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Introduction

The efforts to generalize the famous Gauss’ Quadratic Reciprocity Law led to the theory
of Abelian extensions of algebraic and p-adic number fields, known as Class Field
Theory. This theory can be also developed in an abstract group theoretic framework,
namely for arbitrary profinite groups. Since the profinite groups are precisely those
topological groups which arise as Galois groups of Galois extensions, an Abstract Galois
Theory for arbitrary profinite groups was developed within the Abstract Class Field
Theory (see e.g., Neukirch [11]).

The aim of this paper is to present a dual theory we called Abstract Cogalois Theory
to the Abstract Galois Theory. Roughly speaking, Cogalois Theory (see Albu [2])
investigates field extensions, finite or not, which possess a Cogalois correspondence.
This theory is somewhat dual to the very classical Galois Theory dealing with field
extensions possessing a Galois correspondence.

The basic concepts of Cogalois Theory, namely that of G-Kneser and G-Cogalois
field extension, as well as their main properties are generalized to arbitrary profinite
groups. More precisely, let I' be an arbitrary profinite group, and let A be any subgroup
of the Abelian group Q/Z such that I' acts continuously on the discrete group A.
Then, one defines the concepts of Kneser subgroup and Cogalois subgroup of the group
ZY(T, A) of all continuous 1-cocycles of I' with coefficients in A, and one establish their
main properties. Thus, we prove an Abstract Kneser Criterion for Kneser groups of
cocycles, as well as a Quasi-Purity Criterion for Cogalois groups of cocycles.

The idea to involve the group Z!(T, A) in defining the abstract concepts mentioned
above comes from the description, via the Hilbert’s Theorem 90, of the Cogalois group
Cog(E/F) of an arbitrary Galois extension E/F as a group canonically isomorphic to
the group Z'(Gal(E/F),u(E)) of all continues 1-cocycles of the profinite Galois group
Gal(E/F) of the extension E/F with coefficients in the group u(£) of all roots of
unity in E. Note that the multiplicative group p(E) is isomorphic (in a noncanonical
way) to a subgroup of the additive group Q/Z, and that the basic groups appearing
in the investigation of E//F from the Cogalois Theory perspective are subgroups of
Cog(E/F). In this way, the above description of Cog(E£/F) in terms of 1-cocycles
naturally suggests to study the abstract setting of subgroups of groups of type Z'(T', 4),
with ' an arbitrary profinite group and A any subgroup of Q/Z such that I' acts
continuously on the discrete group A.

In the forthcoming Part IT of this paper we introduce the concept of Cogalots action,
and provide a complete description of the category of all these actions.

In Part III we apply our general theory to retrieve the abstract Kummer Theory,
and we show how some basic results as well as some new results of the field theoretic
Cogalois Theory can be easily obtained from our abstract approach.
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0 Notation and Terminology

Throughout this paper I' will denote a fixed profinite group with identity element
denoted by 1, and A will always be a fixed subgroup of the Abelian group Q/Z such
that I' acts continuously on A endowed with the discrete topology, i.e., A is a discrete
I'-module.

We denote by N the set {1, 2, ...} of all positive natural numbers, by P the set
of positive prime numbers, by Z the ring of all rational integers, by Q the field of all
rational numbers, by R the field of all real numbers, and by C the field of all complex
numbers. For any integers k, m € Z we shall denote by k& mod m the congruence class
k+mZ of k modulo m; if n € N is a divisor of of m, then we shall write occasionally
k + mZ mod n instead of k mod n. For any ring R with identity element, R* will
denote the group of units of R. If ¢ is a power of a prime number, then we denote by
F, the finite field with ¢ elements.

For any n € N, n > 2 we denote by Dy, the dihedral group of order 2n. The
group of quaternions will be denoted by @). Given an action of a group C' on a group
D, the semidirect product of C' by D is denoted by D x C, with a suitable subscript,
if necessary, to specify the action.

For any p € P we denote by Z, the ring of p-adic integers, by Q, the field of
p-adic numbers, and by Zpe the quasi-cyclic group of type p, that is, the p-primary
component (Q/Z)(p) of the quotient group Q/Z. Note that Zyeo = Q,/Z,.

For any r € Q, the coset of 7 in the quotient group Q/Z will be denoted by 7.
The elements of T' will be denoted by small Greek letters o, 7, p, and the elements of
A by a, b, c. The action of 0 € T on a € A will be denoted by ca. The set of all
elements of A invariant under the action of I' will be denoted as usually by AL.

An Abelian group C is said to be of of bounded order if kC' = {0} for some k € N;
if C is of bounded order, then the ezxponent exp(C) of C is the least n € N such
that nC = {0}. The order of an element z € C will be denoted ord(z). If n is a
positive integer, and D is an Abelian torsion group, then we shall use the notation
D[n) := {z € D|nz = 0}. For any p € P we denote by D(p) the p-primary
component of D. By Op we denote the set of all n € N for which there exists z € D
of order n, i.e., D[n] has exponent n. With respect to the divisibility relation and the
operations gcd and lem, Op is a distributive lattice with the least element 1. Op has
a last element if and only if D is a group of bounded order, and in this case, the last
element of Op is precisely exp(D).

For any topological group T' we denote by L(T') the lattice of all subgroups of T',
and by L(T) the lattice of all closed subgroups of T'. The notation U < T means
that U is a subgroup of T'. For any U < T we denote by L(T'|U) (resp. L(T'|U))
the lattice of all subgroups (resp. closed subgroups) of T lying over U. If X C T,
then X will denote the closure of X, and (X) will denote the subgroup generated by
X. The notation U < T means that U is a normal subgroup of T'. For a subgroup
U of T we shall denote by T/U the set {tU|t € T} of all left cosets of U in T
We denote by Ch(T') or by T the character group of T, that is, the group of all
continuous homomorphisms of 7' into the unit circle U= {z|z € C, |2| =1}. If S is
another topological group, then Hom(S,T') will denote the set of all continuous group
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morphisms from S to T
Recall that a crossed homomorphism (or an 1-cocycle) of T' with coefficients in A

isamap f:I' = A such that f(or) = f(o) +0f(7), 0,7 € I'; in particular, F1)=0.
The set of all continuous crossed homomorphisms of I' with coefficients in A is an
Abelian group, which will be denoted by Z(T', A). Note that, in fact, Z'(T',A) is
a torsion group. Indeed, since I' is a profinite group and A is a discrete space, a
map h : [ — A is continuous if and only if h is locally constant, that is, there
exists an open normal subgroup A (in particular, of finite index in I') such that h
factorizes through the canonical surjection map I' — I'/A. Since A is a torsion group,
it follows now that for any continuous map h : ' — A there exists an n € N such
that h(I') C (1/n)Z/Z, and then nh =0, i.e., h has finite order.

The elements of Z(I', A) will be denoted by f, g, h. Always G,H will denote
subgroups of Z(T', A) and A, A subgroups of I'. For every a € A we shall denote by
fa the 1-coboundary f,: T — A, defined as fo(0) = ca—a, o € I'. The set B! (I‘ A) =
{fo| a € A} is a subgroup of Z'(I',A). The quotient group Z\(T, A)/BY(T, A)
is called the first cohomology group of I' with coefficients in A, and is denoted by
H(T, A).

Consider the evaluation map

(=, —):T'x ZYT,A) — A, (o,h) = h(0).

For any A <T, G < ZX(T',A), g € Z(T, 4), and v € T denote

At = {heZYT,A)|(o,h) =0,VoeA},
G- = {oeTl|{o,h) =0,VhEG},

= {0 €T[(0,9)=0},
v- = {heZ'(T,A)|(v,h)=0}.

One verifies easily that A+ < ZY(I, 4), G+ < T, and g+ = (g)L. Observe that
gt is the set of zeroes of the continuous map g from I' to the discrete group A, hence
it is an open subgroup of I'. Since G+ = Noec g1, it follows that G+ € L(T).

The group Z(T', A) is clearly a discrete left I'-module with respect to the following
action: (oh)(r) = oh(oc™ 10), 0, 7 €T, h€ ZY(,A). f c €T and G € L(Z'(T, A)),
then

(6G)! = 0Glo™!

For any A € I(I') one denotes by
resh : Z1(T', A) — ZY (A, A), b = h|a,

the restriction map.

The next result collects together the main properties of the assignments (—)*.

Proposition 0.1. The following assertions hold.

(1) The maps
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L(Z\(T, A)) — L), G = G,
L(I) — L(Z1(T, A)), A — AL

establish a Galois connection between the lattices L(Z' (T, A)) and L(T), i.e
they are order-reversing maps and X < XL for any element X of L(Z(T, A))
or L(T).

(2) For any A € L(T') and G € ZY(T, A) one has
At = A" =Ker (resh) and (resh(G))t =aGtnA.
(3) For any Gy, Go € ZY(T', A) and Ay, Ay € L(T) one has
(G1+Ga)t =G NGy and A NAy = (A UA)L
Proof. The proof is straightforward, and therefore is left to the reader. O

Remarks 0.2. (1) Clearly, we have

1t = ZYT,A4),
FJ_ = {0}’
0t = T.

Note that (Z* ( A))* is a closed normal subgroup of I' contained in the closed normal
subgroup (BY(T, A))*, the kernel of the action of I' on A. Setting H*(T,4)*+ =
BYT', A)+/ZY (T, A)t, we obtain the pairing

HY I, At x HYT,A) — A

induced by the evaluation map.

(2) Following the standard terminology (see e.g., Stenstrém [13]), the closed ele-
ments of the Galois connection given in Proposition 0.1 (1) are the elements X of

L(Z' (', A)) or L(T') such that X = X+. It would be nice to describe effectively such
elements. Partial such descriptions are given in Lemma 1.5 and in Section 3, Part II.

(3) The last part of Proposition 0.1 can be reformulated by saying that the maps
(—)* are semilattice anti-morphisms. One can ask when these maps are actually lattice
anti-morphisms, i.e., they also satisfy the following conditions:

(Gl n C7!2)FL = <GiL @] Gé‘> and (Al n AQ)'L = Af‘ -+ AQL

for all Gy, G € Z(T', A) and Ay, Ay € L(T).

In Section 2 we will discuss cases when the maps (—)— establish lattice anti-
isomorphisms between certain sublattices of L(Z'(T,4)) and L(T'), while in Section
4, Part II we will see that for certain actions we called Cogalois actions we do obtain
lattice anti-isomorphisms between L(Z!(T, A)) and L(T). O

L
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1 Kneser groups of cocycles

In this section we define the concept of abstract Kneser group and establish the abstract
version of the field theoretic Kneser Criterion [10].

Lemma 1.1. If G is a finite subgroup of Z'(T', A), then (I': G < |G].

Proof. First assume that G is a finite cyclic group, and let h € Z 1(I", A) be a generator.
Then G+ = ht. The map h:I' — A induces an injective map I'/ht — A. Since
h' is an open subgroup of I' it follows that the index (I': h') =|h(I')| is finite and
bounded above by the order, say 7, of the (cyclic) subgroup of A generated by A(L).
As n is the lem of the orders of h(o) for o € T, one easily deduces that n = |G|, as
desired.

Now assume that G is an arbitrary finite subgroup of Z(T',A), and write G as
a direct sum G = @ G, of finitely many cyclic subgroups G; = (h;), 1 < i < k.

1<igk

Observe that, by the above considerations, (h;(I')) is a cyclic group of order |G;|, and
hence (h;(T')) = (h;) for every i =1,...k. As Gt = Migick Gy = ﬂlgigk hi, we
obtain an embedding of the quotient set T'/G* into [licick I'/G;. Composing this
with the canonical embedding

[] /6t — ] @)= @ Gi=¢,

1<igk 1<igk 1<i<k
we deduce that (I': G*) < |G|, as desired. O

Definition 1.2. A finite subgroup G of Z'(T', A) is called a Kneser group of Z!(I', A)
if (T:Gh) =G| O

We shall denote by K¢(I', A) the set of all finite Kneser groups of Z L(r, A). Obvi-
ously, {0} € K;(T, A). Since we have seen that Z'(T', A) is a left -module, it follows
that the set (T, A), ordered by inclusion, is a I'-poset.

Lemma 1.3. If G € Kf(', A), then H € K¢(T',A) for any H < G; in other words,
K¢(I',A) is a lower I'-poset.

Proof. By Lemma 1.1, we have |G| = (I': G+) = (I': HY)(H* : GY) < |H| (H* : GF),
and so, (G': H) < (H+ 56G),

Let G = {g|lgL |9 € G} < Z'(H*, A) be the image of G through the restriction
map reSI;IL : ZY', A) — ZY(HL, A). Since H C GN H*+ and GL = G4, it follows
by Lemma 1.1 that

(H-: G < |G < (G: H) < (H: Gh),
and hence (HL :GL) = (G: H). So, (I': HL) = |H|, as desired. O

Definition 1.4. A Kneser group of Z(T',A) is any subgroup G of Z*(T,A) such
that H € Ky(I', A) for every finite subgroup H of G. O
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Let K(T',A) denote the I'-poset of all Kneser groups of Z!(I', A). By definition,
K(',A) is a lower I'-poset, i.e., H € K(I',A) whenever H is a subgroup of some
G € K(T',A). Observe that, by Zorn’s Lemma, for any G € K(I', A) there exists a
maximal element M of K(I',A) such that G C M.

Lemma 1.5. If G € K(T', A), then H=GNHL for every H € L(G). In particular,
if Z1(I',A) € K(T', A), then the following statements hold.

(1) H = HL for every H € (Z}(T, A)), i.e., every H € L(Z1 (T, A)) is a closed
element of the Galois connection described in Proposition 0.1 (1).

(2) The map L(Z'(T,A)) — L(T), H — H*, is injective.

Proof. The inclusion H C G N H*+ is obvious. To prove the inverse inclusion, given
geGn HLL, we have to show that g € H. Since g € H*L, it follows that H* =
(H+)L+ < gt As HY = g ht, by compactness we deduce that there exists a
finitely generated subgroup H' < H such that H't < gt. Since Z'(I', A) is a torsion
group, it follows that H’ is a finite group. Let G' = (H'U{g}). Since the finite groups
G' and H' are Kneser as subgroups of G, and G'* = H'*Ngt = H'*, we deduce that
|G' = (T': G"*) = (T : H'*) = |H'|, and hence ' = H' as H' < G'. Consequently,
g € H' < H, as desired.

Now assume that Z(I', A) € K(I', A). Then (1) is clear since H++ < ZY(T, A) for
any H € IL(Z' (T, A)), and (2) follows at once from (1). O

Proposition 1.6. Let G € K(I',A4), A € L(T'), and denote G = resh (G), G' =
AL NG. Then, the following assertions are equivalent.

(1) G e K(A, A).

(2) The inclusion map A — G'* induces a continuous surjection A — G'*+/G*.
(3) The inclusion map A — Gt induces a homeomorphism A/éL —s LG
(4) G't = AG+.

Proof. By assumption, G € K(I', A), so G' € K(T', A) since G’ is a subgroup of G' and
K(T,A) is a lower poset. Note that A < At < G'* and G+ = G N A; hence, the
canonical map A/GL — G'-/G* is injective, and so, (2) <= (3) <> (4)

Observe that the morphism resk : Z1(T', 4) — Z'(A, A) induces an epimorphism
G — G with kernel Ker (resA) NG = AL NG = G, and hence, an isomorphism
G/G =G

First, assume that G is finite. Then

IGl=(G:G")=|G||G'|™ =(: G : G =(G*:GY).

(1) == 13): If~é € K(A,A), then (A : Gt) = |G| = (G'* : G1); so, the canonical
injective map A/G+ — G'1/G* is onto.
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(3) => (1): If the canonical map AJG+ — G'-/G* is bijective, then G| =
(Gt GL) = (A:GY), ie., GEK(A,A),

Next, suppose that G is infinite. Denote by F the directed set with respect
to inclusion of all finite subgroups of G, and set H = resh (H), H = HN A+ for
every H € F. Consider the projective system over F consisting of the family of
finite sets (H'*/H*)ger and of the canonical maps fu,,m, : H{-/HS: — HIY/H{,
H,, Hy € F, H; < Hj, induced by the inclusion maps Hj < Hi- and Hj- — HiL.
Since G = Z H and G = Z H', it follows that G+ = ﬂ H' and Gt =

HeF HeF HeF
ﬂ H'!. Consequently, the compact totally disconnected space Gt /Gt together

HeF
with the family of canonical continuous maps fg : G'*-/Gt — H'YJHL H € F, is the

projective limit of the projective system above.

We claim that all the connecting maps fm, g, are onto, which will imply that all
the maps fgy are onto too. Indeed, let Hi,Hy, € F be such that H; < H,. Since
H! = Hy N H), we have Hi/H] = Hi/(H1 N Hy) = (H1 + H})/H). By assumption,
G € K(T', A), and hence, by the proof of Lemma 1.3, it follows that

\H{“/Hi| = |Hy/Hi|, |Hy"/Hy | = |Hz/H),
and
|(H{ 0 H3")/Hy| = |(Hy + Hy)*"/Hy'| = |Ha/(Hy + Hp)|
The surjectivity of the map fm, g, is now immediate since for every o € HY- the
cardinality of the fiber f;hl,m (cH{) equals |(Hi N Hy-)/Hg|. Consequently, the

canonical continuous map ¢ : A — G'+/G* between compact totally disconnected
spaces is onto if and only if oy = frop: A — H’L/HL is onto for all H € F.

(1]=202k B G E K(A, A), then, by the first part of the proof, for every H € F,
the map g is onto since H € K(A, A) as a subgroup of G. Consequently, the map
¢ is onto too, as desired.

(2) = (1):_If the map ¢ is onto, it follows that the map ¢pg is onto for every
H € F; hence H € K(A, A) by the first part of the proof. Since any finite subgroup of
G is contained in some H for H € F, it follows that G € K(A, A), as desired. O

Corollary 1.7. Let G € K(T',A), and let A € L(T') be such that G+ C A. Then
resh (G) € K(A, A) if and only if (AN = 4. O

Proposition 1.8. Let G < ZY(T,A), A e L(T), G =resh(G), and H=A+NG. If
G € K(A, A) and H € K(T', A), then G € K(T, A).

Proof. First, assume that G is a finite group. By assumption, we have
(G H)=|Gl=(A:GYH=(A:G*NA) and (T':HY) =|H|

Set A =(AUG") and L = resi(G). Then L+ = G- NA =G+ by Proposition 0.1
(2). Tt is easily checked that resi induces an isomorphism L — G. Thus,

Gl=(A:G* D)< (A:GY) = (A: LY < L] =G,
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and hence
A:GH=(A:GtnA)=(G: H).

Since A C H', we obtain
IG|=|H|(G:H)=(: HY)(A:GYH) < (T:A)(A:GH) = (T:GH) <Gl

Consequently, (I': G*+) = |G|, i.e., G € K(A, A).

If now G is not necessarily finite, in order to prove that G € K(I', A) we have to
show that Gy € K¢(T', A) for any finite subgroup G of G. Since resh (G1) < resk (G),
ATNG; < ATNG, and, by hypotheses, resk (G) and H are Kneser groups of ZY (A, A)
and ZY(T', A) respectively, it follows that so are also their subgroups resh (G;) and
A+ N Gy respectively. Then Gy € K¢(I', A) by the first part of the proof. O

The next two results investigate when an internal direct sum of Kneser subgroups
of a given G < Z1(T', A) is also Kneser.

Proposition 1.9. Let G < ZY(T, A), and assume that G is an internal direct sum of
a finite family (Gi)icicn of finite subgroups. If ged(|Gil,|Gj]) = 1 for all i # j in
{1,...,n}, then

GE)Cf(F,A) <:>Gi€}Cf(F,A), Vi, 1 <1< n.

Proof. Assume that every G; is a Kneser group of Z!(I', A). Then,

6l= 1] lail= ]I : 6.

1<i<n 1<i<n

Since G+ < G, it follows that ([': G) [(T': G*) forall 4 =1,...,n. But (I': G}") =
|G;| are mutually relatively prime by hypothesis, hence []; ;< (I : G#)| (T : G1), and
so, |G| (I" : GL). On the other hand, (I': G*) < |G| by Lemma 1.1, which implies
that |G| = (I : G1), i.e,, G is a Kneser group.

The implication “==" follows at once from Lemma 1.3. O

Remark 1.10. In general, an internal direct sum of two arbitrary nonzero Kneser
subgroups of Z!(T, A) is not necessarily Kneser, as the following example shows. Let
=D =(0,7|0?>=7%=(07)? =1), and let A = (1/3)Z/Z with the action defined
by oa = —a, 7a = a for a € A. The map ZY(['A) — Ax A, g~ (g(U)/,i(T)) is a
group isomorphism. Let g,h € Z!(I', A) be defined by g(o) =0, h(o) = 1/3, g(7) =
hir) = 1//\3 Then, it is easily verified that Z!(T', A) has two independent Kneser
subgroups of order 3, namely, G := (g) and H := (h), whose (internal direct) sum is
not Kneser since |[I'| =6 <9 =|G & H|. O

The next result is the local-global principle for Kneser groups.

Corollary 1.11. A subgroup G of Z*(T,A) is a Kneser group if and only if any of
its p-primary components G(p) is a Kneser group.
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Proof. For the nontrivial implication, assume that G(p) € K(T', A) for every p € P. By
the definition of the concept of Kneser group we have to prove that any finite subgroup
of G is Kneser. Let H be a finite subgroup of G. Then H(p) = GNG(p), so H(p)
is a Kneser group of Z'(I',A) for every p € P. If 1 := {p € P|H(p) # 0}, then
H = @, H(p). Now, observe that I is finite and gcd(|H(p)|,|H(g)|) = 1 for all
p # q € 1. Hence H is a Kneser group by Proposition 1.9. O

We are now going to present the main result of this section, namely an abstract
version of the Kneser Criterion [10] from Field Theory. To do that, we need some basic
notation which will be used in the sequel.

Let NV (', A) denote the set (possibly empty) L(Z' (T, A))\K(T', A) of all subgroups
of Z1(I', A) which are not Kneser groups. Clearly, for any G € N(T', A) there exists
at least one minimal member H of N(T',A) such that H C G. By N([',A4),
we shall denote the set of all minimal members of N (T', A). Observe that whenever
G € N(T, A)min, then necessarily G is a nontrivial finite group.

If p is an odd prime number and 1//; € A\ AT, define the 1-coboundary
ey € B\T, (1/p) Z/Z) < B'(T, 4)

by
ep(l0) =0 1/p—1/p,0 €T,

If 1/4 € A\ A", define the map

ey : T — (1/4)Z/Z

oy~ | U1 it A= -T2
0 if ol/a=1/4

It is easily che.cked that
ey € ZYT,(1/4)Z/Z7) < Z*(T, A).
Observe that £) has order 4 and e4 := 2¢) is the generator of the cyclic group
BYT', (1/4) Z/7) < Hom(T', A[2])

of order 2.

Recall that by P we have denoted the set of all positive prime numbers. In the
sequel we shall use the following notation:

P = (P\{2})u{4},
PT,4) = {peP|ljpe A\ A"}
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We shall also use the following notation:
B, = BT, (1/p)Z/Z) = B*(T, Alp]) = (ep) X Z/pZ if 4+#pe P(T,A),

By = (ey) 2 Z/4Z if 4 € P(T,A).
Recall that we have denoted Og := {ord(g)|g € G}. For any G < ZY(T', A) we

shall denote
ne=|J (1/n)z/2.
neOg

Observe that, since O¢ is a directed set with respect to the divisibility relation, ug is
a subgroup of A, and hence a discrete I'-submodule of A too. One easily checks that
pG is the subgroup > . g(I') of Q/Z generated by |J,cq 9(I'), and hence it is the
smallest subgroup B of A for which G < Z'(T', B). Also note that ug(p) = pgp) =

Ugecp) 9(I') for all p € P.
Lemma 1.12. With the notation above, we have N (I', A)min = { By | p € P(I', 4) }.

Proof. If 4 # p € P(T',A), then B = ey = {0 € I‘Ial//?) = 1//;)} is the kernel
of the (nontrivial) action of I' on A[p] = (1/p)Z/Z, so I‘/Bz;L is identified with a
nontrivial subgroup of (Z/pZ)* = F,. Thus (T BI}) |p—1 < p = |By|, and hence
By € N(T, A) in- L
If 4 € P(T',A) then Bf =et = {0 €T'|ol/d= 1/4} = ¢} is the kernel of the
(nontrivial) action of T' on A[4] = (1/4)Z/Z,so (T : Bf) = 2 < 4 = |By|, and hence
By € N(I', A). Since the unique proper subgroup of By, namely B(T', A[4]) = (g4) =
7./27, belongs to K(T, A) as (T : ef) = 2 = ord(e4), it follows that By € N(I', A) . .
Thus, we proved the inclusion {B,| p € P([',;A)} C N(T, A)min. To prove the
opposite inclusion, let G € N (T, A),;,- Then necessarily G is a nontrivial finite group.
Decomposing G as the internal direct sum G = €D, G(p) of its nonzero p-primary
components, and using Corollary 1.11 we deduce that the finite subset I of P is a
singleton, in other words, G is a p-group for some prime number p. Then pg =
(1/p™)Z /Z for some n > 1, and there exist g € G and o € I such that g(o) = W
As we have already noticed, G < Z}(I, ug). Obviously, G € N (T, 14G)min, SO We
may assume from the beginning that A = pg = (1/p")Z/Z. Let A := B*(T', A)* denote
the kernel of the action of I' on A. We claim that A C G4, ie., G :=resk (G) = {0}.
In particular, this will imply that n > 2 for p = 2, for otherwise, if n =1 and p = 2 we
would have A =TI' = G+, and hence G < G*+ =T+ = {0}, which is a contradiction.
Assume the contrary, i.e., A € G+. Then At NG # G, and hence At NG €
K(T',A) as G € N(T, A),;,- By Proposition 1.8, it remains to show that G € (A, A)
to obtain that G € K(I', A), contrary to our assumption.

Note that G < Z1(A, A) = Hom(A, A), so Gt = GL N A = ) Ker(h|a) is an
heG

open normal subgroup of A, A/ G is a finite Abelian group, and G is embedded into

Hom(A/Gt, A) < Hom(A/G*, Q/Z) = Ch(A/Gt) = A/G*.
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Consequently, by Lemma 1.1, (A : GL) < |é| < (A él), ie., G € K(A,A), as
desired. This proves the claim that A < Gt.

Thus G can be identified with a subgroup of Z!(I'/A,A), and moreover G €
N(T/A, A)in, S0 we may assume without loss of generality that I' is a subgroup of
(Z/p"Z)* acting (faithfully) by multiplication on A := (1/p")Z/Z, G € N (T, A)min,

and pg = 4, i.e., g(t) = 1/p" for some g € G and 7 € I'. Recall that n > 1 for p # 2,

and n > 2 for p=2.

First, note that G is cyclic of order p", generated by g. Indeed, assuming the
contrary, it follows that the proper subgroup G’ of G generated by g is a Kneser group
of Z1(T', A) since G € N(T', A) pin, SO

Pt =G =TGN <D <™ =" p- 1),

which is a contradiction. By the same reason it follows that the subgroup pG, properly
contained in G, is a Kneser group of Z!(I', A4), hence (I': (pG)*t) = |pG| = p™~!. This
implies that p"~!|[T| and |(pG)*| = (IT| : p"71) | (p(p"™) : p*71), and s0, ¢ := |(pG) |
is a divisor of p — 1.

Recall that for any integers k& and m we denote by k£ mod m the congruence class

k +mZ of k modulo m. Set

e { {k mod p" € (Z/p"Z)

*|k€Z, k=1 (modp)} if p#2 and n > 1,
(k'mod p* € (Z/2"Z)* |k € Z, k =

(mod 4)} if p=2and n>2.
Using the considerations above, it follows that, if p # 2, then
LT x (pG)* is cyclic of order p™~'t, with ¢|(p —1),
and if p # 2, then G+ = (2G)* = {1} and
I'=(Z/2"Z)* = T" x {1 mod 2", —1 mod 2™ } & Z/2"%Z x Z/2Z.
Observe that if IV = {1}, then, for p # 2,
I' = Z/tZ is a nontrivial subgroup of F,, G = ZNT,F,) = B'(T,F,) = By,

while, for p = 2,
G = Z\(Z/4Z)", 2./AZ) = By = (e}),

as desired.

Now assume that I # {1}, i.e, n > 2 for p # 2, and n > 3 for p = 2. Set
G = rest, (G) = (g|r). Note that G =ginr = {1} since G+ NI’ C (pG)L NI’ =
{1} for p # 2, and Gt={1}for p=2. As 1 <|'|=(T": @#) < |G, it follows
that G’ # {0} and I"* NG # G; hence " NG € K(T,A). By Proposition 1.8,
it follows that &' € N'(I", A), ie, p" ! = (I : &) < |GI[IG] = p" if p # 2,
o, G2 = [T @L) < |E¥7| ||G| = 2" if p = 2. Consequently, for p # 2 we have
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G e = Z[p™Z, and for p = 2 we have either g = 72" 7 or are g Z/2"Z.
Thus we arrived to a contradiction since

Z/p"'Z if p#2
1/ _ nplpv ~ p p )
Z'(I",A)=B (I‘,A)_{ Z)7, if p=2.
Indeed, let

o (1+p)modp™ if p#2
~ | 5mod 2" if p=2

be the canonical generator of the cyclic group I. The injective group morphism
ZNT', A) — A, h— h(0),

maps Z'(I', A) onto Ker(N) and B'(I", A) onto T'(A), where N : A — A is the
norm sending a € A= (1/p™)Z/Z to Na,

pn——l_l

Y (1+p) if p#2,

N e i=0
s gn=2_1

> 5 if p=2,
=0

and
pa if p#2,

T:A———>A,ar—+aa—a:{ da if p=2

Now, it is easily checked by induction that the p-adic valuation of the natural number
N is n—1 for p # 2 and n — 2 for p = 2. This implies that

pAXZ/p"Z if p#£2,

KMN%£HMZ{4A§ZQW% if p=2

as desired. : 0O

The next statement, which is an equivalent form of Lemma 1.12, is actually an
abstract version of the Kneser Criterion [10] from the field theoretic Cogalois Theory.
Note that the place of the primitive p-th roots of unity (p, p odd prime, from the
Kneser Criterion [10] is taken in its abstract version by ep,, while €, corresponds to

1 =1,

Theorem 1.13. (The Abstract Kneser Criterion). The following assertions are equiv-
alent for G < ZYT, A).

(1) G is a Kneser group of Z*(T', A).

(2) ep & G whenever 4 #p € P(T', A) and € ¢ G whenever 4 € P(I', A).
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Proof. (1) = (2): Assume that G € K(I',A). If ¢, € G for some 4 # p € P(I', A),
then B, = (¢,) < G, hence B, € K(T', A), which contradicts Lemma 1.12. Similarly,
if 4 € P(T,A) and €j € G then By = (¢j) < G, hence By € K(I', A), which again
contradicts Lemma 1.12.

(2) = (1): Assume that G ¢ K(T',4), ie.,, G € N(I',4). Then G contains
a minimal member of N (T, A), i.e., an element of the set N (I', A)min. To conclude,
apply now Lemma 1.12. O

Corollary 1.14. ZY(T', A) is a Kneser group of itself if and only if P(I',A) = @. O

2 Cogalois groups of cocycles

In this section we define the concept of abstract Cogalois group and establish various
equivalent characterizations for them, including a Quasi-Purity Criterion.

For a given subgroup G of Z(I', A), the lattice L(G) of all subgroups of G and the
lattice L(T'|GL) of all closed subgroups of I' lying over G* are related through the
canonical order-reversing maps H — H' and A — GNAL = GNKer (resh ). Clearly,
these two maps establish a Galois connection, which is induced by the one considered
in Proposition 0.1 (1).

Definition 2.1. A subgroup G of Z'(I', A) is said to be a Cogalois group of Z(T, A)
if it is o Kneser group of ZY(T', A) and the maps (=)* between L(G) and L(I'|G*)
are lattice anti-isomorphisms inverse to one another. O

Some characterizations of Cogalois groups of Z!(T', A) are given in the next result.

Proposition 2.2. The following statements are equivalent for a Kneser group G of
ZYT, A).

(1) A =(GNALYL for every A € T(T|G).
(2) resh (G) € K(A,A) for every A € L(T'|G*).
(3) The map L(G) — L(['|GL), H — H*, is onto.
(4) The map L(I|GY) — L(G), A — GN AL, is injective.
(5) G is a Cogalois group of Z'(T, A).
Proof. (1) <= (2) by Corollary 1.7.
(1) = (3): For any A € L(['|G'), we have A = H', where H = GN At € L(G).

(3) = (4): Let Al, A, € L(T|G1) be such that GNA; = GNA4. By assumption,
Ay = Hit, Ay = Hy- for some Hi, Hy € L(G). By Lemma 1.5, H; = G N -
GNAL =GNAy =GN Hyt = Hy, and hence, A; = Ay, as desired.



TOWARD AN ABSTRACT COGALOIS THEORY (I) 15

(4) = (5): For any H € L(G), we have GN H'L = H by Lemma 1.5, so the
composition of the canonical maps L(G) — L(F|G+) — L(G) is the identity. It
follows that the map A — GNA* isonto, and hence bijective, with inverse H — H &
Thus, the canonical maps above are anti-isomorphisms of posets, and consequently,
also anti-isomorphisms of lattices inverse to one another, as desired.

(5) = (1): Let A € L(I'|G*). Then, by assumption, there exists a unique H € L(G)
such that A = H+ and H = GNAZL; hence A = (GNA1)L, as required. O

As T € L(I|GY) for every G < Z'(T, A) and P(A, A) C P(T, A) forall A € L(I),
the next result follows immediately from Proposition 2.2 and Corollary 1.14.

Corollary 2.8. A subgroup G of Z'(T',A) is Cogalois if and only if resh (G) is a
Kneser group of ZY(A,A) for every A € L(T|G*).

In particular, ZY(T',A) is a Cogalois group of itself if and only if Z*(I', A) s a
Kneser group of itself. O

Definition 2.4. A subgroup D of an Abelian group C' is said to be quasi n-pure, where
n is a given positive integer, if C[n] C D, or equivalently C[n] = D[n]. For M CN,
C is quasi M-pure if C is quasi n-pure for all n € M.

Recall that a well established concept in Group Theory is that of n-purity: a
subgroup D of an Abelian group C is said to be n-pure if D NnC = nD. There is
no connection between the concepts of n-purity and quasi n-purity; e.g., the subgroup
27./47. of 7./4Z is quasi 2-pure but not 2-pure, and any of the three subgroups of order
2 of the dihedral group Dy is 2-pure but not quasi 2-pure. Notice that the abstract
notion of quasi n-purity goes back to the concept of n-purity from the field theoretic
Cogalois Theory (see Albu [1], Albu and Nicolae [6]).

For any subgroup G of Z'(T', A) we denote Pg := Og NP, i.e., Pg is the set of
those p € P for which exp(G[p]) = p.

The quasi Pg-purity plays a basic role in the characterization of Cogalois groups
of ZY(T', A). The next result is the abstract version of the General Purity Criterion
[1], Theorem 2.3, from the field theoretic infinite Cogalois Theory.

Theorem 2.5. (The Quasi-Purity Criterion). The following statements are equivalent
for a subgroup G of Z'(L,A).

(1) G 1s Cogalois.
(2) The subgroup AT of ACG" s quasi Pg-pure.
(3) Gt ¢ ef for allp € PaNP(T,A).

Proof. (2) = (3): Let p € PaNP([', A). Then 1//717 € A\ AT, and hence 1//;9 ¢ AGT
as AS[p] = AT[p] by hypothesis. Consequently, there exists o € G+ such that
ol/p# 1/p, ie, o ¢ ai,}, which shows that G+ ¢ si,L, as desired.

(3) = (2): Let p € Pg. Then clearly 1//\p € A. Assuming 1//\p € A, we
obtain that Af[p] = A% [p] = (1/p)Z/Z, as desired. Now assume that 1/p ¢ AL,
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Since G+ ¢ 6;‘ by hypothesis, it follows that AT[p] = AGT [p] = {0} for p # 4, and
AT[p] = A" [p] = (1/2)Z/Z for p =4.

(1) => (3): Suppose that G is Cogalois, and let p € Pg N P(T,A). Then 1/p €
A\ AT, and there exists a cocycle h € G of order p. Let H = Z/pZ denote the
subgroup of G generated by h. Since G is a Kneser group of P A, (0 = JH) =
|H| = p. Assuming that G+ C 5;, we have to derive a contradiction. We distinguish

the following two cases:

Case (i): p € P\ {2}. Since G € K(T,A), it follows by Theorem 1.13 that
e, & G. Setting « := h — ¢, € Z'(T',(1/p)Z/Z) \ G, we deduce that ord(a) = p and
(ep) N (@) = {0}. Consequently, again by Theorem 1.13., (o) € K(I', A), and hence
(I': at) = p. Since G+ < h* and Gt < szf by assumption, it follows that G+ < ot
As G is Cogalois, we deduce that ot = (G Natt)t and |G N ol =(T:a’) =p,
therefore G N a*+l = Z/pZ. Now consider the subgroup H' := H + (G N att)
of G. As p is a prime number, it follows that either H' = H = Z/pZ or H' =
Heo (Gnatt) = (Z/pZ) @ (Z/pZ). Since H' < G € K(T',A), we deduce that
(T': H'*) € {p,p*}. This implies that (I': 61‘31‘) | p? since H* <htnat 6;‘. On the
other hand, EI-,L is the kernel of the (nontrivial) action of I' on A[p] = (1/p)Z/Z, and
hence 2 < (T': q,L) | (p — 1), which is a contradiction.

Case (ii): p=4. Let &) € ZY(T', A[4]) = Z/(T, (1/4)Z/Z) be the 1-cocycle defined
in Section 1, and remember that €4 = 2¢j. As 1//\4 ¢ AT, the action of T on A[4] =
(1/4)Z/Z, whose kernel is ef = ¢, T, is nontrivial, and hence I'/ef = (Z/4Z)* = Z/2Z,
ie, (I': ef) = 2. Since G is Cogalois and G < ef by assumption, it follows that
er = (GNert)t and |GNeft| =T :ef) =2,ie, GN eft = Z/27Z. One easily
checks that ¢4 is the unique element of order 2 of ef*, and hence G Nezt = (g4), in
particular, ¢4 € G. On the other hand, since G € K(T', A), it follows by Theorem 1.13
that ¢} ¢ G, and hence h & {e;,—€,}. Set B:=h—¢} and H; := (h,e4) < G. Then
0 # B ¢ (¢)). Two subcases arise:

Subcase (1): €4 € H. Then 2h = g4 and 28 = 2h — 2¢j = 2h — g4 = 0, ie,
ord(8) = 2. By Lemma 1.1, we have (T': 8+) < |(8)| = 2. Observe that - # T, for
otherwise, we would have 0 # 8 € g++ = I't = {0}, which is a contradiction. Thus,
(': B1) = 2. On the other hand, G+ < H+ = H- ne} = At ne}™ < AL, and hence
GNptLt < GnHLE = H 8 = (GNnBHH)L, and |GN B = (T : pL) = 2, as
G is Cogalois. Since (g4) is the unique subgroup of order 2 of H = Z/4Z, it follows
that G N B = (e4). Therefore § € (B1)L = ((GNBLH)L)E =eft, s0 B = &4 since
ord(f8) = 2 and ¢4 is the unique element of order 2 contained in e L. In particular,

B € G, and hence ¢j = h — € G, which is a contradiction.

Subcase (2): €4 ¢ H. Then Hy = H®(e4) = Z/4ZBZ/27Z. Since 23 = 2h—eq # 0
and 48 = 0, it follows that ord(8) = 4. But €} & (8), so (8) € K(I', A) by Theorem
1.13, and then, (I': L) = 4. Since H; < G,G+ < Hf =htnef =htnet <t
and G is Cogalois, it follows that Ho := GN Bt < GN HlLL = Hy, Hy = 8+, and
|Hy| = (T': B+) = 4. Thus, H, is a subgroup of order 4 of H;. Setting H3 = Hy+(e4),
we deduce that Hy = Hy-Nef = BN sﬁll € b ey = Hi-€ He-mieg, soilly = Hi-
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and hence H3 = H; as G is Cogalois and H; + H3 < G. Since Hy = H & (g4) =
Z]AZ & Z/2Z and |Hs| = 4, we deduce that Hy = Z/4Z, and hence either Hy = H
or Hy = (h — e4). Assuming that H, = H, it follows that (h —¢})* = g+ = Hi- =
H' = ht. Therefore H- < e = ¢}, and so g4 € GNeft < GNHLL = H, which
is a contradiction. Thus, it remains only to consider the case Hy = (h — €4). Then
(h—ey)+ = B+ = Hff = (h—eq)t. Replacing B with h+¢€} and proceeding as above,
we finally obtain that (h +¢&})t = (b —e4)t = (h —€})*, and hence T'\ ef C h', as
one easily checks. On the other hand, since (T':e}) = 2, it follows that I' = e Uoef
for some (for all) o € I'\ ef. Consequently, for every 7 € ¢ and o € I'\ ef we have
0 = h(o7) = h(o) + oh(r) = oh(r), and hence e < ht. Thus ht =T, ie, h =0,
which is a contradiction.

(3) = (1): Using Corollary 2.3, we have to show that G = resh (G) € K(A, A)
for every A € L(I'|G1). Assuming the contrary, it follows by Theorem 1.13 that there
exist A € L(L|G') and p € P(A,A) C P(T, A), ie, 1//\p € A\ A2 C A\ AT, such
that epla € G if p # 4 and €a € G if p = 4. Consequently, there exists h € G
such that h|a = ep|a if p # 4, and h|a = €4|a if p = 4 Let n = ord(h). Since
ord(ep|a) =p for p # 4 and ord(ey|a) = 4 for p =14, as 1//; € A\ A%, it follows that
p|n, and hence p € Pg NP(T', A). On the other hand, G+ < h* N A < sj, contrary
to our hypothesis. O

Let C(I', A) denote the I'-poset of all Cogalois groups of Z1(T', A). The next result
shows that C(T", A) is a lower I'-poset, and moreover, the property of a subgroup of
ZY(T, A) being Cogalois is, like the property of a subgroup of Z(T', A) being Kneser,
a property of finitary character.

Corollary 2.6. The following assertions are equivalent for a subgroup G of Z(T', A).
(1) GecC(T,A).
(2) HeC(T,A) forall H<LG.
(3) HeC(l,A) for all finite H < G.

Proof. (1) = (2): Let H < G and p € PgNP(T, A). Then clearly p € PanNP(T, A),
hence G+ ¢ sf; by Theorem 2.5, and then we also have Ht ¢ 5; since G+ C H+.
Using again Theorem 2.5, we deduce that H € C(T', A).

(2) = (3) is obvious.

(3) = (1): Let p € P(I';A) N Pg. Choose some h € G of order p, and set
Gg = (g, h) for any g € G. By Theorem 2.5, it follows that the family of closed subsets
(GgL \%L)geG of T has the finite intersection property, therefore, by compactness, their

intersection G+ \5,,L is nonempty, as desired. O

Corollary 2.7. Let p be an odd prime number, and let G be a p-subgroup of Z*(T', A).
Then G 1is Cogalois if and only if G is Kneser.
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Proof. By Definition 1.4 and Corollary 2.6 we may assume that the p-group G is finite.
Assume that G is Kneser and prove that G is Cogalois with the aid of Theorem 2.5.
Of course, we may assume that p € P(T', A), for otherwise we have nothing to prove
As we have already seen at the beginning of the proof of Lemma, 1.12, the index (' : € Ly
is a divisor # 1 of p — 1, in particular it is prime to p. Since the p-group G is Kneser
it follows that (I': G1) = |G| is a power of p, and hence Gt ¢ 5;, as desired. d

Remarks 2.8. (1) Corollary 2.7 may fail for p = 2. Indeed the simplest example of a
Kneser non-Cogalois 2-group is the one corresponding to the action of type D4 or Dg
(see Definition 2.14 and Lemma 2.15).

(2) In contrast with the property of Kneser groups given in Corollary 1.11, the
condition that all p-primary components of G are Cogalois, is in general not sufficient
to ensure G being Cogalois. To see that, observe that the group corresponding to the
action of type Dp, is Kneser but not Cogalois, and has all its primary components
Cogalois (see again Definition 2.14 and Lemma 2.15).

(3) By Zorn’s Lemma, for any G € C(I', A) there exists a maximal element M of
C(T', A) such that G C M. g

The next theorem essentially shows that a subgroup G < Z'(T', 4) is Cogalois if
and only if G has a prescribed structure, and is the abstract version of the structure
theorem [1], Theorem 4.3, for Kneser groups from the field theoretic infinite Cogalois
Theory.

For any subgroup G of Z!(I',A) and for any prime number p, denote

G1+(p) ifeither p€ Pg, or p=2 and 4 € Pg,
G,={ G+[2] if p=2,4¢Pg, and G[2] #0,

0 otherwise,

G=@ G,

peP

and

Now, consider the subgroup

ne= | /mz/z=3 nr) =P ( J ar

neOg heG pelP heG(p)

of A, and let Z1(I'| G+, ug) = G+ N ZY(T, ug) denote the subgroup of Z!(T', A)
consisting of those cocycles which are trivial on G and take values in pg. Clearly,

G < Z'T|G* pe) <G LG,
which implies that
G+ =7 |Gt ue)t =Gt
Notice also that
Pc =Pz |ct,u0) = Pa-
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Theorem 2.9. With the notation above, the following assertions are equivalent for a
Kneser group G of Z'(T', A).

(1) G is Cogalois.
(2) G = Z\(T| G*, o).
3) G=G.

Proof. (1) = (3): If G is Cogalois, then G is also Cogalois by Theorem 2.5 since
Pc = Pz and Gt = Gt. Therefore, by the definition of the concept of Cogalois

group, we have H = G N H*L for any H € L(G). In particular, we deduce that
G = GNGH =G, as desired.

(3) = (2) is trivial.

(2) = (1): Assume that G = Z'(I'|G*,uc) and G is not Cogalois. Then,
by Theorem 2.5, there exists p € Pg N P(I';A) such that Gt C sj Therefore,
ep € ZHT'|G* pg) = G for p # 4, and € € ZW('|G*,pug) = G for p = 4. By

Theorem 1.13, we deduce that G is not a Kneser group, contrary to our hypothesis. [

Recall that by C(I',A) we have denoted the TI'-poset of all Cogalois groups of
ZY (T, A).

Corollary 2.10. The map C(T,A) — L(I),G G+, is injective.
Proof. Let G, H € C(T', A) be such that G+ = H', and prove that G = H. By the

definition of the groups G and H , and using Theorem 2.9, it suffices to show that
Pe = Py and the groups G[2] and H[2] are simultaneously trivial or not whenever
4 ¢ Pg. Let p € Pg and g a cocycle in G of order p. Since G is Cogalois, we
have (I : g*) = p, and moreover, there exists only one proper subgroup (of index 2)
lying over gt if p =4. Since H is also Cogalois and gt lies over H*, it follows that
HnNgtt is a cyclic subgroup of order p of H, and hence p € P, as desired. The

latter condition follows with a similar argument. O

Remark 2.11. An alternative proof of Corollary 2.10 can be done using the following
fact: if G is Cogalois, then the order/index-preserving map U — UL maps bijectively
the cyclic subgroups of G' (which are the only finite subgroups U of the torsion Abelian
group G for which the lattice L(U) is distributive) onto the open subgroups A of T
lying over G- for which the lattice I(I'| A) is distributive. In particular, Og consists
of those positive integers n for which there exists an open subgroup A of T' lying over
G such that (I': A) = n and the lattice I(I'| A) is distributive. O

Corollary 2.12. The following assertions are equivalent for G € C(T,A).

(1) G is stable under the action of T', i.e., G s a [-submodule of Z(T, A).
(2) Gt «T.

(3) ug = ne.
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Proof. (1) => (2) holds for any G < Z*(I', A) since (et =oGto forallo €T

(2) = (3): As pug = X 4eq9(I'), we have only to show that og(r ) g(r) for
all g € G, 0 € G1, 7 € . Since, by assumption, GL 4T, we have 77107 € G, s
0=g(r~ 107') = 771(0g(r) — g(7)), and hence og(7) = g(7 ) as desired. Note that the
implication (2) = (3) also holds for any G < Z'(T', A).

(3) = (1): Let g € G, 7 € I, and prove that g € G. Since G = ZY |Gt ue)
by Theorem 2.9, we have to show that 7g|lgr = 0 and (7g)(I') C ug. From the
hypothesis it follows that (7g)(c) = 7g(t7'o7) = 0g(r) — g() = 0 for any o € G+,
as desired. Note that the latter condition holds in general since any subgroup of A, in
particular ug, is stable under the action of I'. O

Corollary 2.13. If G € C(T, A) is a T-submodule of Z*(T', A), then
G = Z'(T/G", pe)-

Proof. Since G is Cogalois, we have G = Z}(I'| G+, ug) by Theorem 2.9, and since
G is a T-submodule of Z!(I', A), we have G+ < T' by Corollary 2.12. To conclude,
observe that Z1(I'| G+, ug) = ZHT/GL, pe). O

According'to Lemma 1.12, the Kneser groups are precisely those subgroups of
Z1(', A) which do not contain some particular cyclic groups, namely the minimal
subgroups B, which are not Kneser, p € P(T', A). Using Corollary 2.6 we are going to
present a similar characterization for Cogalois groups. To do that we will first describe
effectively the minimal subgroups of Z(I', A) which are Kneser but not Cogalois. A
special class of actions which are introduced below plays a major role in this description.

Definition 2.14. Let T' be a finite group, and let A be a finite subgroup of Q/Z on
which the group T acts. One says that the action of T on A, or the I'-module A, is

(1) of type Dy if T =Dy = (o,7|0? =712 =(07)> =1) = Z/2Z x Z/2Z,
= (1/4)Z/Z, and 01/4=—1/4,71/4 = 1/4.

(2) oftype Dg if T =Dg = (O’,T[O’ =7t ={o )2 1) =Z/4Z%Z/2Z,
= (1/4)Z/Z, and 01/4— ~1/4 7'1/4— 1/4

(3) of type Dpr if D =(o,7|0" =77 =or07 7T “—1) Z/pr Z|rZ,
= (1/pr)Z/Z, and al/pr = ul/pr Tl/p’f‘ = 1/p7“
wherepEIP’ p>2, reN, r>1, r|(p—-1), and
u € (Z/prZ)* is such that the order of wmod p in
(Z/pZ)* is r and wmod! =1mod! forall l € P,1]|r. O

Let M(T, A) denote the set (possibly empty) L(Z! (T, A))\C(T', A) of all subgroups
of ZY(T', A) which are not Cogalois groups. Clearly, for any G € M(T', A) there exists
at least one minimal member H of M(I',A) such that H C G. By M(T',A) .,
we shall denote the set of all minimal members of M(I', A), and call them minimal
non-Cogalois groups. Observe that whenever G € M(T', A)pin, then necessarily G is
a nontrivial finite group according to Corollary 2.6.
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Lemma 2.15. The following conditions are equivalent for any Kneser group G of
Z\(T, A).
(1) Ge M(T,A)

min’

(2) G+ < T and the action of T/G* on ug is one of the types Dy, Dg, or Dy
defined as above.

Proof. (1) => (2): First assume that the Kneser group G is minimal non-Cogalois.
Then, as was observed above, G is finite. As G is not Cogalois, it follows by Theorem
2.5 that there exists p € P(I', A) N Pg such that G+ C 6;. Assume p is minimal with
the property above, and let H be a cyclic subgroup of G of order p. Since G is Kneser,
its subgroup H is also Kneser, and hence (I' : H*) = |H| = p, in particular, H # Bj.
We distinguish the following two cases:

Case (i): p = 4. We are going to show that G+ < T' and the action of /Gt on
ug is either of type Dy or of type Dg. Two subcases arise:

Subcase (1): e4 € H. As H = Z/4Z and H' < e, H is not Cogalois by Theorem
2.5, so by the minimality of G we have G = H = Z/4Z and pug = (1/4)Z/Z. Since
0g—g € BY(T,ug) = (e4) < G for all 0 € T, g € G, it follows that G is stable
under the action of T, therefore G+ < I' and G < ZY(T'/G',ug). As the Kneser
non-Cogalois group G is cyclic of order 4, it follows that I'/G* = Z/2Z x Z/2Z and
the action of T'/G+ on ug is of type Dy.

Subcase (2): €4 € H. First, show that ¢4 € G. Since G is Kneser, it follows that
G(Z)L < 54, for otherwise (G(2)* : (G(2)t Nef)) = (T :e5) =2, 50 2|G(2)] = (T
(G(2)* Nef))||T| = |G|, which is a contradiction. Thus, the 2-primary component
G(2) is Kneser, and is not Cogalois by Theorem 2.5. Consequently, by the minimality
of G, we deduce that G = G(2). Since L := resgi(G) is a 2-group as a factor of G and

4 ¢ P(eg,A), it follows by Theorem 2.5 that L is a Cogalois (in particular, Kneser)
group of Z'(ef, A). Therefore (GNegt)t = = ¢f by Corollary 1.7, so the Kneser group
GNegt of ZYT, A) is cyclic of order 2. Since the only cocycle of order 2 belonging to
eit is €4, we deduce that e4 € G, as desired.

Consequently, by the minimality of G, we have G = H®(e4) = Z/4L.D L/ 27, pc =
(1/4)Z./47, and L = H = 7./47. Moreover, since &4 € G, it follows as in the Subcase
(1) that G is stable under the action of I'. Therefore G’L < T and G is canonically
identified with a subgroup of Z(I'/G*,ug). In particular, G+ < ef, and g5 gt =

er /Lt = Z/AZ as L = Z/4Z is a Cogalois group of Z'(ef,A). Observe that the
canomcal action of HL/GL = I'Jef = Z/2Z on ef /Gt = Z/AZ is non-trivial, for
otherwise we would have I'/GL = G, contrary to the fact that G is not Cogalois.
Thus, T'/G+ = ¢} /G+ xT'/ef = Dg, i.e., the action of I'/G* on ¢ is of type Dg, as
desired.

Case (ii): p € P\ {2}. We are going to show that G+ < T' and the action of
I'/G* on pg is of type Dy, where r:= (' : ¢, 1), Let G’ denote the subgroup of G
consisting of all its elements of order prime to p As G is Kneser, so is also G', and
hence (G'* : GLY) = (G : G') is a power of the prime number p. Consequently, its
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divisor (G'* : G tn &5 1) is also a power of p. On the other hand, as 5L the kernel
of the non-trivial action of I' on A[p], is normal in T', we have G’L Ney <G~ kB,
the factor group G’ L /G’ L ep is identified with a subgroup of the cychc group T'/et &
of order r, with 7|p — 1 and (r,p) = 1. Therefore G+ g si,L. Since G' # G, it
follows from the minimality of G' that G’ is Cogalois. Thus, K := G'N E;L is also
Cogalois and K+ = E;‘. Moreover, K is cyclic of order r since I'/K+ = Z/rZ. In
particular, we have pK = (1/r)Z)Z. < A. As K+ T, Corollaries 2.12 and 2.13 imply
that (1/r)Z/Z < < A% and K = ZY( (T/ey, (1/r)2/Z).

From the minimality condition satisfied by G it follows that G = H® K = Z /prZ
and pg = (1/pr)Z/Z. Since K+ = ¢; < T and ((T': HLA( + &Ly = (p,r)= 1,
we deduce that I' = H+*K+ and G+ = H-n K1 <« HL. So, to conclude that
GL 4T it suffices to show that G+ < K+. For any A € G1, v € K+, h € H we have
h(vAv~1) = h(v) — (vAv~1)h(v) = 0 since h(v) € (1/p)Z/Z = AK* and vavle Kt
Thus G+ < T, the kernel of the canonical action of I'/Gt on ug is € i/G*, and
/G =¢f /G x HY/G*. Let 0 € HE, T € 5#, u € (Z/prZ)* be such that oG+ i
a generator of H+/Gt = Z/rZ, 1G* is a generator of &:Z-,L/Gl = Z/pZ, and 017;7" =
ul//;r. Clearly 717;7‘ = 1//;7" and the order of w mod p € (Z/pZ)* is r. Moreover,
oro~! = 7%(mod G1) since G = H @ K, h(oro™!) = oh(r) = uh(r) = h(r*) for all
h € H (as hleil)_ € Hom (E;, (1/p)Z/Z)), and k(oTo™1) = k(%) =0 for all k € K.

Consequently, T'/G+ = Z/pZ %, Z/rZ. Therefore, to conclude that the action of
I‘/G’L on pg is of type Dpy, it remains only to check that wmod! = 1 mod/ ie.,
l/l € AT for or all | E P, l|r. Assuming the contrary, let | € P(I';A) be such that
[|r. Since l/r € A% , we deduce that G+ < & . Thus [ € P(I'; A) N Pg and

€p
Gt < sl , and hence [ > p, which is a contradlctlon

(2) = (1): Assume that G+ < T and the action of I'/G+ on u¢ is of one of the
types Dy, Dg, or Dp,. Since G is canonically identified with a subgroup of ZYT, pa),
we may assume without loss of generality that G+ = {1} and A = ug, i.e., (T, A)
is one of the actions described in Definition 2.14. We have to show that every Kneser
group G < Z := ZY(I', A) satisfying G+ = {1} and pg = A is minimal non-Cogalois.
We distinguish the following three cases:

Case (a): (I',A) is of type Dg. Then, the morphism h — (h(o),h(7)) maps
isomorphically Z onto A x 24 X Z/4Z x Z/2Z. Thus Z = (¢'4) & (), where ¢ # e4
is defined by ¢(o) =0, p(7) = 1//\2 Notice that G := (¢4 + ¢) = Z/4Z is the unique
Kneser group of Z such that ug = A, in particular G+ = {1}, and G is the unique
Kneser non-Cogalois subgroup of Z as well.

Case (b): (I', A) is of type Dg. Then, the morphism h — (h(o), h(7)) maps
isomorphically Z onto A x A & Z/4Z x Z/4Z. Consequently, Z = (¢'4) @ (a),
where the cocycle « is defined by a(o) = 0, a(r) = 1//71 Observe that there exist
only two Kneser groups G of Z such that Gt = {1}, ie., |G| = || = 8, hence
pe = A = (1/4)Z/Z, namely Gy = (e4) ® (@) and Gy = (e4) ® (o + €4), both
isomorphic to Z/2Z & Z/4Z and stable under the action of I". They are also the only
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Kneser (minimal) non-Cogalois groups of Z of order 8. Notice that, on the other
hand, (g'y + 2a) = Z/4Z is the unique Kneser non-Cogalois subgroup of order 4, the
corresponding action being of type Dy.
Case (c): (T, A) is of type Dy, where p is an odd prime number and r |p—1, r > 1.
71

Let u € (Z/prZ)* be the unit defining the action. Since N(o) = Zui = 0 mod pr,

the morphism h — (h(o), (7)) maps isomorphically Z onto A x rAZ%E) Z]prZ x Z|pZ.
Consequently,Z = B, @ (a) & (B), where the cocycles a and 8 are defined by a (o) =
1/r, a(t) =0, B(o) = 0, B(r) = 1/p. As P(I',A) = {p}, the necessary and sufficient
condition for a subgroup G of Z to be Kneser is, according to Theorem 1.13, that
G N B, = 0. Consequently, G is a maximal Kneser group of Z if and only if G is a
direct summand of By, if and only if G is a Kneser group isomorphic to Z /prZif and only
if G is a Kneser group with G+ = {1} if and only if G is a Kneser group with ug = A.
The only subgroups of Z satisfying the equivalent conditions above are the subgroups
Gi = (iep + a+ B) = Z/prZ, i € Z/pZ. Since P(T', A) = {p} and the unique subgroup
H < Gy, € Z/pZ, for which p||H| and HE < EIJ)‘ is the whole group Gj, it follows
by Theorem 2.5 that the G;’s are also the only Kneser non-Cogalois subgroups of Z.
Notice that, in contrast with the actions of type D4 or Dg, the subgroups Gj,i € Z/pZ
are not stable under the action of I'. More precisely, I' acts transitively on the set
{G;|i € Z/pZ} with stabilizers (rior™") = Z/rZ,i € Z/pZ. O

Corollary 2.16. Any Kneser minimal non-Cogalois group of ZY (T, A) is isomorphic
either to Z./4Z, or to Z/2Z & Z/AZ, or to Z/prZ for an odd prime number p and a
divisor v # 1 of p—1.

Proof. Let G be a Kneser minimal non-Cogalois group of Z(I', A). By Lemma 2.15.,
G+ <« T and the action of I“/GL on pug is of one of the types Dy,Dg or Dy.. The
possible isomorphism types for the group G are now immediate from the proof of the
implication (2) = (1) of Lemma 2.15. O

The next result provides an analogue of Theorem 1.13 for Cogalois groups.

Theorem 2.17. The following statements are equivalent for a Kneser subgroup G of
ZY(T, A).

(1) G is Cogalois.

(2) G contains no H for which H- AT and the action of TL/HL on pg is one of
the types Dy, Dg, or Dp,.

Proof. The result follows at once from Lemma 2.15 and from the following fact we
already mentioned just before Lemma 2.15: for any L € M(T', A) there exists at least
one K e M(T',A)_. such that K C L. O

min
As it follows from Lemma 2.15, the fact that all the p-primary components of

a subgroup G of Z!(I',A) are Cogalois does not imply that the whole group G is
Cogalois. The next result provides a supplementary lattice theoretic condition which
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ensures such an implication, obtaining in this way a local-global principle for Cogalois

groups.
Theorem 2.18. Let G be a subgroup of Z*(T, A), and let
6:L(r|cH) — [[LTIG®™), A= (AUG(P)H))per-
pEP
Then, the following statements are equivalent.
(1) G is Cogalois.

(2) G(p) is Cogalois for all prime numbers p, and the order-preserving map 0 is a
lattice isomorphism.

(3) G is Kneser, G(2) is Cogalois, and A =T whenever A € L(I'|GY) is such that
6(A) = o(T).
Proof. (1) = (2): Assuming that G is Cogalois, we only have to prove that 6 is a
lattice isomorphism. As G and the G(p)’s are Cogalois, the canonical order-reversing
maps ¢ : L(G) — L(T|GY), ¢, : L(G(p)) — LT|G(p)*), H — H*L are lattice
anti-isomorphisms. On the other hand, since the canonical map

¥ L(G) — [[LG®), H— (H({D))per

p€eP

is a lattice isomorphism, the composed map

([T ep) ewor™ LG — [JLIIGE™Y), A (GNAY)(P) )per

p€eP p€eP
is also a lattice isomorphism, so it remains only to check that ([],cpp)ovo g hi=0,
e, (GNAL) ()L = (AUG(p)L) for all p € P,A € L(T'|G1). Now, as ¢ is a lattice
anti-isomorphism, we deduce that

(Gnahp) =(G@nAat)NGE)*: =(GNAH)IUGE)L) = (AUG(p)t),

as desired.
(2) = (3) follows at once from Corollary 1.11.

(3) = (1): Assuming that G is Kneser but not Cogalois, we have to show that
either G(2) is not Cogalois or there exists A € L(TI'|G+) such that A #T and §(A) =
9(I"). Let H be a minimal non-Cogalois subgroup of G. According to Lemma 2.15, H*
is an open normal subgroup of T' and the action of T'/H* on g is one of the actions
described in Definition 2.14. If the action above is of type D4 or of type Dg, then it
follows that H < G(2), and hence G(2) is not Cogalois. So, it remains to consider
only the case when the action is of type Dp,, where p is an odd prime number and
r|p—1,r > 2. Notice that (HL UG(p)L) = HtG(p)*t as H- < T, (': HXG(p)t) is
a power of p as G € K(T', A), and (T': H(p)') = |H(p)| = p as H(p) < G € K(T', A)
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and H(p) = Z/pZ (since H = Z/prZ by Corollary 2.16 and (p,r) = 1). On the other
hand, since HL < HL1G(p)t < H(p)* < T and (I': HY) = pr, r|p — 1, it follows
that H1G(p)t = H(p)*. As T'/H* = Z/pZ x, Z/rZ for a suitable u € (Z/prZ)*
by Definition 2.14, there exists an open subgroup A of I' lying over H' such that
(T':A) =p and A # H(p)+. Consequently, (AUG(p)Lt) = (AUH(p)L) =T, and,
similarly, (AU G(g)+) =T for any prime number q # p since all open subgroups of
[ lying over G(q)* have g-th power indices in T as G € K(I', A). Thus, we found a
subgroup A of I" with the desired properties, which finishes the proof. O

Finally, we consider the case when G is stable under the action of I'. Then, the
local-global principle for Cogalois groups has the following simple formulation.

Proposition 2.19. The following assertions are equivalent for o I'-submodule G of
ZY(T, A).

(1) G is Cogalois.
(2) G(p) is Cogalois for all prime numbers p.
(3) G is Kneser, and G(2) is Cogalois.

Proof. The implication (1) = (2) is trivial, while the implication (2) = (3) follows
at once from Corollary 1.11.

(3) = (1): Assuming that the I-module G is Kneser but not Cogalois, we have
only to show that G(2) is not Cogalois. Let H be a minimal non-Cogalois subgroup of
G. According to Lemma 2.15, H- < I' and the action of T'/H' on up is the one
described in Definition 2.14. If the action is of type D4 or of type Dg, then H < G(2),
and hence G(2) is not Cogalois, as desired. Now assume that the action is of type Dy,.
Then, as in the proof of Theorem 2.18 we deduce that (I' : H1G(p)+) = p. On the
other hand, G(p)* < T since G(p) is a I-submodule of G. Hence H+G(p)* < T, and
so, Z/pZ is a quotient of I'/H = 7/pZ x,, 7 /rZ, which is a contradiction. O

References

[1] T. ALBU, Infinite field extensions with Cogalois correspondence, Comm. Algebra
30 (2002), 2335-2353.

[2) T. ALBU, “Cogalois Theory”, A Series of Monographs and Textbooks, Vol. 252,
Marcel Dekker, Inc., New York and Basel, 2002, 368 pp.

[3] T. ALBU, Infinite field extensions with Galois-Cogalois correspondence (I), Rev.
Roumaine Mat. Pures Appl. 47 (2002), to appear.

[4] T. ALBU, Infinite field eztensions with Galois-Cogalois correspondence (II), Rev.
Roumaine Mat. Pures Appl. 47 (2002), to appear.



26 - ALBU and BASARAB

[5] T. ALBU and S. BASARAB, Lattice-isomorphic groups, and infinite Abelian G-
Cogalois field extensions, J. Algebra Appl. 1 (2002), 243-253.

[6] T.ALBU and F. NICOLAE, Kneser field extensions with Cogalots correspondence,
J. Number Theory 52 (1995), 299-318.

[7] T.ALBU and F. NICOLAE, Finite radical field extensions and crossed homomor-
phisms, J. Number Theory 60 (1996), 291-309.

[8] T.ALBU and M. TENA, Infinite Cogalois Theory, Mathematical Reports 3 (53)
(2001), 105-132.

[9] G.KARPILOVSKY, “Topics in Field Theory”, North-Holland, Amsterdam, 1989.
[10] M. KNESER, Lineare Abhdngigkeit von Wurzeln, Acta Arith. 26 (1975), 307-308.

[11] J. NEUKIRCH, “Algebraische Zahlentheorie.” Springer-Verlag, Berlin Heidelberg
New York, 1992.

[12] J.P. SERRE, “Cohomologie Galoisienne”, Lecture Notes in Mathematics 5,
Springer-Verlag, Berlin, 1964.

[13] B. STENSTROM, “Rings of Quotients”, Springer-Verlag, Berlin, Heidelberg, and
New York, 1975.



