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Elementary Diagrams in Institutions

Rizvan Diaconescu (razvan.diaconescu@imar.ro)
Institute of Mathematics “Simion Stoilow”, PO Box 1-764, Bucharest 70700, Romania

Abstract. We generalise the method of diagrams from conventional model theory to a simple institution-independent (i.e.
independent of the details of the actual logic or institution) framework based on a novel categorical concept of elementary
diagram of a model. We illustrate the power of our institution-independent method of elementary diagrams by developing
several applications to institution liberality, institution-independent quasi-varieties, and limits and colimits of theory
models. The results obtained are illustrated systematically with examples from four different algebraic specification
logics. In the introduction we also discuss the relevance of our institution-independent approach to the model theory
of algebraic specification and computing science, but also to conventional and abstract model theory.

1. Introduction

The theory of institutions (Goguen and Burstall, 1992) is a categorical abstract model theory which
formalises the intuitive notion of logical system, including syntax, semantics, and the satisfaction
between them. Institutions constitute the modern level of algebraic specification theory and can
be considered its most fundamental mathematical structure. It is already an algebraic specification
tradition to have an institution underlying each language or system, in which all language/system
constructs and features can be rigorously explained as mathematical entities. Most modern alge-
braic specification languages follow this tradition, including CASL (Mossakowski, 2001), Maude
(Meseguer, 1993), or CafeOBJ (Diaconescu and Futatsugi, 2002). There is an increasing multitude
of logics in use as institutions in algebraic specification and computing science. Some of them,
such as first order predicate (in many variants), second order, higher order, Horn, type theoretic,
equational, modal (in many variants), infinitary logics, etc., are well known or at least familiar to
the ordinary logicians, while others such as behavioural or rewriting logics are known and used
mostly in computing science.

The original goals of institution theory are to do as much computing science and model theory as
possible, independent of what the actual logic may be (Goguen and Burstall, 1992). This mathemat-
ical paradigm is often called ‘institution-independent’ computing science or model theory. While
the former goal has been greatly accomplished in the algebraic specification literature, there were
only very few and rather isolated attempts towards the latter (Tarlecki, 1986a; Tarlecki, 1986b; Sal-
ibra and Scollo, 1996). This situation contrasts with the feeling shared by some researchers that
deep concepts and results in model theory can be reached in significantly via institution theory.
This paper can be regarded as a new step towards this goal, part of a recent series of works in
institution-independent model theory starting with (Diaconescu, 2002).

The significance of institution-independent model theory is manifold:

— It provides model-theoretic results and analysis for various logics in a generic way. Only
a limited number of model-theoretic properties are usually studied for the logics in use in
computing science and algebraic specification, however it is important to have as deep as
possible understanding of the model-theoretic properties of the underlying logic because the
specification or software engineering properties of the logic depend intimately on the model
theoretic ones ((Diaconescu et al., 1993) is only one of the works that support this argument).
We sometimes notice that the failure of some specification properties of a logic is due to the
rather subtle wrong definition of some details of the logic. We also notice that often the right
definition of a logic can be checked through its model-theoretic properties, otherwise said good
model-theoretic properties lead to good specification properties.

— It exports model-theoretic methods from classical logic to other logics. Classical first-order
predicate logic has developed very rich a powerful model-theoretic methods, which exported
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to an institution-independent framework can become available for the multitude of computing
science or algebraic specification logics.

— It provides a new way of doing model theory. While the points we made above have a more
application oriented significance, this point has a pure mathematics methodological signifi-
cance. The institution-independent way of obtaining a model theoretic result, or just viewing a
concept, leads to a deeper understanding of why a certain model theoretic phenomenon holds.
Such top-down understanding is not suffocated by the details of the actual logic, it decomposes
the model-theoretic phenomenon (into various layers of abstract conditions), and provides a
clear picture of its limits.

Although these points are largely valid for any form of abstract model theory, they are especially
relevant for the institution-independent abstract model theory. One of the reasons for this is that
up to our knowledge, the theory of institutions provide the most complete definition of abstract
model theory, the only one including signature morphisms, model reducts, and even mappings
(morphisms) between logical systems, as primary concepts. Also, as mentioned above, the current
algebraic specification logics and an increasing number of computing science logics are formalised
as institutions.

This work exports one of the most important and powerful conventional model theory methods,
namely the method of diagrams (C.C.Chang and H.J.Keisler, 1973), to an institution-independent
framework. This framework is based on a simple novel categorical formulation of the concept of
elementary diagram (of a model). Notice that a different institution-independent formulation of the
method of diagrams has been used by Tarlecki as part of the definition of the so-called “abstract
algebraic institutions” (Tarlecki, 1986a; Tarlecki, 1986b).!1

1.1. SUMMARY AND CONTRIBUTIONS OF THIS WORK

The preliminary section gives a very brief overview of concepts, terminology, and notations from
category theory (including inclusion systems) and institution theory.

The next section is devoted to the institution-independent definition of the concept of elementary
diagram of a model. We illustrate this definition with rather detailed examples from four of the most
important logics in algebraic specification and model theory (formalized as institutions).

In the last section we illustrate the power of our institution-independent method of elementary
diagrams by exploring several applications. Some of the results obtained by instantiating the results
of this section to actual institutions might be already known in the theory of algebraic specification,
however our goal here is to illustrate the power of the concept and to show ways of using it. The
reader may easily compare the more conventional way of obtaining some of these results, involving
rather complex proofs, to the simplicity of the results based on elementary diagrams. This simplicity
has various aspects: on one hand elementary diagrams are a natural property of institutions (provided
the details of the institution are correctly defined) easy to check, on the other hand the existence of
elementary diagrams is very rich in mathematical consequences especially when combined with
other basic properties of the institutions.

The first application concerns institution liberality, which is one of the most important properties
of algebraic specification institutions. We show that under the existence of elementary diagrams, full
liberality follows almost directly from the existence of initial models of theories (which is a special
restricted case of liberality). A related result has been obtained in (Tarlecki, 1986a) but under a much
more complex set of conditions providing a lot of additional structure to the concept of institution.

The second application develops an institution-independent approach to quasi-varieties based on
elementary diagrams and inclusion systems. Due to both elementary diagrams and the use of inclu-
sion systems instead of (the more conventional) factorisation systems, our institution-independent
approach to quasi-varieties is much simpler than “abstract algebraic institutions” of (Tarlecki, 1986a)ji
and (Tarlecki, 1986b).

! This definition can be formulated only in institutions with additional structure such as regular categories of models,
etc.
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The last application is perhaps the most surprising. We show how under the existence of ele-
mentary diagrams, limits/colimits of models in theories with initial model can be obtained from
limits/colimits of signatures. It is well known that in actual institutions, the categories of signatures
have easy limits and colimits?, while limits and especially colimits of theory models are rather
difficult. '

The applications developed are illustrated with examples from four different institutions: first-
order predicate logic (with or without equality), rewriting logic, partial algebra, and hidden algebra
for behavioural logic. These logics are very briefly presented in the Appendix, mainly for setting up
some notation and terminology.

2. Preliminaries

2.1. CATEGORIES

This work assumes some familiarity with category theory, and generally uses the same notations
and terminology as Mac Lane (MacLane, 1998), except that composition is denoted by *,” and
written in the diagrammatic order. The application of functions (functors) to arguments may be
written either normally using parentheses, or else in diagrammatic order without parentheses, or,
more rarely, by using sub-scripts or super-scripts. The category of sets is denoted as Set, and the
category of categories® as Caz. The opposite of a category C is denoted by C°P. The class of objects
of a category C is denoted by |C|; also the set of arrows in C having the object a as source and the
object b as target is denoted as C(a,b). The isomorphism of objects in categories is denoted by ~.
We use = to denote natural transformations.
For any object a, the comma category a/C has

— arrows f € C(a,b), as objects, and
— arrows h € C(b,b') such that f;h = f', as arrows between f € C(a,b) and f' € C(a,b').

2.1.1. Inclusion Systems
Inclusion systems where introduced in (Diaconescu et al., 1993) for the institution-independent

study of structuring specifications. In (Diaconescu et al., 1993) they provide the underlying mathe-
matical concept for module imports, which are the most fundamental structuring construct. Mathe-
matically, inclusion systems capture categorically the concept of set-theoretic ‘inclusion’ in a way
reminiscent of factorization systems (Borceux, 1994); however in many applications the former are
more convenient than the latter. Weak inclusion systems were introduced in (Cidzadnescu and Rosu,
1997) as a weakening of the original definition of inclusion systems of (Diaconescu et al., 1993).

DEFINITION 1. (I, E) is a weak inclusion system for a category C if I and E are two sub-
categories with |I| = |£| = |C| such that

1. I is a partial order, and
2. every arrow f in C can be factored uniquely as f = e¢;i withe € Zandi € I.

The arrows of I are called inclusions, and the arrows of E are called surjections.* The domain
(source) of the inclusion i in the factorization of f is called called the image of f and denoted as
Im(f).

A weak inclusion system (I, E) is a epic weak inclusion system if and only if all surjections are
epics and it is an inclusion system if in addition I has finite least upper bounds (denoted +) (see
(Diaconescu et al., 1993)). O

2 For example, by using arguments from indexed category theory (Tarlecki et al., 1991).
3 We steer clear of any foundational problem related to the “category of all categories”; several solutions can be found

in the literature, see, for example (MacLane, 1998).
4 Surjections of some weak inclusion systems need not necessarily be surjective in the ordinary set-theoretic sense.
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EXAMPLE 1. Let (S,2,I1) be a signature in first-order predicate logic (see Appendix A). The cat-
egory of (Z,IT)-models has an epic weak inclusion system such that a (2,T1)-model homomorphism

h: M — M

— is inclusion if for each sort s € S, hy: My — M., are set-theoretic inclusions, and

_ is surjection if for each sort s € S, hg: My — Mj are set-theoretic surjections and M =
{hy(a) | a € My} for each arity w and each predicate symbol 7 € IT,.

In the particular case of the inclusion system of many-sorted algebra (obtained by the absence of the
predicate symbols), algebra homomorphisms are algebra inclusions/surjections, if and only if they
are component-wise set-theoretic inclusions/surjections, respectively. O

EXAMPLE 2. Given an algebraic signature %, we can define an epic weak inclusion system for the
category of Z-preorder models (see Appendix B) such that a -preorder homomorphism h: M — M’

— is inclusion if for each sort s of the signature X, k;: M — M; are preorder inclusions, and

— is surjection if for each sort s of the signature %, hy: My — M., are preorder surjections and
for each m},my € M', mi < m if and only if there exists mi,m; € M such that m; < my and

m) = h(m1) and m), = h(my).
a

EXAMPLE 3. Given a partial algebra signature (%,A), we can define an epic weak inclusion
system for the category of partial (Z,A)-algebras (see Appendix C) such that a partial (Z,A)-
homomorphism A: A — A’

— is inclusion if for each sort s, i : Ay < A} are total inclusions, and
— is surjection if for each sort s, hs: A; — A} are partial surjections.

2.2. INSTITUTIONS

In this section we briefly review some of the basic concepts on institutions. Besides the seminal pa-
per (Goguen and Burstall, 1992), (Diaconescu et al., 1993) contains many results about institutions
with direct application to modularisation in algebraic specification languages.

DEFINITION 2. An institution S = (Sign, Sen, MOD, |=) consists of
1. a category Sign, whose objects are called signatures,

2. a functor Sen: Sign — Set, giving for each signature a set whose elements are called sentences
over that signature,

3. a functor MoD: Sign® — Cat giving for each signature X a category whose objects are called
S-models, and whose arrows are called X-(model) morphisms, and

4. arelation =5 C [MOD(Z)| x Sen(X) for each X € |Sign|, called Z-satisfaction,

such that for each morphism @: £ — X' in Sign, the satisfaction condition

m' =y Sen(@)(e) iff MoD(@)(m') =xe

holds for each m' € [MoD(Z')| and ¢ € Sen(X). We may denote the reduct functor MOD(9) by [,
and the sentence translation Sen(¢) simply by ¢(.). When M = M'[, we will say that M' is an
expansion of M along ¢. O
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DEFINITION 3. An institution is closed under isomorphisms if and only if each two isomorphic
models satisfy the same sentences. U

DEFINITION 4. Let 3 = (Sign,Sen,MoD, =) be an institution. For any signature 2 the closure
of a set E of Z-sentences is E* = {e | E |=x e}°. (Z,E) is a theory if and only if E is closed, i.e.,
E=E".

A theory morphism @ (Z,E) — (2, E') is a signature morphism ¢: £ — X' such that 9(E) CE".
Let Thg denote the category of all theories in 3. O

REMARK 1. For any institution 3, the model functor MOD extends from the category of its sig-
natures Sign to the category of its theories Thg, by mapping a theory (2,E) to the full subcategory
MoD(Z, E) of MoD(Z) formed by the Z-models which satisfy E. O

DEFINITION 5. A theory morphism @: (Z,E) — (X', E') is liberal if and only if the reduct functor
_lp: MOD(Z',E") — MOD(Z, E) has a left-adjoint (-)?.
The institution 3 is liberal if and only if each theory morphism is liberal. O

Exactness properties for institutions formalise the possibility of amalgamating models of differ-
ent signatures when they are consistent on some kind of ‘intersection” of the signatures (formalised

as a pushout square):

DEFINITION 6. An institution 3 = (Sign, Sen,MOD, =) is exact if and only if the model functor
MoD: Sign® — Cat preserves finite limits. 3 is semi-exact if and only if MOD preserves only
pullbacks. O

FACT 1. In a semi-exact institution 3 consider a pushout of signatures

o1

T——X

o

By ==
%

and two models, a ¥;-model M; and a X-model M such that M1 [y, = M, l4,- Then by the semi-
exactness, there exists an unique '-model M’ such that M'[y = M; and M ', = Ma. We call this
model the amalgamation of My and M, and denote it by M; @ M.

This amalgamation concept is also extended to model homomorphisms U

3. Institutions with Elementary Diagrams

In this section we introduce the main concept of this paper.

DEFINITION 7. An institution 3 = (Sign,MOD, Sen, |=) has elementary diagrams if and only
if there exists a natural transformation 1: MOD = (—/Thg), such that MOD(Zy, Ey) and the
comma category M /MoD(Z) are naturally isomorphic, i.e. the following diagram commutes by
the isomorphism is  natural in M

MoD (S, Ey) —2> (M/MoD(E))

MoD(Z)

where 15(M): (Z,0) — (X, Ey) for each signature X and each Z-model M.
The signature morphism 1z (M) : = — 2 is called the elementary extension of £ via M and the
set Ey; of 3y,-sentences is called the elementary diagram of the model M. O

5 E =5 e means that M |=5 e for any X-model M that satisfies all sentences in E.
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REMARK 2. The naturality of 1 means that for each signature morphism ¢: % — ¥/, the following
diagram commutes:
MOD(Z) —— %/ Thg

MOD(¢)T T«»/Ths
MoD (%) “ ¥ /Thg

Given a ¥-model homomorphism h: M — M’ for a signature %, by the the functoriality of 15, we
have that 15 (k) is a theory morphism 5(h): (Zp, Esr) — (Zarr, Epr) such that

5 15(M) Sy

lz(\m llz(h)

W

The naturality of iz, s in M means that the following diagram commutes:

MOD (Sy, Ent) 2> M/MoD(2)
MOD(l};(h))T Ih/MOD(Z)
MoD (Zys, Epy) — M /MoD(X)
lE,M'

Informally, Definition 7 says that for each model M, the class of model homomorphisms from
M can be axiomatised as a class of models of a theory. In other words, the elementary diagram of
M is the theory encoding the class of model homomorphisms from M. In the particular concrete
cases this categorical abstract model-theoretic concept of elementary diagram coincides with the
ordinary concepts of elementary diagram, as know from conventional model theory (C.C.Chang
and H.J.Keisler, 1973) (see Example 4 below).

The rest of this section presents a serie of concrete examples for the concept of elementary

diagram.

EXAMPLE 4. Elementary diagrams in many-sorted first-order predicate logic with equality.
Consider a first-order predicate logic signature (X,IT) and a (Z,IT)-model M. Then the the elemen-

tary extension of (Z,IT) via M is iz 1(M): (Z,I1) — (Zp,IT) where

— (Z41)w—ss = Sy for any non-empty arity w and any sort s, and
— (Zp1) 55 = 2,5 UM, for any sort s.

Notice that the (2, IT)-model M can be canonically expanded to a (Zy, IT)-model M)y by interpreting
the new constants of (Z37)_,s by the corresponding elements of My, i.e. (My), = a foreacha € M.
Then we define the elementary diagram Ejs by
Ey ={(V0) ¢t = ¢ ground equation | My 5,11 (V0) ¢ = '} U{(V0)n(t) ground atom |
My =5, 11 (YO)R(2), 7 €I, ¢ list of ground Z-terms corresponding to the arity of 7}

The isomorphism is, 11y maps any (Z,11)-model N satisfying Ej to the (%,IT)-model homo-
morphism Ay : M — N[ 5(a) such that hy(a) = N, for each element a € M. For each operation
O € %, and for each list of elements a € M,,, we have that hy(Mq(a)) = Nu,(a) = No(q) (be-
cause N |=5,.11 (V0) 6(a) = Ms(y) = No(Ng) = No(hn(a)), therefore hy is a Z-homomorphism.
For each predicate 1 € I1,, and for each list of elements a € M,,, we prove that @ € My implies
hy(a) € Ny. But @ € My, implies My =5, i1 (V0)7(a) which means that (V0)7(a) € Ej. This implies
N Es,,.n1 (V0)n(a) which further implies N, € N which means Ay (a) € Ny. Therefore hy is also a
IT-homomorphism.
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The reverse isomorphism 75, ln 1, maps any (Z,IT)-model homomorphism A: M — N to the (Zy, H)—I
model i5 lrI,M (h) = Nj, where (Np) [y = N and (Ni). = h(a) for each a € M. For each ground
Zy-equation (V0) ¢ = ¢/, we have that Ny |= (V0) ¢ = ¢’ if and only if (N,), = (Ny)y if and only if
h(M,) = h(My) which holds when M, = M, which is the same with M |= (V0) ¢ = ¢'. Also, for each
ground IT-atom (V@)7t(z) where ¢ is a list of Z-terms, we have that N, = (V0)=(z) if and only if
N; € (Ny)g if B(M;) € (Ni)x which holds whenever M; € My, which is the same with M |= (V0)7(z).
This argument resumes the proof that N, = Ey.

Notice that in the unsorted case without equality, Ejs gives exactly the elementary diagram of M
in the sense of conventional model theory (C.C.Chang and H.J.Keisler, 1973). O

EXAMPLE 5. Elementary diagrams in rewriting logic
Consider an algebraic signature X and a preorder X-model M. Then the the elementary extension of

Y viaMis1g(M): £ — X where

— (Zm)w—s = Zws for any non-empty arity w and any sort s, and
— (Zy) s = 25U |M,] for any sort s.

As in the previous example, the Z-model M can be canonically expanded to a Xj-model My by
interpreting the new constants of (Zj/),s by the corresponding elements of M, i.e. (My), = a for
each a € M. Then the elementary diagram E), is defined by
Ey = {(V0) ¢ = ¢ ground equation | My =5, (VO)¢ = t'}U
{(V0) t => ¢ ground transition | My k=5, (V0) 1 => t'}

The isomorphism i5, y maps any preorder Xj,-model N satisfying Ej to the preorder Z-homomorphismij
ispm(N) = hy: M — Ny such that hy(a) = N, for each element a € M. Because N satisfies the
equations of Ej, we can prove that hy is a X-homomorphism in the same way as in Example 4. We
still have to prove that Ay is a preorder functor. Consider two elements a,a’ € M of the same sort
such that a < . This implies that My, =5, (V0) a => &', which implies that (V0) a => a' € Ey,
which implies that N |=5,, (V0) a => ', which implies that N, < N, which means hy(a) < hy(a').

The reverse isomorphism iy }V, maps any preorder 2-homomorphism #: M — N to the preorder
Yy-model N, where (Ny) [y m) = N and (Ny)q = h(a) for each element a € M. We can prove that
Nj, satisfies all equations of Ej in the same way as in Example 4. Consider a transition (V0) ¢ =>
t' € Ey. Then My =5, (V0) t => ¢, which means that M; < M. Because A is a preorder functor,
this implies that A(M,) < h(My), which means that (N;); < (N;)y, which finally means N, |=5,,
(V0) t => ¢'. This resumes the proof that N, also satisfies all transitions from Ej,. O

EXAMPLE 6. Elementary diagrams in partial algebra.
Consider a partial algebra signature (£,A) and a partial (%,A)-algebra A. The elementary extension

of (£,A) viaA is 1za(4): (Z,A) = (2,A4) where

— (A4)w—s = Ay for any non-empty arity w and any sort s, and

— (A4) s = AL UA, for any sort s.
The partial (Z,A)-algebra A can be canonically expanded to a partial (Z,A4)-algebra A4 by interpret-
ing the new constants of (Z4)_;, for each sort s by the corresponding elements of Ay, i.e. (A4)s =a
for each a € A. Then the elementary diagram E, is defined by

Ex = {(V0) t = ¢ ground strong equation | A4 F=xa, (V0) 2 =1#}U
{(V0) ¢ | ground undefinedness predicate | As [=x,a, (VO) 21}

The isomorphism is, o 4 maps any partial (Z,A4)-algebra B satisfying Ey to the partial (Z,A)-
homomorphism is s 4(B) = hp: A o= B[y, (a) such that hp(a) = B, for each element a € A, i.e.
either both of them are undefined or both of them are defined and equal. For each operation symbol
0 € (2UA),,_s and for each list of elements a € A,,, we have to prove that hg(As(a)) = By (hp(a)).
By definition we have that hp(Aq(a)) = By, (q) and Bo(hp(a)) = Bo(Ba). But By (4 = Bs(B,)
because



_ when Ag(a) is undefined then Bo(B,) is also undefined because B =5, (V0) o(a) | as
(V0) o(a) L€ E4, and

— when Ag(a) is defined then By (4) = By (B,) because B =54, (V0) o(a) = Ag(a) as (V0) o(a) él
Ag(a) € Ea.

Therefore, by the transitivity of the strong partial equality = relation, hp is a (X, A)-homomorphism.

The reverse isomorphism ig’lAy , maps any (%, A)-homomorphism h: A - B to the partial (Z, AA)—I
algebra B, where (Bj) [ ,(a) = B and (Bi)a = h(a) for each element a € A. The fact that By, satisfies
all strong equations and undefinedness predicates of E4 follows from the fact that for each ground
term ¢, h(A;) = (By); (easily shown by structural induction on 7). U

EXAMPLE 7. Elementary diagrams in hidden algebra.
Consider a CHA signature (H,V,Z,?) and a Z-algebra A. Then the elementary extension of (H,V, 2, ) |

via A isiz(A): (H,V,Z,Z°) < (H,V,Z4,2ZP), where

— (ZA)wss = Zwoss for any non-empty arity w and any sort s, and
— (Z4) s = 25 UA, for any sort s.

The Z-algebra A can be canonically expanded to a Z4-algebra A4 by interpreting the new constants
of (£4)_s by the corresponding elements of A;, i.e. (Ap), = a for each a € A. Then the elementary
diagram E, is defined by
Ea = {(V0)t = ¢ ground strict equation | A4 =5, (V0) 1 = #'}U
{(V0) t ~ ¢' ground behavioural equation | A4 =5, (V0)t ~ 7'}

The isomorphism is 4 maps any 4-algebra B satisfying Ej to the CHA Z-algebra homomor-
phism hp: A — Bl a) such that ig(a) = B, for each element a € A. For each operation © € X,
and for each list of elements a € A,,, we have that hp(Ag(a)) = Ba,(a) = Bo(a) (because B =5,
(V0) 6(a) = As(a) = Bo(Ba) = Bo(hp(a)), therefore hp is a >-homomorphism. Now let us consider
two behavioural equivalent elements a,d’ € A such that a ~ a'. This implies (V0) a ~ a' € Ex which
implies B |=5, (¥0) a ~ @ which implies B, ~ By which means that hg(a) ~ hp(d'). This shows
that A is a CHA Z-homomorphism.

The reverse isomorphism i}?‘;‘ maps any CHA X-algebra homomorphism A: A — B to the 24-
algebra By, where (By)[;(a) = B and (Bj)a = h(a) for each a € A. Each ground strict Z4-equation
(V0) ¢ = ¢ in E, is satisfied by By, by the virtue of the same argument as in Example 4. Now
consider a ground behavioural X4-equation (V0) ¢ ~ ¢’ in Es. This means that A, ~ Ay, which
implies /(A;) ~ h(Ay) because h preserves behavioural equivalence, which means (Br): ~ (Bn)ys
which means that B, |=5, (V@) ¢ ~ ¢'. This resumes the proof that B, |= E4. O

The examples of this section point out to a certain pattern for the elementary diagrams. In the
particular cases they are the basic ground sentences satisfied by the model over the signature ex-
tended with the elements of the model as constants. Informally, the basic sentences are the simplest
sentences of the institution that match the fundamental model-theoretic structure of the institution,
not involving logical connectives or quantifications.

4. Some Applications

This section is devoted to several applications illustrating the power of the institution-independent
method of elementary diagrams.

4.1. INSTITUTION LIBERALITY

Intuitively, liberality can be regarded as a generalised form of initial semantics. The following result
makes this intuition precise for the institutions with elementary diagrams.
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PROPOSITION 1. Let S = (Sign,MOD, Sen, |=) be an institution with elementary diagrams such
that each theory has an initial model. Then

1. for each theory (X, E), the forgetful functor MOD(Z, E) — MOD(Z) has a left adjoint, and
2. if the institution 3 has pushouts of signatures and is semi-exact, then for each signature mor-
phism @ the reduct functor MOD(®) has a left adjoint.

Proof. For each theory (Z, E), we denote its initial model by Oz .

1. Consider a theory (%,E) and let M be a X-model. Let 15(M): £ — Zy be the elementary
extension of X via M and let E' = 15(M)(E). We show that M’ = Os,, k,ue' [15(m) is the free (Z,E)-
model over M with the universal arrow My = (03, £, — O, £, UE") Ny (m)-

We have to prove that for each model homomorphism A: M — N for N |=5 E, there exists an
unique /': M’ — N such that 1y;; i’ = h. Let Ny = iz 3, (h). Then N, =, E' because Nyl ar) = N
and N f=5 E. Let h" be the unique model homomorphism A" : O, g,uer — Ni. Let i be B [ ).
Then Nag; ' = (05,2 — Ni) [iyar) = B

The uniqueness of &' follows by the bijection between (M /MOD(Z))(Num,h) and
MOD(Zy, Em) (05, EyUE' Ni)-

2. Let @: X — X' be a signature morphism and let M be a 2-model. Consider the pushout of
signatures

/
EM i}. Z//

12(M)T TL'

g

We define M® to be (Osr a#(£y)) v and the universal arrow Ma: M — (M®)[¢ to be (0, £, —
(O /() [0) Tz (1)

For proving the universal property of My, consider h: M — N|o with N any X'-model. Let
My =iz }W(h) Notice that Mj, [\, (3r) = N [¢. Because 3 is semi-exact, let N ® M), be the amalgamation
of N and M;,. Notice that N @ M}, = @' (E),) because (N ® My) o = M}, |= Ey. Therefore there exists
an unique model homomorphism A" : Ogr g (g,,) — N @ M. Let b = h" [y. We have that 7': M® N
and N3 7' [ = s B Tv To = Mass 1" [ Tiz ey = (Ozy,E0 — M) Tig () = -

The uniqueness of /' follows from the uniqueness of A" and of the amalgamation of model
homomorphisms.

The following is a corollary of Proposition 1:

THEOREM 1. A semi-exact institution with elementary diagrams and finite colimits of signatures
is liberal if and only if each theory has an initial model.

Proof. Let 3 = (Sign,MoD, Sen, |=) be an institution with elementary diagrams and finite col-
imits of signatures.

In each institution with initial signatures, the existence of initial models for a theory is the
same with the liberality of the unique theory morphism from the initial (empty) theory to that
theory. Therefore, we have to prove only that the existence of initial models for theories implies
the liberality of the institution.

Consider a theory morphism @: (£,E) — (£',E').

oD
Mob(Z) @ Mon(x)
Jorgetful forgetful
subcategory subcategory

oD(XE Mobp (X E’
M (a)m (Z,E')

By Proposition 1, both MOD(®): MoD(X') — MoD(Z) and the forgetful functor MOD(Z',E') —
MoD(Z') have left-adjoints. By composition of adjunctions (see (MacLane, 1998)), the composite
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functor MOD(X/, E') — MoD(Z2) has a left-adjoint. Now, by the following simple categorical lemma
(we omit its proof):

LEMMA 1. Let C' < C be a full subcategory and consider a functor D — C'. If the composite
functor D — C has a left-adjoint F, then the restriction of F to C' is a left-adjoint to D — C.

c

I\

G =D

we resume the proof of this theorem by substituting the category D by MOD(Y', E'), the category C
by MoD(Z), and the category C' by MOD(Z, E).

4.2. QUASI-VARIETIES IN INSTITUTIONS

We develop an institution-independent approach on quasi-varieties, based on the method of elemen-
tary diagrams and inclusion systems.

4.2.1. Quasi-varieties in inclusion systems

In this section we rephrase abstractly some classical model theoretic concepts within the framework

of inclusion systems. Similar concepts have been formulated and results obtained within the frame-

work of factorisation systems (see (Tarlecki, 1986a; Tarlecki, 1986b) or (Andréka and Németi, 1981)

for a very general approach), however the inclusion systems framework leads to greater simplicity.
Firstly, we may use the concept of inclusion system for rephrasing the category theoretic con-

cepts of subobjects and quotients (that are traditionally (MacLane, 1998) defined in terms of monics

and epics).
DEFINITION 8. Consider a weak inclusion system (I, ) for a category C. Then

— ais a subobject of b if there exists an inclusion a < b, and

— an object b is a quotient representation of a if there exists a surjection a — b. A quotient of
a is an isomorphism class of quotient representations.

The weak inclusion systems (I, E) is well-powered, respectively co-well-powered, if the class of
subobjects, respectively quotients, of each object is a sez. O

DEFINITION 9. Consider a category C with a weak inclusion system. Then an object of C is
reachable if and only if it has no proper subobjects. O

FACT 2. Consider a category C with a weak inclusion system and with an initial object Oc. Then

1. for each reachable object a, the unique arrow Oc — a is a surjection, and
2. each object has exactly one reachable subobject.

O

DEFINITION 10. Consider a category C with finite products and with a weak inclusion system.
Then a class of objects of C closed under isomorphisms

— is a quasi-variety if it is closed under finite products and subobjects, and
— is a variety if it is a quasi-variety closed under quotients.
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PROPOSITION 2. Consider a category C with an initial object Oc and with a co-well-powered
epic weak inclusion system. Then each quasi-variety Q of C has a reachable initial object. O

Proof. Let {A; | i € I} be the class of of all reachable subobjects of all objects of Q. Then we
consider a subclass of indices I' C I such that there are no isomorphic objects in {A; | i € I'} and for
each i € I there exists j € I' such that A; ~ A;. I' is a set because the weak inclusion system of Cis
co-well-powered and by Fact 2. Let 0 be the reachable subobject of the product IT;cyA;. We prove
that O is initial in Q.

For each object A of Q, there exists j € I such that A; is a reachable subobject of A. Then
there exists i € I' such that A; is isomorphic to A}, therefore there exists and arrow ITiepA; — A.
Because 0 is a subobject of Il;cyA;, there exists an arrow 0g — A. Because Oq is reachable, the
unique arrow Oc — Oq is a surjection, hence it is an epic, which implies the uniqueness of the arrow

OQ — A.

4.2.2. Quasi-varieties in institutions with elementary diagrams

The following result extends the conclusion of Proposition 2 with its opposite implication, thus
obtaining an ‘if and only if* characterization of quasi-varieties. This generalizes a classical result
from universal algebra (Gritzer, 1979) or conventional first-order model theory (Malcev, 1971). A
similar institution-independent result has been obtained by Tarlecki (Tarlecki, 1986a) within the
framework of the so-called “abstract algebraic institutions”. However, the concept of abstract alge-
braic institution provides a set of conditions much more complex than the conditions of Theorem 2,
the greater simplicity of our approach leading also to simpler and somehow different proofs.

THEOREM 2. Consider an institution 3 = (Sign,MoD, Sen, =) closed under isomorphisms and
with elementary diagrams such that

1. the category of Z-models has an initial object Os, finite products, and a co-well-powered epic
weak inclusion system for each signature X,

2. all model reduct functors preserve the inclusions and the surjections,
3. the model reduct functors corresponding to the elementary extensions reflect identities.

Then each theory has a reachable initial model if and only if the class of models of each theory is a
quasi-variety.

Proof. By Proposition 2 we have to prove only one implication. Let (2,E) be a theory and con-
sider B — A a submodel of A € [MOD(Z, E)|. We prove that B |=5 E. Let iz 5(B <> A) = h: Oz, g, —
Ap. Let us factor 4 = ¢; j in the inclusion system of Zp with e surjection and j inclusion. Because the
reduct functor MOD (1z(B)) preserves both the inclusions and the surjections, B < A gets factored
as B — A = e[\;(p); J[\y(p) In the inclusion system of X. Because B < A is an inclusion, we deduce
that e[, = 15, which means that e is identity because MOD(15(B)) reflects identities. Therefore & is
inclusion.

A =5 E implies that Ap =5, E', where E' = 13(B)(E), which means that there exists an unique
arrow f: Oz, goup — Ap. Because h: Oz, £y < Ap is inclusion and Oy, g, — Os, £yuEr is surjection,
by factoring f in the inclusion system of Xz and by using the initiality properties, it follows that
Os;,E; and Oz, ppup are isomorphic. Therefore, Oz, £, =35, E', which by the satisfaction condition
implies B =5 E.

For the second part of this proof, consider (m;: B — A;)ier a product of models in a signature X
and such that A; = E for each i € I. We prove that B |= E. Because of the canonical isomorphism
iz,5: MOD(Zg,Eg) — B/MOD(Z) and because the forgetful functor B/MoD(X) — MOD(Z) re-
flects the products, we deduce that ((7;)g: Os; £, — (A;)B)ies is a product in MOD(2, Ep), where
(TC,‘)B = iié(ﬂ?i) foreach i€ l.

By the satisfaction condition (A;)p |= E' for each i € I, where E' = 15(B)(E). Therefore we get
an unique arrow Oz, g,ue' — (A;)p for each i € I. By the universal property of products, we thus get
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an arrow Oy, g,up’ — Oz E5- Because we already have an arrow O, g, — Os; g,uz, by the universal
property of the initial objects Os; £, and Oz, guE', We have that Oz, g, and Oz, gyuE’ are isomorphic.
This implies that O, g, =5, E’, which by the satisfaction condition implies B =z E.

COROLLARY 1. Consider a semi-exact institution with finite colimits of signatures and satisfying
the conditions of Theorem 2. If the class of models of each theory is a quasi-variety, then the

institution is liberal. O

EXAMPLE 8. The institutions of first-order predicate logic, rewriting logic, partial algebra, have
finite colimits of signatures and are semi-exact® and admit elementary diagrams (by Examples 4, 5,
and 6). One may easily notice that the epic weak inclusion systems for the categories of models of
these three institutions, given in Examples 1, 2, and 3, satisfy the specific conditions of Theorem 2.

In first-order predicate logic, each universal Horn sentence theory (see (C.C.Chang and H.J.Keisleri
1973)) is preserves by products and submodels, therefore each morphism between universal Horn
theories is liberal (by applying Corollary 1 for the subinstitution of universal Horn sentences). For
the particular case of the signatures without predicate symbols, we get the well know result that the
institution of many-sorted conditional equational logic is liberal (Goguen and Burstall, 1992).

The rewriting logic institution is liberal because each transition is preserved under products and
preorder submodels.’

From Proposition 3, we can easily deduce that the strong equations and the undefinedness pred-
icates are preserved under products and (partial) subalgebras. Thus, by Corollary 1, the morphisms
between universal theories of strong equations and undefinedness predicates are liberal. O

4.3. MODEL LIMITS AND COLIMITS

Existence of limits and colimits of models are important properties of theories, both in institution-
independent model theory or institution-independent computing science. For example, the institution-i
independent ultraproduct method (Diaconescu, 2002) requires both products and filtered colimits of
models, while in the semantics of constraint logic programming (Diaconescu, 2000) finite colimits

of models play an important role.

4.3.1. Small Limits
By the technology of indexed categories (Tarlecki et al., 1991), in most institutions in use in logic

and computing science small limits of signatures are easy. In this section we show that by the method
of elementary diagrams, limits of theory models can be obtained from limits of signatures.

THEOREM 3. Consider an institution with elementary diagrams and initial models for theories. If
its category of signatures has limits, then the category of models of each theory has limits too.

Proof. Let 3 = (Sign,MoD, Sen, =) be an institution with elementary diagrams and initial mod-
els for theories. Let J be a category such that Sign has J-limits. Let M: J — MOD(Z,E) be a
J-diagram of models for a theory (Z, E).

Ly M i
l):(Mi) #i
0] ¢
2 e 3 z(M") N M u
N
1z(M7) W
i M/ J

Let ¢: X' = 3y be the limit cone where X, : J — Sign with

6 These properties of these institutions are well known in the theory of algebraic specification.
7 We leave this as exercise to the reader.



13

— (Zm)" = Zyy for each index i € |J|, and

—  (Zm)" =13(M") for each index morphism u € J.

Let E' = {e € Sen(X') | ¢'(e) € Ey, for each i € |J|}. By the universal property of the limit cone
¢, let @: £ — X' be the unique signature morphism such that @;¢' = 15(M*) for each i € |J|. Let
N = Oy prug(E) g Where Ogr gpryg(r) is the initial model of the theory (Z', E' U@(E)). Notice that for
each i € |J, Oz, .k, [y = E'UQ(E) (by the definition of E', by the fact that M = E, by the fact
that OEMi Eyi lz(mi) = M', and by the satisfaction condition), where 05, £, is the initial model of the
elementary diagram (s, Eyzi). Therefore let v/ be the unique model homomorphism Oy E'UQ(E) —
0, £, [g- Let @ = Vi [, for each i € |J].
We prove that i: N = M is a limit cone. For each u € J(i, j), we have that
(0x Ey 05, E,; [IE(Mu)) [ve(m1) = M*. Since 15(M?) = @; ¢’ and because

‘Mi > ‘MJ

V5 (05,5, = O, ;. £,; [ip(ue) g = v/, we have that V' [g; M* = v/ |, which means that p'; M* = /.
Therefore u: N = M is a cone.

Now consider another cone i': N' = M. Let 15(N'): £ — Zp be the elementary extension of
% via N'. Notice that {15(4")}icjs|: v = Z is a cone. Therefore let ¢': Sy — Z' be the unique
signature morphism such that ¢'; ¢ = 15 (u") for each i € |J|. For each i € |J|, 15(u") is a theory mor-
phism (Zyr, Ext) — (S, Epgi)» which implies that ¢°(¢'(Ey)) C Eyyi for each i € |J|, which implies
¢'(Ey') C E' which implies Oy grug(e) = @' (Enr)- By the satisfaction condition this is equivalent to
O £rug(E) ¢! = Eyr. Therefore let 4 be the unique model homomorphism Os,, £,, — Os gue(E) [¢'-

We show that A[\;(yr) is the unique model homomorphism such that Wi=h M (V)5 W for each i €
|J]. Indeed, for each i € |J|, kBl vy: i = Al Vil = Rl Vg ey = (B (Og grug(e) o —
OEM,',EM,' fq)' f(p’)) rl};(N’) = (OENI JEpr = OEM,',EM,' [¢’ r(p') [l);(N’) = (OEN/,ENI = OZMi JEygi rl);(u’i)) rlz(N’) = .u'll'
The uniqueness of A[ ) follows from the isomorphism iy yv and from the initiality property of

O Ep -

EXAMPLE 9. By applying the methods of (Tarlecki et al., 1991), the institutions of first-order
predicate logic, rewriting logic, partial algebra, have small limits of signatures. By Theorem 3, cf.
Example 8, the categories of models of universal Horn theories in the in first-order predicate logic,
of equational theories in general (many-sorted) algebra, of rewriting logic theories, and of strong
equational and universal undefinedness predicate theories in partial algebra, have small limits. O

4.3.2. Finite Colimits
The following result gives a simple sufficient condition for the existence finite colimits of theory

models.

THEOREM 4. In any liberal institution with elementary diagrams the category of models of any
theory has finite colimits.

Proof. Let 3 = (Sign,MoOD, Sen, |=) be a liberal institution with elementary diagrams.

Let us first notice that by the Satisfaction Condition, for each model M of a theory (X,E),
the restriction of the natural isomorphism is, s : MOD(Zpy, Ey) — M /MOD(Z) to the subcategory
MOD(Zy, Ep UE') € MOD(Zyy,Ey) is an isomorphism MOD(Zy, Ey UE') — M /MOD(Z,E),
where E' = 15(M)(E).

Now consider k;: M — M; two model homomorphisms in MOD(Z, E). Notice that the pushout of
hy and h; is the same with an universal arrow from h; to the functor #; /MOD(Z): (M1/MOD(X,E)) —fi
(M/MOD(Z,E)). This universal arrow exists because &; /MOD(Z) has a left adjoint since

— the reduct functor MOD(15(h1)): MOD(Zy,, Ep, UE]) = MOD (2, Ep U E') has left adjoint
by the liberality of the institution, where E] = 15(M1)(E),



14

— the diagram

(v Moo (2, E)) 2P (3 /Mo (3, E)

iz My T Tizm

MOD(ZM1 ,EMI) MOD(ZM,EM)

MOD(lz(hl))

commutes by the naturality of i (cf. Remark 2),
— as isomorphisms, "5,111/11 and iz y have left adjoints, and
— the composition of right adjoint functors is a right adjoint functor (MacLane, 1998).

Therefore MOD(Z, E) has pushouts. By the liberality of the institution it also has an initial model,
thus, by the construction of any finite colimit from initial objects and pushouts (see (MacLane,
1998)), it has all finite colimits.

EXAMPLE 10. Cf. Example 8, the categories of models of universal Horn theories in the in first-
order predicate logic, of equational theories in general (many-sorted) algebra, of rewriting logic
theories, and of strong equational and universal undefinedness predicate theories in partial algebra,
have finite colimits. O '

4.3.3. Small Colimits

Here we give an alternative way of obtaining colimits of theory models which is based on colimits
of signatures in the style of Section 4.3.1 rather than liberality (as in Theorem 4) and which has the
advantage of going beyond the finiteness restriction. Notice that, as in the case of limits, indexed
categories (Tarlecki et al., 1991) provides an easy method for proving the existence of small colimits
of signatures in most institutions in use in logic and computing science.

THEOREM 5. Consider an institution with elementary diagrams and initial models for theories. If
its category of signatures has colimits, then the category of models of each theory has colimits too.
Proof. Because the proof of this result uses the same technique and follows the same steps as the
proof of Theorem 3 we will omit the details.
Let S = (Sign,MoD, Sen, |=) be an institution with elementary diagrams and initial models for
theories. Let J be a category such that Sign has J-colimits. Let M: J — MOD(Z, E) be a J-diagram
of models for a theory (2, E).

i Mi zMi
I 15(M?) ()
of "
M N > 1z(MY) ¥ e Qg
W (M) (#7)
J M/ i

Let ¢: Xy = X' be the colimit cone where Xy : J — Sign with

— (Zm)! = =y for each index i € |J|, and
- (Zy)* =1z(M") for each index morphism u € J.

Let E' = Uie|y|¢i(EM,). Let ¢ = 13(M");¢". Let N = Oy pug(e) [g» Where Oy pruge) is the ini-
tial model of the tl.leory. (X,E' U@(E)). Let V' be the unique model homomorphism Oy, £, —
Oz prup(E) lgi- Let ' = V'] for each i € |J].

We prove that y: M = N is a colimit cocone. By calculations similar to those of Theorem 3,
we get that p is cocone. Now consider another cocone i : M = N'. Let 15(N'): £ — Zy be the
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elementary extension of ¥ via N'. Notice that {1z(i")}ieip): Zu = Zn is a cocone. Therefore
let ¢': X' — Iy be the unique signature morphism such that ¢/;¢' = 15(u") for each i € |J|. Let
h be the unique model homomorphism Oy grug(E) —* Ozy Ey [¢- Then hly is the unique model
homomorphism such that p* = k], (y); i for each i € |J].

EXAMPLE 11. By applying the methods of (Tarlecki et al., 1991), the institutions of first-order
predicate logic, rewriting logic, partial algebra, have small colimits of signatures. By Theorem 5, cf.
Example 8, the categories of models of universal Horn theories in the in first-order predicate logic,
of equational theories in general (many-sorted) algebra, of rewriting logic theories, and of strong
equational and universal undefinedness predicate theories in partial algebra, have small colimits. O

5. Conclusions and Future Research Work

We generalised the method of diagrams from conventional model theory to an institution-independent]j
framework based on a novel categorical definition of elementary diagram of a model. We showed
that this is a natural easy to check property of actual institutions, and illustrated the power of our
institution-independent method of diagrams with some applications such as institution liberality,
institution-independent quasi-varieties, and limits and colimits of theory models. A side contribu-
tion of this paper is the new institution-independent approach on quasi-varieties based on inclusion
systems. We also illustrated the concepts and results of this work with examples from four different

logics or institutions.
The applications developed in this paper suggest a great application potential for the institution-

independent method of elementary diagrams. We plan to further explore this potential.
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Appendix

In the Appendix we give very brief presentations of a number of institutions which are used in this
paper as examples for illustrating some of the concepts introduced by this work and some of the
applications of the main results. Although we assume some familiarity with these institutions, the
reader is encouraged to consult the recommended references for more details. Also, some notations
and terminology used in some sections of the Appendix rely on notations and terminology from

previous sections.

A. (Many-sorted) First-order Predicate Logic with Equality

The role of this very brief presentation of many-sorted first-order predicate logic with equality is
mainly for fix some notations and conventions. A detailed definition of the first-order predicate logic

institution can be found in (Goguen and Burstall, 1992).

Recall that a (many-sorted) signature in first-order predicate logic is a tuple (S,Z,IT) (often
denoted just by (Z,IT)) where S is the set of sorts, X is the set of (S-sorted) operation symbols, and
IT is the set of (S-sorted) relation symbols. By Z,,_,; we denote the set of operations with arity w
and sort s (in particular, when the arity w is empty, X_,; denotes the set of constants of sort s), and
by IT,, we denote the set of relations with arity w.

Given a signature (Z,I1), a model M of first-order predicate logic interprets:

— each sort s as a set M,

— each operation symbol ¢ € Z,,_,, as a function Ms: M, — M, where M,, stands for M, X ... X
M, forw=s1...5,, and

— each relation symbol 7t € I1,, as a relation My C M,,.

Any ground (i.e., without variables) Z-term ¢ = 6(¢; .. .t,), where G is an operation symbol and
f,...,t, are subterms, gets interpreted as an element M; in a X-model M by M; = Ms(My, ... My,).

A (2,T1)-model homomorphism h: M — M' is an indexed family of functions {As: M; — M}ses
such that

— his aZ-algebra homomorphism M — M', i.e., h(Ms(m)) = Mg(h(m)) for each ¢ € %, and
each m € M,,.® and

—  h(m) € M}, if m € My, for each relation 7 € IT,, and each m € M,,.

8 By h(m) we mean in fact A, (m), where hy,: M,, = M,, is the canonical component-wise extension of /.
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The sentences are the well-known first-order closed formule (including equations), and their sat-
isfaction by the models is the well-known Tarskian satisfaction (see (Goguen and Burstall, 1992;
C.C.Chang and H.J.Keisler, 1973) for details).

A signature morphism ¢ = (¢*°%, ¢, o) : (S,Z,1T) — (', Z',IT') consists of a function between
the sets of sorts ¢*°: S — §', a function between the sets of operation symbols ¢°: X — 3/, and a
function between the sets of relation symbols ¢': IT — IT' such that ¢°°(Z,) C 2, st ) =5 500 (s)

and ¢*(IT,,) C H:psm(w) for any string of sorts w € S* and each sort s € § h
Given a signature morphism ¢: (S,2,IT) — (8,2, IT'), the reduct M'[y of a (S§',X',IT')-model
M' is defined by (M’ lo)s = Mébs"“(s) for each sort s € S, (M'[y)o = Mé)OP(O') for each operation symbol
c€X and (M'[¢)n = M('DreI ) for each relation symbol 7 € IT.
The sentence translation along ¢ of any sentence is defined inductively on the structure of the
sentences by replacing the symbols from (S, Z,IT) with symbols from (§',%,IT') as defined by ¢.
Notice that by discarding the relational part, we get the many-sorted algebra institution with full

first-order equational sentences.

B. Rewriting Logic

Rewriting logic (Meseguer, 1992) is emerging as one of the most important new algebraic specifi-
cation logics. Here we refer to a simplified variant of rewriting logic which is used for defining the
CafeOBJ institution (Diaconescu and Futatsugi, 2002), however this example can be extended to
the original definition of rewriting logic without any difficulty.

Recall (from (Diaconescu and Futatsugi, 2002)) that our rewriting logic signatures are just or-
dinary (many-sorted) algebraic signatures. The models are preorder models which are (algebraic)
interpretations of the signatures into [Pre (the category of preorders) rather than in Set (the category
of sets) as in the case of ordinary algebras. More precisely, given a signature %, a model M interprets:

— each sort s as a preorder My, and
— each operation © € %, as a preorder functor Ms: M,, — M, where M,, stands for My, X ... X
M;, forw =s1...8,.

The sentences are either ordinary equations or transitions, both in their unconditional or con-
ditional form. For example, the unconditional X-transitions for a signature Z, are sentences of the
form

(VX)t => 1

where X is a many-sorted set of variables for ¥ and ¢,¢' are Z-terms with variables X. Conditional
sentences in rewriting logic are universally quantified implications where the hypotheses are finite
conjunctions of transitions or equations and the conclusion is a transition or an equation.

The signature morphisms, the model reducts, and the sentence translations along signature mor-
phisms are defined in the same way with ordinary (many-sorted) algebra (Appendix A).

A preorder model M satisfies a transition M |= (VX)t => ¢, if and only if M; < M, for
each expansion M’ of M along the signature inclusion X < ZUX. The satisfaction of conditional
sentences extends the satisfaction of equations and transitions to the conditional case; we leave this
as exercise to the reader.

More details of this institution of rewriting logic can be found in (Diaconescu and Futatsugi,
2002), while (Meseguer, 1992) has the details of the institution of full rewriting logic.

9 For any string of sorts w = s ..., by ¢*°"(w) we mean the string of sorts ¢**(s1).. S (sp).
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C. Partial Algebra

There are many approaches to partial algebra, two classical references being (Burmeister, 1986;
Reichel, 1984). Our formalisation of the partial algebra institution is tailored to the needs of this
paper but without affecting the logic and model theory of partial algebra.

A partial algebraic signature is a pair (2,A), where X is the set of the total operations and A
is the set of the partial operations.!® A partial (Z,A)-algebra A is just like a > U A-algebra but
interpreting the operations of A as partial functions rather than total functions. A homomorphism
h: A — B between partial algebras, is a family of partial functions {hs: A; o Bs}ses indexed by
the set of sorts S of (,A) such that h(A(a)) = Bo(h(a)), i.e. either both h(As(a)) and Bg(h(a))
are undefined or they are defined and equal, for each operation 6 € (ZUA),,—s and each argument
a E BN

The interpretation A, of a U A-ground term ¢ in a partial (,A)-algebra is defined inductively
by

— A, is undefined if A, is undefined for some k € {1,...,n} or (Ay,...,A,) does not belong to
the definition domain of Ag, otherwise

- At:AG(An)"'aAtn)'

where t = 6(t1 ...t,) is a term with o any (2,A)-operation and #1, ..., subterms.
Signature morphisms, model reducts, and sentence translations are defined similarly to the case

of the total algebra (see Appendix A).
The sentences are either undefinedness predicates or strong or existential equations, the equations

both in their conditional or unconditional form.

For each undefinedness (XU A)-predicate (VX) ¢ |, where X is a many-sorted set of variables for
(2,A) and ¢ is a ZUA-term over X, a partial (X, A)-algebra A satisfies it if and only if Aj is undefined
for each expansion A’ of the partial algebra A along the signature inclusion (Z,A) < (ZUX,A).

For any unconditional strong (XU A)-equation (VX) ¢ = ¢, where X is a many-sorted set of
variables for (Z,A) and ¢,#' are U A-terms over X, a partial (Z,A)-algebra A satisfies it if and only
if

— Aj and A), are both undefined, or
— Aj and A}, are both defined and A; = A;.

for each expansion A’ of the partial algebra A along the signature inclusion (Z,A) < (ZUX ,A).

For any unconditional existential (XU A)-equation (VX) ¢ £ ¢, where X is a many-sorted set of
variables for (Z,A) and ¢,#' are U A-terms over X, a partial (X,A)-algebra A satisfies it if and only
if

— A} and A}, are both defined and A} = A;,.

for each expansion A’ of the partial algebra A along the signature inclusion (Z,A) < (ZUX,A).
These definitions extend without any problems to the conditional case. We leave it as exercise to the
reader.

The following result show how this version of partial algebra is equivalent to an equationally
defined class (i.e. variety) of total algebras, which is very useful for establishing some properties of
partial algebras. We omit its straightforward proof.

PROPOSITION 3. For any partial algebra signature (£,A) with S the set of sorts, let |= {}s}ses
be an indexed set of new constant symbols and let I" be set of the equations
(Vx1 .. .VX,I)G()Q . J,S .. .xn) :is’

10 11 this notation we ignore the set of sorts, which are of course common to the total and the partial operations.
I Notice that by convention /(a) is defined if and only if is defined on all components of a.
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for all operations 6 € ZUA.
Then the functor mapping each partial (X, A)-algebra A to the total (2UAU |, T)-algebra A such

that
— A, = A;U{]s} for each sort s € S,
— for each operation G € ZUA, Ag(a) = Ag(a) if a belongs to the definition domain of A, and
— Ag(a) = otherwise, where s is the sort of o,

and mapping each partial algebra homomorphism 4: A — B to the total algebra homomorphism
h: A — B such that for each sort s,

— hy(a) = hs(a) if a belongs to the definition domain of &, and
— hy(a) =] otherwise.
is an isomorphism between the category of partial (%, A)-algebras and the category of total (ZUAU
,I')-algebras.
Moreover,
Alsa (VX)t =1 iff Asuag (VX)2 =7

for each strong equation (VX) ¢ =7,

Al=sa (VX)t 21 iff A Esuauy (VX) ¢ = ¢ and —~(3X)t=])
for each existential equation (VX) ¢ =, and
A P:Z,A (VX) 1t i, lff Z ':):UAU,L (VX)t = \L

for each universal undefinedness predicate (VX) ¢ ]. O

D. Hidden Algebra

Hidden algebra is the institution underlying behavioural specification, which is one of the most
important new algebraic specification formalisms. In the literature there are several versions of
hidden algebra, with only slight technical differences between them (Diaconescu and Futatsugi,
2000; Hennicker and Bidoit, 1999; Goguen and Rosu, 1999). Here we adopt a slightly modified
version of coherent hidden algebra (abbreviated CHA) of (Diaconescu and Futatsugi, 2000).

A CHA signature is a tuple (H,V,2,=°), where

— H and V are disjoint sets of hidden sorts and visible sorts, respectively,

— Xisa HUYV-sorted signature,
— 3b C Sisasubset of behavioural operations such that o € Z,_, has exactly one hidden sort in
w.

A CHA model M for a signature (H,V,Z, =) is just an ordinary X-algebra.

CHA sentences can be ordinary (strict) equations, behavioural equations (both in conditional
or unconditional format), or coherence declarations (see (Diaconescu and Futatsugi, 2000; Dia-
conescu and Futatsugi, 2002) for details). Recall ((Diaconescu and Futatsugi, 2000; Diaconescu and
Futatsugi, 2002)) that coherence declarations are semantically equivalent to conditional behavioural
equations and that the strict equations are treated in the same way as in the case of the ordinary
algebra. An unconditional behavioural equation is a sentence of the form

(VX)t ~ 1

where X is a set of variables and ¢, are Z-terms over X.
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Recall that a S-context clz] is any S-term ¢ with a marked variable z occurring only once in ¢. A

context clz] is behavioural iff all operations above!? z are behavioural.

Given a Z-algebra A, two elements (of the same sort 5) a and a are called behaviourally equiv-
alent, denoted a ~; d' (or just a ~ a'), iff Al* = A’c“' for each visible behavioural context ¢, where
A’ and A" are any expansions of A along the signature inclusion X — ZUY, where ¥ is the set of
variables of ¢, and such that A’y" = A’y‘" foreachy € Y\ {z}, A = a, and A’z“' =d.

Then, a S-algebra A satisfies an (unconditional) behavioural equation A E(X)t ~ ¢, iff
Al ~ Al, for each A’ expansion of the algebra A along the signature inclusion X — ZUX.

This definition extends without any problems to the conditional case. We leave it as exercise to the

reader.
Given a CHA signature (H,V,%,%°), a CHA algebra homomorphism h: A — B between X-

algebras is a Z-algebra homomorphism which preserves the behavioural equivalence, i.e., h(a) ~
h(d') if a ~ & for each elements a,d’ € A.

Recall also that a CHA signature morphism ¢: (H,V,%,2%) — (H',V',2, ¥ ®) is an many-sorted
signature morphism (H UV,X) — (H'UV',X') such that

(ML) (V) C V' and §(H) C H',
M2) (z°) == and ¢~ (2°) C 2,

Finally, model reducts and sentence translations along CHA signature morphisms are the same with
those from ordinary many-sorted algebra (Appendix A).

12 Meaning that z is in the subterm determined by the operation.



