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TIME LINTAR EOIJATIOI\S DEF'INED BY
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Insti,tute of Mathematr'cs of the Roman'ian Academy,

P.O.Bor. 1-764, RO-70700, Bucharest, Roman'ia

Abstract

In this paper the problem of exponential stability of the zero state equilibrium

of a discrete -time time-varying linear equation described by a sequence of linear

positive operators acting on an ordered finite dimensional Hilbert space is investi-

gated.
The class of Iinear equations considered in this paper contains as particular cases

Iinear equations described by Liapunov operators or symmetric Stein operators as

well as nonsymmetric Stein operators. Such equations occurs in connection with

the problem of mean square exponential stability for a class of difference stochastic

equations affected by independent random perturbations and Markovian jumping

as well as in connection with some iterative procedures which allow as to compute

global solutions of discrete time generalized symmetric or nonsymmetric Riccati

equations.
The exponential stability is characterized in terms of the existence of some glob-

aly defined and bounded solutions of some suitable backward affine equations (in-

equations) or forward affi.ne equations (inequations)'

1 Introduction

The stabil rzation problem together with various control problems for linear stochastic

systems was intensively investigated in the last four decades. For the readers convenience

we refer to ones of the most popular monographies in the field: [1, 6, 9, 19, 23, 32, 33]

and references therein.

It is well known that the mean square exponential stability or equivalently the second mo-

ments exponential stability of the zero solution of a linear stochastic differential equation

or linear stochastic difference equation is equivalent with the exponential stability of the

zero state equilibrium of a suitable deterministic linear differential equation or a deter=

ministic linear difference equation. Such deterministic differential (difference) equations



are defined by the so called Liapunov type operators associated to the given stochastic
linear differential (difference) equations.

The exponential stability in the case of differential equations or difference equations de-
scribed by Liapunov operators have been investigated as a problem with interest in itself
in a lot of works. In the time invariant case results concerning the exponential stability
of the linear differential equations defined by Liapunov type operators were derived based
on spectral properties of linear positive operators on an ordered Banach space obtained

by Krein and Rutman IZZ] and Schneider [31]. A significant extension of the results of

[22] and [31] to the class of positive rezolvent operators was provided by Damm and Hin-

richsen in [7, 8]. Similar results were derived also for discrete-time time-invariant case see

[ 1 6 , 3 0 ] .

In the case of continuous-time time-varying systems in [i1] a class of linear differential
equations on the space of n x zz symmetric matrices 5" is studied. Such equations have

the property that the corresponding linear evolution operator is a positive operator on

5". They contain as particular cases linear differential equations of Liapunov type arising

in connection with the problem of investigation of mean square exponential stability.

In this paper the discrete-time time-varying counterpart of [11] is provided. While in 111]
the considered linear differential equations are defined by operator valued functions acting

on the space 5r,, in this paper we consider discrete-time time-varying linear equations

described by sequences of linear positive operators acting on a suitable ordered finite

dimensional Hilbert space.

The ordered spaces considered in this paper contain as special casses the spaces R" and

Rrnx, ordered by the component wise order relation and the space 5" of lhe n x n

symmetric matrices ordered by the order induced by the cone of the positive semidefinite

matrices.

Tha main results of this paper provide necessary and sufficient conditions which guarantee

the exponential stability of the zero state equilibrium of a discrete-time time-varying linear

equation described by a sequence of positive operators.

To characterize the exponential stability a crucial role is played by the unique bounded

solution of some suitable backward affine equations as well as of some forward affine

equations. We show that if the considered equations are described by periodic sequences

of operators then the bounded solution if it exists is also a periodic sequence. Moreover,

in the time-invariant case the bounded solutions to both backward affine equation and

forward affine equation are constant. Thus, the results concerning the exponential stability

for the time-invariant case are recovered as special casses of the results proved in this

paper.

The outline of the paper is as follows: Section 2 collects some definitions, some auxiliary

results in order to display the framework where the main results are proved. Section 3

contains results which characterize the exponential stability of the zero state equilibrium

of a discrete-time time-varying linear equation described by a sequence of linear positive

ooerators on a ordered finite dimensional Hilbert space. Section 4 deals with a class



of linear positive operators acting on a space of symmetric matrices. Such operators
contain as a special case the Liapunov type operators arising in connection with discrete-

time linear stochastic equations affected to both independent random perturbations and

Markovian jumping.

2 Discrete time linear equations defined by positive
operators

2.L Preliminary considerations

Let X be a finite dimensional real Hilbert space. We assume that X is ordered by a order

relation D < n induced by a regular solid closed pointed selfdual convex cone X*. For

detailed definitions and other properties of convex cones we refer to 12, B, 16, 20].

Here we recall only that rf C C X rs a convex cone then the corresponding dual cone

C* C X* consists of the set of all functionals gr* € /* such Ihat y.(r) ) 0 for all r e C. A

cone C is called selfdual if. C* : C. For the last equality we take into account that based

on Ritz theorem the dual X* is identified with .,t.

Therefore the cone C is selfdual is equivalent with the fact that z e C if and only if

(*,yl > 0 for al l  A e C,(,) being the inner product on X.

We also recall that a cone is said to be regular if for arbitrary bounded bellow sequence

1 1 )  1 2

By | . 12 we denote the norm on ,t induced by the inner product on X t.e'

l r l2 :  l< , , ,  >l t l '  '

Throughout this paper we suppose that together with l'1, ott X there exists also another

norm denoted bV | ' It with the following properties:

P1) There exists €x € IntX+ such that l{;11 : 1 and

- t x < r l t x  Q ' 7 )

for arbitrary n €.t with lrlr < 1.

P2) If  n,,A,z € X arcsuch that A < r I  z then

l r l '  <  max( ls l1 ,  lz l l ) .  Q 2)

If  T: X -+ X is a l inear operator then 117116 is the norm of 7 induced by l ' l t ,k: I ,2,
that is

l l" l l*: sup {lrrft} '  (2 3)
lnln<r



Remark 2.L a) Since X is a finite dimensional space then | . lr and | . 12 are equivalent.

From (2.3) i t  fol lows that l l ' l l1 and l l . l l2 are also equivalent. This means that there are

two positive constants c1 and c2 such that

ct l l r l l '  <  |  l r l  l "  < cz l l r l l '

for all linear operators T : X -+ N.

b) If ?- : X -+.t is the adjoint operator of 7 with respect to the inner product on .2,

then l lT l l r :  l l " - l l r .  In general  the equal i ty l l7 l l r :  l l?- l11 is not t rue.

However, based on a) it follows that there are two positive constants 21, Z2 such that

erllrl l, _< ll7-ll, S erllTll '. (2.4)

Let (X ,.t+) and (y, y+) be two ordered Hilbert spaces. An operat or T : X -+ ! is called
positive operator if T(X+) C y+. In this case we shall write 7 > 0.

If T(IntX+) c Int!+ we shall write 7 > 0.

Propositi on 2,2 If T : X -+ X i,s a li,near operator then the following hold:

0 f > 0 i,f and only if?* > 0.

( i ,x)  I f  ? > 0 thenl lT l l l :  lTt* l ' .

Proof: (i) is a direct consequence of the fact that X+ is a selfdual cone'

(ii) If ? > 0 then from (2.1) we have

-T€* 1Tr < T€x.

From (2.2) it follows that lTnll Slf*i for all r e X with lrll ( 1 which leads to

sup l7r l1  < lT€* l t  <  sup l?r l r
l r l r 5 1 l r l r < 1

hence l lTl l t  :  l f  fui and thus the proof is complete.

Example 2.3 (i) Consider X : R" ordered by the order relation induced by the cone

R[.  Recal l  that  R?:  { r :  ( r r , . . . ,nn)r  €Ft l r . ;  )  0 ,1 < i ,  <  n} .  I t  is  not  d i f f icu l t  to

see that R? is a regular solid closed selfdual pointed convex cone. If T : R -+ R" is a

linear operator then ? > 0 iff its corresponding matrix A with respect to the cannonical

basis on R" has nonnegative entries. Together with the Euclidian norm | ' lz on R' we

consider the norm | ' lr defined bY

l r l r  :  max l r ;1 .
l1 i1n '

The properties P1 and P2 are fulfilled for the norm defined by (2.5). The element €x

is now tx : (1,1,1... ,1)t e Int(R\). The ordered space (R",Ri) is considered in

connection with Perron-Frobenius Theorem.

(2 .5 )



l A l t  :  
\ 1 1 o , l .

Properties P1 and P2 are fulfilled for norm (2.8) with

(i i)  Let X:Rlxn be the space of mxnrcal matrices, endowed with the inner product

(A, B) : rr(Br A)

V A, B e R xn,f r(M) denoting as usually the trace of a malrix M.

On R-x' we consider the order relation induced by the cone X+ - RT*" where

(2.6)

RT"" :  {A e-P'*"" |A :  {ar i } ,a, ; i  }  0, I  < i  < f f i , I  1 i  < n} '

The interior of the cone R?"" is not empty. Let A be an element of the dual cone

(R?'")-. This means that'(A,B> ) 0 for arbitrary B e .Rf,"". Let Eii e Rfx" be

such that Ei j  -  
{" lL) t . r ,  wi th ei !1, :  0 i f  ( t ,k)  + ( i ,  j ) ,  

" ' ,L:  
1 i f  ( l ,k)  :  ( i ,  j ) '  We

have 0 < (A,Eii): a17 which show that A e Pti"" and it follows that the cone (2.7) is

selfdual. On R-x" we consider also the norm | ' 11 defined by

(2 8)

1  . . .  I
i - .  -
\ r t -

1 1 1  
' l

I  I  I  . ' .

e IntRl""

An important class of linear operators on R-x' is that of the form Lap ' Rrnxn ' Flrnxn

Ay Le,oy : AYB, for al l  Y € R**'where A € R*x^,f i  e F.nxn are given f ixed

matrices. These operators are often called "nonsymmetric Stein operators". It can be

c h e c k e d  t h a t L 1 . , a > 0 i f f a i i b 1 1 , ) 0 ,  V  i ' , i  € { 1 , . . . , m } , l , k e  { 7 , . " , n } '  H e n c e  L a , B } 0

iff the matrix A I B definei a positive operator on the ordered space (R*",RT") where

I is the Kronecker Product.

( i i i )  Let  5 , ,  C R"""  be the subspace of  n  x  n symmetr icmatr ices '  Let  X:9nOS"O

... O S, : 5# with l{ ) 1 fixed. On sfl we consider the inner product

N

(x,Y):  t  Tr(Y,X) (2 e)

for arbitrary x - (xt xz,.. Xp) and Y : (YY, YN) in Sfl, The space Sflis ordered

by the convex cone

5#'* :  {X :  (X, Xr.. .  Xry) lXu> 0, 1 < i  < l /} .

The cone Sfl'+ has the interior nonempty.

IntE{,+ : {x € S#lXo > 0, 1 ( i < l/} '

Here X6 > 0, (Xo > 0) respectively, means that X; is a positive semidefinite matrix,

positive definite matrix. with a similar reasoning as in [16] for l/ : 1 one may show that

Sfl'+ is a selfdual cone.

(2.7)

(2 .10)



Together with the norm l.12 induced by the inner product (2.9), on 6fl we consider the
norm | . lr defined by

lXl, : #-q4.lx,l, (V)X : (X' ... X1,') e Sfl (2.11)

where lXol: maxl6o1lro; l)1, o(Xt) being the set of eigenvalues of the matrix X;. For the
norm defined by (2.11) the properties P1 and P2 are fulfilled with tx : (In In ... In) :

J e s{
An important class of positive linear operators on Sfl will be widely investigated in Section

4. The operators considered in Section 4 contain as a particular case the symmetric Stein

operators.

2.2 Discrete time affine equations

Let L : {Ln}nr-4o be a sequence of linear operators Lp : X -+ X and f : {fn}r>ro be a

sequence of elements ,fr e ,t. These two sequences define two affine equations on X:

t rk+r :  Lnrn*  fx (2.12)

which will be called "the forward" affine equation or "causal affine equation" defined by

(L, /) and

$r :  Lk rn+ t *  f x (2 .13)

which will be called "the backward affine equation" or "anticausal affine equation" defined

by (L,/). For each k > I > fts let Tf1: X -+ X be the causal evolution operator defined

b y t h e s e q u e n c e L , T f t : L n t L * _ z . . . L t 1 f k > l a n d T f t : I x i f k : l , I x b e i n g t h e i d e n t i t y
operator on X.

For all ko < k < l,Ttt: X -+,t stands for the anticausal evolution operator on .t defined

by the sequence L, that is
Tt t :  LPLl 'a1" 'L1-1

if k < I and Ttt: Iy i f  k : I '

Often the superscripts a and c will be omitted if any confusion is not possible.

Let rt1,:Ttf i ,k> l , t)-ko be f ixed. One obtains that {fr*}*>t verif ies the forward l inear

eouation

r p a l :  L p I p (2.r4)

with initial value nr : tr. Also, if Ux : TttU,ko < k { I then from definition of Tf, one

obtains thal {an)no<est is the solution of the backward linear equation

with given terminal value Ut: U.

At : LnUn+t (2.15)



It must be remarked that, in contrast with the continuous time case, a solution {*r}r
of the forward linear equation (2.14) with given initial values nt : r is well defined for

k > I while a solution {Ar)r of the backward linear equation (2.15) with given terminal

condition h: A is well defined for ks < k < l.

If for each k, the operators L1, are invertible, then all solutions of the equations (2.14),

(2.15) are well defined for all k ) ko.

If (Tf). is the adjoint operator of the causal evolution operator Tfl we define

z1: (Tf). t ,  (V) ko < I < k.

By direct calculation one obtains that z1 : Lf 2111 which shows that the adjoint of the

causal evolution operator associated with the sequence L generates anticausal evolution'

Definition 2.4We say that the sequence L : {Lr}r>*o defines a positive evolution if for

all k > t ) ko the causal linear evolution operator Tft 2 0.

Since Tf+tt:,Cl it follows that the sequence {Lp)n>xo generates a positive evolution if and

only if for each k) ko,LpLS a positive operator. Hence, in contrast with the continuous

time case, in the discrete time case only sequences of positive operators define equations

which generate positive evolutions (see [11].)

At the end of this subsection we recall the representation formulae of the solutions of

affine equations (2.72), (2.13).

Each solution of the forward affine equation (2.12) has the representation:

k-L

r1,:  Tf1n1+ t Tfn+rfo Q'16)
L=t

for all k > t * 1. Also, any solution of the backward affine equation (2.13) has a repre-

sentat ion 
t_,

a n : T t t a t + L r t o f o ,  k o  1 k  <  I  - r '

3 Exponential stability

In this section we deal with the exponential stability of the zero solution of a discrete

time linear equation defined by a sequence of linear positive operators.

Definition 3.1 We say that the zero solution of the equation

r16q1 : Llxrp (3 1)



or equivalently that the sequence L: {Ln)r>ro generates an exponentially stable evolu-

t ion i f  there are P > 0,q € (0, 1) such that

l l? , r r l l r  3 gqr- t ,  (v)  k > l )  ko (3.2)

?61 being the causal linear evolution operator defined by the sequence L.

In the case when Ln -- L for all k, if (3.2) is satisfied we shall say that the operator ,C

generates a discrete-time exponentially stable evolution'

It is well known that L generates a discrete-time exponentially stable evolution if and

only if the eigenvalues of L are located in the inside of the disk l)l ( 1 or equivalently,

p[L] < 1, p[] being the spectral radius.

It must be remarked that if the sequence {Lu}r>oo generates an exponentially stable

evolution then it is a bounded sequence.

In this section we shall derive several conditions which are equivalent with the exponnetial

stability of the zero solution of the equation (3.1) in the case Lp> 0,k ) ks. Such results

can be viewed as an alternative characterization of exponential stability to the one in

terms of Liapunov functions. We remark that since X is a finite dimensional space in

(3.2) we may consider any norm on X.

Firstly, we prove:

Theorem 3.2 Let {Lo}t>o be a sequence of linear posi'ti'ue operators Lp : X -+ X ' Then

the following are equ'iualent:

(i,) The sequence {Lr}r>o generates an erponenti,ally stable euoluti,on.

(i,i,) There eri,sts d > 0 such that
k

I  l l 4 , l l '  <  5
l=ko

f o r a r b i , t r a r y k l k o > 0 .
( i , i , i )  There er i ,stsd > 0,  suchthatDf:r ,Tuftx <6t* for  arbi , t raryk) k1 )  0,5>0 being

i,ndependent of k,h.

(i,u) For arbi,trary bound,ed, sequence {/*}*>o C X the soluti,on wi,th zero i,ni'ti,al ualue of

the forward affine equation
r k + r :  L n n n *  f n ,  k  >  0

i,s bounded.

proof: The implication (i,u) -+ (z) is the discrete-time counter part of the Perron's

Theorem (see [17].) It remains to prove the implications (i) -+ (i'i) -+ (i'i'i) -+ \iu)'

If (i) is true then (ii) follows immediately from (3'2) with 6 : &'

Let us prove that:

o < TnEx S l lTnllr€, (3 3)



for arbitrary k t I > 0. If Tkt€x - 0 then from Proposition 2.2 0r) it follows that

ll"*rll, : 0 and tg Sl ir fulfilled. lf Tmt* I 0 then from (z.t) applied to r : 
trri;iTr,€*

one gets 0:-n*tx 3lT*fxlfx and (3.3) follows based on Proposition 2.2 (i i) '

If (ii) holds then (iii) follows from (3.3). we have to prove rhat (i'i'i') -+ (i'u)' Let

{t}i>, C X be a bounded sequence, that is l/tlr S p, k > 0. Based on (2'1) we obtain

that Ilfilrtx S ft Slflt€* which leads to -F€x 3 fi S 1t{7 for all I ) 0.

Since for each k> I+ 1 > 0, 7rr+r is a positive operator we have:

-pTnt+ttx 1Tm+tfi 1 PTm+r€x

and
k-l  k- l  k-r

- pDrr.,t+ttx < D rxt+rft < pDrnt+,.€x'
l=0 l=0 l :0

Applying (2.2) we deduce that:

k-L k-L

lDrr,*tftlt S Pl Drrt+tt*l'
l=0 l=0

If (iii) is valid we conclude by using again (2.2) that

k-L

lDrr,*rf,l, S P6, (v) ft > 1
l=0

which shows that (iv) is fulfilled using (2.16) and thus the proof ends.

We note that the proof of the above theorem shows that in the case of a discrete time

Iinear equation (S.f) aenned by a sequence of linear positive operators the exponential

stability is equivalent with the boundedness of the solution with the zero initial value of

the forward affine equation
t k + r :  L n r n * € x -

We recall that in the general case of a discrete time linear equation if we want to use the

perron,s Theorem to characterize the exponential stability we have to check the bound-

edness of the solution with zero initial value of the forward affine equation

f r k+ r :  Lnnn*  fn

for arbitrary bounded sequence {f n}n2o c X '

Definition 3.3 we say that a sequence {f1,)n2*o c x+ is uniformly positive if there

e x i s t s  c ) } s u c h t h a t  i * > c € x f o r a l l  k ) k o .  I i { f r } o > r , C X +  i s u n i f o r m l y p o s i t i v e w e

shall write fx 2 0,k 2 ko. If  -f  r > 0, k ) k6 then we shall  write f n K0,k > ko'

9



The next result provides a characterization of the exponential stability, using solutions of
some suitable backward affine equations.

Theorem 3.4 Let {Lr}r>no be a sequence of linear and posi,ti,ue operators Ln : X -+ X.
Then the followi,ng are equ'iualent:

@ fhe sequence {Ln}n>no generates an erplnenti'ally stable euolut'ion.

( i , i , )  There  er is t  fu )0 ,Q €  (0 ,  1 )  suchtha t  l l4 , l l t  10 f lk -1 ,  (V)  k  >  l>  ko .

(i.i,i) There eri,sts d ) 0, i,ndependent of k, such thatD\nffr€* < 6€*.

(iu) The backward ffine discrete ti,me equati,on

rn : Llrn+t I €x (3 4)

has a bounded and uniformly posi,ti'ue soluti'on.

(u) For arbi,trary bounded and uni.formly posi,tiue sequence {f n}n>,, C IntX+ the backward
affine equati,on

r n : L l " r * + t * f n ,  k > k o  ( 3 ' 5 )

has a bounded and uni,formly posi,ti'ue solution.

(ui,) There eri,sts a bounded and uni,formly posi,tiue sequence {f u}r>*o C IntX+ such that
the correspond,ing backward, affine equati,on (3.5) has a bounded soluti,on {rtr}r>xo C X+.

(uii,) There eri,sts a bounded and uni,formly posi,ti,ue sequence {Ar}r>no C IntX+ whi,ch
uerifi,es

L I a n + t -  U n  K 0 ,  k 2  k o '  ( 3  6 )

Proof: The equivalence (r) e (ez) follows immediatelly from Q.{. In a similar way as

in the proof of inequality (3.3) one obtains:

o 3rf*tx < ll4l,l l '€" (3 7)

f o r a l l l > k > k o .

If (ii) holds, then (iii) follows immediatelly from (3.7) together with the property that
X+ ts a regular cone. To show that (iii) -+ (eo) we define ax:D?nTfr€*, k > k0. If
(iii) holds it follows thar {yp}ps is well defined. Since an -- €x + LiLEn*1Tf1,*1{a one

obtains thatyp>>0,k ) ks and {yp}nzno solves (3.a) and thus (iv) is true.

Let us prove now that (i,u) -+ (i,i,i,). Let {nn}n>po C IntX+ be a bounded and uniform
positive solution of (3.a) that is

0 < ttr€* 1 rp I p"2(y (3 8)

for some positive constants p; independent of k. The solution {rp}n2no has the represen-
tation formula j_L

np:T i1, r i+Df f$*

1 0



for all j  > k+ 1 > ko. Since Tfk>-0 we obtain

j - r

Drf#* <rn. (3.e)
I : k

For each fixed k ) ft6 we define 
r_L

zi : DTftt*
t:k

for all j > k * 1. The sequence {z}2n+t is monotone increasing. From (3.S) and (3.9)

we obtain that
t x l z i 1 l . t z t x .

Since X+ rs a regular cone we may conclude that there exists

]X" : i r ' .n t *1P 'z€x

and thus (iii) is valid.

Now we prove (i,i,i) -+ (u). Let {fr)r>ro C IntX+ be a bounded and uniformly positive

sequence. This means that there exists u6 ) 0 such that

u r t x l f i l u z t x ,  V l > k o .

Since Tfk> 0 one obtains urTfntx Sfirf i 1u2Tip{x, V I > k > k0'

Further we may write the inequalities: u1{7 I utLl=nT,Lt* ! Dr=rTilfi S uzDl=r,Tirt* <

uzD]nT f r€ *  1u26(y ,  (V )  r  2  k> .ko .

Since .t+ is a regular cone one concludes that the sequence {Dl=rTrLf}i>n is convergent'

We define rtn : DEnTt,'f t, k ) ko. One obtains that rtn: f n + LiDEr+rT,L*rf, which

shows that {rp}6>ro is a solution with desired properties of the equation (3.5) and thus

(v) holds.

(r) -+ (,ui) is obvious. We prove now (ue) -+ (i,i,). Let us assume that there exists a

bounded and uniformly positive sequence {f*}n>no C IntX+ such that the discrete time

backward affine equation (3.5) has a bounded solution {ftx}n>*o c X+ '

Therefore there exist positive constants 1 such that

o < 7 r { " < f i 1 " Y 2 € x
0 < lr€x I fr1 11s(7 (3'10)

for all t > ko. Writing the representation formula

j - r

ftn: Tinfti +DTfrf ,
I =K

1 1



and taking into account that Ti* >- 0 if j > k one obtains

j - r

fn SDrfnft < ft*, (v) i  - L> k ) ko.
l=k

Set ga : DEr Tftft, k ) ko, ,t+ being a regular cone together
guarantee that ya is well defined and

.t [x l  an 1%1x (3.12)

for al l  k)  ko.Let fu 2 ks be f ixed. We def ine i ln:Tt* ,Un, k2 f t1.  Since Ttrr2 0 one
obtains that

yT\n , tx< i ln<yTfp , tx

fo r  a l l  k>  h .

On the other hand we have fip: DErTfrrft.This allows us to write

ilr,+r - iln : -Tinrf n.

From (3.10) we get
i l x + t - g r 3 - 1 f i p , | x .

Further, (3.13) leads to:

i l n+ t  1 ( r  -# )ak ,  (v )  k  >  k l .

Inductively we deduce

(3 .13)

a n l q k - k ' i l * r ,  V  k > h  ( 3 . 1 4 )

where Q: I - f,r,u€ (0,1) (in (3.13) 7s may be choosen large enough so that 73 > lt).
Invoking again (3.13) we may write

zqo-*t tx
1t

, V k > k1. Based on Proposition 2.2 (ii) we

a/o

<  r r  qk -K r
1t

that means that (ii) is fulfilled.

The implication (zu) -+ (ui,i,) follows immediatelly since a bounded and uniformly positive

solution of (3.4) is a solution with desired properties of (3.6). To end the proof we show

that (ui,i,) -+ (ui,).^ Let {r*}r>ro c IntX+ be a bounded and uniform positive solution

of (3.6). Define ir : ,r - Li"n*r. It follows that {/r}r>ro is bounded and uniform

positive, therefore {21,)n1o will be a bounded and positive solution of (3.5) corresponding

t, {ir}r>ro and thus the Proof ends.

(3 .11)

with (3.10),  (3.11)

which by (2.2) leads to
have

Tfp,€x <

lTf1,,€xi 3 frqh-n'

l l4i '  l l '
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We remark that in the proof of Theorem 3.4 the fact that X+ is assumed to be a regular

cone, was used in order to guarantee the convergence of several series tn X.

The result proved in Theorem 3.2 holds even if X+ ts not a regular cone.

The next result provides more information concerning the bounded solution of the discrete

time backward affine equations.

Theorem 3.5 Let {Lu}r>ro be a sequence of li,near operators whi,ch generates o,n erpo-

nenti,allg stable euoluti,on on X. Then the followi'ng hold:

(i) for each bound,ed, sequence {f n}r>*o C X the discrete-time backward affine equati,on

r N : L f , r r , + t * f n  ( 3 ' 1 5 )

has an uni,que bounded solution which i,s gi'uen by

, r : i T f r f t ,  k>ko .  ( 3 .16 )
I=k

(ri,) If there eri,sts an integer 0 > | such that Lpas : Lk, fn+e : fn for all k then the

uni,que bound,ed, soluti,on of equation (3.15) i,s also a peri,odi,c sequence wi,th peri,od0'

(iii) If L* : L, f r, : f fo, all k then the uni,que bounded soluti,on of the equati,on (3.15)

is constant and i,t is gi,uen by

r t :  ( I x  -  L . ) - t f  (3 .17)

wi,th Ix the i,ndenti,ty operator on X.

(i,u) If Ln are posi,ti,ue operators and {f 6}p-rno C X+ i,s a bounded sequence then the unique

bound,ed, soluti,on of the equati,on (3 15) sati'sfies rtt) 0 for all k) ko'

Moreouer if {ft}n>n, C IntX+ is a bound,ed, and, uni,formly posi,tiue sequence then the

uni,que bound,ed, soluti,on {fr*}r>ro of the equati,on (3'15) i's also uni,formly posi'ti'ue'

proofi (z) Based on (z) -+ (ii) of Theorem 3.4 we deduce that for all k > ks the series

{Lrr=nTfnf}i>n is absolutely convergent and there exists d > 0 independent of k and i
such that

;

lLrfrt'lr S d. (3'18)
l=lc

set i6 : liml_+* Dlt=nTi*ft: DEr Tirf, Taking into account the definition of Tfr we

obtain ftr, -- f n + Li,D]r*rTir*rf, : f r, * Lifrr,*, which shows that {r6}6>ko solves

(3 .15) .

From (3.18) it follows that {16} is a bounded solution of (3.15). Let {ft6}p2L,o be another

bounded solution of the equation (3.15). For each 0 < k < , we may write

i* : Ti+rt ft i+t + t ', i f , (3'19)
t - b
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Since {Lr)*>no generates an exponentially stable evolution and {ia}6>ro is a bounded

sequence we have limi-+- Tia1,friar : 0. Taking the limit for j -+ oo in (3.19) we

conclude that fr : DEr Tfuf , : f6 which proved the uniqueness of the bounded solution

of the equation (3.15).

(i,i,) If {Lp}p,eo, {f r}r>ro are periodic sequences with period I then in a standard way

using the representation formula (3.16) one shows that the unique bounded solution of

the equation (3.15) is also periodic with period 0.

In this case we may take that ko : -oo.

(iii) If Lk : L, f * : / for alt k, then they may be viewed as periodic sequences with

period g : !. Based on the above result of (ii) one obtains that the unique bounded

solution of the equation (3.15) is also periodic with period0:1, so i t  is constant. In this

case fi will verify the equation ft : L.rt + f .

Since the operat or L generates an exponentially stable evolution it follows that its eigen-

values are located in the inside of unit disk l)l < 1. Hence, the operator Ia - L* is

invertible and one obtains that rt is given by (3.17). Finally, rf. Lp arc positive operators

the assertions of (iv) follow immediatelly from the representation formula (3.16) and thus

the proof ends.

Remark 3.6 From the representation formula (2.16) one obtains that if the sequence

{Ln}o>*o generates an exponentially stable evolution and {/6}plro is a bounded sequence,

then aTl solutions of the discrete time forward affine equation (2.12) with given initial val-

ues at time ft : ko dre bounded on the interval lko, oo). On the other hand from Theorem

3.5 (i) it follows that the discrete time backward equation (2.13) has a unique bounded

solution on the interval lko, oo) which is the solution provided by the formula (3.16).

In the case of ko : -oo with the same techniques as in the proof of Theorem 3.5 we

may obtain a result concerning the existence and uniqueness of the bounded solution of a

forward affine equation similar to the one proved for the case of backward affine equation.

Theorem 3.7 Assume that {Ln)rc2 
'is a sequence of li,near operators whi'ch generates an

erponenti,ally stable euoluti,on on X. Then the followi'ng assertions hold:

(i,) For each bounded sequence {fn}nrz the disuete ti,me forward ffine equation

frk+r : L*n* -l f n (3.20)

has a uni,que bound,ed, soluti,on {fr*}rrr. Moreouer thi,s soluti,on has a representati,on for-

mula:

k-l
^ . S - -i * :  L T r , , n r f , ,  Y k e  z .

l= -m

(3.21)

(i,i,) If {Lr}r,rr,{fr}rr, are peri,od,i,c sequences wi,th peri,od 0 then the uni,que bounded

solution of the equati.on (3.20) i,s peri'odic wi'th period 0.
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(iii) If Lr,: L,f*: f ,k e Z then the unique bounded solut'ion of the equati,on (3.20) i,s

constant and, it i,s gi,uen by ft : Q* - L)-t f .

(*) If {L*}rn, are positiue operators and, i,f {f n}rrz C X*, then the uni'que bounded

s o l u t i , o n o f  t h e e q u a t i , o n ( 3 . 2 0 )  s a t i , s f i , e s f t n > 0 f o r a l l k € 2 .  M o r e o u e r , t f  f n > 0 , k e Z
then tp )  0 ,k  e  Z .

If {Ln}*ez is a sequence of linear operators on X we may associate a new sequence of

linear operators {L#r}rr, defined as follows:

L# n : L\*

Lemma 8.8 Let {Lp}nez be a sequence of linear operators on X . The followi'ng asserti,ons

hold:

(r) If fff * the causal li,near euoluti,on operator on X defined by the sequence {L#n}nez
we haue

Tfr : T!+t,.n+t

whereTii is the causal linear euoluti,on operator d,ef,ned, on X by the sequence {Lt}nez'

ftil {L# k}kas i,s a sequence of posi,ti,ue linear operators i,f and only i,f {Lr}rct 
'is a sequence

of posi,t'iue li,near operators'

(i,i,i,) The sequence{L#r)urt generates an erponenti,ally stable euoluti'oni'f and only i'f the

sequence {L6}nez generates an erponenti,ally stable euoluti'on'

(i,u) The sequence {tr}rr, i,s a solution of the d,i,screte time backward ffine equati,on (3.15)

i,f and, only i,f the sequence {An}*ez defined by yn: r-k+r 'is a soluti,on of the di,screte t'ime

forward equati,onUr+r: LTan+ f-n, k e Z.

The proof is omitted for shortness.

The next result provide a characterization of exponential stability in terms of the existence

of the bounded solution of some suitable forward affine equation.

Theorem B.g Let {Lr)rr, be a sequence of posi,ti,ue li'near operators on X - Then the

followi,ng are equ'iualent :

(i,) The sequence {Lr}rr" generates an erponenti,ally stable euoluti,on.

(i,i,) There eri,sts d > 0, i,ndependent of k such that

k

D r r t t * 1 5 € x ,  Y k e z .
l : -oo

(i,i,i) The forward ffine equati'on

!I)k+r: Lnrn * €x Q'22)

has a bounded and uniformly posi,ti'ue soluti,on'
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(i,u) For any bounded and uniformly posi,ti,ue sequence {f *l*rt C IntX+ the correspondi'ng

forward ffine equati,on

rk+r :  Lnrn- t  fn  (3 .23)

has a bounded and uni,formly posi,t'iue soluti'on.

(u) There eri,sts a bounded and, uni,formly posi,ti,ue sequence {fr}rrt C IntX+ such that
the correspond,i,ng forward, ffine equati,on (3 23) has abounded soluti,on frp,k e Z C X+.

(ui,) There erists a bounded and uni,formly posi,ti,ue sequence {Au}rr" which ueri,fi,es Un+r-
Lxar ) 0'

The proof follows immediatelly combining the result proved in Theorem 3.4 and Lemma
3.8 .

At the end of this section we prove some results which provide a " measure" of the ro-

bustness of the exponential stability in the case of positive linear operators. To state and
prove this result some preliminary remarks are needed.

So, l*(Z,Z) stands for the real Banach space of bounded sequences of elements of X.If.

r  € 16(2,  X) we denote l r l  :  sup6. z l r* i '

Let l* (2,, X*) c l* (2, X) be the subset of bounded sequences {rr}rr, C X+ ' It can be

checked Ihat l*(2,.2+) is a solid closed normal convex cone. Therefore, l*(2,.2) is an

ordered real Banach space for which the assumptions of Theorem 2.17 tn [B] are fulfilled'

Now we are in position to Prove:

Theorem 3.LO Let {Lp}nez,{7n}nez be sequences of posi,ti,ue li,near operators such that

{9n}nrz i,s a bounded sequence. [Jnder these condi,ti,ons the followi,ng are equ'iualent:

(i) The sequence {Lr}*r, generates an erponenti,ally stable euoluti,on and pff 1I where
plT is the spectral radi,us of the operatorT : !*(Z,X) -+ l*(Z,X) def'ned by

k-1

?t -- Tr, Uk : .L 
Tnt+$pt. (3.24)

71,1 bei,ng the ri,near euoluti,on operator 
", 

i-f"nred, by the sequence {L*}rrr.

ftl fhe sequence {Ln + 7r)nrz generates an erponenti,ally stable euolut'ion on X '

proof: (1,) -+ (1,1,) If the sequence {Lr}rr, defines an exponentially stable evolution,

then we define the sequence {f n}nrzby {L*)rr,

f t  :T r * * r€ * .  (3 .25 )
l : -oo

We have fn:€x+Df=-:-Txt+ttx which leads to f*> €x thus /,6 € IntX+ for all k eZ.

This allows us to conclude lhat f : {fn)nez € Intl*(Z,X*)'

Applying Theorem 2.11 [S] with R : -It* and P - T we deduce that there exists

r : {r*)nes € Intl*(2,, X*) which verifies the equation:

( I r * - T ) ( " ) : f .  ( 3 ' 2 6 )
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Here 12- stands for the identity operator on !*(Z,X). Partitioning (3.26) and taking
into account (3.24)-(3.25) we obtain that for each k e Zwe have:

trk+r:  D Tr*r , rugpt* D To*r,r* t€*.
l=-oo l=-oo

Further we may write:

k-I k-r

trk+r:7r,rn * €x * L1, D Trt*tZp1l Lp D Tr,*t€x -- gnrx * (z * Lxrn.
l=-oo l=-co

This shows that {rp}nez verifies the equation

trk+r - (Lx + 9*)r* + tx. Q.27)

Since L1a and Qp are positive operators and z > 0, (3.27) shows Lhat rp> €x. Thus we

get that the equation (3.22) associated to the sum operator Lp*9nhas a bounded and

uniform positive solution. Applying implication (iii) -+ (e) of Theorem 3.9 we conclude

that the sequence {Lr+ 9*}*ez generates an exponentially stable evolution.

Now we prove the converse implication.

If (ii) holds then based on the implication (r) -+ (i,i,i,) of Theorem 3.9 we deduce that

the equati on (3.27) has a bounded and uniform positive solution {r*}rr, c IntX+ . The

equation (3.27) verified by rt* may be rewritten as:

r tk+t :  Lnf rn*  fn  (3 .2S)

where fn : g*frt * €x, k €. Z, fn 2 €*, k e Z. Using the implication (a) -+ (z) of
Theorem 3.9 we deduce that ihe sequence Lp generates an exponentially stable evolu-

tion. Since the equation (3.28) has an unique bounded solution which is given by the

representation formuta (:.it), we have: ,r -- Df:]*Tr,*rf,, V k e Z,

k-l  k- l

rtt": | 71,1*19ft1+ D rrt*t€*' (3'29)
J:-oo J=-oo

Invoking (3.24) the equality (3.29) may be written:

r : Tr -t 0 (3.30)

where S : {gn}nrz,ir,: Df=-]_ Txr+t€x. It is obvious that fu > €x for all k e Z. Hence

g e  In tL* (Z ,X* ) .

Applying implication (r) -+ (ui,) of Theorem 2.LItn [S] for R: -I i l* and P :T one

obtains that plf ( 1 and thus the proof is complete'

In the time invariant case one obtains the following version of Theorem 3.10:

Theorem 3.LL Let L: X ) X,9: X --+ X beli,near andposi't i 'ue operators.
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Then the followi,ng are equ'iualent:

ft) fhe eigenualues of the operators L and Q* - L)-'g are located in the insi,de of the
disk )l < 1.

(ii) The ei,genualues of the surn operator L*Q are located in the i'nsi,de of the disk)l < I.

Prooft If (i) holds, then based on (iii), (iv) of Theorem 3.7 we deduce that (Iy - L)-'tx e
IntX+.

Applying (ui,) -+ (i,i,i,) in Theorem 2.11 [S] for R - -Ix and P : (I* - L)-tg one obtains
that there exists rt e IntX+ which verifies

rt :  (Ix - q-rgrt + (I* - L)- '€*,

which leads to Q* - L)ft:0r + tx.

Therefore we obtain that the equation

rk+r : lL + glrn + tx (3'31)

has a bounded and uniform positive solution {rn}nrz namely frn : rt for all k e Z'

Applying (i,i,i,) -+ (r;) of Theorem 3.9 one obtains that the operator L + g generates a

discrete-time exponentially stable evolution which shows that the implication (i) -+ (ii)

is valid. Let us prove the converse implication. If (ii) holds then based on the implication
(?) + (iii,) of Theorem 3.9 we obtain that the equation (3.31) has a bounded and uniform
positive solution, rt1r,k e Z. Further, from (iii),-(iv) of Theorem 3.7 we conclude that

r tn : r t  €  In tX+, fo r  a l l  k  eZ.  Hence r t :  L r t  f  /  where  f  - -gn* tx  e  In tX+.

Invoking again (i,i,i,) -+ (z) of Theorem 3.9 one gets that ,C-generates a discrete-time

exponentially stable evolution. We may write fr : (Ix - L)-'f which leads to

rt  :  ( Ix -  Q-rgr + ( I*  -  L)- '€*.

Since ( I*-L)- ,€*e IntX+ thenfrom ( i ,u)-+ (ua) of  Theorem2.LTtn[a]  weobtainthat
pl(I* - L)-,9) < 1 which ends the proof of the implication (i,i,) -+ (z) and the proof is

complete.

An infinite dimensional counter part of the result proved in the Theorem 3.11 may be

also obtained based on Theorem 2.17 in [S].

In a similar way with the proof of Theorem 3.10 we may prove the following result:

Theorem B.L2 Let {Lr)n>rr,{]x)n>no be two sequences of li,near and posi,ti,ue operators

on X such that {?n}n2no i's a bounded sequence'

Then the followi,ng are equi,ualent:

(i,) The sequence {Lr}u>ro generates an erponenti,ally stable euoluti,on and plT") < 1 where

T" : l*lZno, Xl + l*lZro, Xl i's defi'ned by y : Tor

ar : iT i1 ,g f  11 ,  k )  ko  (3 .32)
l=k
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7:11, bei,ng the causal li,near euoluti,on operator d,ef,ned by the sequence {Lr}n>*o, Znol C

Z, Zno : {k € Zlk > ko}.

(ii) The sequence {Ln + gnlnezro generates an erponenti,ally stable euolution on X.

The proof is made combining the results of the above theorems 3.4 and 3.5 and Theorem

2.7L in [a]. It is omitted for shortness.

4 Application to the problem of mean square expo-

nential stability

In this section we consider discrete time linear equations defined by some linear positive

operators arising in connection with the problem of mean square exponential stability for

a class of discrete-time linear stochastic systems. To be more specific let us consider the

space 5fl introduced in Example 2.3 (iii). On Sfl we consider the linear operators f,7,

defined as fol lows: LxX - ((LrX)(I)(L1X)(2)...(LkX)(l{)) where

N N r N

(Lkx)(i) : t pn(i, i)Aon(ilx (ilATo(i) + t D pr(r)pr(i, i)A,r(i)x (i)ATru) (4 1)
4 = l  r = L  j = L

fo r  a l l  y :  (X(7) . . .X( l f ) )  €  SJ ,  where  A, * ( i )  €  R ' " ' ,0  (  r  (  l / r , IS  i  <  A I , f t  >  0

and pr6(r) andp1,(j,i,) are nonnegative scalars. It is clear lhat L* is a positive operator.

If the scalars pn(i,i) have the additional property:

AT

l n r ( i , ' i ) : 7 ,  1 < i < N ,  k > o  @ : )

then the operators (4.1) are associated to the discrete-time linear stochastic equations of

the form:
Ni

x tk+ r : [Ao r (n r ) *2O, r ( r1 , )w1 , ( r ) ] rp ,  k ]  0  (4 '3 )

where ir*("))*>',7 I r < lfl are sequences of zero mean square integrable random

variables on a giuen probability space (9, F,2) having the additional properties:

I.  rf  w1,: @1,(1)w1,(2)...w1,(N) )" then {w1,)*20 is a sequence of independent random

vectors,

oL' 
8fu1,w[]: d' i 'agl l l t  ( l) t '^Q)"' t ' r( lr ' ) l

The sequen ce {rln}n>ois a Markov chain with the state space the finite set,A/ : {1, 2, "', N}

and ipi)6- o, Fn : {pr(i, j)} i, j € Af the sequence of transition probability matrices, that

is pir ln#:i , lr to, Th, .. . ,  r lki  -- p*(r l*,r) u.q. For detai ls see [10].
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Assume that the stochastic processes {rr}rr_o and {46},6y6 are independent.

If Pk: P then {q*}r>o is called homogeneous Markov chain.

Two important cases of linear stochastic systems of type (4.3) were intensively investigated
in the l i terature,  namely for  / { :  1 or for  Arp( i , ) :0,1 1r I  N1,k }  0, i  € Al .

In the case N: 1, (4.3) becomes:

.l[r

rk+r : [Aon + 
2O,r*r(r))rn. 

e.4)

The exponential stability in mean square for the systems of type (4.4) was investigated

rn  [ J ,27 ,28 ,  29 ,  34 ] .

In the case A,a(i,):  0, 1 I r I  Nt, k > 0, i ,e "A/ the system (4.3) reduces to

rk+r: Aor(rtr)*n (4 5)

which was studied in [4, 5, L2, 13, 14, 18, 2L, 23, 24, 25, 26] and references therein.

Sett ing Ar,: Aon(rtx) +D{}rA,r(rtr)rr(r) the system (a.3) may be written in a compact

form as: 
trk+.| : Axr*.

F o r e a c h  k > l >  0 d e f i n e O n b y ( D n :  A n - r A * _ z . . . A t r f  k > l a n d  O & r :  I " i f  k : l , O u i s

the fundamental matrix solution of the system (4.3).

If {r1,}62s is a solution of the equation (a.3) then we have np : Qp1r1, k > I > 0. The

next result provided the relationship between the evolution defined on Sfl by the operator

.C6 introduced by (4.1) and the evolution defined by the equation (4'3).

Theorem 4.L If Tnt,k > t > 0 i,s the causal euoluti,on operator on E{ defined by the

sequence {Ln)n>o defined bU Q.1) and (/, .2), then :

lritxl(i) : EloTtx(niQrtlrr,: il (4'6)

for att y : (X(L)X(2) .X(l/)) € S#, k > I > 0,i ,  e AI, such thatP{rtt :  r} > 0, El ' l r t t  :

i,) stand,s for the cond,it'ional erpectati,on with respect to the euent {qt : i'}.

A proof of the result stated in the above theorem in particular case when system (4.3)

reduces to system (4.4) may be found in [28], while if the system (4.3) reduces to the

system (a.5) the equality (4.6) was proved in [26].

A complete proof of the Theorem 4.1 in the general case of systems (a.3) will be given

in an acompany paper which deals with the problem of the exponential stability in mean

square.

To avoid some inconvenience due to the presence of Markov chain in the matrix coefficients

of the system we assume that the following property holds.

P3) The Markov chain {qo}^>o has the property

P { n o : r } > 0  ( 4 - 7 )



f o r a l l  i e N  a n d k ) 0 .

It can be checked inductively that (a.7) is fulfilled if for each k> 0 and 1 < i S N there

e x i s t s  i e N  s u c h t h a t  p n ( i , i )  ) 0 a n d P { r t o - _  l } > 0 ,  l e  J { '

Definition 4.2We say that the zero solution of the system 4.3 is exponentiallystable in

mean square (ESMS) if there exist B ) 0.,Q € (0,1) such that

Ell@1,1rl2lrlt: i ' l  I gqr-' l*l '

for all k > t > 0, i € A{, r € R".

Applying (+.0) for X : J : (1,...1^) one obtains:

rr1rr,41t1r : E|Qntrl ' lnt: i , l

for all k > I > 0, i €"A,/ and r € R"'

Thus we obtain:

Corollary 4.3 Und,er the cons'idered assumpti,ons the followi,ng are equi,ualent:

(i) The zero solution of the equation (/r.3) i's (ESMS).

ft,1 fhe sequence {Ln}n>o d,efined, by (4.1) and (1.2) generates an erponenti'ally stable

euoluti,on on S{.

It must be remarked that the discrete time linear equations defined by the operators f,l,

introduced by (a.1) offer a deterministic framework which allow us to obtain informations

concerning the exponential stability for the equations (a.3) which are probabilistic objects.

The theorems proved in the previous section for the linear positive operators provide

necessary and sufficient conditions for the mean square exponential stability of the zero

solution of the equation (4.3). If the stochastic system is in one of the particular form

(a. ) or (4.5) respectively, the results proved in Section 3 recover some results proved in

i1, ,6,  n, ,  rJ: ,  14,  18,21,23,24,25,26,27,28,29].  I f  the system (4.3) reduces to (4 '4)

then the corresponding operator (4.1) becomes:

lr'1

i.1,y : AokY ATk + D p*(r)A,hY ATk
r= I

for all Y e Sn. If the system (4.3) reduces to (4.5) then (4.1) reduces to

(4.10)

lr
(Lkx)(i) :  t  pn(i, i)AonTx(i)ATkU)

] : t

f o r a i l  X : ( X ( t )  . . X ( l i ) )  € 5 # , i e  / r r .

For the readers convenience we provide the formulae of the adjoint operators corresponding

to (4.1),  (4.10) and (4.11).

These formulae may be deduced in a standard way taking into account the definition of

the inner product on Sfl and Sr, respectively'

(4 8)

(4 e)

(4 .11)
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We have LiX : (L\X(L) ... L\X(N)) where

N N 1

Lix(i,) : ATr(i,)(Dpo(t,i)x(i laor!) +D pr(r)'qTr@(Dpn(i, i)x(i))A,r(i), (4.r2)
j=L  r= l  j= l

1 < ? < , 1 \ r
-Iy'1

r;v : A[rv Aor + \ un(r)AftY A,r (4.13)

for al l  Y e Sn, i lx :1i ;x1t1 . . .  i ;x1N)) where

N

i ;x1r7: ATr(i)(Dpr(t, i)x(iDaon(i), 7 < i < ltr, x: (x(1) x(N)) € s#.(4.r4)
j= r

Usingthe formulae (4.1), (4.10), (4.11) or (a.12)-(4.L4), respectively, we may rewrite the

equations arising in Theorem 3.2, Theorem 3.4 in order to provide necessary and sufficient

conditions for mean square exponential stability of the zero solution of the systems (4.3)'

(4.4) or (4.5), respectively.

These results show that the mean square exponential stability of the zero solution of the

systems (4.3) and (4.5), respectively, does not depend upon the initial distribution of the

Markov chain, i t  depending only by the sequences {A,*(i)}n>r,{po(i,J)}r>0, {pr(r)}r>o.

The equation (a.3) may be view as a perturbation of the equation (4.5). In the same time

equation @.4) may be view as a perturbation of the deterministic equation

rk+ r :  Aonrn ,  k  >  0 .  (4 .15 )

The results of Theorem 3.11 and Theorem 3.t2 allow us to obtain conditions which guar-

antee the preservation of the exponential stability of the zero solution of the perturbed

equations (a.3) and (4.4) itthe zero solution of the unperturbed equations (a.5) and (4.15),

respectively are exponentially stable.

We recall that if M e Ftx' is a given matrix then the corresponding discrete-time

Liapunov operator or Stein operator is defined as: Lxa: .Sr, -+ 'S,r, LmY : MY Mr '

From Theorem 3.11 one obtains:

Corollary A.A a) Assume that the system (1, D ,s t'i'me i,nuari'ant that i,s A,p : A,, Lr'n(r) :

p,(r) for al l  k > 0,0 ( r < l /r '

Then the followi,ng are equi'ualent:

ft,) fhe ei,genualues of the matrir As and, the eigenualues of the operator (Is* - Lor)-t (L-

Lao) are located i,n the i,nside of the di,sk /l < L.

ftl rhe zero soluti,on of the d,i,screte-ti,me stochastzc e,quati,on (4.0 is ESMS.

b) Assume that the system (/r.3) ,t ti,me,inuari,ant, that is A,1, : A,, pr(r) : l.L(r),pk(i', j) :

p( i , ,  j )  for  a t l  k  > 0,0 1r  : -Nr , , i , i  € .  { I ,2 , . . . , ,n / } .  Let  L ,L be the corresponding opera-

tors defi,ned bA (4.1) and (/r.11), respecti'uely.
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The followi,ng are equiualent:

(j) fhe zero solution of the equati,on (/r.5) i,s ESMS and the ei,genualues of the operator

(/s* - t1-t1f. - i) are located in the insi,de of the disk )l < 7.

fij) fhe zero solution of the equation (/r.3) i's ESMS.

Similar results may be obtained in the time varying case based on Theorem 3.12, but they

are omitted for shortness.

It must be remarked that the operators which are involved in Corollaty 4.4 are working

on finite dimensional linear spaces. Therefore their eigenvalues may be computed since

they are the eigenvalues of the corresponding matrices, with respect to the canonical basis

of the considered linear space.

In the last part of this section we shall prove a necessary and sufficient condition for the

exponential stability of the evolution generated by the operators (4 1).

Such condition may not be directly derived from the result proved in Section 3' In order

to state that result we need to introduce the concept of detectability.

Definition 4.ELet {Lr}r>o be a sequence of operators of type (a.1) and {Cr}*>o be such

that C1,: (Ck(l) .Ce(N)), Ck(i) e Pt?'xn. We say that the pair (Cp,Lp) is detectable

if there exist a bounded sequence {Hr}n>, where Hn: (Hk(l). '  Hk(l i)) '  Hn(i) € R:xe

such that the sequen ce {L{}n o g.n.rui.t an exponentialty stable evolution, where L{ is

defined by L{ x : (L{ xo) Lr x(.nr)) with

N

Lr xQ):f nr{i,r)lAor(i) + Hk(i)ck(r)lx(i l lAon(i) + Hk(i)ck(i l lr

N r N

+D p,k(r) lnu(i , i )A,k( i)x( i lATr0 (4.16)

for all Y : (X(7) .. X(l/)) e 5#.

The sequen ce {Hn}n26 involved in the above definition will be called stabilizing injection.

If the ,.qrrur,.., {-Li}r>,, {Cr}o>o are periodic with period 0 then the definition of the

detectability is restricted to the itabilizing injections which are periodic sequences with

the same period 0. Moreover if Lk: L,Ct : C then the definition of detectability is

restricted to the constant stabilizing injection'

A possible motivation of the above definition of detectability is given by its relation with

the concept of stochastic detectability.

We recall:

Definition 4.6 We say that the system (4.3) together with the output An : Ct (n6)r; is

stochastically detectable if there exists a bounded sequence {H1,}nz0, Hn: (Hr(t) ' }/e(N))'
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H*(i) € R'xp such that the zero solution of the discrete-time stochastic equation:

.ly'r

rte+7:[Aon(rtr) + H1,(rtk)Ck(rtr) +DA,r(rtr)wp(r)]rp (4.17)
r= l

is ESMS.

Fron Definition 4.5, Definition 4.6 and Corollary 4.3 we obtain:

Corollary 4.7 Assume that the scalars pn(i, j) sati,sfy the addi,ti,onal condi'ti'on (1.2).

Then the followi,ng are equi,ualent:

(i,) The system (1.3) together wi,th the output An: C*(rlr,)rp i's stochast'ically detectable-

(ii,) The pair (C1,, La) i,s detectable, where Cp : (Cp(I) . C*(lf))

We mention that Definition 4.5 is done without condition @.2). This condition is needed

when we want to specify that the operators .476 correspond to a discrete-time linear stochas-

tic system.

The result proved below hold wiihout condition (4.2).

Theorem 4.8 Let {L1,}n2o be a sequence defi,ned by (4.1) wi,th additi'onal property that

{p*(i,J)}*>o and {Ask)ks-6 are bounded sequences'

Consid,er the discrete-time backward affine equati,on

Y 1 , : L I Y * + r + 0 x ,  f t > O  ( 4 . 1 s )

where er : @kG) 0r(2) Cu(l/)), 0r1t1 : CTC;. Assume that {Cp(i'))o>o o'"

bounded sequences and the pair (Cp, Lp) i's detectable-

Und,er these condi,ti'ons the followi,ng are equi,ualent:

(i) the sequence {Lr)r>o generates an erponenti.ally stable euolut'ion,

(i,i,) the equati,on (/r.15) has a bound,ed, soluti,on {Yr}*>o c Sfl'+'

Proof. The impiication (z) -+ (i,i,) follows imediately from Theorem 3.5 (iv).

It remains to prove the converse implication.

Let {X1,}1r2*o be a solution of the problem with given initial values:

Xt +t :  LnXt ,  k )  ko (4 '19)

Xko: H, H e S{'+. (4.20)

We show that there exists 'y > 0 not depending upon ft6 and ,FI such that

i 1x*1, < tl'l, (4'21)
k=ko

for all ks ) 0, H e S{'+.



LeI {Hp)p>o be a stabilizing injection. This means that there exist p1 } 0,Qr € (0,1)
such that

llr{,11, < /'ql-I
for all k > I > 0, T{, being the causal linear evolution operator defined on Sfl by the

sequence {L{)rr_, where L{ is defined as in (4.16).

The equation (4.19) may be rewritten as:

Xn+r: Lf Xr-t gnX* (4.22)

where gnXr:  (9nXx(7) . . .  ?nXn(N)),

AI

9 nX r"(i) :  - \  nr(i ,  i) lH k(i)c ku) x r,0 ATIT +
j : t

A,n(il x n(il cT (i) HI (i) + n n(i) c r(il x * (i) cT b) HT 0]
Further we define the perturbed operators

L7: L{ + e2an @.23)

where ArX : Grx(t) ...9r(,n'r)) *ittt
N

0 rx (i) : t pk(j, i,) AokT x (r) ATrU)
j : r

for all X : (X(1) ... X(lrr)) € S,y.

If q e (qr, 1) one shows in a standard way using discrete-time version of Belman-Gronwall

Lemma that there exists es ) 0 such that

l l4, l l '  I  gqk-',  (4'24)

for all k>l > 0,0 < e 1 €0, ff i being the causal l inear evolution operator defined on

S# bv the sequence (Li)k2s.

Let e e (0, es) be fixed and, {21,}1,2k0 be the solution of the problem with given initial

condition:

zx+r: L'rZr + L*r, Z*o : H (4'25)
c

where {/ f t  :  ({ /k(1) . . .  Vr( l f )) ,

{,k(i) : frr(i, i)Hk(i)ck(i lxrU)cT|)H[(i) '  (4.26)
j = r

If we set Zn : Z*- X6 then by direct calculations based on (4.22) and (4.25) one obtains

IhaI Z* solves:

2 n + r : L i Z r + & r ,  2 r o : g  U ' 2 7 )
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where 0o: 10*1t; . . .  v*(l{)),

N 1

0* 1l; : I n t (i, i,) (e Ast 0 + ) u r(il c *(i)) x,,(i) (e Aor(i)
; - 1

1 .  N
+ 

-- 
H k(j) C k(r ) )' + | r u(i, i) H h 0) C k(il x n U) CT 0 HI (j)

,  , = ,

Since the solution of (4.19) is in Sfl'+ it follows that \fk(?) ) 0 for all k > ks and i e N,
that is V* € S#'+.

Since Li are positive operators, then one obtains inductively based on (4.27) thal Z* > 0
for all k) ks, which is equivalent to X7, { Zpf.or allk} ks.

The last inequality allows us to write

l X r l r < l Z * l r ,  k l k o .  ( 4 . 2 8 )

From (4.25) we obtain the representation formula

I  k - l

Z* :TE* 'H  + -  D  T f ,1a1Vt ,  k ) -  ks+ r .
I=lco

Based on (4.24) we get:

o k-L

l zn l ' 3p rn -no ls l ' +  5Ds* - r - t l v , l t '  e .2e )
" l=ko

Taking into account the definition of the norm li, on Sfl one obtains (see also @.26)):

lv,l, : ?ftf lv,(,)l < SXII pn(i,i)lnli)clilx'(i)cTOHT0l
' l = L

which leads to

N

lv,l, < rnPz)i],lclt)xlilct(i)'l (4.30)
J = L

where h) pl j , i ) ,  pr)  lU,( i )12 for  a l l  I  > 0,  i , i  e Af '

Since lC/i)xli)Cf U)l: \*o,lCtU)xli)cT (r)l *. may write

lv,l, < r| 'pzlrr(c1(j)x1(r)cT 0D : ptPzDrrQT (i)cli)x/i)).
j = L  i = L

In view of definition of inner product on Sfl we get:

l v r l r  <  npz(1L ,x t ) .  (4 .31)
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Based on equation (a.13) verified bV {)i},>o we may write

(e ,, x,) : (t,, xl - (Liy+r, xt) : (y, xt) - (y*r, xt+r), (4.J2)

Since (Y),>o is a bounded sequence and (Y,X,,l ) 0 for arbitrary i) 0, we obtain from
(4.31) and (+.ez) tnat

k t

D lv,i  < pslHll,  (V) h ) ko (4.33)
I=ko

with p3 > 0 independent of I and f/.

Using (4.29) we may write:

D lzr l ' :  lHlr  r  t  lz* l '  S
k=ko lx=kst l

kz R lcz kt

(+t3 t  qk-h\ ln l r+3 t  Dq*- ' - ' lv , l ' .
ft=ko*l " lx=ks-1I l:ks

Changing the order of summation and taking into account (a.33) we obtain finally

kz

L lzr l ,  < t lHlr ,  v  k2 > ko
k=leo

.  R n  B r - 2 o "  r  ,  tand 7: 1 * f t+ re does not depend upon ks, kz,H'

Taking the limit for k2 -+ oo one gets:

i ttrt, 3 tl'l,.
k:ko

Invoking (4.28) we conclude that (4.21) is valid. Taking H : J : (In ln... In), (4.2I)

becomes IP*, lTprJlt ( 7 for all k6 ) 0, or equivalently

i l lr**.l lr < ry. @.34)
k=leo

Based on (2.4), (4.34) leads to DLro ll4i, llt ( 71 for all k > ko, ̂ tt > 0 being independent
of ks.

Since TtnoJ < ll7}*,111-/ one obtains 0 < DLr. TtroJ < 6J.

Aplying now the implication (i,i,i,) + (r) of Theorem 3.4 we conclude that the sequence

{L*}r>o generates an exponentially stable evolution and thus the proof ends.

The result proved in the above theorem may be view as an alternative of the equivalence
(r) ++ (uz) of Theorem 3.4 for the case when the forced term of the corresponding equation
(3.5) is not uniform positive.
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The lost of the uniform positivity is supplied by the detectability property. The continuous-
time time-invariant version of the result proved in Theorem 4.8 may be found in [15]
Lemma 3.2, while the continuous-time time-varying counterpart of this result may be
found in [11].

Such result is sometimes useful to derive the existence of stabilizing solutions for gener-
alized Riccati equations.
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