconescu et al., 1993)). !

2 For example, by using arguments from indexed category theory (Tarlecki et a1.' 1991).
3 We steer clear of any foundational problem related to the "category of all categories"; several solutions can be found

in the literature, see, for example (Maclane, 1998).
4 Surjections of some weak inclusion systems need not necessarily be surjective in the ordinary set-theoretic sense.
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EXAMpLE 1. Ler (S,>,n) be a signature in first-order predicate logic (see Appendix A)' The cat-

egory of (X,ll)-models has an epic weak inclusion system such that a (E,ft)-model homomorphism

h : M - + M t

- is inclusion if for each sort s € S, ft, : M,'+ Mt, ate set{heoretic inclusions, and

- is surjection if for each sort s € S, hr: M, -+ M', are set-theoretic surjections and Mtn:

{h,(q) | qe M"} for each aity w and each predicate symbol n eflw'

In the particular case of the inclusion system of many-sorted algebra (obtained by the absence of the

predicate symbols), algebra homomorphisms are algebra inclusions/surjections, if and only if they

a.re component-wise set-theoretic inclusions/surjections, respectively. !

EXAMpLE 2. Given an algebraic signature X, we can define an epic weak inclusion system for the

category of )-preorder modils (see Appendix B) such that a X-preorder homomorphism h: M -+ M'

- is inclusion if for each sort s of the signature 2, h, : M, '-+ M', are preorder inclusions, and

- is surjection if for each sort s of the signature 2, hr: M, -+ Mt, arc preorder surjections and

for each mt1,m!2 € Mt , m\ 3 m!2 it and only if there exists m1,mz e M such that m1 1 m2 and

m\ : h(mr) and m!, : h(mz)'

n

EXAMPLE 3. Given a partial algebra signature (>,4), we can define an epic weak inclusion

system for the category if partiat (X,A)-algebras (see Appendix C) such that a partial (>'A)-

homomorphism h: A -+ At

- is inclusion if for each sort s, h, : A, -l A! are total inclusions, and
- is surjection if for each sort s,hr: A, -+A! are partial surjections'

tr

2.2. INSTITUTIONS

In this section we briefly review some of the basic concepts on institutions. Besides the seminal pa-

per (Goguen and Burstall , Igg2), (Diaconescu et al., L993) contains many results about institutions

with direct application to modularisation in algebraic specification languages.

DEFIMTION 2. An institution $ : (Slgn, Sen, MoD, f ) consists of

1. a category Slgru, whose objects are called signatures,

2. a functor Sen: Sign -+ Se/, giving for each signature a set whose elements are called sentences

over that signature,

3. a functor Moo: SlgnoP -+ C.at giving for each signature ) a category whose objects are called
L-models, and whose anows are called Z-(model) morphisms, and

4. arelationppe lMoo(>)lxSen(>)foreachXe lSlgtzl,cal ledZ-satisfaction, r

such that for each morphism rp: X -+ X' in Slgn, the satisfaction con'dition

*' lz Sen(<p)(e) itr Mon(rp)(*') ?>"

holds for eachm' e lMoo(l/)l and e € Sen(X). We may denote the reduct functor Moo(rp) by -f,p
and the sentence translation Sen(<p) simply bV q(-).When M: Mt fe we will say that M' is an
expansion of M along q.2
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DEFINITION 3. An institution is closed under isomorphisms if and only if each two isomorphic
models satisfy the same sentences. !

DEFINITION 4. Let $ : (Sign, Sen, MoD, F) be an institution. For any signature X the closure

of  asetEof  X-sentencesisE' : {e lE?rr }s .  (E,E)  is  a theory i f  andonly i f  E isc losed, i 'e ' ,
E : E ' .

Atheory morphismg: (),E') + (2' ,E') is a signature morphism <p: ) -+ X/ such that<p(E) e E' .

LetThg denote the category of all theories in 5. D

REMARK 1. For any institution 5, the model functor Moo extends from the category of its sig-

natures Slgn to the category of its theories T'ftg, by mapping a theory (X,E) to the full subcategory

Mou(X,E) of Moo(X) formed by the X-models which satisfy E. tl

DEFINITION5. Arheorymorphismrp: (I,E) -+(2,,n')\sliberalifandonlyifthereductfunctor

-fr: Moo(X' ,E') l Moo(2,E) has a left-adjoint (-)4.
The institution 5 is liberal if and only if each theory morphism is liberal. n

Exactness properties for institutions formalise the possibility of amalgamating models of differ-

ent signatures when they are consistent on some kind of intersection' of the signatures (formalised

as a pushout square):

DEFIMTION 6. An institution $ : (Sign, Sen, MoD, l) is exact if and only if the model functor

MOn: SignoP -+ C.at preserves finite limits. 3 is semi-exact if and only if Moo preserves only

pullbacks. tr

FACT 1. In a semi-exact institution 3 consider a pushout of signatures

>  t '  ' > ,

A r l
Y l*i

t"  >- t ,_L 
Oi

and two models, a X1-model M1 and a !2-model Mz sach that Mrlyt : Mzfqr. Then by the semi-

exactness, there exists an unique )/-model M/ such that Mt lq,, : Mt and Mt lOi: Mr.We call this

model theamalgamationof MtandM2 anddenote itby Mr&Mz.

This amalgamation concept is also extended to model homomorphisms tr

3. Institutions with Elementary Diagrams

In this section we introduce the main concept of this paper.

DEFIMTIONT. An institution 5 : (Slgn,Moo,Sen,l) has elementary diagrams if and only

if there exists a natural transformation t: Moo + (-lThS), such that Mon(Iiv,Ev) andthe

comma category M lMroo(>) are naturally isomorphic, i.e. the following diagram commutes by

the isomorphism lp,y naturalin M

Moo(Zy, Ey)'''', (,vr1vroo (>))

!r"rs"tr"r
Moo(x)

where L>(M): (),0) -+ (Z1a,Ey) for each signature X and each X-model M'

The signature morphism tz(M): 2 -+ 2y is called the elementary extension of 2 via M and the

set Ey of x,y-sentences is called the elementary diagram of the model M. z

s t =>e means that M => e for any l-model M that satisfies all sentences in E.



6

REMARK 2. Thenaturality of r means that for each signature morphism Q: X -r X/, the following

diagram commutes:

Moo(>) " ' >lThs

toolrlJ ftror,
Moo(>/) -ro->'lThs

Given a )-model homomorphism h: M -+ Mtfor a signature X, by the the functoriality of 12,, we

have that tp(ft) is a theory morphism r2(/l) : (Zu,Eu) 1 (2v',Ev') such that

2 N)2,
\ l

,r(r,\ i'"(o)
2M,

The naturality of i2,y in M means that the following diagram cornmutes:

i s u
Moo(Zy,Ey) 

-""" 
- MlMoo(>)

ruroolololyJ Jrlruroottl
Moo(Zy,,8y,) 

;;-- 
M luoo(>)

!

Informally, Definition 7 says that for each model M, the class of model homomorphisms from

M canbe axiomatised as a class of models of a theory. In other words, the elementary diagram of

M is the theory encoding the class of model homomorphisms from M.ln the particular concrete

cases this categorical abstract model-theoretic concept of elementary diagram coincides with the

ordinary concepts of elementary diagram, as know from conventional model theory (C.C'Chang

and H.J.Keisler, 1973) (see Example 4 below).
The rest of this section presents a serie of concrete examples for the concept of elementary

diagram.

EXAMPLE 4. Elementary diagrams in many-sorted first-order predicate logic with equality'

Consider a first-order predicate logic signature (X,|I) and a (X,I)-model M.Then the the elemen-

tary extension of (),il) via M isrz,n(M): (X,fI) '+ (Xy,lI) where

- (2*)*.r: Ir-+, for any non-empty arity w and any sort s, and

- (xu)-' : x-t, U M, for anY sort s'

Notice that the (X, ll)-model M canbe canonically expanded to a (X,y, fI) -model Mu by interpreting

the new constants of (),y)4, by the conesponding elements of Mr, i.e. (My)': afot each a € M.

Then we define the elementary diagram Euby

EM: {(V0) t = ttground equation I Mu ?>*,n (V0) r = /} u {(V0)n(4) ground atom I
Mul>rp(V0)n(y), fi€[I, qlistof ground X,y-termscorrespondingtothearityofn]

The isomorphism l2,n,,y maps any ()y,ll)-model N satisfying Ey to the (X,[)-model homo-
morphism h7,1: M -+ Nfr>,n(,vr) such that h7s(a) : No for each element a e M. For each operation
o € Xr-+" and for each list of elements a € M*, we have that hy(M6(s.)) : Nu,@1 : No1o1 (be-
cause N lz*,n (V0) o(g) = Mo@): No(NJ : No(hN(s)), therefore ftI,, is a X-homomorphism.
For each predicate n e TIw and for each list of elements a € Mr, we prove that a € M1 implies
hN(q) e Nn.Bata€MnimpliesMu?>*,n(Vqn@) whichmeans that(Y0)n(q) e n*. Thisimplies
N F>r,n (V0)n(q) which further implies Nqe. NrE which means hN(s) e Nn. Therefore h1y is also a
fl-homomorphism.
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The reverse isomorphism lr,lr,r maps any (I, il)-model homomorphism h: M -+N to the (fr, n)-l
model ii.h,"@) - N1, where (Nr,)f,",r,(,vl) : N and (Nn)o: h(a) tor each a € M.For each ground
E14-equation (Y0) t = //, we have that N6 F ftO) t = tt if and only if (Nft)r : (Nh)/ if and only if
h(Mt):h(m,,) whichholds when Mt:Ml whichisthesame withM F 00) t = tt.Also,foreach
ground ll-atom (V0)n(1) where I is a list of ),y-terms, we have that N1 f $O)n(1) if and only if
N4 € (N;)n it h(ML) € (Nr,)n which holds whenever M1€. Mnwhich is the same with M I (V0)n(1).
This argument resumes the proof that Np? E*.

Notice that in the unsorted case without equality Ey gives exactly the elementary diagran of M
in the sense of conventional model theory (C.C.Chang and H.J.Keisler, 1973). !

EXAMPLE 5. Elementary diagrams in rewriting logic
Consider an algebraic signature ) and a preorder X-model M.Then the the elementary extension of
Z via M is t2(M) : I'+ I,y where

- (}u)*.r: Ir-r, for any non-empty anty w and any sort s' and
- (X,rz)-' : X-+, UIM'l for anY sort s'

As in the previous example, the X-model M can be canonically expanded to a X,y-model Mu by
interpreting the new constants of (X,y)-a" by the corresponding elements of Mr, i.e. (MM)o : a for

each a € M.Then the elementary diagram Ey is defined by

EM : {(V0) t = tt ground equation I Mu ?>, (Y0) t = /}v

{(V0) I :} tt gtound transition I Mu lz, (YA) t :> tt}

The isomorphism lp,y maps any preorder Xy-model N satisfying Ey tothe preorder X-homomorphisml

i>,u(N) - h7s: M -) Nft:(,vr) such that h7,1(a) : No for each element a € M. Because N satisfies the

equations of Ey, we can prove that &1g is a )-homomorphism in the same way as in Example 4. We

still have to prove that hy is a preorder functor. Consider two elements a,a' €. M of the same sort
such that a I at . This implies that Mu F>, (V0) a :) a/, which implies that (V0) cI :) at € EM,

whichimpliesthatNFr, (V0) a :) at,whichimplies thatNoz-No,,whichmeans hu(o) <hx(o').

The reverse isomorphism ry,L -upr any preorder X-homomorphism ft: M -+ N to the preorder

I,y-model N6 where (Nt)f,.r(,vr) : N and (N)o:h(a) tor each element a€ M. We can prove that

N7, satisfies all equations of Ey in the same way as in Example 4. Consider a transition (Y0) t :s

/ e Eu.Then Mu Fr" (V0) t :) //, which means that Mt 1 M,,. Because ft is a preorder functor,

this implies thath(Mt) th(M.,), which means that (Ni,)x < (Nn)t, which finally means Nnlz,
(V0) r :> //. This resumes the proof that Np also satisfies all transitions from Eu.D

EXAMPLE 6, Elementary diagrams in partial algebra.
Consider a partial algebra signature (X, A) and a partial (X, A) -algebra A. The elementary extension

of (),A) viaA is try(A): (X,A) .+ (x,Aa) where

- (Aa)r., : Ar-+" for any non-empty arrty w and any sort s, and
- (Ae)*, : A-+, UA, for any sort s'

The partial (), A) -algeb n A canbe canonically expanded to a partial (I, Aa )-algebra A6 by interpret-

ing the new constants of (Xa)*", for each sort s by the corresponding elements of A' i.e. (Ao)o: 6

for each a e A. Then the elementary diagram Ea is defined by

EA: {(Y0) r I r' ground strong equation I Ae F:,n, (V0) r I r/}u

{(V0) r ...1 ground undefinedness predicate I Aa F:,q (V0) r 1}
The isomorphism i2,64 maps any partial (I,Aa)-algebra B satisfying Ea to the partial (>,4)-

homomorphism i:,1,a(B) : hn: A -e-+ Bfrr,o(a) such that hu(o) ! Bo for each element a € A, i.e.
either both of them are undefined or both of them are defined and equal. For each operation symbol

o € (> U A),-', and for each list of elements d e A*, we have to prove that hn(At(q)) a nt(hn(g)).

By definition we have that hB(A6(s.)) ! Btu@1 and B6(h6(d) g Bo(Bd.But Ba"1o; L no(Bs)
because



- when A"(a) is undefined then Bo(8,) is also undefined because B Fr,lo (V0) o(q) J as

(V0) o(a)]€ Ea, and
- when Ao(a) is defined then Ba"1o; L no@s)because B F>,& (V0) o(a) L- eo@.) as (V0) 

"(d 
gl

Ao@,) e Ee.

Therefore, by the transitivity of the strong partial equality I relation, hs is a (x,A)-homoT9ry-hi:i' .
The reverie isomorphism ry,1,o maps any (X, A)-homomorphis m h: A -p+ B to the partial (>' Aa )-I

algebra Bl,where (Bl) frra(e) : B and (Bn)" L h(a) for each element a € A. The fact that 81, satisfies

af strong equations anA in.i"nnedness predicates of Ea follows from the fact that for each ground

telrmt, h(A,) L (87,)1 (easily shown by structural induction on /). tr

EXAMPLE 7. Elementary diagrams inhidden algebra'
ConsideraCHArignutur"iH,i,>,>blandaX-a$braA.Thentheelementaryextensionof (I1,%>,>b)l

viaA is rp(a): (H,V,Z,>o) - (H,V,2a,2o), where

- (Ia)r-+, : Xr-, for any non-empty aity w and any sort s, and

- (xa)-tr : x-+, UA, for anY sort s'

The X-algebra A canbe canonically expanded to a Xa-algebra Aaby interpreting the new constants

of ()a)-, by the corresponding elements of Ar, i.e. (Ao)o: a for each a € A. Then the elementary

diagram Ea is defined by

EA: {(V0) t = ttground strict equation I Aa F:o (Y0) t = tt}tt

ilVO; r - // ground behavioural equation I Ao?>o (V0) t - /\

The isomorphism lpua maps any Za-algebra B satisfying E6to the CHA X-algebra homomor-

phism hn: A -+ Bl,r(e) such that hB(a) : Bofor each element a € A. For each operation o € l,-+"

and for each list of eiements Q.€ A,*, we have that hs(A6(q)) : Ba,(n) : Bo@) (because B ?zo
(V0) o(s) = Ao@): Bo(B) : no(ha@D, therefore h6 is a x-homomorphism. Now let us consider

two'behaviouraib-quivalent e]ements a,a' eA such thata- a'. This implies (V0) a - 9' eEa which

implies B ?>o (V0) a - a/ which implies Ba - Bo, which means that hs(a) * hn(a'). This shows

thathe is a CHA X-homomorPhism.
The reverse isomorphism [l mans any CHA )-algebra homomorphism ft: A -+ B to the )a-

algebra 81, where (Bl) f,.r(a) : B and (Bn)o : h(a) for each a € A. Each ground strict >A-equation

(y0)t = tt in Ea is satiified by Blrby the virtue of the same argument as in Example 4. Now

consider a ground behavioural !4-equation (V0) f - / in Ea. This means that A1- /r,, which

implies h(i,) - h(Ay)because /z preserves behavioural equivalence, which means (Bn), - (Bn),,,

which means that 81, F:, (V0) t - tt . This resumes the proof that 81,? Ee.a

The examples of this section point out to a certain pattem for the elementary diagrams. In the

particular cases they are the basic ground sentences satisfied by the model over the signature ex-

tended with the elements of the model as constants. Informally, the basic sentences are the simplest

sentences of the institution that match the fundamental model-theoretic structure of the institution,

not involving logical connectives or quantifications.

4. Some Applications

This section is devoted to several applications illustrating the power of the institution-independent
method of elementary diagrams.

4.T. INSTTTUTTON LIBERALITY

Intuitively, liberality can be regarded as a generalised form of initial semantics. The following result

makes this intuition precise for the institutions with elementary diagrams'
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PROPOSITION 1. Let 3: (Slgn,Moo,Sen,l) be an institution with elementary diagrams such
that each theory has an initial model. Then

1. for eachtheory (>,8), theforgetfulfunctor Mon(X,E) -+ Moo(X) has aleft adjoint, and
2. if the institution S has pushouts of signatures and is semi-exact, then for each signature mor-

phism @ the reduct functor Moo (O) has a left adjoint.
Proof For each theory (2,E), we denote its initial model by 0>,r.
1. Consider a theory (X,E) and let M be a X-model. Let r2(M): 2 -r 2y be the elementary

extension of ) via M and let Et : r2(u) (n) . We show that Mt : }Eu ,EuuEt hrlu; is the free (>, E)-
model over M with the universal arrow ly : (0>*,E, -+ }2r,gyun,)f,r(,to).

We have to prove that for each model homomorphism ft: M -+ N for N ly E, therc exists an
unique ht : Mt -+ N such that rly;ht : h.Let N1r: i;,r*(h). Then Nn?>* E' because Nr, frr(,vr) : N
and N lz E. Let htt be the unique model homomorphism ft// i }Eu,EurrE, -+ Nn.Let ht be htt 16g;
Thenr19,a;ht : (}zu,nu - Nn)lq@1: h.

The uniqueness of ft/ follows by the bijection between (M lMoo(>))(nM,ft) and
Moo (2y, E y) (02*,nrup,, N n).

2. Let @: X -r !/ be a signature morphism and let M be a X-model. Consider the pushout of
signatures

2y Q' .2"
A , | '

,"(M)l l , '
+ __- l,

o

We define Ma to be (0y,,6,16"1)f,,anO the universal a:row \u: M -+ (M\ f6 to be (0>*,r* -+

(0r,,cu (rr) ) f c,, ) f t, (,vr).
For proving the universal property of rlu, consider h: M -+ Nfo with N any I'-model. Let

Mh: E,rM(h). Notice thatM6lrz1,vr; :Nf6. Because 5 is semi-exact,letN 8M1,be the amalgamation
of N andM1,. Notice thatNSMn?A'(nr) because (NEMillu:MnlEr. Thereforethereexists
an unique model homomorphismhtt : 01,,,a,(ril -+ N @Mn.Letht : httlll.Wehave that h' : MQ -+ N
and, t1y;ht la : tlu;h" fy fo : \m;htt fo, f rzlrvr) : (}zr,eu -s Un)lv@1 : h.

The uniqueness of ft' follows from the uniqueness of htt and of the amalgamation of model
homomorphisms.

The following is a corollary of Proposition 1:

TTIEOREM 1.. A serni-exact institution with elementary diagrams and finite colimits of signatures
is liberal if and only if each theory has an initial model.

Proof. Let 5 : (Slgn, MoD, Sen, F) b" an institution with elementary diagrams and finite col-
imits of signatures.

In each institution with initial signatures, the existence of initial models for a theory is the
same with the liberality of the unique theory morphism from the initial (empty) theory to that
theory. Therefore, we have to prove only that the existence of initial models for theories implies
the liberality of the institution.

Consider a theory morphism <D: (X,E) + (2' ,E').

Moo(>) - 
MoD(o) 

Moo(X',)

forsefuI 1
subcategoU 

I

I forpetfut

I'iu'otigoa
Moo(I,E) 

ft"r(.) 
Moo(X',8')

By Proposition 1, both Moo(O): Moo(>/) + Moo(>) and the forgetful functor Moo()',8/) -+

Moo(I') have lefradjoints. By composition of adjunctions (see (Maclane, 1998)), the composite
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functor Moo(X/,E,) -+ Mon(l) has a lefradjoint. Now, by the following simple categorical lemma

(we omit its proofl:

LEMMA 1. Let C' .-+ C be a fulI subcategory and consider a functor D -+ c. If the composite

functor D -+C has aleft-adjoint F, thenthe restriction of F toC is alefi-adjoint to D -+C.

C,l \
t \

C I + D

we resume the proof of this theorem by substituting the category D by Moo(Z' ,E'), the category C
by Moo(X), and the category C by Moo(X,E).

4.2. Quasr-venIETIES IN INSTITUTIoNS

We develop an institution-independent approach on quasi-varieties, based on the method of elemen-

tary diagrams and inclusion systems.

4.2.I. Quasi-varieties in inclusion systems
In this section we rephrase abstractly some classical model theoretic concepts within the framework

of inclusion systems. Similar concepts have been formulated and results obtained within the frame-
work of factorisation systems (see (Tarlecki,I986a; Tarlecki, 1986b) or (Andr6ka and N6meti, 1981)
for a very general approach), however the inclusion systems framework leads to greater simplicity.

Firstly, we may use the concept of inclusion system for rephrasing the category theoretic con-
cepts of subobjects and quotients (that are traditionally (Maclane, 1998) defined in terms of monics
and epics).

DEFIMTION 8. Consider a weak inclusion system (1, E) for a category C. Then

- a is a subobject of b if there exists an inclusion a'+ b, and
- an object b is a quotient representation of a rf there exists a surjection a -+ b. A quotient of
a is an isomorphism class of quotient representations.

The weak inclusion systems (1, E) is well-powered, respectively co-well-powered, if the class of
subobjects, respectively quotients, of each object is a set. D

DEFIMTION 9. Consider a category C with a weak inclusion system. Then an object of C is
reachable if and only if it has no proper subobjects. tr

FACT 2. Consider a category C with a weak inclusion system and with an initial object 06. Then

1. for each reachable object c, the unique arrow 0g 4 a is a surjection, and

2. eachobject has exactly one reachable subobject

!

DEFINITION 10. Consider a category C with finite products and with a weak inclusion system.
Then a class of objects of C closed under isomorphisms

- is a quasi-variety if it is closed under flnite products and subobjects, and
- is a variety ifit is a quasi-variety closed under quotients.

!
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PROPOSITION 2. Consider a category C with an initial object 0s and with a co-well-powered
epic weak inclusion system. Then each quasivariety Q of C has a reachable initial object. tr

proof. Let {Ai I i e t} be the class of of all reachable subobjects of all objects of Q. Then we

consider a subciass of indices 1' e 1 such that there are no isomorphic objects in {A; I i e l} and for

eachi€ l thereexis ts je /suchthatA;-Aj . I t isasetbecausetheweakinc lus ionsystemofCis
co-well-powered and by Fact 2.Let}qbe the reachable subobject of the productfl;4Ai. We prove

that 0q is initial in Q.
Foieach object A of Q, there exists j e 1 such that A1 is a reachable subobject of A. Then

there exists i € 1/ such that Ai is isomorphic to Ai, therefore there exists and a:row fliayAi -+ A.

Because 0q is a subobject of lIiayAi, there exists an arrow 0q -) A. Because 0q is reachable, the

unique ano* 0c -+ 0q is a surjection, hence it is an epic, which implies the uniqueness of the a:row

0q -+ A.

4.2.2. Quasi-varieties in institutions with elementary diagrams
The following result extends the conclusion of Proposition 2 with its opposite implication, thus

obtaining an 'if and only if' charactenzation of quasi-varieties. This generalizes a classical result

from universal algebra (Gratzer,1979) or conventional first-order model theory (Malcev, I97L). A

similar institution-independent result has been obtained by Tarlecki (Tarlecki, 1986a) within the

framework of the so-called "abstract algebraic institutions". However, the concept of abstract alge-

braic institution provides a set of conditions much more complex than the conditions of Theorem 2,

the greater simplicity of our approach leading also to simpler and somehow different proofs.

TIIEOREM 2. Consider an institution 3 : (Sign, Moo, Sen, S) closed under isomorphisms and

with elementary diagrams such that

1. the category of Z-models has an initial object 02, finite products, and a co-well-powered epic

weak inclusion systemfor each signature Z,

2. all model reduct functors preserve the inclusions and the suriections,

3. the model reduct functors corresponding to the elementary extensions reflect identities.

Then each theory has a reachable initial model if and only if the class of models of each theory is a

quasi-variety.
proof. By Proposition 2 we have to prove only one implication. Let (I,E) be a theory and con-

siderB .-+ Aasubmodel ofA e lMot(x,E)1. weprove thatB l: E.Leti;,'u(B '+A) : h:02u,Bu 1

An.Letus factor h: e; j in the inclusion system of Xs with e surjection and 7 inclusion. Because the

reduct functor Mop(rr(B)) preserves both the inclusions and the surjections, B'+ A gets factored

asB.-+ A: elrr@);ifrr(r) in the inclusion system of I. BecausgB +A is an inclusion, we deduce

that el1: 1a, wjii6h -eitir rhat e is identity because Moo(rp(B)) reflects identities. Therefore ft is

inclusion.
A=>E implies thatA6?>uE',where E' : tz(B)(E),whichmeansthatthereexistsanunique

arrow /: }2u,nuue, -+ Aa, Because h: 02r,Bu '+ A6 is inclusion and Opr,p, ) }ln,EnrJE'is surjection,

by facioring'7 tntn" inclusion system of Xs and by using the initiality properties, it follows that

0>u,6u and 6za,Bpuy, are isomorphic. Therefote, 02u,8, ?>, E' , which by the satisfaction condition

implies BF E.
Forthesecondpartof thisproof,consider (n;: B+Ai)ier aproductof modelsinasignatureX

and such thatA; ! E for each I € 1. We prove that B? E. Because of the canonical isomorphism

ip,6: Moo(Xs ,EB) -+ B/Mon(>) and because the forgetful tunctor B/Moo(>) -+ Moo(I) re-

flects the products, we deduce that ((n;)s : 02p,4 + (Ai)n)ia is a product in Moo(X6,E3), where

(ni)u : i;,b(TE) for each I € 1'
By the'satisfaction condition (A;)s I Et fot each i € 1, where E' : t>(B)(E)' Therefore we get

un uniqu" arrow 0s,r,6" uEt -+ (Ai)B for each i e 1. By the universal property of products, we thus get
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an:urow }EB,EsuE, 4}2p,4.Because we already have an afrow 0gr,s, 4 }Es,EauEt,by qe universal

property oi iit" initiut oU.;""tr 02u,Bu and }Dn,EsuEt , we have that 02,r,6U an! O>U,7uun, are isomorphic.

tnis impties that 0p,u,6u ?>u E' , which by the satisfaction condition implies B lz E.

COROLLARY 1. Consider a semi-exact institgtion with finite colimits of signatures and satisfying

the conditions of Theorem 2. lf the class of models of each theory is a quasi-variety' then the

institution is liberal. tr

EXAMPLE 8. The institutions of first-order predicate logic, rewriting logic, partial algebra, have

finite colimits of signatures and are semi-exact6 and admit elementary diagrams (by Examples 4, 5,

and 6). One may easily notice that the epic weak inclusion systems for the categories of models of

these three institutions, given in Examples I,2, and 3, satisfy the specific conditions of Theorem 2.

In first-order predicate logic, each universal Horn sentence theory (see (C.C'Chang and H.J.Keisler,l

Ig73)) is preserves by products and submodels, therefore each morphism between universal Horn

theories is liberal (by applying Corollary 1 for the subinstitution of universal Horn sentences). For

the particular case of the signatures without predicate symbols, we get the well know result that the

institntion of many-sorted conditional equational logic is liberal (Goguen and Burstall, 1992)-

The rewriting log_ic institution is liberal because each transition is preserved under products and

preorder submodels.'
From Proposition 3, we can easily deduce that the strong equations and the undefinedness pred-

icates are preserved under products and (partial) subalgebras. Thus, by Corollary 1, the morphisms

between universal theories of strong equations and undefinedness predicates are liberal. !

4.3. MOOEI LIUITS AND COLIMITS

Existence of limits and colimits of models are important properties of theories, both in institution-

independent model theory or institution-independent computing science. For example, the institution-l

independent ultraproduct method (Diaconescu,2002) requires both products and filtered colimits of

models, while in the semantics of constraint logic programming (Diaconescu, 2000) finite colimits

of models play an important r6le.

4.3.1. Small Limits
By the technology of indexed categories (Tarlecki et al., l99I), in most institutions in use in logic

and computing science small limits of signatures are easy. In this section we show that by the method

of elementary diagrams, limits of theory models can be obtained from limits of signatures'

TIIEOREM 3. Consider an institution with elementary diagrams and initial models for theories. If

its category of signatures has limits, then the category of models of each theory has limits too'
Proof. Let 5 : (Sign, MoD, Sen, l) be an institution with elementary diagrams and initial mod-

els for theories. Let JI be a category such that Slgn has Jl-limits. Let M: jl + Moo(I,E) be a
Jl-diagram of models for a theory (>,8).

rr.(Mi\ -'-'y'---'- 
,"

{ ,/" q'
t - -  >  t ,
? \  2 "<1-

I

j

M'

Ml

2ut

I
l.r(r,)

I
zui

Let0:2t +Zy bethel imitconewhereZla: J -+Sign with

6 These properties of these institutions are well known in the theory of algebraic specification.
7 We leave this as exercise to the reader.
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(Zu)i :21ai for each index t € lill, and

(Zu)u :L>(M') for each index morphism a € jl.

LetE ' : {e€Sen() ' )  l0 ' ( r )  e  Ey, foreach ie  l . [ l ] .Bytheuniversalproper tyof  the l imi tcone
Q, let g: ) -+ I' be the unique signature morphism such that g;Oi : tz(Mi) for each i e lJIl. Let
N:0y,6,gr(r; le,where0z,r,u,plnl istheinit ialmodelofthetheory (2',8' Uq(E')).Noticethatfor
each i € l[l,02r,,B*, fq, I f'U g(E) (by the definition of Et ,by the fact that Mt I E,by the fact
that02r,,B* frr1,rz,; : Mi, andby the satisfaction condition), where Ozri,Eyi is the initial model of the
elementary diagram (Zyt,,Eyt). Therefore let vtbe the unique model homomorphism 0y,s,uq1B1 -+

}zr,,E*, fq,. Let F : vi f, for each t € lJl.
We prove that pi N + M is a limit cone. For each u € JI(t, j), we have that

(0>r,,r r, ) 0211,Eyi I q@\) l,r1,ra,; : Mu . Since L>(Mi) : q; O' and because
vii(0zr,,nr, ) }Dr,,E*, frr(,r2,)) lqi : v/, we have that vi lr,Mu v/ fr, which means that f ;Mu : 11i .
Therefore p: N + M is a cone.

Now consider another cone y': N/ =+ M. Let r:(N') : X -+ X7',,, be the elementary extension of
X via N/. Notice that {r2(y't)},.111 , >", } 2u is a cone. Therefore let g' : X,l,', -+ !/ be the unique
signature morphism such that g';0': tz(di) foreach, € lJl. Foreach t € lJIl, tz(/i) is a theory mor-
phism (2y,,Ey') -+ (21ai,E1ai), which implies that Q'(<p/(E1,',)) e Em, foreach t € lJIl, which implies
g' (En,) e E/ which implies 0z ,n,u,p1e1 F q'(Ev,) . By the satisfaction condition this is equivalent to
0z,n,vqqn1 lq, f Z'ry,. Therefore lethbe the unique model homomorphism 0pr,,6r, --| Oy,a,u,p(r,) f.p,.

We show that ftfrr1,,,',1 is the unique model homomorphism such that y'i : hl61y,1iFlfor each i €

lJIl.Indeed, for each t € lJIl, hlrrlly,filI: hft"(n,)lv'f,p : ftfrr(,v,);vtle, fr2(ru,) : (h;(0y,B,ur1r;[p, -+

}zpi,Epifo, f.p'))ft:(M) : (0t",,r", 1 }zri,E*ifo,fd)frr(ru,) : (Oxiv,,Erv, ) 0z*i,Eyift2(p,))f,r1,,v'; : y'i.
The uniqueness of /rf,"(ru,) follows from the isomorphism i2,1g, and from the initiality property of
0>r,,E*,.

EXAMPLE 9. By applying the methods of (Tarlecki et al., 1991), the institutions of first-order
predicate logic, rewriting logic, partial algebra, have small limits of signatures. By Theorem 3, cf.
Example 8, the categories of models of universal Horn theories in the in first-order predicate logic,
of equational theories in general (many-sorted) algebra, of rewriting logic theories, and of strong
equational and universal undefinedness predicate theories in partial algebra, have small limits. I

4.3.2. Finite Colimits
The following result gives a simple sufficient condition for the existence finite colimits of theory
models.

TIffiOREM 4. In any liberal institution with elementary diagrams the category of models of any
theory has finite colimits.

Proof. Let 3 : (Sign, MoD, Sen, F) b" a liberal institution with elementary diagrams.
Let us first notice that by the Satisfaction Condition, for each model M of a theory (>,8),

the restriction of the natural isomorphism 12,,y : MoD(Zu,Eu) -+ M lMoD(>) to the subcategory
Moo(Zy,EyUE') gMoo(Zy,E1a) is an isomorphism Moo(Zy,EyUE') -+ MlMoo(Z,E),
where E' :r>(M)(E).

Now consider hi: M --r M;two model homomorphisms in Moo(),E). Notice that the pushout of
hl andh2isthe same with an universal arrow from h2tothefunctor fu fMoo(>): (fulMoo(X,E)) -rl

(M lltr/oo(>,E)). This universal arrow exists because hllMoo(>) has a left adjoint since

the reduct functor Moo(t;(h1)): Moo(Xy,EMrlJE|) -+Moo(Z1a,E1a UE') has left adjoint
by the liberality of the institution, where El: L>(M1)(E),
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the diagram

(M 1 I Moo (>, s; ;elY9PQ. @ I Moo (>, E)
A , t 'iznl 

1",
Moo(),ra,, EM, ) MoD(rr(/,; 

Moo (z y, E y)

commutes by the naturality of i (cf. Remark 2),

as isomorphisms, l"-,fr, and i2,y have left adjoints, and

the composition of right adjoint functors is a right adjoint functor (Maclane, 1998).

Therefore Moo(X,E) has pushouts. By the liberality of the institution it also has an initial model'

thus, by the construction of any finite colimit from initial objects and pushouts (see (Maclane,

1998)), ithas all finite colimits.

EXAMPLE 10. Cf. Example 8, the categories of models of universal Hom theories in the in first-

order predicate logic, of equational theories in general (many-sorted) algebra, of rewriting logic

theories, and of strong equational and universal undefinedness predicate theories in partial algebra,

have finite colimits. D

4.3.3. Small Colimits
Here we give an alternative way of obtaining colimits of theory models which is based on colimits

of signatures in the style of Section 4.3.1. rather than liberality (as in Theorem 4) and which has the

advantage of going beyond the finiteness restriction. Notice that, as in the case of limits, indexed

categoriis (Tarleclii et al., 1991) provides an easy method for proving the existence of small colimits

of signatures in most institutions in use in logic and computing science.

TIffiOREM 5. Consider an institution with elementary diagrams and initial models for theories. If

its category of signatures has colimits, then the category of models of each theory has colimits too'

f roif Because the proof of this result uses the same technique and follows the same steps as the

proof of Theorem 3 we will omit the details.
. Letg : (Slgn, MoD, Sen, F) be an institution with elementary diagrams and initial models for

theories. Let JI be a category such that Slgn has Jl-colimits. Let M: JI -l Moo(I,E) be a Jl-diagram
of models for a theory (>,8).

I

j

t \ u
t \
t \

M , I  N
l r l

I r/,,

Let Q: 2u ) I/ be the colimit cone where 2y: J + Slgn with

(Zu)t :Zyi for each index i e lJIl, and
(Znt)u : r2(M') for each index morphism a € JI'

Let Et: Ui.| l t0'(Etz,). Let tp:rz(Mi);q'.  Let N:0y,6,sr(r)f<p, where 0y,E,u,p(r) is the ini-

tial model of the theory (2',E'U g(E)). Let v' be the unique model homomorphism 0>",,rr J

0y,n,urp(n) lq,. Let F : vifg for each t € U|.
We prbve that p: M + N is a colimit cocone. By calculations similar to those of Theorem 3,

we get that p is cocone. Now consider another cocone d: M + N/' Let r;(N/): ) -+ )1," be the

M'

MJ

2ui
,,(u)/ 

|
t " I

t  \  , t(M') l

,r;\ I
2mi
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elementary extension of 2 via N/. Notice that {tp(y't)},.111' >- + Xru, is a cocone. Therefore

let g': X/ -+ X,,g, be the unique signature morphism such that 0';q' : V(li) for each I e l"nl' Let

hbethe unique model homomorphism 0y,6,rr,p(r) +Oxiy,,Ea,f<p,. Then ftfq is the unique model

homomorphism such that y'i : hlqg,1,l[t for each , € l"nl.

EXAMPLE 11. By applying the methods of (Tarlecki et al., 1991), the institutions of first-order
predicate logic, rewriting logic, partial algebra, have small colimits of signatures. By Theorem 5, cf.

Example 8, the categories of models of universal Horn theories in the in first-order predicate logic,

of equational theories in general (many-sorted) algebra, of rewriting logic theories, and of strong

equational and universal undefinedness predicate theories in partial algebra, have small colimits. I

5. Conclusions and Future Research Work

We generalised the method of diagrams from conventional model theory to an institution-independentl
framework based on a novel categorical definition of elementary diagram of a model. We showed

that this is a natural easy to check property of actual institutions, and illustrated the power of our

institution-independent method of diagrams with some applications such as institution liberality'

institution-independent quasi-varieties, and limits and colimits of theory models. A side contribu-

tion of this paper is the new institution-independent appr'oach on quasi-varieties based on inclusion

systems. Wi also illustrated the concepts and results of this work with examples from four different

logics or institutions.
The applications developed in this paper suggest a great application potential for the institution-

independent method of elementary diagrams. We plan to further explore this potential'
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Appendix

In the Appendix we give very brief presentations of a number of institutions which irre used in this

paper as examples for illustrating some of the concepts introduced by this work and some of the

applications of the main results. Although we assume some familiarity with these institutions, the

reaOer is encouraged to consult the recommended references for more details. Also, some notations

and terminology used in some sections of the Appendix rely on notations and terminology from

previous sections.

A. (Many-sorted) First-order Predicate Logic with Equality

The role of this very brief presentation of many-sorted flrst-order predicate logic with equality is

mainly for fix some notations and conventions. A detailed definition of the first-order predicate logic

institution can be found in (Goguen and Burstall, L992).
Recall that a (many-sorted) signature in first-order predicate logic is a tuple (S,),lI) (often

denoted just by (>,n)) where ,S is the set of sorts, ) is the set of (S-sorted) operation symbols, and

fI is the set of (,S-sorted) relation symbols. By )r* we denote the set of operations with arrty w

and sort s (in particular, when the arity w is empty, I-', denotes the set of constants of sort s), and

by lI, we denote the set of relations with arity w.
Given a signature (>, n), a model M of first-order pfedicate logic interprets:

each sort s as a set M",

each operation symbol O € Xp-15 as a function Mo: M, ) Mr, where M' stands fot M', x . .. x

Mr^ fot ]t : sl . . . s,?, and

each relation symbol n e flw as a relation Mn e M*'

Any ground (i.e., without variables) X-term t : o(tr...tn), where o is an operation symbol and

tt, . . . ,tn are subterms, gets interpreted as an element M7 in a X-model M by fu : Mo(Mtr . . ' M,,)'

A (>, ll)-model homomorphism h: M -+ Mtis an indexed family of functions {h,: M, + Ml}'es

such that

fr is a )-algebra homomorphism M -+ Mt , i.e., h(Mo(m)) : Mt (h(m)) for each o € X,-1" and

eachme M*,8 and

h(m) e M|rf m e Mnfor each relation rE €nw and each m e M*.
-r 

sy n@)we mean infacth*(m),where ft, : M* -+ Mhisthecanonical component-wise extension of ft'
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The sentences are the well-known first-order closed formule (including equations), and their sat-
isfaction by the models is the well-known Tarskian satisfaction (see (Goguen and Burstall,1992;
C.C.Chang and H.J.Keisler, 1973) for details).

A signature morphism 0 : (Qton,Qop, O"l) : (^S, X, fI) -+ (S/, t/, n/) consists of a function between
the sets of sorts $tort: S -+ S/, a function between the sets of operation symbols Qop: > -+ E', and a
function between the sets of relation symbols 0'"1' lI -l lI/ such that QoP()r*'; g X[*.1r)-+0*n(r)

and f"l(ilr) e |I[*.1,; for any string of sorts w € S* and each sort s e S.e

Given a signature'morphism Q: (.1,X,|I) -+ (S',>',lI/), the reduct Mtlq of a (9,X/,[')-model
M/ is define dby (Mtlq), : Mf*.1"; for each sort s € S, (M'lo)o : M'q,rG) for each operation symbol

o € l, and (MtfO),t : \',I[*r1n) for each relation symbol fi € fI.

The sentence translaiion'along Q of any sentence is defined inductively on the structure of the

sentences by replacing the symbols from (S,),il) with symbols from (S',I',lI') as defined by Q'
Notice that by discarding the relational part, we get the many-sorted algebra institution with full

first-order equational sentences.

B. Rewriting Logic

Rewriting logic (Meseguer, L992) is emerging as one of the most important new algebraic specifi-

cation togics. Here we refer to a simplified variant of rewriting logic which is used for defining the

CafeOBJ institution (Diaconescu and Futatsugi, 2002), however this example can be extended to

the original definition of rewriting logic without any dfficulty.
Recall (from (Diaconescu and Futatsugi, 2002)) that our rewriting logic signatures are just or-

dinary (many-sorted) algebraic signatures. The models are preorder models which are (algebraic)

interpretations of the signatures into IFre (the category of preorders) rather than in Ser (the category

of seis) as in the case of ordinary algebras. More precisely, given a signature 2, amodel M interprets:

each sort s as a preorder Mr, and

eachOperationO€Xr-rasapreorderfunctorMo:Mr-+M'whereMrstandsfotMrrX.. 'X
M r , f o r w : s 7 " . s n .

The sentences are either ordinary equations or transitiorzs, both in their unconditional or con-

ditional form. For example, the unconditional )-transitions for a signature X, are sentences of the

form

(VX) t :) tt

where X is a many-sorted set of variables for 2 and t,t' are X-terms with variables X. Conditional

sentences in rewriting logic are universally quantified implications where the hypotheses are finite

conjunctions oftransitions or equations and the conclusion is a transition or an equation.

The signature morphisms, the model reducts, and the sentence translations along signature mor-

phisms are defined in the same way with ordinary (many-sorted) algebra (Appendix A)',

A preorder model M satisfi.es a transition M ? (VX) t :) tt' if and only if Mt, ! M'n tot

each expans ion Mt of M along the signature inclusion I '+ ) U X. The satisfaction of conditional

sentences extends the satisfaction of equations and transitions to the conditional case; we leave this

as exercise to the reader.
More details of this institution of rewriting logic can be found in (Diaconescu and Futatsugi'

ZO02), while (Meseguer,1992) has the details of the institution of full rewriting logic.

9 For any string of sorts w : sl .. . sn, bY Otott(r) we mean the string of sorts Oto*(sr ) . . .Otot(sr).
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C. Partial Algebra

There are many approaches to partial algebra, two classical references being (Burmeister, 1986;

Reichel, 1984). Oui formalisation of the partial algebra institution is tailored to the needs of this

paper but without affecting the logic and model theory of partial algebra.
Apartial algebraic signature is a pair (>,4), where X is the set of the total operations and A

is the set of the partial operations.lO Apartial (2,L)-algebra Aisjust like a lUA-algebra but

interpreting the operations of A as partial functions rather than total functions. A homomorphism
h: A -+ B between partial algebras, is a family of partial functions {hr: A, -++ Bs}ses indexed by

the set of sorts S of (),A) such that h(A"(a)) L- go(h(a)), i.e. either both h(Ao@)) *d n'(h(a))

are undefined or they are deflned and equal, for each operation o € (>U A)w-+s and each argument

a e A*. r r
The interpretation Al of a I U A-ground term t in a partial (E, A)-algebra is defined inductively

by

A1 is undefin ed 1f A4 is undefined for some k e {t,. . . ,n} or (As, ,. . . ,A,,) does not belong to

the definition domain of Ao, otherwise

A 1  :  A 6 ( f i r , . ' .  , A , n ) '

where t : o(h...lr) is a term with o'any (X,A)-operation and /1, '.. ,/n subterms.
Signature morphisms, model reducts, and sentence translations are defined similarly to the case

of the total algebra (see Appendix A).
The sentences are either undefinedness predicates or strong or existential equations, the equations

both in their conditional or unconditional form.
For each undefinedness (l U A)-predicate (VX) t {, where X is a many-sorted set of variables for

(X, A) and r is a ) U Aterm over X, a partial (), A) -algebra A satisfles it if and only if Ai is undefined

ior each expansion A/ of the partial algebra A along the signature inclusion (X, A) '+ (> U X,l).

For any unconditional strong ()UA)-equation (VX) t4/, whereX is amany-sorted set of

variables for (X, A) and t ,tt are ) U A-terms over X, a partial (I, A)-algebra A satisfies it if and only
if

A!, and At,, ara both undefined, or

At, and A',, are both defined and AI, : Ar,,.

for each expansion A/ of the partial algebra A along the signature inclusion (), A) '-+ (t U X ' A) .

Forany unconditional existential (XUA)-equation (VX) t !/,whereX is a many-sorted setof
variables for (X,A) andt,ttare )UA-terms over X,apartial (I,A)-algebra A satisfies it if and only
if

A', and At,, are both defined and At, : At,,.

for each expansion A/ of the partial algebra A along the signature inclusion (E, A) '+ (> U X, l; '
These definitions extend without any problems to the conditional case. We leave it as exercise to the
reader.

The following result show how this version of partial algebra is equivalent to an equationally
defined class (i.e. variety) of total algebras, which is very useful for establishing some properties of
partial algebras. We omit its straightforward proof.

PROPOSITION 3. For any partial algebra signature (X,A) with ,S the set of sorts, let j: {}'}"es
be an indexed set ofnew constant symbols and let fbe set ofthe equations

(Vrr  . . .V,vn)o(x1 . . .  J ,  . . . rn)  :1 , ,

10 In this notation we ignore the set of sorts, which are of course common to the total and the partial operations.
I I Notice that by convention h(a) is defined if and only if is defined on all components of a.
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for all operations o € >UA.
Then the funqtor mapping each partial (X,A)-algebra Ato the total (>UlU J, f)-algebra A such

that

- Ar:A' U {+"} for each sort s € 'S,
- for each operation o € >UA, Ao1a1 : A6(a) rf abelongs to the definition domain of 46, and
- Ao@) -], otherwise, where s is the sort of o,

and mapping each partial algebra homomorphism ft: A -+ B to the total algebra homomorphism
h: A -+ B such that for each sort s,

- h,(o) : h,(a) if a belongs to the definition domain of &r, and
- hr(o):J, otherwise.

is an isomorphism between the category of partial (X,A)-algebras and the category of total (>UAU J

, f)-algebras.
Moreover,

AF>^ (vx) t : /  t t r  AF>rr r l  (YX)t  = /

for each strong equation 1VX1 t ! / ,

A F>,r (VX) t Ll if A Frroul ((VX) / = tt and -(lX)/:J)

for each existential equation (VX) r 3 / , and

A F>,a (VX)r J itr A F>ror1 (VX) I = tr

for each universal undefinedness predicate (VX) r ]' I

D. Hidden Algebra

Hidden algebra is the institution underlying behavioural specification, which is one of the most

important new algebraic specification formalisms. In the literature there are several versions of

hidden algebra, with only slight technical differences between them (Diaconescu and Futatsugi,

2000; Hennicker and Bidoit, 1999; Goguen and Rogu, 1999). Here we adopt a slightly modified

version of coherent hidden algebra (abbreviated CHA) of (Diaconescu and Futatsugi, 2000).

A CHA signature is a tuple (H,V,2,2'), where

H and V are disjoint sets of hidden sorts andvisible sorts, respectively,

E is a 1/ U V-sorted signafure,

>o _C > is a subset of behavioural operations such that o € Xl,r, has exactly one hidden sort in

w.

A CHA model M for a signature (H,V,Z,Zb) is just an ordinary X-algebra'

CHA sentences can be ordinary (strict) equations, behavioural equations (both in conditional

or unconditional format), or coherence declarations (see (Diaconescu and Futatsugi, 2000; Dia-

conescu and Futatsugi,2002) for details). Recall ((Diaconescu and Futatsugi, 2000; Diaconescu and

Futatsugi, 2002)) that coherence declarations are semantically equivalent to conditional behavioural

equations and that the strict equations are treated in the same way as in the case of the ordinary

algebra. An unconditional behavioural equationis a sentence ofthe form

(vx)t - /

where X is a set of variables and t ,tt are l-terms over X.
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Recall that aZ-context clzlis any l-term c with a marked variable e occuning only once in c' A

context clz]is behavioural iff all operations abovel2 z are behavioural.

Given-a E-algebra A, two elements (of the same sort s) a and at arc called behaviourally equiv-

alent, denoted, i -, a/ (or just a - at), ,tr A': : A!' for each visible behavioural context c, where

Ato and A,o' are*y op*rions of A along the signature inclusion E'+ lUY, where f is the set of

variables of c, andsuchthat Alf :A!f'for-eachy € r\ {z},A'f 
- a'andA!' : d',..--,

Then, a E-algebraA satisfies ari (unconditional) behavioural equation A F ftX)1 - {'7ff

A', - A'r, for each A' expansion of the algebra A along the signature inclusion X '+ I U X'

This definition extends without any problems to the conditional case. We leave it as exercise to the

reader.
Given a cHA signature (H,v,2,2o), a CHA algebra homomorphism h: A -+ B between x-

algebras is a X-algebra homomorphism which preserves the behavioural equivalence, i.e., h(a) -

h(at) if a - a' fot each elements a,a' €. A.

Recall also that a CHA signature morphism Q: (H ,V,Z,Zb) -+ (Ht ,Vt ,>', >'b) is an many-sorted

signature morphism (HUV,>) -+ (H'UV' ,2') such that

(M1) O(Y) e 7/and O(H) e H',

(M2) O(tb) : X'b and Q-l(>'o) g >b,

Finally, model reducts and sentence translations along CHA signature morphisms are the same with

those from ordinary many-sorted algebra (Appendix A).

12 Meaning that e is in the subterm determined by the operation.


