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P.O.Boz. 1-764, RO-70700, Bucharest, Romania

Abstract

In this paper the problem of exponential stability of the zero state equilibrium
of a discrete -time time-varying linear equation described by a sequence of linear
positive operators acting on an ordered finite dimensional Hilbert space is investi-
gated.

The class of linear equations considered in this paper contains as particular cases
linear equations described by Liapunov operators or symmetric Stein operators as
well as nonsymmetric Stein operators. Such equations occurs in connection with
the problem of mean square exponential stability for a class of difference stochastic
equations affected by independent random perturbations and Markovian jumping
as well as in connection with some iterative procedures which allow as to compute
global solutions of discrete time generalized symmetric or nonsymmetric Riccati
equations.

The exponential stability is characterized in terms of the existence of some glob-
aly defined and bounded solutions of some suitable backward affine equations (in-
equations) or forward affine equations (inequations).

1 Introduction

The stabilization problem together with various control problems for linear stochastic
systems was intensively investigated in the last four decades. For the readers convenience
we refer to ones of the most popular monographies in the field: [1, 6, 9, 19, 23, 32, 33]
and references therein.

It is well known that the mean square exponential stability or equivalently the second mo-
ments exponential stability of the zero solution of a linear stochastic differential equation
or linear stochastic difference equation is equivalent with the exponential stability of the
zero state equilibrium of a suitable deterministic linear differential equation or a deter-
ministic linear difference equation. Such deterministic differential (difference) equations



are defined by the so called Liapunov type operators associated to the given stochastic
linear differential (difference) equations.

The exponential stability in the case of differential equations or difference equations de-
scribed by Liapunov operators have been investigated as a problem with interest in itself
in a lot of works. In the time invariant case results concerning the exponential stability
of the linear differential equations defined by Liapunov type operators were derived based
on spectral properties of linear positive operators on an ordered Banach space obtained
by Krein and Rutman [22] and Schneider [31]. A significant extension of the results of
[22] and [31] to the class of positive rezolvent operators was provided by Damm and Hin-
richsen in [7, 8]. Similar results were derived also for discrete-time time-invariant case see
[16, 30].

In the case of continuous-time time-varying systems in [11] a class of linear differential
equations on the space of n X n symmetric matrices S, is studied. Such equations have
the property that the corresponding linear evolution operator is a positive operator on
S,. They contain as particular cases linear differential equations of Liapunov type arising
in connection with the problem of investigation of mean square exponential stability.

In this paper the discrete-time time-varying counterpart of [11] is provided. While in [11]
the considered linear differential equations are defined by operator valued functions acting
on the space S,, in this paper we consider discrete-time time-varying linear equations
described by sequences of linear positive operators acting on a suitable ordered finite
dimensional Hilbert space.

The ordered spaces considered in this paper contain as special casses the spaces R™ and
R™*™ ordered by the component wise order relation and the space &, of the n x n
symmetric matrices ordered by the order induced by the cone of the positive semidefinite
matrices.

Tha main results of this paper provide necessary and sufficient conditions which guarantee
the exponential stability of the zero state equilibrium of a discrete-time time-varying linear
equation described by a sequence of positive operators.

To characterize the exponential stability a crucial role is played by the unique bounded
solution of some suitable backward affine equations as well as of some forward affine
equations. We show that if the considered equations are described by periodic sequences
of operators then the bounded solution if it exists is also a periodic sequence. Moreover,
in the time-invariant case the bounded solutions to both backward affine equation and
forward affine equation are constant. Thus, the results concerning the exponential stability
for the time-invariant case are recovered as special casses of the results proved in this
paper.

The outline of the paper is as follows: Section 2 collects some definitions, some auxiliary
results in order to display the framework where the main results are proved. Section 3
contains results which characterize the exponential stability of the zero state equilibrium
of a discrete-time time-varying linear equation described by a sequence of linear positive
operators on a ordered finite dimensional Hilbert space. Section 4 deals with a class



of linear positive operators acting on a space of symmetric matrices. Such operators
contain as a special case the Liapunov type operators arising in connection with discrete-
time linear stochastic equations affected to both independent random perturbations and
Markovian jumping.

2 Discrete time linear equations defined by positive
operators

2.1 Preliminary considerations

Let X be a finite dimensional real Hilbert space. We assume that X is ordered by a order
relation ” < ” induced by a regular solid closed pointed selfdual convex cone X*. For
detailed definitions and other properties of convex cones we refer to [2, 8, 16, 20].

Here we recall only that if C C X is a convex cone then the corresponding dual cone
C* C X* consists of the set of all functionals y* € X* such that y*(z) > 0 forallz € C. A
cone C is called selfdual if C* = C. For the last equality we take into account that based
on Ritz theorem the dual X* is identified with X.

Therefore the cone C is selfdual is equivalent with the fact that z € C if and only if
(z,y) > 0 for all y € C, (;) being the inner product on A

We also recall that a cone is said to be regular if for arbitrary bounded bellow sequence
T1 > %o > ... > Tp > ... > & there exists limg o0 Tk € X.

By | - |2 we denote the norm on X induced by the inner product on X i.e.

1z, = [< z,z >]Y2

Throughout this paper we suppose that together with |- [, on X there exists also another
norm denoted by |- |; with the following properties:

P,) There exists £y € IntX™ such that [{x]; =1 and
—€x <z < &x (2.1)
for arbitrary z € X with |z|; < 1.
P,) If z,y,2 € X are such that y <z < 2z then
|2}y < max(|yly, |2]1)- (2.2)

If T: X — X is a linear operator then ||T|; is the norm of T induced by |- |x, & = 1,2,
that is

ITle = sup {|Tz[x}. (2:3)

|o|p <1



Remark 2.1 a) Since X is a finite dimensional space then |- |; and |- |, are equivalent.
From (2.3) it follows that || - ||; and || - || are also equivalent. This means that there are
two positive constants ¢; and ¢y such that

allTlh < ||z € el T]x

for all linear operators 7' : X — X.

b) If T* : X — X is the adjoint operator of T' with respect to the inner product on X,
then ||T||o = ||T*||2- In general the equality ||T'||; = ||T%||1 is not true.

However, based on a) it follows that there are two positive constants ¢;, é; such that
allT|l < 1Tl < &[T (2.4)

Let (X, X*) and (J, V") be two ordered Hilbert spaces. An operator T': X — J is called
positive operator if T(X*) C Y*. In this case we shall write 7' > 0.

If T(IntX™) C Intyt we shall write T > 0.

Proposition 2.2 If T : X — X is a linear operator then the following hold:
(i) T > 0 if and only if T > 0.
(i5) If T > 0 then ||T||, = |T¢éx|1.

Proof: (i) is a direct consequence of the fact that X" is a selfdual cone.

(ii) If T > 0 then from (2.1) we have
—Téx <Tx <T&x.
From (2.2) it follows that [Tz} < [T€xl; for all 2 € X with |z|; <1 which leads to

sup |Tz|y < |[Téx|1 < sup |Tz|;
[z]1<1 z]1<1

hence ||T||; = |T€x|1 and thus the proof is complete.

Example 2.3 (i) Consider X = R" ordered by the order relation induced by the cone
R". Recall that R} = {z = (21, @)t € Rz > 0,1 <4 < n}. It is not difficult to
see that R is a regular solid closed selfdual pointed convex cone. If T : R — R" is a
linear operator then T' > 0 iff its corresponding matrix A with respect to the cannonical
basis on R" has nonnegative entries. Together with the Euclidian norm | - |, on R™ we
consider the norm | - |; defined by

o[ = max |z (2.5)
The properties P; and Py are fulfilled for the norm defined by (2.5). The element &x
is now &x = (1,1,1..,1)7 € Int(R?). The ordered space (R",R}) is considered in
connection with Perron-Frobenius Theorem.
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(ii) Let X = R™*" be the space of m X n real matrices, endowed with the inner product
(A, B) = Tr(BT A) (2.6)

V A, B € R™", Tr(M) denoting as usually the trace of a matrix M.

On R™ " we consider the order relation induced by the cone Xt = R7*" where
R:_nxn = {A = RmxnlA = {al—j},aij > 0,1 S 1 S m,l S ] S ’)’l} (27)

The interior of the cone R7*™ is not empty. Let A be an element of the dual cone
(R7™*™)*. This means that (4, B) > 0 for arbitrary B € R}™". Let EY € RT*™ be
such that BV = {ed},4, with el = 0 if (I,k) # (i,4), e = 1if (L,k) = (1,5). We
have 0 < (A, EW) = a;; which show that A € R™*" and it follows that the cone (2.7) is
selfdual. On R™*™ we consider also the norm | - |, defined by

Al = max o, |. 28)

Properties Py and Py are fulfilled for norm (2.8) with

11 1 .. 1
R N =T e
11 1 .. 1

An important class of linear operators on R™*™ is that of the form L4 R™*™ — R™*"
by LapY = AYB, for all Y € R™" where A € R™™ B € R™™ are given fixed
matrices. These operators are often called ”nonsymmetric Stein operators”. It can be
checked that L4 5 > 0iff ajby >0, V 4,5 € {1,...,m}, ke {1,..,n}. Hence Lyp >0
iff the matrix A ® B defines a positive operator on the ordered space (R™", R}") where
® is the Kronecker product.

(i) Let S, € R™™ be the subspace of n X n symmetric matrices. Let X =S5, 5, @
. ®S, =8N with N > 1 fixed. On S, we consider the inner product

(X,¥) = S Tr(viX) 2.9)

=1

for arbitrary X = (X; Xp ... Xy) and Y = (Y1 Y2 ... Yy) in SN, The space S.'is ordered
by the convex cone

SN = {X = (X; Xz ... Xn)|Xi 20,1 <0< N} (2.10)
The cone S has the interior nonempty.
IntSN+ = {X € S¥|X; > 0,1 <i < N}

Here X; > 0,(X; > 0) respectively, means that X; is a positive semidefinite matrix,
positive definite matrix. With a similar reasoning as in [16] for N = 1 one may show that
SN+ is a selfdual cone.



Together with the norm | - |, induced by the inner product (2.9), on S we consider the
norm |- |; defined by

1X|: = max X, (MX=(X..Xy)eS8 (2.11)
where | X;| = maxyeo(x;) |Al, 0(X;) being the set of eigenvalues of the matrix X;. For the
norm defined by (2.11) the properties Py and Py are fulfilled with &y = (I I, ... In) =
JeSY.
An important class of positive linear operators on S will be widely investigated in Section

4. The operators considered in Section 4 contain as a particular case the symmetric Stein
operators.

2.2 Discrete time affine equations

Let L = {Lx}r>k, be a sequence of linear operators Ly : X — X and f = {fi}r>k, e 2
sequence of elements fr € X. These two sequences define two affine equations on X:

Th+1 = Ekxk + fk (212)

which will be called ”the forward” affine equation or ”causal affine equation” defined by
(L, f) and

T = Lplra1 -+ fr (213)

which will be called ” the backward affine equation” or ”anticausal affine equation” defined
by (L, f). For each k > 1 > ko let Tj; : X — X be the causal evolution operator defined
by the sequence L, T, = Lg—1Lx—o...Ly 1Tk > 1 and T§, = Iy if k = [, Iy being the identity
operator on X.

For all ko < k < I,T¢ : X — X stands for the anticausal evolution operator on X defined

by the sequence L, that is
T]éll — £k£k+1...£1_1

ifk<land T = Iy if k=1
Often the superscripts a and ¢ will be omitted if any confusion is not possible.

Let 7y = T4z, k > 1,1 > ko be fixed. One obtains that {Z}x>; verifies the forward linear
equation

Tet+1 = 'Ckxk (214)

with initial value z; = z. Also, if yx = Ty, ko < k < [ then from definition of T} one
obtains that {yx}k,<k<: is the solution of the backward linear equation

Y = LrYrt (2.15)

with given terminal value y; = y.



It must be remarked that, in contrast with the continuous time case, a solution {zj}x
of the forward linear equation (2.14) with given initial values z; = z is well defined for
k > | while a solution {yx}x of the backward linear equation (2.15) with given terminal
condition y; = y is well defined for ky < k < [.

If for each k, the operators L are invertible, then all solutions of the equations (2.14),
(2.15) are well defined for all & > k.

If (T¢)* is the adjoint operator of the causal evolution operator Ty; we define

2= (T5) 2z, (V) ko <1<k,

By direct calculation one obtains that z; = £}z41 which shows that the adjoint of the
causal evolution operator associated with the sequence L generates anticausal evolution.

Definition 2.4 We say that the sequence L = {L }x>k, defines a positive evolution if for
all £ > | > kg the causal linear evolution operator Tj; > 0.

Since T}, = £; it follows that the sequence {Li}i>k, generates a positive evolution if and
only if for each k > ko, Ly is a positive operator. Hence, in contrast with the continuous
time case, in the discrete time case only sequences of positive operators define equations
which generate positive evolutions (see [11].)

At the end of this subsection we recall the representation formulae of the solutions of
affine equations (2.12), (2.13).

Each solution of the forward affine equation (2.12) has the representation:

k—1
i=l
for all k > [ + 1. Also, any solution of the backward affine equation (2.13) has a repre-
sentation .
ve=Toy+ > Tofi, ko<k<I-1

1=k

3 Exponential stability

In this section we deal with the exponential stability of the zero solution of a discrete
time linear equation defined by a sequence of linear positive operators.

Definition 3.1 We say that the zero solution of the equation

Tpsi = LyBy (3.1)



or equivalently that the sequence L = {Ly}r>k, generates an exponentially stable evolu-
tion if there are 8 > 0,q € (0, 1) such that

[ Tulls < B, (V) k=12 ko (3.2)
T}, being the causal linear evolution operator defined by the sequence L.

In the case when £ = £ for all k, if (3.2) is satisfied we shall say that the operator £
generates a discrete-time exponentially stable evolution.

It is well known that £ generates a discrete-time exponentially stable evolution if and
only if the eigenvalues of £ are located in the inside of the disk |A| < 1 or equivalently,

plL] < 1, p[] being the spectral radius.

It must be remarked that if the sequence {Lj}i>k, generates an exponentially stable
evolution then it is a bounded sequence.

In this section we shall derive several conditions which are equivalent with the exponnetial
stability of the zero solution of the equation (3.1) in the case L > 0,k > ko. Such results
can be viewed as an alternative characterization of exponential stability to the one in
terms of Liapunov functions. We remark that since X is a finite dimensional space in

(3.2) we may consider any norm on X.

Firstly, we prove:

Theorem 3.2 Let {Ly}r>0 be a sequence of linear positive operators Lr: X — X. Then
the following are equivalent:

(i) The sequence {Ly}r>0 generates an exponentially stable evolution.

(ii) There exists 6 > 0 such that
k
> | Twll £6
I=ko
for arbitrary k > ko > 0.
(ii3) There exists d > 0, such that Zf:kl Tubx < 6Ex for arbitrary k > ki > 0,0 > 0 being
independent of k, k.

(iv) For arbitrary bounded sequence {fx}r>0 C X the solution with zero initial value of

the forward affine equation
Te+1 = ﬁkxk + fk, k Z 0

18 bounded.

Proof: The implication (iv) — (i) is the discrete-time counter part of the Perron’s
Theorem (see [17].) It remains to prove the implications (3) — (i1) — (113) — (iv).

If (i) is true then (ii) follows immediately from (3.2) with 6 = I%'
Let us prove that:

0 < Tréx < ||Twll1éx (3.3)
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for arbitrary k& > [ > 0. If Tyéx = 0 then from Proposition 2.2 (ii) it follows that
|| Tw|]1 = 0 and (3.3) is fulfilled. If Ty€x # O then from (2.1) applied to z = mTkzéx
one gets 0 < Tiéx < |Tuéx|1€x and (3.3) follows based on Proposition 2.2 (ii).

If (ii) holds then (iii) follows from (3.3). We have to prove that (ii1) — (iv). Let
{fi}ks0 C X be a bounded sequence, that is [fxl1 < u, k > 0. Based on (2.1) we obtain
that —|fi|1éx < fi < |fil1€x which leads to —péx < fi < €y forall I > 0.

Since for each k > [+ 1> 0, T4 is a positive operator we have:

—pwTi1éx < Topr fi < pTr1éx

and
k-1 k—1 k—1
> Toprbx <Y Tunfi < > Tuiéx.
1=0 1=0 1=0
Applying (2.2) we deduce that:

k-1 et
| S Tagafilh < pl Y- Tanéxlr
1=0 1=0

If (iii) is valid we conclude by using again (2.2) that

k-1

| S T filh S pd, (V) k=1
=0

which shows that (iv) is fulfilled using (2.16) and thus the proof ends.

We note that the proof of the above theorem shows that in the case of a discrete time
linear equation (3.1) defined by a sequence of linear positive operators the exponential
stability is equivalent with the boundedness of the solution with the zero initial value of
the forward affine equation

Try1 = LeTr + Ex-

We recall that in the general case of a discrete time linear equation if we want to use the
Perron’s Theorem to characterize the exponential stability we have to check the bound-
edness of the solution with zero initial value of the forward affine equation

Tper = Ly + Ji

for arbitrary bounded sequence {f}r>0 C X.

Definition 3.3 We say that a sequence {fi}te>k, C X7 is uniformly positive if there
exists ¢ > 0 such that fi, > c€x for all k& > ko. If {fe}rske C X7 is uniformly positive we
shall write fi > 0,k > ko. If —fx >0,k > ko then we shall write fr < 0,k > ko.



The next result provides a characterization of the exponential stability, using solutions of
some suitable backward affine equations.

Theorem 3.4 Let {Ly}r>k, be a sequence of linear and positive operators Ly : X — X.
Then the following are equivalent:

(i) The sequence {Ly}r>k, generates an exponentially stable evolution.
(i1) There exist 1 > 0,q € (0,1) such that ||Ty|h < frgd"™!, (V) k> 1> k.
(ii3) There exists § > 0, independent of k, such that 3272, Tjiéx < 0&x-
(iv) The backward affine discrete time equation
Tk = LyZry1 +Ex (3.4)

has a bounded and uniformly positive solution.
(v) For arbitrary bounded and uniformly positive sequence { fx} x>k, C IntX™ the backward
affine equation

= Lrtr1+ o, K2 ko (3.5)
has a bounded and uniformly positive solution.

(vi) There exists a bounded and uniformly positive sequence { fy}k>r, C INtX™ such that
the corresponding backward affine equation (3.5) has a bounded solution {Zy x>k, C XV

(vii) There exists a bounded and uniformly positive sequence {Yg}tr>k, C IMtX™ which
verifies

E;;yk+1 — Yk < 0, k Z k}o. (36)

Proof: The equivalence (i) <+ (i) follows immediatelly from (2.4). In a similar way as
in the proof of inequality (3.3) one obtains:

0 < Tpéx <||T3léx (3.7)

forall { > k > k.

If (i) holds, then (iii) follows immediatelly from (3.7) together with the property that
X7 is a regular cone. To show that (iii) — (iv) we define y, = X2, Tjiéx, k > koo If
(iii) holds it follows that {yx}r>o is well defined. Since yy, = {x + Lf 27211 Ti16x one
obtains that y, > 0,k > ko and {yk x>k, solves (3.4) and thus (iv) is true.

Let us prove now that (iv) — (i11). Let {@x}tesk, C IntX™ be a bounded and uniform
positive solution of (3.4) that is

0 < méx < g < oy (3.8)

for some positive constants j; independent of k. The solution {%}r>k, has the represen-

tation formula -
g

zr = Thws + ) Tida
I=k
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for all § > k + 1 > ko. Since T}, > 0 we obtain

il
Tiéx < . (3.9)
k

=

For each fixed k > ko we define
j—1
2y = ZTMX
1=k

for all j > k + 1. The sequence {z;};>k+1 is monotone increasing. From (3.8) and (3.9)
we obtain that

Ex < zj < pbx-
Since X7 is a regular cone we may conclude that there exists
. 0
}H{}o zj = gTMX < walx
and thus (iii) is valid.
Now we prove (i41) — (v). Let {fi}rsko C IntX™ be a bounded and uniformly positive
sequence. This means that there exists v; > 0 such that

néx < fi <y, V12> k.

Since T}t > 0 one obtains 11 Tjéx < Tjpfi < weTjéx, V12> k > ko.

Further we may write the inequalities: v1§{x < 1 Z{:k Théxr < Z{:k Thfi < Z{:k Théx <
vo Y2 Tinx < 120€x, (V) j 2k 2 ko

Since X't is a regular cone one concludes that the sequence {(>0_, Tiifi}j> is convergent.

We define 7, = 2, Thi fi, k > ko. One obtains that T = fr + L X2k T}y1 fi which
shows that {j}r>k, is a solution with desired properties of the equation (3.5) and thus
(v) holds.

(v) — (vi) is obvious. We prove now (vi) — (ii). Let us assume that there exists a
bounded and uniformly positive sequence {fx} x>k, C IntX " such that the discrete time
backward affine equation (3.5) has a bounded solution {Z}r>k, C X

Therefore there exist positive constants -y; such that

0<méx < fi <7éx
0 <méx <& < 73éx (3.10)

for all [ > ko. Writing the representation formula

j—1

&y =THE; + Y Tf
=k

11



and taking into account that 77 > 0 if 7 > k one obtains

j—1

<Y Thfi<dy, (Vji-1>k>k. (3.11)

Set yp = 22, T fi, k > ko, X' being a regular cone together with (3.10), (3.11)
guarantee that yy is well defined and

Téx < Yk < v3€x (3.12)

for all k > ko. Let k1 > ko be fixed. We define g = T} vk, kK > k1. Since Ty, > 0 one
obtains that

NI, x < Uk < v3ly, Ex (3.13)

for all k > k;.
On the other hand we have g = 3372, Tj;, fi- This allows us to write

Tkt1 — Jo = —Tip, fr-
From (3.10) we get
Trr1 — Uk < —nTgp, Sx-
Further, (3.13) leads to:

Inductively we deduce
gk S qk:ﬁklgkp vV k Z kl (314)

where ¢ = 1 — %, ¢ € (0,1) (in (3.13) 3 may be choosen large enough so that 3 > 71).
Invoking again (3.13) we may write

* V3 k-
Tkkle S _—S_qk kle
M

which by (2.2) leads to [T}, x| < %q’“"“, Y k > k;. Based on Proposition 2.2 (ii) we

have %
T 3 /c k1
[ Tgx, |1 < 2

that means that (ii) is fulfilled.

The implication (iv) — (viz) follows immediatelly since a bounded and uniformly positive
solution of (3.4) is a solution with desired properties of (3.6). To end the proof we show
that (vii) — (vi). Let {2k}ksk, C IntX™ be a bounded and uniform positive solution
of (3.6). Define fo = 2z — Lizgy1. It follows that {fk}k>ko is bounded and uniform
positive, therefore {24 }r>0 will be a bounded and positive solution of (3.5) corresponding

to {fk}kzko and thus the proof ends.
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We remark that in the proof of Theorem 3.4 the fact that X'* is assumed to be a regular
cone, was used in order to guarantee the convergence of several series in X

The result proved in Theorem 3.2 holds even if X* is not a regular cone.

The next result provides more information concerning the bounded solution of the discrete
time backward affine equations.

Theorem 3.5 Let {Ly}r>k, be a sequence of linear operators which generates an erpo-
nentially stable evolution on X. Then the following hold:

(i) for each bounded sequence { fi}r>k, C X the discrete-time backward affine equation
ok = Ly + fi (3.15)

has an unique bounded solution which is given by

Tp = ZT;Cfl, k > ko. (3.16)
=k

(ii) If there exists an integer 0 > 1 such that Ly = Ly, freo = fi for all k then the
unique bounded solution of equation (3.15) is also a periodic sequence with period 0.

(iii) If Ly, = L, fr = [ for all k then the unique bounded solution of the equation (8.15)
is constant and it is given by

F=Ip—-L)f (3.17)

with Iy the indentity operator on X.

(iv) If Ly are positive operators and {fe}rsre C X is a bounded sequence then the unique
bounded solution of the equation (8.15) satisfies T > 0 for all k > ko.

Moreover if {fi}isko C IntXT is a bounded and uniformly positive sequence then the
unique bounded solution {Ty}i>k, of the equation (8.15) is also uniformly positive.

Proof: (i) Based on (i) — (if) of Theorem 3.4 we deduce that for all k > kg the series
{30, T fi}j>k is absolutely convergent and there exists d > 0 independent of £ and j
such that

J
[>T fili <6 (3.18)
=k

Set Zx = limy e S T fr = S0, Tji fi. Taking into account the definition of T}, we
obtain #x = fi + L5 %kt Tiepri = fe + LiZryr which shows that {Zk tk>k, sOlves
(3.15).

From (3.18) it follows that {#;} is a bounded solution of (3.15). Let {Zk }k>ko e another
bounded solution of the equation (3.15). For each 0 < k < j we may write

J
&k = Tfardirn + ) Thfr (3.19)
=k
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Since {Lx}i>k, generates an exponentially stable evolution and {Zk}e>ko is a bounded
sequence we have lim;_, Tj*+1k33j+1 = 0. Taking the limit for j — oo in (3.19) we
conclude that £ = 352, 1) fi = Zx which proved the uniqueness of the bounded solution
of the equation (3.15).

(1) If {Lk esko, {6 koo are periodic sequences with period 6 then in a standard way
using the representation formula (3.16) one shows that the unique bounded solution of
the equation (3.15) is also periodic with period 0.

In this case we may take that ky = —o0.

(117) If Ly = L, fr = [ for all k, then they may be viewed as periodic sequences with
period # = 1. Based on the above result of (ii) one obtains that the unique bounded
solution of the equation (3.15) is also periodic with period # = 1, so it is constant. In this
case Z will verify the equation Z = L*T + f.

Since the operator £ generates an exponentially stable evolution it follows that its eigen-
values are located in the inside of unit disk |A| < 1. Hence, the operator Iy — L* is
invertible and one obtains that Z is given by (3.17). Finally, if £, are positive operators
the assertions of (iv) follow immediatelly from the representation formula (3.16) and thus
the proof ends.

Remark 3.6 From the representation formula (2.16) one obtains that if the sequence
{Lk} >k, generates an exponentially stable evolution and { fi }x>#, is @ bounded sequence,
then all solutions of the discrete time forward affine equation (2.12) with given initial val-
ues at time k = ko are bounded on the interval [ky, c0). On the other hand from Theorem
3.5 (i) it follows that the discrete time backward equation (2.13) has a unique bounded
solution on the interval [ko, co) which is the solution provided by the formula (3.16).

In the case of kg = —oo with the same techniques as in the proof of Theorem 3.5 we
may obtain a result concerning the existence and uniqueness of the bounded solution of a
forward affine equation similar to the one proved for the case of backward affine equation.

Theorem 3.7 Assume that {Ly}rez 15 a sequence of linear operators which generates an
ezponentially stable evolution on X. Then the following assertions hold:

(i) For each bounded sequence { fi}rez the discrete time forward affine equation
Tpr1 = LxTk + Ji (3.20)

has a unique bounded solution {Zy}trez. Moreover this solution has a representation for-
mula:

k—1
gr=> Ty, VEEZ (3.21)

l=—00

(ii) If {Li}rez, {fr}rez are periodic sequences with period 0 then the unique bounded
solution of the equation (8.20) is periodic with period 0.
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(i) If Ly = L, fx = [,k € Z then the unique bounded solution of the equation (3.20) is
constant and it is given by & = (Iy — L)7'f.

(iv) If {Li}rez are positive operators and if {fytrez C X7, then the unique bounded
solution of the equation (3.20) satisfies Zx > 0 for all k € Z. Moreover, if fx > 0,k € Z
then & > 0,k € Z.

If {L1}rez is a sequence of linear operators on X we may associate a new sequence of
linear operators { L%}, }rez defined as follows:

E#k == ‘C*—k

Lemma 3.8 Let {Ly }rez be a sequence of linear operators on X. The following assertions
hold:

(1) If T,ff is the causal linear evolution operator on X defined by the sequence {L#} ez

we have
#
Tkl - T—l+1,—k+1

where Ty is the causal linear evolution operator defined on X by the sequence {Lg}rez-

(i1) {L# Yrez is a sequence of positive linear operators if and only if { Li}rez 15 a sequence
of positive linear operators.

(iii) The sequence {L¥ ez generates an ezponentially stable evolution if and only if the
sequence { Ly }rez generates an exponentially stable evolution.

(iv) The sequence {zy brez i a solution of the discrete time backward affine equation (3.15)
if and only if the sequence {yy}rez defined by yr = T_j41 15 @ solution of the discrete time
forward equation Yg41 = Liye+ for, k€L

The proof is omitted for shortness.

The next result provide a characterization of exponential stability in terms of the existence
of the bounded solution of some suitable forward affine equation.

Theorem 3.9 Let {L;}rez be a sequence of positive linear operators on X. Then the
following are equivalent:

(i) The sequence {Ly}rez generates an exponentially stable evolution.

(ii) There ezists § > 0, independent of k such that

k
> Tuéx < 66x, Yk €L

l=—00
(iii) The forward affine equation
Tp+1 = LxZe + Ex (3.22)

has a bounded and uniformly positive solution.
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(iv) For any bounded and uniformly positive sequence { fx}rez C IntX™ the corresponding
forward affine equation

Tpt+1 = ,Ck{L'k + fk (323)
has a bounded and uniformly positive solution.

(v) There ezists a bounded and uniformly positive sequence { fi}rez C IntX™ such that
the corresponding forward affine equation (3.23) has a bounded solution Ty, k € Z C X™.

(vi) There exists a bounded and uniformly positive sequence {Yk trez which verifies ygy1 —
Liryr > 0.

The proof follows immediatelly combining the result proved in Theorem 3.4 and Lemma
3.8.

At the end of this section we prove some results which provide a ”measure” of the ro-

bustness of the exponential stability in the case of positive linear operators. To state and
prove this result some preliminary remarks are needed.

So, £°(Z, X) stands for the real Banach space of bounded sequences of elements of X. If
z € £°(Z,X) we denote |z| = supyeyz |71
Let £°(Z, X+) C £°(Z, X) be the subset of bounded sequences {zx}rez C X™. It can be

checked that ¢>°(Z, X*) is a solid closed normal convex cone. Therefore, £2°(Z, X) is an
ordered real Banach space for which the assumptions of Theorem 2.11 in [8] are fulfilled.

Now we are in position to prove:

Theorem 3.10 Let {L1.}kez, {Gr}rez be sequences of positive linear operators such that
{Gr.}rez is a bounded sequence. Under these conditions the following are equivalent:

(i) The sequence {Ly}rez generates an exponentially stable evolution and p[T] < 1 where
p[T] is the spectral radius of the operator T : £2°(Z, X) — £*(Z, X) defined by

k-1
y=Tz, ye= 2 TunGiz (3.24)

l=—00
Ty, being the linear evolution operator on X defined by the sequence {Ls}kez-
(ii) The sequence {Ly, + Gx}rez generates an exponentially stable evolution on X.

Proof: (i) — (id) If the sequence {L;}rez defines an exponentially stable evolution,
then we define the sequence {fi}trez by {Lk}rez
k-1

fo=Y Tl (3.25)

l=—00

We have fi = éx + 2= 2o Trir1€x which leads to fr > &x thus fi € IntX™* for all k € Z.
This allows us to conclude that f = {fi}rez € Intl>(Z, XY).

Applying Theorem 2.11 [8] with R = —Ipo and P = T we deduce that there exists
z = {2} }hez € Intl®(Z, X*) which verifies the equation:

(I = T)(2) = /. (3.26)
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Here I;» stands for the identity operator on £*°(Z, X). Partitioning (3.26) and taking
into account (3.24)-(3.25) we obtain that for each k € Z we have :

k k
e = 9 Teprpn1 G+ Y, Therieiéx

l=—00 l=—c0
Further we may write:
k-1 k—1
Teo1 = Gpty +Ex + Lo > TG+ L Y, Turiéx = Gum + Ex + Ly
l=—00 l=—00

This shows that {zy}rez verifies the equation
Tp1 = (Lr + Gr) Tk + Ex. (3.27)

Since £, and G are positive operators and z > 0, (3.27) shows that zx > {x. Thus we
get that the equation (3.22) associated to the sum operator Ly 4 Gy has a bounded and
uniform positive solution. Applying implication (¢i¢) — (i) of Theorem 3.9 we conclude
that the sequence {Ly + G }rez generates an exponentially stable evolution.

Now we prove the converse implication.

If (i) holds then based on the implication (i) — (iii) of Theorem 3.9 we deduce that
the equation (3.27) has a bounded and uniform positive solution {%1 hez C IntX*. The
equation (3.27) verified by Z; may be rewritten as:

T = Ly + fi (3.28)

where fr = Gudr +E&x, k € 7. fr > &x, k € Z. Using the implication (v) — (i) of
Theorem 3.9 we deduce that the sequence Ly generates an exponentially stable evolu-
tion. Since the equation (3.28) has an unique bounded solution which is given by the

representation formula (3.21), we have: I = Zf:__loo Tleﬁ, VkelZ,

k—1 k-1
Zr= > TunGEi+ Y, Tunéx (3:29)

l=—00 l=—00
Invoking (3.24) the equality (3.29) may be written:
F=TF+§ (3.30)
where § = {J }rez> Ok = bt oo Thi1€x- It is obvious that g, > v for all k € Z. Hence
G € Intt>(Z, X+).

Applying implication (v) — (vi) of Theorem 2.11 in [8] for R = —Ije and P = T one
obtains that p[7] < 1 and thus the proof is complete.

In the time invariant case one obtains the following version of Theorem 3.10:

Theorem 3.11 Let £L: X — X,G : X — X be linear and positive operators.
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Then the following are equivalent:

(i) The eigenvalues of the operators L and (Ix — L)™'G are located in the inside of the
disk |A| < 1.

(ii) The eigenvalues of the sum operator L+G are located in the inside of the disk [A| < 1.

Proof: If (i) holds, then based on (iii), (iv) of Theorem 3.7 we deduce that (Ix—L) %y €
IntX™.

Applying (vi) — (iii) in Theorem 2.11 [8] for R = —Ix and P = (Ix — £)~'G one obtains
that there exists € IntX™ which verifies

=y —L)7'G% + (Ix — L) "Ea,

which leads to (Ix — £)Z = G + §x.

Therefore we obtain that the equation
Tpyl = [ﬁ + Q]xk +&x (3.31)

has a bounded and uniform positive solution {Zy}xez namely Z, = Z for all k € Z.

Applying (#47) — (i) of Theorem 3.9 one obtains that the operator £ + G generates a
discrete-time exponentially stable evolution which shows that the implication (1) — (4%)
is valid. Let us prove the converse implication. If (ii) holds then based on the implication
(i) — (iii) of Theorem 3.9 we obtain that the equation (3.31) has a bounded and uniform
positive solution, Z,k € Z. Further, from (iii), (iv) of Theorem 3.7 we conclude that
% =7 € IntX™, for all k € Z. Hence 7 = LF+ f where f = GZ + &x € INtX™.
Invoking again (777) — (i) of Theorem 3.9 one gets that L generates a discrete-time
exponentially stable evolution. We may write Z = (Ix — £)~'f which leads to

F=Ix—L)GT+ (Ix — L) x.

Since (Iy — £)™*€x € IntX™* then from (iv) — (vi) of Theorem 2.11 in [8] we obtain that
pl(Ix — £)7'G] < 1 which ends the proof of the implication (i¢) — (i) and the proof is
complete.

An infinite dimensional counter part of the result proved in the Theorem 3.11 may be
also obtained based on Theorem 2.11 in [8].

In a similar way with the proof of Theorem 3.10 we may prove the following result:

Theorem 3.12 Let { Ly} esko, {Gk ik, b€ two sequences of linear and positive operators
on X such that {Gi}i>k, 5 @ bounded sequence.

Then the following are equivalent:

(i) The sequence { Ly }r>k, generates an exponentially stable evolution and p[T* < 1 where
T2 40y, X] — £°Zky, X] is defined by y = Tz

yp = > TG, k> ko (3.32)
=k

18



Ty being the causal linear evolution operator defined by the sequence {Li}rskos Zko] C
Z, Z, = {k € 2]k > ko}. |

(it) The sequence {Ly + Gk trez,, generates an ezponentially stable evolution on X.

The proof is made combining the results of the above theorems 3.4 and 3.5 and Theorem
2.11 in [8]. It is omitted for shortness.

4 Application to the problem of mean square expo-
nential stability

In this section we consider discrete time linear equations defined by some linear positive
operators arising in connection with the problem of mean square exponential stability for
a class of discrete-time linear stochastic systems. To be more specific let us consider the
space SN introduced in Example 2.3 (iii). On SY we consider the linear operators Ly
defined as follows: £;X = ((L£xX)(1)(LxX)(2)...(LxX)(NN)) where

(LxX) (@) = 3 pr(ds 6) Aos (1) X () Ak () + 21: > uk(r)pi (3 ) A (7) X (7) Ag(4) - (4:1)

j=1 r=1j=1

for all X = (X(1)..X(N)) € SY, where A(j) € R, 0<r <N, 1 <7 < N,k>0
and i (r) and py (7, i) are nonnegative scalars. It is clear that Ly is a positive operator.

If the scalars pi(J, 1) have the additional property:
N
Som(ii)=1, 1<j<N, k=0 (4.2)
i=1

then the operators (4.1) are associated to the discrete-time linear stochastic equations of
the form:

Ny
D1 = [Aok (M) + D Are (M) wi(r)]zk, k>0 (4.3)

=l

where {wg(r)}r>0,1 < 7 < Ny are sequences of zero mean square integrable random
variables on a given probability space (€2, F,P) having the additional properties:

1. ifwg = (wk(l)wk(2),..wk(N1))T then {wg}r>0 is a sequence of independent random
vectors,
Elwywi] = diag(p (1)1 (2)... tr(N1)]-

The sequence {7 }x>o is a Markov chain with the state space the finite set N = {1,2,..., N}
and { Py }r>0, P = {p(4,4)} 4,J € N the sequence of transition probability matrices, that

is P{nks1 = i|m0, M, - Tk} = Pr(Mk, %) a.s. For details see [10].
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Assume that the stochastic processes {wk}k_>_0 and {nk}kzo are independent.
If P, = P then {1 }x>o is called homogeneous Markov chain.

Two important cases of linear stochastic systems of type (4.3) were intensively investigated
in the literature, namely for N =1 or for A,4(1) = 0,1 <r < Ni,k>0,i € N.

In the case N =1, (4.3) becomes:

Ny
Tht+1 = [A()k + Z A,.kwk(r)]ack. (44)

r=l
The exponential stability in mean square for the systems of type (4.4) was investigated
in [3, 27, 28, 29, 34].
In the case An4(i) =0, 1 <7 < Ny, k>0, i € N the system (4.3) reduces to

Tr+1 = A%(Uk)% (4-5)
which was studied in [4, 5, 12, 13, 14, 18, 21, 23, 24, 25, 26] and references therein.

Setting A = Aok(Mk) + iy Arg(mk)wi(r) the system (4.3) may be written in a compact
form as:

Tk+1 = Apxy,.
For each k Z l Z 0 define (I)kl by @k[ = Alc—lAk—Q---Al if £ >1[ and (I)lcl = In ifk= l, q)kl is
the fundamental matrix solution of the system (4.3).
If {zx}x>0 is a solution of the equation (4.3) then we have zy = Py, k > 12> 0. The
next result provided the relationship between the evolution defined on SY by the operator
Ly, introduced by (4.1) and the evolution defined by the equation (4.3).

Theorem 4.1 If Ty, k > 1 > 0 is the causal evolution operator on SN defined by the
sequence {Ly e defined by (4.1) and (4.2), then :

(T3 X]() = Bl®5X (nk) Ppa|m = i] (4.6)
forall X = (X(1)X(2)..X(N)) € 8, k> 1> 0,5 € N, such that P{n =i} > 0, E[:|; =
i] stands for the conditional ezpectation with respect to the event {m = i}.

A proof of the result stated in the above theorem in particular case when system (4.3)
reduces to system (4.4) may be found in [28], while if the system (4.3) reduces to the
system (4.5) the equality (4.6) was proved in [26].

A complete proof of the Theorem 4.1 in the general case of systems (4.3) will be given
in an acompany paper which deals with the problem of the exponential stability in mean

square.
To avoid some inconvenience due to the presence of Markov chain in the matrix coefficients
of the system we assume that the following property holds.

P3) The Markov chain {7 },>0 has the property
P{m =i} >0 (4.7)
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for all2 € N and k > 0.

It can be checked inductively that (4.7) is fulfilled if for each £ > 0 and 1 < j < N there
exists 1 € N such that pg(i,) > 0 and P{n =1} > 0,l € N.

Definition 4.2 We say that the zero solution of the system 4.3 is exponentially stable in
mean square (ESMS) if there exist 8 > 0,¢ € (0,1) such that

E[|Opzl*m = ] < B¢" ] (4.8)

forallk >1>0,1€ N, x € R"
Applying (4.6) for X = J = (I,...I,) one obtains:

T[T J|(6)z = Bl| @’ = 1] (4.9)

forallk >1>0, 1€ N and z € R™

Thus we obtain:

Corollary 4.3 Under the considered assumptions the following are equivalent:

(i) The zero solution of the equation (4.3) is (ESMS).

(ii) The sequence {Ly}rso defined by (4.1) and (4.2) generates an exponentially stable
evolution on SY.

It must be remarked that the discrete time linear equations defined by the operators Ly
introduced by (4.1) offer a deterministic framework which allow us to obtain informations
concerning the exponential stability for the equations (4.3) which are probabilistic objects.
The theorems proved in the previous section for the linear positive operators provide
necessary and sufficient conditions for the mean square exponential stability of the zero
solution of the equation (4.3). If the stochastic system is in one of the particular form
(4.4) or (4.5) respectively, the results proved in Section 3 recover some results proved in
4, 5, 12, 13, 14, 18, 21, 23, 24, 25, 26, 27, 28, 29]. If the system (4.3) reduces to (4.4)
then the corresponding operator (4.1) becomes:

Ny
LoY = A Y AL + 57 (r) A Y A, (4.10)

r=1

for all Y € S,,. If the system (4.3) reduces to (4.5) then (4.1) reduces to

N

(LeX)(0) = Zpk(ja i)AOk(j)X(j)Agk(j) (4.11)
a=1

for all X = (X(1)...X(N)) € SY,i e N.

For the readers convenience we provide the formulae of the adjoint operators corresponding

to (4.1), (4.10) and (4.11).

These formulae may be deduced in a standard way taking into account the definition of
the inner product on 8Y and &,, respectively.
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We have £ X = (L3 X (1) ... LEX(N)) where

LiX Zpk 6, 3)X (7)) Aok (7) + Zuk k(i)(;pk(i,J’)X(j))Ark(i), (4.12)

[’ky AOkYAOIc + Z /J,]c Ark;YATk‘ (413)
forall Y € Sy, £:X = (£:X(1) ... L;X(N)) where

LiX (i) = A () Zpk L NXG)Aw(), 1<i< N, X =(X(1) ... X(N)) € 5. (4.14)

Using the formulae (4.1), (4.10), (4.11) or (4.12)-(4.14), respectively, we may rewrite the
equations arising in Theorem 3.2, Theorem 3.4 in order to provide necessary and sufficient
conditions for mean square exponential stability of the zero solution of the systems (4.3),
(4.4) or (4.5), respectively.

These results show that the mean square exponential stability of the zero solution of the
systems (4.3) and (4.5), respectively, does not depend upon the initial distribution of the
Markov chain, it depending only by the sequences { A, (¢)} x>0, {Pk (% 5) tez0, {0k(7) Foo0-

The equation (4.3) may be view as a perturbation of the equation (4.5). In the same time
equation (4.4) may be view as a perturbation of the deterministic equation

Tet1 — A()k.’l')k, k > 0. (415)

The results of Theorem 3.11 and Theorem 3.12 allow us to obtain conditions which guar-
antee the preservation of the exponential stability of the zero solution of the perturbed
equations (4.3) and (4.4) if the zero solution of the unperturbed equations (4.5) and (4.15),
respectively are exponentially stable.

We recall that if M € R"™ " is a given matrix then the corresponding discrete-time
Liapunov operator or Stein operator is defined as: Ly : Sp = Sn, LmY = MY MT,

From Theorem 3.11 one obtains:

Corollary 4.4 a) Assume that the system (4.4) is time invariant that is App = Ar, pi(r) =
p(r) for allk > 0,0 <r < Ny

Then the following are equivalent:

~

(i) The eigenvalues of the matriz Ay and the eigenvalues of the operator (Is,—La,) H(L—
L4,) are located in the inside of the disk |A] < 1.

(ii) The zero solution of the discrete-time stochastic equation (4.4) is ESMS.

b) Assume that the system (4.3) is time invariant, that is Ay = Ay, pr(r) = p(r), pe(i, j) =
p(i,5) for all k > 0,0 <r < Ny,i,j € {1,2,. N}. Let L, L be the corresponding opera-
tors defined by (4.1) and (4.11), respectz'vely
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The following are equivalent:

(5) The zero solution of the equation (4.5) is ESMS and the eigenvalues of the operator
(Isy — £)7X(L — £) are located in the inside of the disk [A] < 1.

(77) The zero solution of the equation (4.3) is ESMS.

Similar results may be obtained in the time varying case based on Theorem 3.12, but they
are omitted for shortness.

It must be remarked that the operators which are involved in Corollary 4.4 are working
on finite dimensional linear spaces. Therefore their eigenvalues may be computed since
they are the eigenvalues of the corresponding matrices, with respect to the canonical basis
of the considered linear space.

In the last part of this section we shall prove a necessary and sufficient condition for the
exponential stability of the evolution generated by the operators (4.1).

Such condition may not be directly derived from the result proved in Section 3. In order
to state that result we need to introduce the concept of detectability.

Definition 4.5 Let {£ }x>0 be a sequence of operators of type (4.1) and {C}x>o be such
that C, = (Ci(1)...Cx(N)), Cx(3) € RP*™. We say that the pair (C, L) is detectable
if there exist a bounded sequence {Hy}r>o where Hy = (Hg(1)...Hg(N)), Hi(1) € R™?
such that the sequence {£# },>o generates an exponentially stable evolution, where L& is
defined by LI X = (LEX (1) ... LI X(N)) with

N .
LYX (i) = gmyy ) Aok (5) + Hi(5)Cr (1)) X (7)[ Aok () + Hi(5)Cr(5)]"

N1 N

+ 5 () Yool ) A () X () A7 () (4.16)

—1

for all X = (X(1) ... X(N)) € SV.

The sequence { Hy} k>0 involved in the above definition will be called stabilizing injection.
If the sequences {L}k>0, {Ck}tr>o are periodic with period 6 then the definition of the
detectability is restricted to the stabilizing injections which are periodic sequences with
the same period 8. Moreover if £y = L,C) = C then the definition of detectability is

restricted to the constant stabilizing injection.

A possible motivation of the above definition of detectability is given by its relation with
the concept of stochastic detectability.

We recall:

Definition 4.6 We say that the system (4.3) together with the output yx = Cr(nr) Tk 18
stochastically detectable if there exists a bounded sequence { H } x>0, He = (Hp(1) ... Hy(N)),
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Hi (i) € R™? such that the zero solution of the discrete-time stochastic equation:

pes1 = [Aos () + He(m)Ce(n) + 3 Ark(:) s (1)} (4.17)

r=1

is ESMS.

Fron Definition 4.5, Definition 4.6 and Corollary 4.3 we obtain:

Corollary 4.7 Assume that the scalars py(i,7) satisfy the additional condition (4.2).
Then the following are equivalent:

(i) The system (4.3) together with the output yy = Cy(nk)z), s stochastically detectable.
(i) The pair (Cy, Ly) is detectable, where Cy, = (Ci(1) ... Cx(N)).

We mention that Definition 4.5 is done without condition (4.2). This condition is needed
when we want to specify that the operators L correspond to a discrete-time linear stochas-
tic system.

The result proved below hold without condition (4.2).

Theorem 4.8 Let {Li}iso be a sequence defined by (4.1) with additional property that
{p(i,7) teso and {Aox}r>o are bounded sequences.

Consider the discrete-time backward affine equation
Yo =LYe1 +Cy k>0 (4.18)
where Cy = (Cu(1) Cr(2) ... Cr(N)), Ci(i) = CFCy. Assume that {Ci(i)}r>0 are
bounded sequences and the pair (C, L) is detectable.
Under these conditions the following are equivalent:
(i) the sequence {Ly}r>o generates an exponentially stable evolution,
(i1) the equation (4.18) has a bounded solution {Viteso C ST
Proof. The implication (i) — (i) follows imediately from Theorem 3.5 (iv).
It remains to prove the converse implication.
Let { Xy }esk, be a solution of the problem with given initial values:

Xis1 = LiXy, k> ko (4.19)
Xy, = H, HeS). (4.20)

We show that there exists v > 0 not depending upon ko and H such that

31Xkl < y1H (4.21)

k=ko

for all kg > 0, H € S)V+.

24



Let {Hy}r>o0 be a stabilizing injection. This means that there exist f; > 0,q1 € (0,1)
such that
1T < Prgt™

for all k > 1 > 0, T} being the causal linear evolution operator defined on S2 by the
sequence {LH }>o where £f! is defined as in (4.16).

The equation (4.19) may be rewritten as:
Xowr = LEX + G X5 (4.22)

where G, X, = (Gr Xk (1) ... GuXi(N)),
Gp Xy (i) = — gpk@, ) H(7)Cr(5) Xk (5) Aok (7)+

Aok (1) Xk (1) CE GV HE () + Hi()Cr() Xe()CY () Hy (7))
Further we define the perturbed operators
€= L7+ %Gy (4.23)
where Go X = (GeX (1) ...Gx(N)) with
X N
G X (i) = Y i (5, 1) Aok () X (1) Agi (4)
j=1
forall X = (X(1) ... X(N)) e SY.
If ¢ € (q1,1) one shows in a standard way using discrete-time version of Belman-Gronwall
Lemma that there exists g9 > 0 such that
ITall: < Bd*, (4.24)
forall k > 1> 0,0 <e < e Tf being the causal linear evolution operator defined on
SN by the sequence (Lf)g>o0-
Let £ € (0,e0) be fixed and {Zj}x>k, be the solution of the problem with given initial
condition:

1
Zpyr = Ly 2y + 5_2\Ijk’ Zy, = H (4.25)

where Uy = (U (1) ... ¥r(N)),

N
U(i) = > pe(d, 3) He(§) Co(§) X () Ci (1) H, (7)- (4.26)
j=1
If we set 7, = Z), — X}, then by direct calculations based on (4.22) and (4.25) one obtains
that Z; solves:

Zir = L5 2, + Uy, Zyy =0 (4.27)
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where \ilk = (\i’k(m \ijk(N))’

zpk 5 ) (e Aw(7) + — Hu()Cel3)) Xal) (e A ()

1 ; ; ; .
+ng( 7)C(NT + Zpk 7, 1) He () Cr () X () CL (5) HE (5)-
9=1
Since the solution of (4.19) is in S"* it follows that (i) > 0 for all k > kg and 5 € N,
that is ¥, € SV,

Since LS are positive operators, then one obtains inductively based on (4.27) that Zj, > 0
for all k > kg, which is equivalent to X < Zj for all k£ > k.

The last inequality allows us to write
| Xkl1 <1Zkl1, k> ko. (4.28)

From (4.25) we obtain the representation formula
1 k—1
Zy = kEkOH + gg‘ Z Tls,z+1‘1’l, k> ko+ 1.
I=kyp
Based on (4.24) we get:

|Zels < B¢ HL + Zq’“ LAY (4.29)
l ko

Taking into account the definition of the norm Il on SV one obtains (see also (4.26)):

[‘I’z|1:%§\}(|‘1’z()l<%‘f}\}<2pk 3 DH()CH) X G)CT G HT ()]

which leads to

N
Tyl < proe Y |CH(H) X (5)Ci(5) " | (4.30)
=1
where p1 > pi(4,1), p2 > |Hy(5)|? for all { > 0,4,7 € N.
Since |C1(5)Xi(7)C ()] = Amac[Ci(5) Xu(5)CT (5)] we may write

W)y < pipe S Tr(CG)X(G)CT (7)) = prpe D Tr(CL (1) Ci(5) Xa(5))-

j=1 j=1

In view of definition of inner product on SV we get:

W], < prp2(Ci, X3). (4.31)

26



Based on equation (4.18) verified by {V;};5¢ we may write
(C, Xa) = (Y, Xi) — (L7Yip, Xo) = (Y, X0) — (Vigr, Xi1)- (4.32)
Since (fﬁ)lzo is a bounded sequence and (?},Xi) > 0 for arbitrary 7 > 0, we obtain from

(4.31) and (4.32) that

k1
Yo < pslHl, (V) k> ko (4.33)
l=ko

with p3 > 0 independent of [ and H.
Using (4.29) we may write:

kit ko
Yo 1Zhi=Hl+ Y |Zh <

k=ko k=ko+1
ko - ﬁ ko k1
(1+ﬂ Z q - 0)‘]‘[114"’5 Z qu_l—1|\lflll.
k=ko+1 k=ko+1 l=ko

Changing the order of summation and taking into account (4.33) we obtain finally

k2
S\ Zkh < yHE, Yk > ko
k=ko
and y =1+ l—ﬁ_q—q + 5—?}2—;’—3 does not depend upon kg, kg, H.

Taking the limit for ko — oo one gets:

> 12kl < v|H|b-
e

Invoking (4.28) we conclude that (4.21) is valid. Taking H = J = (I, I, ... In), (4.21)
becomes >p2 |TyroJ |1 < 7y for all kg > 0, or equivalently '

> M Tkoll < - (4.34)
k=Fo

Based on (2.4), (4.34) leads to 332, | Tay, |l1 < i for all k > ko, 91 > 0 being independent
of k)o.
Since Ty, J < [Ty, ll1J one obtains 0 < 3732, Ty, J < 6J.

Aplying now the implication (iiz) — (i) of Theorem 3.4 we conclude that the sequence
{Li}r>0 generates an exponentially stable evolution and thus the proof ends.

The result proved in the above theorem may be view as an alternative of the equivalence
(1) <+ (vi) of Theorem 3.4 for the case when the forced term of the corresponding equation

(3.5) is not uniform positive.
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The lost of the uniform positivity is supplied by the detectability property. The continuous-
time time-invariant version of the result proved in Theorem 4.8 may be found in [15]
Lemma 3.2, while the continuous-time time-varying counterpart of this result may be
found in [11].

Such result is sometimes useful to derive the existence of stabilizing solutions for gener-
alized Riccati equations.
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