
.r- DE Ay',r.
\ - r u

rffi?
I M A R  :

INSTITUTUL DE MATEMATICA
AL ACADEMIEI  ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

rssN 0250 3638

BOI]NDARY CONTROL OF A NON STATIONARY
MAGNETOHYDRODYNAMIC FLOW

by

RTXANDRA STAVRE

Preprint nr. 10/2003

BUCU RE9Tr



PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

BOT]NDAI{Y CONTROL OF A NON STATIONARY
MAGNETOHYDRODYNAMIC FLOW

by

RUXANDRA STAVRE

Preprint nr. L0/2003



BOUNDARY CONTROL OF A NON STATIONARY
MAGNETOHYDRODYNAMIC FLOW

RUXANDRA STAVRE'

August, 2003

by

o Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1,-764,70700 Bucharest, Romama.. " "
E-mail : Ruxandra.Stawe @ imar.ro



T ) - - - - -  - 1  -  r  ' l  f  )IJOUnOAry control oI a non statronary
magnetohydrodynamic fl ow

Ruxandra Stavre, Institute of Mathematics "simion Stoilow",
Romanian Academy, P.O.Box I-764, RO-014700 Bucharest,

Romania; e-mail: Ruxandra.Stavre@imar.ro

Abstract

The purpose of this paper is to study a boundary control problem
associated with the non stationary motion of an incompressible, vis-
cous) magnetic fluid, describing the liquid-lithium flow inside a Toka-
mak cooling system. The existence, the uniqueness and the regularity
of the unknowns of the state system are obtained by transforming it
into a new system, with homogeneous boundary conditions. Then we
introduce the control problem and we look for an exterior magnetic
field which realises a magnetohydrodynamic flow without recircula-
tion. The existence of an optimal control is proved and the necessarv
conditions of optimality are derived.

1 Introduction

Magnetohydrodynamics is concerned with the interactions of magnetic fields
with fluid matter (liquids and gases). It finds practical use in many areas
of engineering and pure science. Some areas of applications are: pumping
and levitation of liquid metals, orientation and confinement of extremely
hot ionized gases or plasmas as in thermonuclear fusion experiments, space
propulsion resulting from the electromagnetic acceleration of ionized gases,
etc. A complete approach to the electromagnetic theory and the continuum
mechanics presented from a unified point of view can be found in [1].

The present paper is concerned with an optimal control problem assocj-
ated with a non stationary magnetohydrodynamic viscous flow. This subject



is motivated by the great number of technological applications of electromag-
netic f luids (see e. g. [1], [2], [3]).

In the last ten years, there was an increasing interest in the study of
optimal control problems associated with viscous flows: [4], [5], [6], [7], [8],
[9], [10], [f f] are only a few examples of works dealing with theoretical and
numerical approaches to control of Navier-Stokes equations.

Since many physical phenomena which possess important technological
applications lie at the intersection of continuum mechanics and electromag-
netic theory, we considered interesting to extend this type of problems to the
class of magnetic fluids. We study a non stationary flow of a liquid metal
in the presence of a magnetic field. This motion describes, for instance,
the liquid-lithium flow inside a Tokamak cooling system. The fluid motion
across the magnetic fields drives an electric current in the liquid metal, and
the electric current produces the electromagnetic body force opposing the
motion. Thus, stagnant regions or even recirculation regions may appear.
In [12] a qualitative discussion of the flow in an elbow in the plane of an
uniform magnetic field is presented. The authors conclude that the flow be-
comes concentrated into jets with a large region of stagnant liquid. In [5] it
was proved that, even without a force opposing the flow, for a Navier-Stokes
fluid, there exists a recirculation region near the corner of the flow domain
whose size increases with the Reynolds' number.

When we formulate an optimal control problem, finding a cost functional
which is relevant to the physics of the flow is a very important step. Since we
are interested in obtaining flows without recirculation regions, we introduce
a suitable optimal control problem associated with the considered magneto-
hydrodynamic motion. We look for an exterior magnetic field which realises
a magnetohydrodynamic flow without recirculation.

The paper is organized as follows: in Section 2 we introduce the coupled,
nonlinear system which describes the non stationary flow of an incompress-
ible, magnetic, viscous fluid, with non homogeneous boundary conditions
and initial data. The existence, the uniqueness and the regularity of the un-
knowns of the problem are obtained by transforming the system into a new
one, with homogeneous boundary conditions. The next section deals with
the optimal control problem. We consider a cost functional given by

( 1 . 1 )
,  l r ,(  lmin(u1, 0) l2+ lmin( u2, 0)12) drdt,

where Q c IR2 is  the bounded domain of  mot ion,  Qr :  Qx]0,7[  and d:



(ur,ur) is the velocity of the magnetic fluid.
This choice is motivated by the fact that a flow without recirculation is

characterized by u1 ) 0 and u2 > 0 (i. e. the fluid is moving upward and to
the right).

From the physical point of view, the most relevant control variable is
the exterior magnetic field; hence, we are dealing with a boundary control
problem: we look for an erteri,or magneti,c f,eld which reali,ses a magnetohy-
drodynamic flnw wi,thout reci,rculati,on. Next, we prove the existence of an
optimal control. In the last section we derive the necessarv conditions of
optimality.

2 Analysis of the state system

We consider an incompressible, viscous fluid with electromagnetic properties
occupying an open, bounded, connected set 0 C IR2. Let T be a positive
given constant. The non stationary motion of the fluid in the presence of an
exterior magnetic field, with non homogeneous boundary conditions and non
homogeneous initial data is described by the following coupled system, ob-
tained by using the assumptions of the magnetohydrodynamic approximation
(see e.  g .  [1 ] ,  p .  507) :

(2.r)

d'+ (d .v) r -  -  1 , r ,  L i+v(p* ; t . i l  -  r1 t .v ! t :  / i r '  { - t r ,
t '  + *1t .v)t  -  

"( i , .  
V)r-  -  

"  xfr , :0 in n7,
div u- - 0 in 07,
div [ :  0 in f ) r ,
d : i l o n 0 0 x ] 0 , 7 [ ,
f r , :  d on 00x10, ?[,
d(r,O):  u ' . ; ( r )  in 0,
fr1r,01 : f i , t@) in Q,

where {lr : Ox]0, Tl, H., r) a) u are positive given constants associated with
the properties of the material, / is an exterior given field, 17 is the velocity
of the fluid on the boundary of the flow domain, y' is the exterior magnetic
field, u-1, i,;, arc the initial velocity and the initial magnetic field, respectively
and u-, h, p are the unknowns of the system: the velocity, the magnetic field
and the pressure of the fluid, respectively.



In the sequel we introduce the hypotheses of regularity for the data, which
will allow us to obtain the existence, the uniqueness and the regularity of the
unknowns by replacing the system (2.1) with another system with homoge-
neous boundary conditions.

(2.2) The boundary of 0 is at least Lipschitz continuous;

(2 .3 )  7 -  e  L2(0 , r ; (H- ' ( f , ) ) ' ) ,

(2 4) i l , ,  i l '  € L2(0,7;(Hrt2@OD\,
f

(2 5) 
Junr@,t). f i , ,ds*: 

0 a.e. in 10,7[,

(2.6) d, d' e L2(o,T; (Ht/2@aD2),
r

(2 .7)  
Jund@,t ) . f i , ,ds , :0  

a .e.  in  10,?[ ,

(2.8) di  e Q2(q )2, div 6r:0 in Q, di. f i , :  d,(o). fr ,  on af,) ,

(2.9) t t  e (r2(q )2, div tn:0 rn Q, fr , i . f i , :  d(0) . fr ,  on 0{t,

In the sequel we shall need the following spaces and notation:

v : {d € (I4 (q)' ldiv u- : 0},

tt  :  {6 € Q2(q)2 I div I -- 0, d.f i , :0 on 00},

W(0,7 ;X,X ' ) : {ueL2(0 ,7 ;X) f  u 'eL2(0 ,7 ;X ' ) } ,  w i th  X  a  H i lber t  space,

f-rr/2 : {d e (nr/z@zD, I I i.fr,d,s: 0],
Jan

b(i l , i , , i l :  [  @.v) i .ddr,  B( i , i1 :1t .v1fr ,
" / r l '

76 is the trace operator,

(.,.)v,,v is the duality pairing between a space 7 and its dual,

((.,.))0, l l . l ls are the scalar product and the norm in (Hj(f))) ',

(., '), l . l  are the scalar product and the norm in (L2(q)2.

The properties of the spaces V, H and of the function b can be found in

[13]. In order to obtain the system with homogeneous boundary conditions
we use the followinq result:



(2 10) 

{

Theorem 2.L. If Q C IR2 is an open, bounded, connected set satisfying
(2.2) and rTverifies the hypotheses (Z.a)-(2.5), then for any d > 0 there exists
an unique funct ion 06 e f2Q,T;(Hr(A\2) wi th Q e f2@,7;(Hr(A\2)
such that:

div L[  :0 in Qr,
. -  r  n n  1 r

"yoUo : 17 on 00xJ0,7[,

lb(h,U6(t) ,u-) l  < d l lh l lo l l r - l lo  v h,  d €V, a.  e.  in 10,7[ .
Proof. For functions not depending on f, the proof of this theorem can be

found for Lipschitz continuous domains in [14] and for domains of class C2 in

[13]. Since we need to apply it for domains with corners, we use the result
of [1a]. It is known that for any d > 0 there exists a linear and continuous
operator 1t5 : FIt/z ,+ (H'(O))2 with the properties:

(2.rr)
rtt/t

Using Proposition 2, p. 566, [15] and Lemma 1.1., p. 169, [13] we obtain
tu : i'o and the desired regularity for the function C5 and the proof is
achieved.

Corrolary 2.2. If 0 is as in Theorem 2.1. and j verifies the hy-
potheses (2.6)-(2.7), then for any d ) 0 there exists an unique function

$6 e L2(0,r ;  (Hl( f i ) )2)  wi th $ 'u e L '10," ;  (Hl(CI))2) such that:

in  10,7[ .
regularity of the

I  d iv A617: 0,

1 
'vo/Ydd': il',

I  la(d, L6d,6) l  < al ldl l r l ld l lo v f i , ,  d,e v,yi l ,  e

Since from (2.4)-(2.5) it follows that d(t), dt(t) e Htlz, we put:

( ,  1) \  [  03@: Ad(d(r ) )  a .  e .  in  ]0 ,?1,
\ - ' - - ,  

[  %(r )  : {Yo( i l ' ( t ) )  u .  . .  in  ]0 ,7 [ .

I aiu 'tr.: o in f)7,
t -

(2 .13)  \  mr l to :  jon 00x10,7[ ,

I  la(fr,  , ia(t), '7) l  s dl l f i l lol ldl lo v t ,6 €v, a. e.
In order to study the existence, the uniQueness and the

unknowns of the system (2.1), we define the new functions:

(  -  T -  ?

l l : o * *  h ,
(2 .14 )  I  f  : d - tu ,

I  F:  f i . - , iu,



( F : i - 0i - B(lu,0il + rB(,iu,,tru) -r 1.r, ats,
/o 1A\ ) i :  - ,0t - aB(05,6i l  + *B(,tru,t i l  +, ariu,
\L 'Lw)  

I  uA l  :  d i ( r )  -  05@,0) ,

|  fr ,@ : frn@) - ' io(r,o).

where [/6 and {5 are the functions introduced in Theorem 2.1. and in Cor-
rolary 2.2., respectively. The system (2.1), written for the new functions
is:

t '  + a1t,t)  + a(i t , t)  + B(t, t)  -  pr, at +v p
-rB(fr, fr1 - ,B(,i., fr1 - ,a@,,tril : F i" slr,
fr' + oa1t, fr) + aB(06, fr) + aB(t,,$tl - an(fi,t)
-*B(,io,t1 - *a1fr ,ti l - u a fr : i in Qr,
div 17 :0 in 07, div fr  :0 in f)7,
t  :0  on dQx]0,  T l ,  f r :  0  on 0f )x ]0 ,  ? [ ,
f 1r,07 : fr@) in Q, rt(r,o) : f l(r) in 0,

where the functions F, G,U, Hi s.re defined as follows:

Remark 2.3. For obtaining the regularity of the unknowns we need at
least .F, d e f2@,7;V').This regularity is a consequence of hypothesis
(2.3), of the regularities for 00, $o and of the prop-erties of B, which can be
found in [13]. Moreover, the initial conditions V, Ht, must be elements of the
space fI. This regularity follows from the hypotheses (2.8)-(2.9) and from the
properties of the Cu, {u.

As usual, by taking test functions from V, we obtain the next variational
formulation of the system (2.15):

$ ,  E) e (w (o,T;v,v '))2 ,
(f '  ft), 4r,,, + 1t(t (t), 4)o + @$ ft),t UD, 4r,,,
+@(06(t),t QD, 4r,,, + (B(V (t),7ilt)), 4r,,,
-r \a (fr 6, fr (q), 4r,,, -, (B @d(il, fr (il), 4u,,,
-r@@@,'tru(t)) ,4r, , r :  (F(r) ,  4r, , ry z e v,  a.  e.  in ]0,r [ ,
@'Q),,i)v,,v + u(frQ),d))o + a@(tQ), frQD,ri lv,,v
+a(B(ts(i l, fr (i l),, i)v, ,v + a(B(t Q),,iu(t)), d)r, ,,
- a (a @ Q), t (il,, tfr) v,,v - a (s (,tr u (t), V QD,'i) v,,v
-a (a@f t ) ,C1QD,d )v , , v :  ( i ( t ) , d )v , , vv r i  €v ,  a .  e .  i n  10 ,? [ ,
t7(o) : fi rn e, F(o) : fl it o,

(2.15)

(2.r7)



The main result of this section is the next theorem, in which we establish
existence, regularity and uniqueness properties and some a priori, estimates.

Theorem 2.4. a) There exists at least a pair (V, fr) satisfying the
variational problem (2.17); the pair (d,fr), obtained from (I7,li; *ittt (2.I4)
is unique. Moreover, there exists a distribution P e D'(Qr), unique up to
the addition of a distribution of l, which satisfies, together with (d,E), the
system (2.1) .

b) There exists a positive constant de such that for any d ( d6 the follow-
ing estimate holds:

(2.1s)  max{ l l7 l l l2e,r iv) , l l tT l l ; *10,r ;  4,  l l f r11r, r0,r ;v) , l lF l l r -10,r ;n)}  I  C,

where C is a constant depending on the data and onl5,ttrt and it will be
defined in the proof.

Proof . a) The existence of the functions f and E is obtained using the
Galerkin's method, as in [13], hence we shall skip the proof. The regularity
of the functions defined as the Galerkin's approximation gives the regularity
of 17 and F, stated in (2.17)1.

L-el (6i,fr i ,  P): j :r ,2be two solutions of the problem (2.1) and (d,t,  P :

(dr, hr, P) - (iz, hr, &). Subtracting the two systems, corresponding to j : 1
and j : 2, respectively, taking as test function the pair (d(t),h(l)) and using
the regularity of these functions, obtained from (2.LT)1, and the properties
of B (see Lemma 3.4, p. 198, [13]) the uniqueness of the velocity and of the
magnetic field follows in a classical way. Next, the assertion for the pressure
is obtained as in [13].

b) We take as test function in (2.17) (Z, rO : (f (t), U ttll and we compute
(2.17) # - (2.17) 2. I t  fol lows:

a

)uf ulP + LIE(t)l ') '  + r ' l l trt l l l 'r++|rtay lB : (/-(r), tu)),,,r-
2 t t  

\  / r  
Q t  

\ - / t  /  r - i l  \ - / i l u  
0  

i l - -  \ - / i l u

(0;(t) ,t (il) - t-t(vria(il ,vt Q)) -i 1ilf1 , ru An -'!(v?id (r),v fr An
/ ,  l q \  +  +  g  -  a -\z' rr ) -b0 e),la7) ,t UD + rb(fr ft),,i.(t),v ftl l - rult @,,tru7), n t1l

+rb(fr 6,00ft) , n An - b(C6Q) , tu(t),t ttll + rb($sft),,truQ) ,v ftll
-ru(05Q),'ia(t), frAn + ru($u(t),CuQ), fr@).

Using (2.1I)3 and (2.13)3 and choosing

u  u -
d o : m a x t ( r + , J ' g r j(2.20)



it follows that for any d ( ds the corresponding pair (f , h satisfies:

1 -(2.2r) ; (|v(f) y+L1rt 1t1l\',+*llt ull++?ilFtr) |7 < c' ,
2 ' '  a '  4 "  4 a "  

\  / " v  -

where C is a constant defined by:

-  R  R -  ^  6
c2 : vllf(t)l l?, + vl1l(t)12 + glvid(r)l '+ vl,tr,u(t)12 + a1v$01t)12

1 . 1 " "  "  " '  l t '
,  8  r r r r i  r t t t r 2  , ,  7  , . '  ' , o  r 2  ,  I 2 Q , , i i  , ' r , , 2  r r  7  r , : , , 2+-q lud( f ) l l (up17"+r l l ! t5 l t ) l l ( rns11,) "+; lp t l t ) l l (up11, l l l ;d l t ) l l ( r^p1y.

Hence, the proof is complete.
Remark 2.5. The functions 17, fr ur" not unique, since for different

d > 0 we obtain different functions. However, for a fixed value of d, their
uniqueness holds. In the sequel, the functiont 17, r{ wiil be those correspond-
ing to d : do, with ds defined in the previous theorem.

3 The optimization problem: boundary con-
trol with constraints

We begin by giving a precise statement of the optimal control problem we
consider. We introduce the space

(3 .1 )  w:  {d  e  L2(0 , r ;Huz \16 '  e  L2(0 ,7 ;u r tz11 .

Let j e fM be the boundary control (the exterior magnetic field which acts on

the fluid) and (u', i, e7 th" state variable. The state and control variables are
constrained to satisfy the system (2.1). The cost functional is J :W ) R+,

(3  2)  J(d)  :  
;  I r . ( lmin(u1,0)12+lmin 

( r r ,0) l \arat .

Since we have proved the uniqueness of the pair (d,i), the correspondence

d r+ d is univalued; hence the cost functional is well defined.
We denote by tl a bounded, closed, convex subset of the space iA and we

consider the following optimization problem:

/? ?\ / nina d" e Ll such that
\u'u) 

I ,r(o'.) : min {J(i l ld €u}

8



Our choice of the cost functional and of the optimization problem is moti-
vated by the following physical consideration: when a viscous fluid moves
in a magnetic field, recirculation regions may appear, from different reasons
(the intensity of the exterior magnetic field, the viscosity of the fluid, the
structure of the flow domain, etc). The purpose of the considered control
problem is to find a magnetic field (in a set of admissible functions from the
physical viewpoint) so that, without changing the other characteristics of the
problem, recirculation regions do not appear.

Theorem 3.1. There exists an optimal solution to the control problem
(3 3) .

Proof. Let (d)" be a sequence in U such that jgg J(d;: inf {l(il I d e
U).U being a bounded set, on a subsequence, denoted also by (d)^, we have

dn ̂  y'* weakly rnW; asU is convex and closed, i t  is closed in the weak
topology, thus j. e U.

The positive constant d being fixed at the value d6, we denote by ,i,
the function given by Corrolary 2.2. which corresponds to g-,,._Since the
operator A is bounded, we get the boundedness of the sequences (rh)", (r!il"
tn  L2(0," ;  (Hl ( f i ) )2)  and (2.13)  y ie lds:

(3.4)max{l l f , l lpzp,r;vl, l l i , l l t*t; ,r;H), l l fr, l l7,p,r,vt, l l fr, l l r-(0,";//)} < C(u),

where C(U) is the constant introduced in the proof of Theorem 2.4., whtch
corresponds to the bounded set U. We establish next the boundedness of the
sequences (V;)",(H;)" in L2(0,7;V'). (2.I7)2 and (2.17)3 corresponding to
jn can be written as follows:

f; : tt At" - B('i",W) - B(t,i") - B$",t)
+rB(fi*, rt,) + rB?tr,, fr,) + rB(rt*,6; + Fn in L2(0,7;v'),
fr;: u A frn - ,B(i,, fr") - aB(0, fr") - *B(t^,,tr*)
+aB(fr,,h + *B(,i , , t") + aB(8,,07 + d" rn L2(0,7;v'),

where f ir the function given by Theorem 2.L., corresponding to d6 and
Fn,d, are the functions defined in (2.16) written for rtr^. We establish next
the boundedness in L2(0,7;V') of the r ight hand sides of (3 5). The bound-
edness of the first term is obvious since A is a bounded operator from
L2(0,7;V)  to  L2(0,7;7 ' ) .  The est imates for  the terms wi th  B in  the case
when its two arguments belong to L2(0,7;V) n r-(0, T; H) are obtained as
a consequence of Lemma 3.4, p. 198, f131. For the other terms, we proceed

( 3 5 )  

{



as follows:

ll B (6,, t) ll", (o,r,r, ) ll 6 " (t) lll, ̂  py" llw @ ll21 r n 1ny, dt
pT

< l-  I ^
J U

I/ ---: I/ *
f n

l7 --^ l7*v n

fr*^ F
H. .  \  H. - I L

. i  '  o i *\yn Y

- 17
< Jt J, ll{"rt)lll,^ py,M@lllh(t)ll0dt

s { zllt"ll t€ ( 0,?; rr ) llf*ll 2z p,r ;n llri,ll 'r, a,r; ( ra ( o ) ) 2 ) < c (u) .

We obtained (on subsequences):

(3 6)

weak ly  inW(0,T ;V,V | )
weakly-* in I*(0, T;H)

*  weak ly  rnW(0,T ;V,V ' )
* weakly-x in ,L-(0, f ;H)
weakly rn W (0,7;  (H1 (( f i ) )2,  (H'((CI)) ' )

The above convergences are sufficient*for passing to the limit for all the
terms except those of the type BQ!",W), etc. For them, we need a strong
convergence. Since (f,),, (fr,), are bounded in W(0,T;V,V') it follows,
from Theorem 2.1, p. 184, [13], that on a subsequence, also denoted by
(i,),, (rt*), we have t" -+ t. fr, -+ E* strongly in L2(0,7;H). More-
ouer., $n -+ ri. strongly in L2(0,7;(L'(Q)2). Using the technique of [13],
we can now pass to the limit in (2.17), written f.or in and we obtain that

f ., rt*,t/* satisty (2.17).- Hence we proved the (17*, E*) is the unique
solution c-orresponding to ry'*. Now we have to answer to the following ques-
tion: is {. the only weak limit point corresponding to i.? The answer is
yes, and we shall explain it. We denote m?b\ by do.We have to prove
that the subsequence (dn)n, converging to d*, has y'e as weak limit point
in L2(0,7;nttz1. Using Theorem 7.9, p. 119, [16] we obtain the compact-
ness of the embedding .Hl(fl) c urlz+e (Q) for e e]0, 1/2[. From Theorem

2.L, p. 184, [13] it follows that $, -+ $. strongly in L2(0,7;(Htlz+'(CI))')
Since the operator 16 : L2(0,7;(HL/2+'(Q))') r_+ L2(0,7;(H'(4CI))'z) is l in-
ear and continuous (see e.g. Theorem 8.7, p. 126, [16]), it follows that

m(,tr) -+ "y0(1i\: y'o strongly in L2(0,7;(L'z@q)'). The last step of the
proof is to show that J(i.) < lig*f J(f"), i.e. that ./ is a lower semi-

continuous functional with respect to the weak topology. In fact, we shall
prove a stronger result. The convergence dn -+ / strongly in 12(f2) yields

10



/ ;- in1o, d,)l 'd,, -+ / 1*in (0,6)12d,r; hence the functional .I is weakly con-
J A '  J N
tinuous. Using a Weierstrass theorem, the proof is achieved.

4 The first order necessary conditions of op-
timality

The first result we obtain, in order to derive_the optimality conditions, is:
Theorem 4.t. J is G-differentiable on W and for any d, do € W

- u6 ) 1 min ( 0, (u6 ) 1 ) + ( u* - u s) 2mrn(0, (u s) 2)) dn dt,

where (io,fro,Po) is the unique solution of the system (2.1) corresponding to
y'6 and (i*,fr*,P-) is the unique solution of the following auxiliary system:

(4.1) (D J (do), d - do) : 
In,{{o.

( l r \

d* '  + B( i* , ,70) + B(do,d.)  -  LL 46. + VP*
-r@@,-, do) + B(fr,,fr,.)) : i  + s@.,,i0) - rB(fr,s,fr6) in o7,
i ,* '  + a(B(6., f r ' )  + B(60,fr .7 -  B(n.,do) -  B(fr , ,d.))
-u Lfr. : a(B(do,fri - B(io,u's)) in fh,
div u'* : 0 in f)r,
d i v  [ *  : 0  i n  0 r ,
d* :  d on f l f lx ]0,  Tl ,  h* :  d on OCIx]0,7[ ,
i * (* ,0)  :  6{r)  in O, 6.(r ,0)  :  f ,a(r)  in f2,

Proof. For any e e]0, 1[, we denote by (!,n,frun,P,n) the solution of (2.1)

corresponding to the boundary condition hun : do * e(d - t'o) on Oflx]0,7[.
We introduce the new functions:

-  6 r o - d o . -  t  f r r n - f r y , ,
(4.3) 6,  :  " ; -+ 'ds,  hr :  t "Z-*no.

We define now
t , :6 , - l i ,  f r , : f r , - r t r

and we write the variational problem satisfied by (t,,fi.;. nottowing the same
steps as those from Theorem 3.1., we obtain convergences of the type (3.6)
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for the sequences (I7.). and (E),.If we denote by 17- and.#* their limits, we
define

(  ; t .  _v .  +0 ,( 4  4 )  \  ; - -
I  h * :  H .  + r b

and we introduce the pressure P* in a usual way, it follows that (u-*, i.,P*)
satisfies the system (4.2)

For obtaining the expression (4.1) of the G-differential of .I, we define:

J, : 
*f,.  { l*tnto ,r,n)l '  - lmin(0, us * e(u* - ,o)) l2)drdt,

-  1 f ' , ,
J, :  

x/n,  
( l - in{o ,uo I  e(u* -  uo)) l ' -  lmin(O, uo)12)drdt

For computing l ir4,/r we use the inequality lmin(O,a) - min(O,b)l S lo -

blYa,b e IR.I t  fo l lows J,  <: l l r .  -  uxl l1zpr lau,  wi th (ou)u abounded se-
quence in IR which obviously yietas (taking into account the convergences
previously established) It13 e : 0. For computing the limit of. J2 as e -+ 0
we denote 1r :'u* - u6 and we write Jz: It * Iz *,I3, where

I r :+  [  . ( ( ro - rew)2-u f i ld , rd t ,-  
2e /n7n1.<o1n{oo <o}  

\  \  v

h : !  [  lm in (o ,ae*  ew) l2d " rd , t ,'Z€ J a7n{w<0}n{us >0}

r  - r  IIs : 
k lnrnr,.rorn{oo<0} 

(lmin(0, us * ew)12 - ufi)arat.

Let compute now the limit of each integral, as e -+ 0.

hryI, : [- . uswd,rdt : [, . r.umin (0,us)d"rd.t.
e-+u , /e"n{u<0}n{ , r ,0<0}  . / f i7n{u,<O}

The second integral satisfies the inequality 12 ( o.b. with

a,  : (  /  1- in1o, usf  e -r  w) l2drdt)r /2 and, o.  :  1(  /  1- in1o, us *  ew)l2d,rdi l t lz .
Ja"n{u<0}ni ,ub2o} Z ' " /a7n{u '<0}n{ro>0}

Since 
:tjBb. 

: 0, if we plove that (a.). is a bounded sequence, we shall obtain

I:$t, 
: 0. The boundedness of (ou). is a consequence of the fact that this

12



sequence is monotone increasing and, hence, for any e e]0, 1[, it follows that
01au ( a1. Finally, for the last integral we have:

n: !  [  (2eu6w+e2w2)d,rdt- !  [  uidrdt." 2eJnrn1.)oynjro<bin{ro*t, l<o} 2e Jn7n1.2Uintrr<ointuo*eto)0}

Since the limit of the second term vanishes as e -+ 0 it follows that

l iraft: I uswd,rdi: I trmin(0, us)d,rd,t.
e-+0 -  

Jo"n l t r lo1n{ro<0} JnTn{ur>o}  
'

Adding the above limits, the expression (4.1) is obtained.
As a consequence of the expression (4.1) we get
Corrolary 4.2, If g-e is an optimal control, then

(4.5) t  ( (u--u6)1min(0,  (u6)1) +(u*-us)zmin(O, (us)2))d,ndl  > 0.
J e - ' '

The constrained inequality (a.5) will be replaced by an unconstrained one,
by introducing the optimality system.

Theorem 4.3. Let js be a solution to the control problem (3.3) and
,i, tt" corresponding function given by Corrolary 2.2. Then there exist the
unique pairs (.t76, fri, (fry,frd , (W(0,7;V,V')2 satisfying the following
optimality system:

-system (2.17) written for d6 and corresponding to ,io,

- (w6@, 4v, ,v + tr((tiroQ), z))o + b(z,to@ + t 1t1,tiro1t11
-b!r@ + t1t7,fro(t), f l  + au1z, rto@ +,tr0(t), R,QD
+ab(frs@ +,i '1tt,R01t1,fl : (min(0,f0ft) +r)11;1,2)y i e v,
-(fr 'o(t),t i)v,,v + u(frr(t),,t))o - rb(i, f io\) +,io(t),frl!))
+ru(rt.(t) + 6o(t),vto(t),tf l  - ab(n,fo(t) + 01t1, Rr(t))
-au(to(t)  +0(t) ,RrQ),d) :  oYd e v,
froT):  o in a, Rog):  o in f) ,

(4.6)

, r r , {

(A(do(0) - d(0)), n,ro)l + lo' Knldo(f) - t'(r))) , , Ro1t11at
-rftug,(ao(t) - d(t)),fi,.(t),tiro1t11+u1fr0(r),4(r'0(r) - d(t)),ttrro1t1yat/o'_'
-*ftor^Go(,) - e-(r)), do(t),,40(r))-b(?tO(r), A(t'O(t) * duD, Ro1t111at

J o '  _  
' " " '  '

+, [ '  (v(n(gi( t)  -  dQ)D,vfroft))at> 0yf e t l .
J O
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Proof. The first step is to explain the assertion concerning the pair (li/s,Ri.
We obtain it with the same techniques as those used in Theorem 2.4., bfi
with easier computations since the system (a.6) is linear. We prove next the
unconstrained inequality (a.7). We write the variational problem satisfied by
(fo-t., fro- fr\ and we take as test function (i,ri) : (ti/g(t), Ro(tD. Then
we take as test funct ion (2,,D: ( to-t*,Eo- fr .)  in (a.6).  Subtract ing
these two systems and applying the Green's formula, we get as the expression
of (D J (js), d - do) the left hand side of (a.7); the inequality is now an obvious
consequence of (a.5).
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