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Introduction

ALBU and BASARAB

The efforts to generalize the famous Gauss' Quadratic Reciprocity Law led to the theory

of Abelian extensions of algebraic and padic number fields, known as Class Field

Theorg. This theory can be also developed in an abstract group theoretic framework,

namely for arbitrary profinite groups. Since the profinite groups are precisely those

topological groups which arise as Galois groups of Galois extensions, an Abstract Galoi,s

Theory for arbitrary profinite groups was developed within the Abstract Class Field

Theory (see e.g., Neukirch [11]).

The aim of this paper is to present a dual theory we called Abstract Cogaloi,s Theory

to the Abstract Galois Theory. Roughly speaking, Cogaloi,s Theory (see Albu [2])
investigates field extensions, finite or not, which possess a Cogalois correspondence.

This theory is somewhat dual to the very classical Galois Theory dealing with field

extensions possessing a Galois correspondence.

The basic concepts of Cogalois Theory, namely that of G-Kneser and G-Cogaloi,s

field extension, as well as their main properties are generalized to arbitrary profinite

groups. More precisely, let I be an arbitrary profinite group, and let A be any subgroup

of the Abelian group QIZ such that I acts continuously on the discrete group A.

Then, one defines the concepts of Kneser subgroup and Cogalois subgroup of the group

ZL (1, A) of all continuous 1-cocycles of f with coefficients in A, and one establish their

main properties. Thus, we prove an Abstract Kneser Cri,terion for Kneser groups of

cocycles, as well as a Quasi,-Puri,ty Criterion for Cogalois groups of cocycles'

The idea to involve the group ZL (1,,4) in defining the abstract concepts mentioned

above comes from the description, via the Hilbert's Theorem 90, of the Cogalois group

Cog(E I F) of an arbitrary Galois extension E I F as a group canonically isomorphic to

the group Zr GaI(E I F), p(E)) of all continues l-cocycles of the profinite Galois group

GaI(E lF) of the extension E lF with coefficients in the group p,(E) of all roots of

unity in ,O. Note that the multiplicative group 1-r(E) is isomorphic (in a noncanonical

way) to a subgroup of the additive group QlZ, and that the basic groups appearing

in the investigation of E lF from the Cogalois Theory perspective are subgroups of

Cog(ElF). In this way, the above description of Cog(ElF) in terms of l-cocycles

naturally suggests to study the abstract setting of subgroups of groups of type 21 (l , A),

with I an arbitrary profinite group and .4. any subgroq of QIZ such that I acts
continuously on the discrete group ,4..

In the forthcoming Part II of this paper we introduce the concept of. Cogalo'is act'ion,

and provide a complete description of the category of all these actions.

In Part III we apply our general theory to retrieve the abstract Kummer Theory,

and we show how some basic results as well as some new results of the field theoretic
Cogalois Theory can be easily obtained from our abstract approach.
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0 Notation and Terminology

Throughout this paper I will denote a fixed profinite group with identity element

denoted by 1, and ,4 will always be a fixed subgroup of the Abelian group QIZ s;uch

that f acts continuously on A endowed with the discrete topology, i.e., -4. is a discrete
l-module.

We denote by N the set {1, 2, ...} of all positive natural numbers, by f the set

of positive prime numbers, by Z the ring of all rational integers, by Q the field of all

rational numbers, by R the field of all real numbers, and by C the field of all complex
numbers. For any integers k, m € Z we shall denote by k mod m the congruence class

k +mZ of ft modulo m; if. n € N is a divisor of of rn, then we shall write occasionally

k + mZ mod n instead of k mod rz. For any ring ,R with identity element, -R* will

denote the group of units of ,R. If g is a power of a prime number, then we denote by

F'o the finite field with q elements.

For any zl € N, n ) 2 we denote by E" the dihedral group of order 2n' The

group of quaternions will be denoted by Q.Given an action of a group C on a group

D, the semidirect product of C by D is denoted by D x C, with a suitable subscript,

if necessary, to specify the action.

For any p € P we denote by Zp the ring of p-adic integers, by Qp the field of

p-adic numbers, and by Zo* the quasi-cyclic group of type p@, that is, the p-primary

component @lz)(p) of the quotient group QlZ. Note that Zr* = WlZp-
For any r € Q, the coset of r in the quotient group QIZ will be denoted by fr.

The elements of f will be denoted by small Greek letters o, r, p, and the elements of

A by a, b, c. The action of o e I on o e .4 will be denoted by oa. The set of all

elements of ,4 invariant under the action of f will be denoted as usually by .Ar.

An Abelian group C is said to be of of bounded, order if kC: {0} for some k e N;

if C is of bounded order, then the erponent exp(C) of C is the least n € N such

that nC : {0}. The order of an element r € C will be denoted ord(r). If n is a

positive integer, and D is an Abelian torsion group, then we shall use the notation

Dln l : :  {n  e  D lnr  :0 } .  For  any  p  e  P  we denote  bV D(p)  the  p-pr imary

component of. D. By On we denote the set of all n € N for which there exists r e D

of order n,i.e., D[n] has exponent n. With respect to the divisibility relation and the

operations gcd and lcm, Opt is a distributive lattice with the least element 1. Op has

a last element if and only if D is a group of bounded order, and in this case, the Iast

element of. Oo is precisely exp(D).

For any topological group ? we denote by [,(") the lattice of all subgroups of ?,

and by l,(f) tne lattice of all closed subgroups of ?. The notation U --( ? means

thar t/ is a subgroup of ?. For any u < T we denote by [-(?- | t/) (resp. r(" I t/))

the lattice ofall subgroups (resp. closed subgroups) of ? lying over U. If X C T,

then X wil denote the closure of X, and (X) will denote the subgroup generated by

X. The notation U < T means that [/ is a normal subgroup of 7. For a subgroup

U of. T we shall denote by f/U the set {tUlt e 
"} 

of all left cosets of U \n T.

we denote by ch(") or by ? the character group of ?, that is, the group of all

continuous homomorphisms of ? into the unit circle [J : {zlz e C, lzl: t }. If S is

another topological group, then Hom(,9, ?) will denote the set of all continuous group
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morphisms from .9 to T.
Recall that a crossed homomorphism (or an L-bocycle) of I with coefficients in -4

is a map / : I1 -+ A such that /(or) : I@) + of(r),, o,r €f; in particular, /(1) : Q.

The set of all continuous crossed homomorphisms of f with coefficients in ,4 is an

Abelian group, which will be denoted by Zr(t,A). Note that, in fact, Z'(l,A) is

a torsion group. Indeed, since I is a profinite group and A is a discrete space' a

map h : f -+ A is continuous if and only if h is Iocally constant, that is, there

exists an open normal subgroup A (in particular, of finite index in f) such that h

factorizes through the canonical surjection map f -l l/A. Since A is a torsion group,

it follows now that for any continuous map h : | --+ A there exists an n € N such

that h() e Oln)Z' lZ, and then nh:0, i-e., h has fnite order.
The elements of. Zr(l,A) will be denoted by f ,g,h. Always G,.FI will denote

subgroups of Zr(T,,4) and A,A subgroupsof f.  Forevery o€.4 weshalldenoteby

7,  i t te 'L-coboundarA fa:  f  +A,def ined as f " (o) :oa-at  o  € f .  Theset  6 t ( ! ,A) : :
"{f, l  

o € A} is a subgroup of ZLF,A). The quotient group Z'(t,A)lB'(f,A)

is called the first cohomology group of f with coefficients in A, and is denoted by

Hr ( t ,A ) .
Consider the eualuation map

( - , - )  :  f  x  Z ' ( l , A )  - - - +  A ,  ( o , h l  :  h ( o ) .

F o r a n y  A < f ,  G < Z r ( l , A ) ,  g € Z I ( T , A ) , a n d  ? € f  d e n o t e

A r  :  { h e  Z L ( T , A ) l ( " , h )  : 0 , V o  e  A } ,

G L  :  { o € f l ( o , h )  : 0 ,  Y h e G } ,

1:: I;:ill;,'ii'i,,f i, :o,
One verifies easily that Ar < Z1(1, A), GL ( f, and gL = (g)r. Observe that

ga is the set of zeroes of the continuous map g from I to the discrete grolP A , hence

it is an open subgroup of f. Since GL : OsecgL,it follows that Gr € n (f).

The group Zr (l,A) is clearly a discrete left f -module with respect to the following
ac t i on :  (oh ) ( r ) : oh (o - r ro ) ,o , r€1 ,  he  Z I (T ,A ) .  I f  o€ f  and  G  en - (ZL ( f , , 4 ) ) ,
then

("G)L : oGLo-r '

For any A e [-(f) one denotes by

resf, '  zr( l ,A) ---+ zr(L,A), h,+ hl6,

the restriction map.

The next result collects together the main properties of the assignments (-)r'

Proposition 0.L. The following assertions hold.

(I) The maps
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L(Zr(t,A)) --+ U,1r;, C ,+ GL,

L(r) --+ \-Qr(r,A)), L H Ar,

establi,sh a Galoi,s connect'ion between the lattices n-QrQ,A)) and n (l), i.e.,
they are ord,er-reuersing maps and, X ( Xtt for any element X of nQL (f,-4))
or  n  1f ; .

(2) For any A € [,(f) and, G e Z|(T,A) one has

Ar : At : Ker (resf,) and, 1resf,1c;;r : Ga n A.

(3) For any G1, G2 e Zr(l ,A) and Ar, Az € [-(f) one has

(Gr + G")L : C{ nC1, and, af n a} : (Ar u Ar)r.

Proof. The proof is straightforward, and therefore is left to the reader. n

Remarks 0.2. (1) Clearly, we have

1 r  :  z r ( l , A ) ,

f r  :  {o},
0 t : f .

Note that (Zt (1,,4))r is a closed normal subgroup of f contained in the closed normal

subgroup (Bt(f,,4))r, the kernel of the action of f on .4. Setting H1(f, A)t :

B1(f ,  A)Llzr( l ,A)r,  we obtain the pair ing

F/ l( f ,  A)t  *  f / t ( f ,  A) ---+ A

induced by the evaluation map.

(2) Following the standard terminology (see e.g., Stenstrom [13]), the closed ele'

ments of the Galois connection given in Proposition 0.1 (1) are the elements X of
n-Qr(f ,A)) or [-(f) such that X : XrL.It would be nice to describe effectively such

elements. Partial such descriptions are given in Lemma 1.5 and in Section 3, Part II.

(3) The last part of Proposition 0.1 can be reformulated by saying that the maps
(-)a are semilattice anti-morphisms. One can ask when these maps are actually lattice

anti-morphisms, i.e., they also satisfy the following conditions:

(Gr n Gr)r : (G{ u G+) and (Ar n Az)' : Af + nrr

for al l  Gt, Gz e. ZL(1,,4,) and Ar, Az € [,(f).
In Section 2 we will discuss cases when the maps (-)t establish lattice anti-

isomorphisms between certain sublattices of n(21(f,A)) and L(f), while in Section
4, Part II we will see that for certain actions we called Cogalois actions we do obtain
Iattice anti-isomorphisms between n-(Zr(l,A)) ana l,(f). tr
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1 Kneser groups of cocycles

In this section we define the concept of abstract Kneser group and establish the abstract

version of the field theoretic Kneser Criterion [10].

Lemma L.L. If G i,s a fini,te subgroup of ZL(|,A), then (l : Gr) < lcl

Proof . First assume that G is a finite cyclic group, and let h € ZT(t,,4) be a generator'

Then Gr :hL. The map h: f --+ A induces an injective map tf hL --+,4.. Since

hr is an open subgroup of I it follows that the index (l : ha) : lh(f) | is finite and

bounded above by the order, say n, of the (cyclic) subgroup of A generated by h(f).

As n is the lcm of the orders of h(o) for o € l, one easily deduces that rz: lGl, as

desired.
Now assume that G is an arbitrary finite subgroup of Zt(1,,.4), and write G as

a direct sum G: O Co of f initely many cycl ic subgroups G6: (h6),1 < ? < k.
1<r<e

Observe that, by the above considerations, (h;(f)) is a cyclic group of order lG;1, and

hence (h(f)) = (h,i) for every ' i :  L,."k. As Gr : f lrE;gr G{: f}E,gr, h{, we

obtain an embedding of the quotient set f/Gr into flrg;gntlG*. composing this

with the canonical embedding

fr rlcf --+ I1 (h,(r)) = O Gt:G,
1<i</c l<i<k 1<i<&

we deduce that ( l 'Gr) < lGl, as desired. tr

Deffnition I.2. A finite subgroup G of Zr(l,A) i,s catted, o Kneser group of ZL (1,1)

i , f  (r: cr) : lcl.  tr

We shall denote by K1(f , A) the set of all finite Kneser groups of. Zt (f , ,4)' Obvi-
ously, {0} e rcy(f,L). Since we have seen that Zt(1,,4) is a left l-module, it follows
that the set Ky(f,.4), ordered by inclusion, is a l-poset.

Lemma 1.3.  I f  G e Ky( l ,A) ,  then H eK1( l ,A)  for  any H {G;  i ,n  other  words,
Kl(f,  A) is a lower l-poset.

P r o o f .  B y L e m m a l . l , w e h a v e  l G l  : ( f  : G r )  : ( f  : H r ) ( f l t ' G r )  < l H l  ( H L : G L ) ,
and so, lG : H) < (Ht '  Gr).

Let G: {glnt I  g e G} < Z'(Ht,A) be the image of G through the restr ict ion
-up ,"r lr,  ,  zt( l ,A) ---+ zt(HL,,4,). Since H gGIHLL and dr - GL, i t  fol lows
by Lemma 1.1 that

(nL :  GL) < lel  < @: H) < (H-t i  GL),

and hence (HL t Gt) :  (G: H). So, (f , f fr) : lHl, as desired. n

Definition L.4. A Kneser group of. Z1(l,A) i,s any subgroup G of Zr(l,A) such
that H € Ky(f, A) for euery finite subgroup H of G. tr
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Let K(1,,4.) denote the l-poset of all Kneser groups of Zr(l,A). BV definition,
rc$,A) is a lower f-poset, i.e., H € rc(f,, ) whenever f/ is a subgroup of some
G e K(f,,A). Observe that, by Zorn's Lemma, for any G e K(1,.4) there exists a
maximal element M of. rc(f, A) such that G g M.

LemmaL.5.  I f  GeK(t ,A) , then H:GI ,HLL foreuery H €n-(G) .  Inpar t ' icu lar ,
if Zr(1,,4) e K(f, A), then the following statements hold.

(I) H - HLL for eaery H e n-@r(1,,4)), ' i .e., euery H en-Qr(f,A)) i ,s a closed
element of the Galoi,s connection descri,bed in Propositi'on 0.1 $).

(2) The map n (ZL (f, A)) ---+ L1r;, H ,+ HL, is iniectiue.

Proof. The inclusion I/ q G n .F/rr is obvious. To prove the inverse inclusion, given
g € GlHtL, we have to show that 9 e f/. Since g e HLL, it follows that f/r :

(Hrr;r < gr. As f/r : f'lnea ht, by compactness we deduce that there exists a
finitely generated subgroup Ht < H such that I/'a < gr. Since Zt(l,A) is a torsion
group, it follows that H' is a finite group. Let G' : (H' u{gi). Since the finite groups
G' and Ht are Kneserassubgroupsof G, and G'r :  H'LOgt: HtL,we deducethat

l G ' l :  ( f  : G ' a )  : ( l : H ' t ) :  l I 1 ' l , a n d h e n c e  G ' : H ' a s H t  ( G ' .  C o n s e q u e n t l y ,
g € H' ( ,F/, as desired.

Now assume that Zr(t,A) e K(f,A). Then (1) is clear since f lrr < Z'( l ,A) for
any H e [-(21(f,/)), and (2) follows at once from (1). n

Proposit ion 1.6. Let G € rc(l ,A), A € i t(f),  and, d,enote e: resl(G), G' :

Ar n G. Then, the following assertions are equ'iualent.

(1)  d e rc(A,A).

(2) The inclusi,on nx&p L,'-+ G'L induces a cont'inuous surjection A --+ gtL16L.

Q) fhe 'inclusion map A'-+ G'L 'ind,uces a homeomorphi,sm Llet --+ GLL lGL.

( 4 )  G ' t :  A G r .

Proof. By assumption, G e rc(f,,A), so G' e K(1,1.) since G/ is a subgroup of G and

tC(|, A) is a lower poset. Note that A g 6rr < G'r and, GL : GL tl A; hence, the

canonical map LIGL --+G'Llcr isinjective, andso, (2) <+ (3) <+ (4).

Observe that the morphism resf, , Zt(l,A) --+ Z'(L,,4) induces an epimorphism

G --+ G with kernel Ker(resf,) oG : Arn G : G', and hence, an isomorphism

Glg = e.
First, assume that G is finite. Then

lG l :  G:  G ' ) :  l c l  l c ' l - t  :  ( f  : c t ) ( r  'G ' ' ) - t  :  (G ' '  ' c ' ) .

(1)  + (3) :  I f  d  € rc(A,A) ,  then (A:  dr )  : ;d |  :  (G'L,  Gr) ;  so,  the canonica l
injective map Af GL -+ G'LlGr is onto.
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(3) + (1): If-the canogical map AIGL ---+ G'LlGa is bijective, then ldl :

(G'L t  GL) :  (A:  Gr) ,  i .e . ,  G e K(L,A) .

Next, suppose that G is infinite. Denote bV ! the directed set with respect

to inclusion of all finite subgroups of G, and set fr : resf,(H), H' : H i Ar for

every H e F. Consider the projective system over f consisting of the family of

finite sets (H'L IHL)HE7 and of the canonical maps f ur,1t, : H'rL lH{ ---+ 
,H'rL lHr.t,

Hr, Hz € F, H1( i/2, induced by the inclusion maps H* * I/rr and Hf '+ H'rL'

S i n c e  G :  l n  a n d  G t :  D U ' ,  i t f o l l o w s t h a t  G r :  0  t t  a n d  G ' r :

Hef H€T

1-l 
",t. 

Consequently, the compact totally disconnected space grtf 6t together

H C F

wilfr the family of canonical continuous maps f s: G'LIGL -+ H'LlHL,H € f, is the

projective limit of the projective system above.

We claim that all the connecting maps f Hr,Hz are onto, which will imply that all

the maps f s arc onto too. Indeed, Iet f/1, Hz € f be such that f/1 { Hz. Since

Hl:  HtnHt,  we have hlHl :  Ht l (HtnHi l  = (h+ Hi l lHi  By assumption,
G e K(t,A), and hence, by the proof of Lemma 1.3, it follows that

W'rr  lH{ l :  lHLlHl l ,  WLL lH2Ll :  lH2lHi l ,

and

l(ni n H*)lH+l: l(f/r + Hi)L lH*l: lH2l(HL + Hill.

The surjectivity of the map f7r,Hz is now immediate since for every o e H$L, the

cardinality of the fiber /",1,"r("H{) equals l(}/rr n H*)lHrt| Consequently, the

canonical continuous map g: A ---+ grt16t between compact totally disconnected

spaces is onto if and only if gH : fn o g: A -+ HtLfHL is onto for all H e f.

(1 )  + (2 ) :  I f  Ge  K (L ,A ) , t hen ,by the f i r s tpa r to f  t l gp roo f , f o reve ry  He  f ,

the map gn is onto since H e K(A.,,4.) as a subgroup of G. Consequently, the map
g is onto too, as desired.

(2) + (l):_If the map g is onto, it follows that the map eu is onto for every

E e f ; hence H e K(L,, A) by the first part of the proq.f. Since any finite subgroup of

G isconta inedinsome -FI  for  H e F, i t  fo l lowsthat  G€rc(A, ,A) ,  asdesi red '  n

Corollary 1.7. Let G e K(t,A), and tet A, € L(f) be such that Gr g L. Then

resf,(G) € rc(A, A) ,f and only i/ (Ar r^rG)r : 4. tr

P ropos i t i on  1 .8 .  Le t  G  <z ' ( l ,A ) ,  L€ i t ( l ) ,  G : res l (G) ,  and ,  H :ALnG.  I f

G e K(A,, A) and H e K(l ,  A), then G e K(1, A).

Proof. First, assume that G is a finite group. By assumption, we have

( G : H ) : 1 G 1 : ( l : d r )  : ( A : C r n n )  a n d  ( r : H r )  : l f / | .

Set  A:  (AUGr)  and t r :  res l (G) .  Then LL:  Ga nA :  GL by Proposi t ion 0.1

(2). It is easily checked that resf; induces an isomorphism -L -:+ G. Thus,

l e l  :  (A :  Gr  nA)  <  (A :  Gr ;  :  (A :  r r )  <  l r l  :  l e l ,
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and hence
(A :  Gr)  :  (A :  Cr nl ;  :  (G :  H).

Since A g HL, we obtain

l c l  :  l H l  ( G :  H ) :  ( r : H r ) ( A ' G r )  <  ( r : A ) ( A : G a ;  :  ( r :  G r )  <  l c l .

Consequently, (f  :  Gr) : lGl, i .e., G e K(lt ,A).
If now G is not necessarily finite, in order to prove that G € rc(f '.4,) we have to

showthat G1 € Ky(f,,4) foranyfinitesubgroup Gr of G. Since resf,(C1) g res[(G),
AanGr g AanG, and, by hypotheses, resf,(G) and H are Kneser groups of ZL(A, A)
and. Zr(1,,4,) respectively, it follows that so are also their subgroups resf,(G1) and
Ar n Gr respectively. Then G1 € Ky(f,/) by the first part of the proof. n

The next two results investigate when an internal direct sum of Kneser subgroups
of a given G < Zr(1,,4.) is also Kneser.

Proposition L.9. Let G < Z'(T,A), and assunxe that G 'is an'internal di,rect sum of
a fini,te family (G,;)r<,;<,, of fi,ni,te subgroups. # gcd(lG;l,lGrl) : I for alli I j in

{ 1 , . . ,  , n } ,  t h e n

G e Ky( t ,A)  <+ G;  € K1( l ,A) , ,  V i ,  1  (  z  (  n .

Proof. Assume that every G,i is a Kneser group of. Zr(f ,A). Then,

lGl : II lGol : lI tt 'G{).
1 ( i ( n  l ( i ( n

Since Gr < GiL, it follows that (f ' Gcr) | (f : Gr) for all ' i : L,... )n. But (f : Gf,1 :

lG;l are mutually relatively prime by hypothesis, hence fltglEr,(f ' Git) I (f : Ga), and

so, lGl l  ( f  :  Gr).  On the other hand, ( f  ,  Ga) < lc l  bv Lemma 1.1, which impl ies

that lGl : (f : Gr), i.e., G is a Kneser group.

The implication " 4 " f6lle'*rys at once from Lemma 1.3. n

Remark 1-.L0. In general, an internal direct sum of two arbitrary nonzero Kneser

subgroups of Zr (1,,4) is not necessarily Kneser, as the following example shows. Let

f  :  Do :  (o,r lo '  :  13 :  (or)2: 1),  and let  A :  (Ll})Z' lZ '  with the act ion def ined

b y  o a - - a l r a : a  f o r  o € , 4 .  T h e m a p  Z r ( l , A ) - - + A x A , g r + ( g @ , ;  J r ) )  i s a

group isomorphism. Let 9,h e Z'(1,,4) be def ined by g(o) :0,  h(o) :  I l3,  g(r)  :

h(r): ll3. Then, it is easily verified that ZL(1,,4) has two independent Kneser

subgroups of order 3, namely, G t: (g) and f/ ': (h), whose (internal direct) sum is

n o t K n e s e r s i n c e  l f l  - 6 < 9 : l c e H l .  n

The next result is the local-global princi,ple for Kneser groups.

Corollary L,LL. A subgroup G of Zt (f,/) 'is a Kneser group i,f and only i,f any of
its p-primarA components G(qt) 'is a Kneser group.
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Proof. For the nontrivial implication, assume that G(p) € rc(f, A) for every p € F. By

the definition ofthe concept of Kneser group we have to prove that any finite subgroup

of G is Kneser. Let H be a finite subgroup of G' Then H(p): GnG@), so f/(p)

is a Kneser group of. Zt (f , ,4) for every p € P. If  [ : :  {p e plH(p) l0}, then

11 : (Epen H(p). Now, observe that I is finite and gcd(1fl(p)l' lff(q)l) : 1 for all

p * q e [.-Hence I/ is a Kneser group by Proposition 1'9. tr

We are now going to present the main result of this section, namely an abstract
version of the Kneser Criterion [10] from Field Theory. To do that, we need some basic

notation which will be used in the sequel.

Let ,A/(f, A) denote the set (possibly empty) n-(Zr (1,,4))\rc(f, A) of all subgroups
of. ZL(1,,4) which are not Kneser groups. Clearly, for any G e ,A/(l,A) there exists
at least one minimal member H of.,A/(f,,A) such that H e G. By "A/(f'/)-i'
we shall denote the set of all minimal members of ,A/(f,A). Observe that whenever

G e ,l\/(1, A).r,in, then necessarily G is a nontrivial finite group.

If p is an odd prime number and {fi € A \ Ar, define the l-coboundary

ep e BL(1,(t ldzlv,) < 81(r, ,4)

by

€ p ( o ) : " l D - 1 6 , o € r '

H in € ,4. \,4r, define the map

e'4: l  -+ $14)V, lV,

i f  o L l 4 :  - U 4

i f  o I l 4 :  I l 4

It is easily checked that

e'n e zr(t ,(Ll4)zlz,) < zr(T,A).

Observe that e/n has order 4 and €4::2e! is the generator of the cyclic group

Bt(f, (rl4)z,lv,) ( Hom(|,,4[2])

of order 2.

Recall that by IF we have denoted the set of all positive prime numbers. In the
sequel we shall use the following notation:

P  :  ( P \  i 2 ) )  u  { 4 } ,
P ( t , A )  :  { p  e P l l |  e , 4 \ , a " } .

by

e 'a (o ) : { f
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We shall also use the following notation:

Bp : Br(t,(Llp)ZIV,) :81(f, Alpl) : (up) = ZlpT if 4 * p e p(t, A),

Ba :  (e\)  = Zl4Z i f  4 eP(r,A).

Recall that we have denoted O6;: {ord(g) lS e C }. For any G < Zt(f,A) we
shall denote

pG = l) tr1"1z1z.
ne.Oc

Observe that, since O6 is a directed set with respect to the divisibility relation, Fc is
a subgroup of ,4., and hence a discrete f-submodule of .4 too. One easily checks that

ttc is the subgroup Dr."g(f) of QIZ generated by Ugecg(f), and hence it is the
smallest subgroup B of. A for which G < ZL(I,B). Also note that pc@): pG(p):

Ugec(p)9(l) for all P € tr'

Lemma L.L2.  Wi th the notat ion aboue,  we haue.A/( f , -4)*1"  :  {Bplp eP( l ,A)} .

P r o o f .  I f  4 +  p  e P ( t , A ) ,  t h e n  B t :  r i :  { o  €  f  l " l D : l D }  i s  t h e  k e r n e l
of the (nontrivial) action of f on Abl : QlflZlZ, so llBf is identified with a
nontrivial subgrbup of (ZlpZ).: ry. Thus (l , Bt)lp - t 1p : lBol, and hence
Bo e N(l,A),,,in.

I f  4e  P ( l ,A )  t hen  B f  -  u ' n t :  { a  €  f  l " l \ : l F ) :  r *  i s  t he  ke rne l  o f  t he
(nontrivial) action of I on Al4) : (LlA)V'lV', so (l : Bf,) :2 < 4: lBql, and hence
Bd e N(T,A). Since the unique proper subgroup of Ba, namely Bt(f, A[4]) : (un) =
V" l2V, ,be longsto K( f , ,4)  as ( f  :enr)  -2 :ord(ea) , i t fo l lowsthat  Ba€. l \ f ( f , / ) - in .

Thus, we proved the inclusion {Bpl p e P(t,a)} q I/(f,,4.)-i,.. To prove the
opposite inclusion, Iet G € .l\/(f , A)-in. Then necessarily G is a nontrivial finite group.
Decomposing G as the internal direct sum G : Ope[ G(p) of its nonzero p-primary
components, and using Corollary 1.11 we deduce that the finite subset I of F is a
singleton, in other words, G is a p-group for some prime number p. Then pc :

( I l p " ) Z l Z f o r  s o m e  n ) l , a n d t h e r e e x i s t  g € G  a n d  o € f  s u c h t h a t  9 ( o )  : I l p " .

As we have already noticed, G < ZL(1,p6). Obviously, G €,4/(f,Fc)-i.,, so we
may assume from the beginningthat A: FG : Qlp\ZlZ. Let A :: Bl(f , A)a denote
thekernelof  theact ionof  I  on,4.  Wecla imthat  A q Ga,  i .e . ,  G: : res l (G)  :  {0} .
Inpar t icu lar , th iswi l l imply that  n .  )2  for  p :2, forotherwise, i f  n :1 and P:2we
wouldhave A: f  :  Gr ,  andhence G < G[ : f r :  {0} ,  which is  acontradic t ion.

Assume the contrary, i.€., A g GL. Then Ar nG + G, and hence Ar n G e
K(|, A) as G e I/(f , A)-i,,. By Proposition 1.8, it remains to show that G € rc(A, ,4)
to obtain that G € rc(f,,4), contrary to our assumption.

N o t e  t h a t  C  4  Z r 1 t , A ) :  H o m ( A , A ) ,  s o  G t :  G r n A :  
n l K e r ( h l a )  

i s  a n

open normal subgroup of A^, A,lGr is a finite Abelian group, and G is embedded into

Hom(A lGt, e) ( Hom(A/ Gt, Qlz) : chia.lG\ o a,lGt.
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Consequently, by Lemma 1.1, (A , ea) < lel < (A t dL), i.e., G € rc(6, A), as
desired. This proves the claim that A < Gr.

Thus G can be identified with a subgroup of zr(tl\,A), and moreover G €

N(llL,, )-in, so we may assume without loss of generality that I is a subgroup of

(Zlp"Z). acting (faithfullyDy multiplication on A,: (Llp")ZlZ, G e ,A/(f,/)-i.,,

a n d . p r , 6 : A , i . e . ,  g ( r ) : I f p n f o r  s o m e  9 € G  a n d  r € f .  R e c a l l t h a t  n l l f o t p + 2 ,

a n d  n ) 2  f o r  P : 2 .
First, note that G is cyclic of order p', generated by g. Indeed, assuming the

contrary, it follows that the proper subgroup Gt of. G generated by I is a Kneser group

of ZL(1,,4,) since G e ,A/(f,A)-,,,, so

p " : l G , l : ( f  : c , t )  < l f l  ( p ( p " )  - p , - t @ - : - ) ,

which is a contradiction. By the same reason it follows that the,subgroup pG, properly

contained in G, is a Kneser group of. Zr(l,A), hence (f : (pG)-) : lpGl 
- pn-r' This

implies that pn-r I  l f l  and t ipCitt :  ( l f l  ip"-L)l(e@\,pn-r), and so, t ' :  l (pG)rl
i s a d i v i s o r o f . p - 1 .

Recall that for any integers ft and n'L we denote by k mod m the congruence class

k * mZ of & modulo rn. Set

k e Z , k : 1  ( m o d p ) )  i f  p + 2  a n d  n ) 1 ,
k  e Z , / c :  1  ( m o d 4 ) )  i f  P : 2  a n d  n ) 2 '

Using the considerations above, it follows that, if p 12, then

| ./ r/ ^ @G)L is cyclic of order pn-rt, with t | (p - 1),

and i f  p  +2,  then Gr :  (2G)L:  {1}  and

| : (Z,l2nV,)* = f '  x {1 mod 2n, - l  mod2n } = V'12"-22 x Zl2Z.

observe that if f, : {1}, then, for p + 2,

t = ZltZ, is a nontrivial subgroup of ry, G : Zt (f, f'o) : B1(1, Fo) : Bp,

whi le ,  for  p-2,
G : z1((v, l4z). ,v,I 4z) - B4 : (eta) ,

as desired.

Now assume that l' + {7}, r.e.), n 2 2 for p + 2, and n ) 3 fot P : 2. Set

d : r e s F , ( G )  :  ( g l r , ) . N o t e t h a t  d ' ' : G r n f ' :  { 1 }  s i n c e  G a n f ' q  @ G ) t t l / :

{ 1 }  f 9 l  p + 2 , a n d  G r :  { 1 }  f o r  p t : 2 .  A s  1 <  I f ' l  -  ( l "  d t )  <  l d l , i t f o l l o w s
that d + {0} and f 'a nG + G; hence f 'rn G e K(t,A). By Proposit ion 1.8,

i r f o l l o w s  t h a t d  € . 4 / ( f / , A ) , i . e . ,  p n - r : 1 f ' : d ' )  <  l d l  l l C l  -  p "  i f  p + 2 ,

and  2n -2 :  ( f / : d t )  a  lA l  l l c l  : 2n  i f .  p :2 .  Consequen t l y ,  f o r  p  +2  we  have

,, _ | {k mod p" e (Zlp"z).
'  - I  

{ k m o d p " e ( Z l 2 " Z ) .
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d  = C o Z l p " Z , a n d f o r  p : 2  w e h a v e  e i t h e r  d  = 2 1 2 " - L z  o r  d  = C = 2 1 2 " v , .
Thus we arrived to a contradiction since

13

Indeed, let

n : { ( t + p )  m o d p n  i f  p + 2
-  

l .  5  mod2n  i f  P :2

be the canonical generator of the cyclic group f/. The injective group morphism

zL(l ' ,A) --+ A, h r+ h(o),

maps Zr(l/,A) onto Ker(l/) and B1$',,4.) onto f(A), where N : A ---+ A is the
norm sending a € A: (I lp")Zf Z to Na,

(  p " - t  - t

|  \ -  ( . L + p ) i  i f  p + 2 ,
I L \

ru: { "}:,} .
|  

' l ' r '  
i f  p : 2 ,

l 7 o

zr ( r , , / )  :s l ( r , ,A\={  ? t r ! - i?  i f  P l2 ,' /  -  
I  Z, lzn-2L i f  p:2.

and

T :  A  - -+  A ,  a r+  oa  -  a :  {  1 "  : t ,  P+2,
|  4 o  i f  P : 2 .

Now, it is easily checked by induction that the p-adic valuation of the natural number
l {  i s  n - 1  f o r  p + 2  a n d  n - 2 f o r  F : 2 .  T h i s i m p l i e s t h a t

(  p A = z f p n - t u  i f  p + 2 ,
K e r ( N )  : T ( A ) : 1

,, 4A = V,12"-22 if P :2,

as desired.

The next statement, which is an equivalent form of Lemma 1.1-2, is actually an

abstract version of the Kneser Criterion [10] from the field theoretic Cogalois Theory.

Note that the place of the primitive p-th roots of unity Cp, p odd prime, from the

Kneser Criterion [10] is taken in its abstract version by ep, while ei corresponds to

r - e n '

Theorem 1-.1-3. (The Abstract Kneser Criterion) . The follow'ing assert'ions are equiu-

alent for G < Zr ( f  ,  A).

(1) G ' is a Kneser group of Zr( l ,A).

( 2 )  e p / . G  w h e n e a e r  4 l p e P ( l , A )  a n d ,  € ' q , / G  w h e n e u e r  4 e  P ( l , A ) .
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Proof .  (1)  ===+ (2) ;  Assumethat  G e K( l ,A) .  I f .  eo€G forsome a*peP( l ,A) ,
then Br: (€p) ( G, hence Bo e K(t,,A), whichbontradicts Lemma 1'12. Similarly,
if. 4 e P(T,A) and e! € G then Ba: (eta) ( G, hence B+ e K(1,,4'), which again
contradicts Lemma 1.12.

(2) =+ (1): Assume that G / rcF,A), i.e., G e Il(l,A). Then G contains
a minimal member of ,A/(f, A), i.e,, an element of the set "A/(1,/)-in' To conclude,
apply now Lemma 1.L2. n

Corollary L,14. Zt(t,A) is a Kneser group of itself if and only i,f P(t,A): a. Z

2 Cogalois groups of cocycles

In this section we define the concept of abstract Cogalois group and establish various
equivalent characterizations for them, including a Quasi,-Puri,ty Criterion.

Foragivensubgroup Gof .ZL( t , , ,4 . ) , the lat t ice[ , (G)  of  a l lsubgroupsof  Gandthe
lattice L(flcr) of all closed subgroups of t lying over Gr are related through the
canonical order-reversing maps H ,+ Hr and A F+ GnAr : GoKer(resf,). Clearly,
these two maps establish a Galois connection, which is induced by the one considered
in Proposit ion 0.1 (1).

Definition 2.L. A subgroup G of Zr(l,A) is sai,dto be aCogalois group of Zr(t,A)
if i,t i,s a Kneser group of Zr (l, A) and the maps (-)L between n (G) ana T'glCL\
are lattice anti-isomorphi,sms inuerse to one another. n

Some characterizations of Cogalois groups of. Zr(l,A) are given in the next result.

Proposition 2.2. The following statements are equ'iualent for a Kneser group G of
z r  ( t ,  A ) .

(1) A : (G n Aa)a for euery A € [.(f  lG-L).

(2) resf,(G) € rc(A, A) for euery L. € [,(f lcr).

(3) The map n (G) ---+ f(f lcr), H ,+ HL, 'is onto.

(\ rhe map trQlGt) ---+ [,(G), A F+ G fl At, is i,njecti,ue.

(5) G is a Cogaloi,s group of ZL(|,A).

Proof. (1) <a (2) bV Corollary 1.7.

( 1 )  +  ( 3 ) ;  F o r a n y A e  L ( f l c r ) , w e h a v e  L , : H L , w h e r e  H : G n A a  e  n - ( G ) .

(3) + (4): Let Ar,Az € L(f lci) besuchthat GnA*: Gnt{. By assumption,
A r : 1 / r r ,  A z :  H {  f o r  s o m e  1 { ,  H z e  n ( G ) .  B y L e m m a  1 . 5 ,  H t : G 1 H { L :
Gnn f  :  Gn  L t :GnH2LL :  H2 ,  and  hence ,  A r :  Az ,  as  des i red .
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(4) + (5): For any H e n-(G), we have GnHrt : H by Lemma L.5, so the
composition of the canonical maps [-(G) ---+ f(f lcr) --+ n (G) is the identity. It
follows that the map A r+ GflAr is onto, and hence bijective, with inverse H ,+ HL.
Thus, the canonical maps above are anti-isomorphisms of posets, and consequently,
also anti-isomorphisms of lattices inverse to one another, as desired.

(5) + (1): Let A € L(f lcr;. Thett, byassumption, thereexists aunique H e [,(G)
such that A,: HL and ,I1 : G iAr; hence A : (G n Ar)r, as required. n

As f e [,(f lcr) forevery G < Zr(t, ,A) and P(A,A) e P(l,A) for att A e u-(l),
the next result follows immediately from Proposition 2.2 and Corollary 1.14.

Corollary 2.3. A subgroup G of Zr(l,A) i,s Cogaloi,s i,f and only i,f
Kneser group of ZL(L',A) for euery L € [,(flcr).

In particular, Zr(l,A) i,s a Cogaloi,s group of itself if and only if
Kneser group of i,tself.

Definition 2.4. A subgroup D of an Abeli,an group C i,s said to be qtasi n-pure, where
n ,is a gi,uen posi,tiue integer, i,f Cln] e D, or equi,ualently C[n] : Dlnl. For M g N,
C zs quasi M-pure i'J C i,s quas'i n-pure for all n e M.

Recall that a well established concept in Group Theory is ihat of. n-puri,ty: a
subgroup D of an Abelian group C is said to be n-pure if. D inC : nD. There is
no connection between the concepts of n-purity and quasi rc-purity; e.g., the subgroup
2Z,l4Z of Zl4Z is quasi 2-pure but not 2-pure, and any ofthe three subgroups oforder
2 of the dihedral group Da is 2-pure but not quasi 2-pure. Notice that the abstract
notion of quasi n-purity goes back to the concept of n-purity from the field theoretic
Cogalois Theory (see Albu l1], Albu and Nicolae [6]).

For any subgroup G of Zr(t,A) we denote P6:= O6oP,i.e., Pc is the set of
those p €P for which exp(G[P]) :P.

The quasi P6-pttrity plays a basic role in the characterization of Cogalois groups
of. Zr(l,A). The next result is the abstract version of the General Puri,ty Cri,teri,on

[1], Theorem 2.3, from the field theoretic infinite Cogalois Theory.

Theorem 2.5. (The Quasi-Purity Criterion). The followi,ng statements are equiualent

for a subgroup G of Zr(t,A).

(1) G i,s Cosaloi,s.

(2) The subgroup Ar of AGt 'is quasi P6-pure.

(3)  cr  {  e f  fo ,  a t t  p  e P6 nP(t ,A) .

Proof . (2) + (3): Let p € PcnP(l,L). Then {E e A\,4r, and hence lE / A"' ,
us 4"t WL A'[| by hypothesis. Consequently, there exists o e GL such that

"lD + T1p, i."., o (.rt, which shows that Gr Q ef, as desired.

1 f
l o

(3) + (2): Let p € Pc' Then clearlv lE e e. Assuming

obtain that Ar[p] : AG'lpl : (tlp)ZfZ, as desired. Now assume

resf,(c) ,is a

zr( l ,A)  , is  a
D

{D e l.f, we
that {D / a'.
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Since Gr E ,t bv hypothesis, it follows that Ar[p] : AG- [p] : {0i for p 14, and

ArW): AG'Wl: Ql2)7,|v, for p - 4.

(1) + (3): Suppose that G is Cogalois, and let p € P6nP(1,,4)' Then lE e

/ \A f ,and the reex i s t sacocyc le  he  G  o f  o rde rp .  Le t  H  =V . lpZ  deno te the

subgroup of G generated by h. Since G is a Kneser group of. ZL(|,A), (f : HL):

lfll :p. Assumingthat Gr gef,,we have to derive a contradiction. We distinguish

the following two cases;

case (i): p € P\ {2}. since G € rc(1,,4), it follows by Theorem 1.13 that

eo /. G. Sett ing a:: h- ep e zL(1,(I ldzlz)\G, we deduce that ord(a) : p and

(lo) n (a) : {0}. Consequently, again by Theorem 1.13', (o) € rc(I.,-4), and hence

ir ' 
"t) 

-p. 3i""" Ga < hr and Gr < 4 bv assumption, it follows that Gr ( oa.

A s  G  i s C o g a l o i s , w e d e d u c e t h a t  a r : ( G n a r r ) r  a n d  l G n o r r l  : ( f  :  o ' L ) : p ,

therefore G O aLL = ZlpZ. Now consider the subgroup Ht :: H + (G O att)

of G. As p is a prime number, it follows that either Ht : H = Z'lpZ or H' :

H @ (G n orr) * (ZlpV')e (ZleZ). since fI' < G e rc(f,-A), we deduce that

(l : f/'a) e {p,p2}.Thiis implies that 1r : ef-)lp2 since r/'a < hL aaL < eor. On the

otherhand,  ef  is thekernelof  the(nontr iv ia l )  act ionof  f  on Alp) : (7 l f lZ lZ,and

hence 2 < (f t ef)l(n - 1), which is a contradiction'

case (i i) :  p:4. Let et4 e zr( l ,Al4l) :  zt(| ,(I l4)z, lz,) be the l-cocycle defined

in Section 1, and remember that e+ - 2 €'4. At lR / Ar, the action of I on Al4l :

(Il4)V,lV,,whose kernel is ef : e'nr, is nontrivial, and hence f Itt = Q'l4V'). = Zf 22,
i.e., (f : e[) :2. Since G is Cogalois and Gr < et by assumption, it follows that

e f :  (G  nu f l ) t  and  lGnu* t l  :  ( f  :  , t ) : 2 , i . e . ,  Gne [L  r y  v ' l zv ' .  One  eas i l y

checks that ia is the unique element of order 2 of. e[L, and hence G nefr: (ea), in
particular, e+ e G.. On the other hand, since G e K(f , A), it follows by Theorem 1.13
t h a t  e t a / G , a n d h e n c e  h / { e ' q , - e ' + } .  S e t  B : : h - e ' 4  a n d  H 1 : : ( h , e + )  ( G .  T h e n
0 + p / (e'q). Two subcases arise:

S u b c a s e ( l ) :  e q e  H .  T h e n  2 h : € 4  a n d  2 0 : 2 h - 2 e ' a : 2 h - € 4 : 0 ,  i . e . ,
ord(0) :2. By Lemma 1.1, we have (f ,Br) < l(B)l :2. observe that BL f l ,  for
otherwise, we would have 0 * g e PLL - fr: {0},which is a contradiction. Thus,
(f '  0r) :2. On the other hand, Ga < HL : HL net : hL f,u'nt < Bt, and hence
G n g L L  <  G n  H L L  -  H , 0 L :  ( G n  | t t ) t ,  a n d  l G n P L L l :  ( f  :  0 t ) : 2 , u t
G is Cogalois. Since (ea) is the unique subgroup of order 2 of H =Zl4Z, it follows
that  G nPLL:  (e4) .  Therefore g e (gL)L:  ( (Gnprr ) r ) r :  s4rr ,  so B:  €4 s ince
ord(B) : 2 and ea is the unique element of order 2 contained in ef,'. In particular,

0 e G, and hence €'4: h - 0 e G, which is a contradiction.

Subcase (2): ea / H. Then Ht: H@(ea) = Zl Z@Z|ZV'. Since 2 0 :2h-e+ * 0
and 4B:0, i t  fol lows that ord(B) :4. But e'q/ (0), so (p) € rc(f,  A) bv Theorem
1.13,  and then,  ( f  ,  0L)  :4 .  S ince f l r  (  G,Gr < H{  :  hL n €[ :  hrn e 'aL {  0L,
and G is  Cogalo is ,  i t  fo l lows that  H2; :  Gf lp t t  <  GaH{L:  Hr ,Hr t :  BL,  and

lHzl :  ( f  , ,6r )  :4 .  Thus,  H2 isasubgroupof  order  4of .  H1.  Set t ing Hs:  Hz*(ea) ,
we deducethat,[/5L : H*n uf :  lLn elt ( hln€[ : HI ( /{r 'oef, so U{ : nl,
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and hence Hs - f/r as G is Cogalois and Hr * Hs ( G. Since HL : f/ O (ea) =
Z'|AZ@V'|2V' and lH2l: 4, we deduce that H2 N V'f 4V', and hence either Hz: H
or H2 : (h - ea). Assuming that Hz : H, it follows that (h - u'+)L : 0L : Hrt :
HL: hr. Therefore .[ /r ( ef :ef, andso e4 € Gne[L < Gn HLL -.F1, which
is a contradiction. Thus, it remains only to consider the case Hz: (h - ea). Then
(h-r 'n)r: gL: H*: (h-r+)L.Replacing B with hleta and proceeding as above,
we f ina l lyobta in that  (h  * r 'n)L:  (h- rn) t :  (h-u ' )L ,  and hence f  \e+r  e hr ,  as
one easily checks. On the other hand, since (f : ef) :2,it follows that f : etuoet
forsome(fora l l )  o<_l \e f .  Consequent ly , forevery ree[  and oe f  \e f  wehave
0 : h ( o r ) : h ( o ) + o h ( r ) : o h ( r ) ,  a n d h e n c e  e 4 r  (  h r .  T h u s  h '  : f ,  i . e . ,  h : 0 ,
which is a contradiction.

(3) ==+ (1): Using Corollary 2.3, we have to show that d:: resl(G) e K(L,A)
for every A e f(f lcr). Assuming the contrary, it follows by Theorem 1.13 that there

ex i s t  A  €  L ( f l c r )  and  p  eP(L ,4  gP(T ,A ) , i . e . ,  l l pe  A \ ,4^  - c  A \ -4 r ,  such
that eol6 € G 1f p + 4 and ei l6 € G if  p:4. Consequently, there exists h e G
s u c h t h a t  h l l : e o l a  i f  p + 4 ,  a n d  h l 6 : e ' q l a  | f  p -  4 .  L e t  n : o r d ( h ) .  S i n c e

o rd (eo la )  -p  fo r  p+4and  o rd (e l l a )  :+  fo r  p :4 ,as  l f p  €A \ ,4 . l \ , i t f o l l ows tha t
pln, and hence p €PcnP(l,A). On the other hand, Gr < hr nA ( ef, contrary
to our hypothesis. tr

Let C(f,,4) denotethe l-posetof al lCogaloisgroups of. Z1(l,A). Thenextresult
shows that C(f ,,4) is a lower l-poset, and moreover, the property of a subgroup of
Zr(t,A) being Cogalois is, Iike the property of.a subgroup of Zt (f,A) being Kneser,
a property of finitary character.

Corollary 2.6. The foltowing assert'ions are equ'iualentfor a subgroup G of Zt (f,/)'

( 1 )  G  € c ( r , A ) .

(2)  H € C(r ,  A)  for  a t t  H {G.

(3) H € C(1, A) for all fini,te 11 < G.

Proof .  (1)  + (2) :  Let  H < G and p ePnnP(T,A) .  Then c lear ly  p ePcnP( l ,A) ,
hence Gt grt Av Theorem 2.5, and then we also have Ht g ef since GL g HL.
Using again Theorem 2.5, we deduce that fI €C(T,A).

(2) + (3) is obvious.

(3) + (1): Let p e P(l,A)nPc. Choose some h € G of order p, and set
Gn: (g,h) for any g € G. By Theorem 2.5,it follows that the family of closed subsets
(Grr\epI)oe6 of f has the finite intersection property, therefore, by compactness, their

intersection Gr \ epr is nonempty, as desired. n

Corollary 2.7. Let p be an od,d, pri,me number, and'Iet G be a p-subgroup of Zr(l,A).
Then G is Cogaloi,s if and only i,f G 'is Kneser.

T7
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Proof. By Definition L.4 and Corollary 2.6 we may assume that the p-group G is finite.

Assume that G is Kneser and prove that G is Cogalois with the aid of Theorem 2.5.

Of course, we may assume that p eP(l,A),for otherwise we have nothing to prove.

As we have already seen at the beginning of the proof of Lemma 1.12, the index 1f : eot)

is a divisor I I of P-I, in particular it is prime to p. Since the p-group G is Kneser,

it follows that (l : GI) : lcl is a power of p, and hence Gt g uf-, ur desired. !

Remarks2 .8 . (1 )Coro l l a ry2 'Tmay fa i l f o rP :2 ' I ndeed thes imp les texamp leo fa
Kneser non-Cogalois 2-group is the one corresponding to the action of type Da or Dg

(see Definition 2.14 and Lemma 2.15).

(2) In contrast with the property of Kneser groups given in Corollary 1.11, the

condition that all p-primary components of G are Cogalois, is in general not sufficient
to ensure G being Cogalois. To see that, observe that the group corresponding to the

action of type Do" is Kneser but not Cogalois, and has all its primary components

Cogalois (see again Definition 2.14 and Lemma 2.15).

(3) By Zorn's Lemma, for any G e C(t,A) there exists a maximalelement M of
CQ,A) such that G g M. n

The next theorem essentially shows that a subgroup G < ZL(T,L) is Cogalois if
and only if G has a prescribed structure, and is the abstract version of the structure
theorem [1], Theorem 4.3, for Kneser groups from the field theoretic infinite Cogalois
Theory.

For any subgroup G of Zr(t,,A) and for any prime number p, denote

and 4 e Pc,
+ 0 ,

and
G :  @  G o '

p€F

Now, consider the subgroup

FG: l )  { t l " )z lz :Lh(r)  :O( U h(r) )
n€Os hec p€P h€G(p)

of ,4,  and let  Zt ( f  lGr,  LLG) :  Gu n Zt(1,p6) denote the subgroup of Zr( l ,A)
consisting of those cocycles which are trivial on Gr and take values in t"c. Clearly,

G < z t 7 l G L , p d < G < c [ ,

G L :  z L F l G r , p c ) L  :  G L .

P G : P 2 r e l G L , t d - P r .

( Gtt(p) if either p € Pc, or p - 2

G o : 4  G t t l 2 l  r f .  p : 2 , 4 / P 6 ,  a n d  G l 2 )
l. 0 otherwise,

which implies that

Notice also that
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Theorem 2.9. With the notation aboue, the following assert'ions are equ'iualent for a

Kneser group G of ZL(f ,e).

(1) G is Cogalois.

(2 )  G  :  Z r ( l lGL ,pc ) .

$ )  G : G .

Proof. (1) + (3): If G is Cogalois, then 6 is also Cogalois by Theorem 2.5 since
pG : P6 and, GL : GL. Therefore, by the definition of the concept of Cogalois

group.r *" huu" 4 : G n lIIa for any U e U(d). In particular, we deduce that

G -- G n Grr : G, as desired'

(3) + (2) is trivial.

(2) + (1): Assume that G : Zr(TlGt,pd and G is not Cogalois' Then,

by Theorem 2.5, there exists p € PcnP(l,A) such that GL I €;. Therefore,

€e  €  Z r ( t lGL ,pd :  G  fo r  p  +  4 ,  and  e '4  €  z r ( l lGL ,pc ) :  G  fo r  P :  4 '  By

Theorem 1.13, we deduce that G is not a Kneser group, contrary to our hypothesis. n

Recall that by C(T,A) we have denoted the f-poset of all Cogalois groups of

z t ( t ,  A ) .

Corol lary 2."1.O. The map C(l,A) --+ U1f;,C H Gr, is i 'niecti ,ue.

Proof. Let G, H e C(l,A) be such that GL :,[/r, and prove that G: H' By the

definition of the groups G and fI, and using Theotem 2.9, it suffices to show that
pG : Pn atd.the groups G[2] and H[2] aresimultaneously trivial or not whenever

4 / p c . L e t  p € P c  a n d  g  a c o c y c l e i n G o f  o r d e r  p .  S i n c e  G  i s C o g a l o i s ,  w e

have (f i gL) : p, and. moreover) there exists only one propel subgroup (of index 2)

lying over 
- 
gL if. p :4. Since f/ is also Cogalois and ga lies over HL, it follows that

H agLL is a cyclic subgroup of order p of. H, and hence p e Pn, as desired. The

latter condition follows with a similar argument. !

Remark 2.11. An alternative proof of Corollary 2.10 can be done using the following

fact: if G is Cogalois, then the order/index-preserving map U + UL maps bijectively

the cyclic subgroups of G (which are the only finite subgroups U of the torsion Abelian

group G for which the lattice [,(U) is distributive) onto the open subgroups A of f

lying over Gr for which the lattice [,(f lA) is distributive. In particular, (?5r consists

of those positive integers n for which there exists an open subgroup A of f lying over

GI such that (f : A) : n and the lattice [,(f lA) is distributive. !

Corollary 2,L2. The fotlowi,ng assert,ions are equ'iualent for G e C(l,A).

(1) G i,s stable und,er the action of l, i'.e., G i,s a l-submodule of Zt (f,A)

(2 )  Gr  <  f .

Q)  p8 '  :  pG'

19
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Proof. (1) + (2) holds for any G < Zr(t,A) since (oG)t : oGLo-r for all o € f'

(z) + (3): As FG : Dseca(f), we have only to show that ogQ) : g(r) for

all g € G, o e GL, rg f. Since, by assumption, Gl < f, we have r-lar € Gr, so
g: g(r-tor): r-r(og(r) - g(t)), and hence og(r):9(r), as desired. Note that the

implication (2) ===+ (3) also holds for any G < ZL(|,A).

(3) =+ (1): Let g € G, r € l ,  and prove that rg € G. Since G: Zr(l lGt, l tc)

by Theorem 2.9, we have to show that rgl* : 0 and (tg)(l) Q ltc. FYom the

hypothesis it follows that (rg)(o) : rg(r-ror): og(r) - g(r):0 for any o e GL,

as desired. Note that the latter condition holds in general since any subgroup of A, in
particular Fc,is stable under the action of l. n

Corollary 2.L3. If  G e C(T,A) is a l-submodute of Z1(l,A), then

G = Z L e l G L , t " c ) .

proof. Since G is Cogalois, we have G: Zr(llGL,pc) by Theorem 2.9, and since

G is a l-submodu\e of Zr(1,-4), we have Gr < | by Corollary 2.I2. To conclude,

observe that Zr(l lGt, pc) z Zr(l lGL, y'c). n

According to Lemma 1.12, the Kneser groups are precisely those subgroups of
Zr(l,A) which do not contain some particular cyclic groups, namely the minimal
subgroups Bo which are not Kneser, p e P(|, A). Using Corollary 2.6 we are going to
present a similar characterization for Cogalois groups. To do that we will first describe
effectively the minimal subgroups of ZL(|,A) which are Kneser but not Cogalois. A
special class of actions which are introduced below plays a major role in this description.

Definition 2.L4. Let I be a fi,ni,te group, and let A be a fi,ni'te subgroup of QIZ on
whi,ch the group I acts. One says that the action of I on A, or the l-module A, is

( t )  o f  t ype  Da  i f  | :Da :  (o , l ! ' : r : : ( r : ) ' : \ =Z ' l 2V ' xZ f22 ,

A :  (114)V, f  Z,  and o Lf  4  :  -  I l4 ,  r  114:  714.

(2 )  o f  t ype  Ds  i f  t :  Da :  (o , IP ' : r : :@f  : \=v ' l 4zxZ f2Z ,

A :  ( I l4)V, fZ,  and o 1f  4  :  -  l l  4 ,  r  I l4  :  I f  4 .

(3)  r /  type D' r  i f  |  :  (o , r lo '  :  rP :  oro-r r - "  :  L)  = Z lpZxuZfrZ,

A: glpr)Zf Z, and, oil;, : u@r, rli : tir,
where  p  eP ,  p )  2 ,  r  €  N ,  r  )  1 ,  r l ( p  - l ) ,  and ,
u e (ZlprZ)* i,s such that the order of umodp i'n
( Z , l p Z ) .  i , s r  a n d  u m o d / : 1 m o d t  f o r a l l l e ? , l l r .  !

Let M(T,,4) denote the set (possibly empty) n-Qr (t,A))\C(f , ,4,) of all subgroups
of Zr(1,,4) which are not Cogalois groups. Clearly, for any G e M(1,.4) there exists
at Ieast one minimal member H of. M(l,A) such that H g G. By M(1,1)-in
we shall denote the set of all minimal members of. M(1,,4.), and call them mi,ni,mal
non-Cogalois groups. Observe that whenever G e M(|,1)-in, then necessarily G is
a nontrivial finite group according to Corollary 2.6.
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Lemma 2.L5. The following conditions are equiualent for any Kneser group G of
zr(1,  A) .

(1)  c  € M(t ,A)* in .

Q) GL 4l and the action of TIGL on l,rc 'is one of the types Da,Ds, or Dpr
defined as aboae.

Proof. (t) ===+ (2): First assume that the Kneser group G is minimal non-Cogalois.
Then, as was observed above, G is finite. As G is not Cogalois, it follows by Theorem
2.5 that there exists p e P(1, A) nPc such that Gt g ef . Assume p is minimal with
the property above, and let f/ be a cyclic subgroup of G of order p. Since G is Kneser,
its subgroup fI is also Kneser, and hence (l : .F/1) : lVl : P, in particular, H # Bp
We distinguish the following two cases:

Case (i): p:4. We are going to show that Gr < | and the action of f/Gr on

ltc is either of type D4 or of type Ds. Two subcases arise:

Subcase(l): ea € fI. As H = Z'IAV' and .FIa < cf, I/ is not Cogalois by Theorem
2.5, so by the minimality of G we have G : H / Zl4Z and pG : Ql )ZlZ. Since
og - g € Bl(f, pG) : (ea) ( G for all o € l, 9 e G, it follows that G is stable
under the action of f, therefore Ga { f and G < ZrQlGL,pc). As the Kneser
non-Cogalois group G is cyclic of order 4, it follows that tlct d ZlzV'xZf2V' and
the action of llGL on pc is of type Da.

Subcase (2): ea / f/. First, show that ea € G. Since G is Kneser, it follows that
GQ)L  <  e f ,  f o r  o the rw ise  (G(2 )a  :  (G(2 ) r  nu f ) )  :  ( f  :  e+ i - )  : 2 , so  2 l c (2 ) l :  ( f  :
(G(z)t n €4r)) | lf l : lGl, which is a contradiction. Thus, the 2-primary component
G(2) is Kneser, and is not Cogalois by Theorem 2.5. Consequently, by the minimality
of G, we deduce that G : G(2).Since.L :: resl(G) is a 2-group as a factor of G and

a ( P@[,A), it follows by Theorem 2.5 that .L is a Cogalois (in particular, Kneser)
group of. Zr(ef,,4.). Therefore (Gnrfr)r: €f by Corollary 1.7, so the Kneser group

Gne[L of Zr(l,A) is cyclic of order 2. Since the only cocycle of order 2 belonging to
efr is €4) we deduce that ea € G, as desired.

Consequently, by the minimality of G, we have G : flO (ta) = V'l4Z@V'122, FG :

(I|4)V,14V,, and.L = H ry Z,|AV'. Moreover, since e4 € G, it follows as in the Subcase
(1) that G is.stable under the action of f . Therefore Gr { f and G is canonically
identified with a subgroup of Zr(llct,pc). In particular, GL < €t, and eff GL :

€tlLL = Z,l4V, as L ? Zl4Zis a Cogalois group of Zl(e[,A)' Observe that the

canonical action of. nLlGr = llrt = ZlzV, on eflGL = Zl4V' is non-trivial, for

otherwise we would have f/Gr * G, contrary to the fact that G is not Cogalois.

Thus, t lct =- €[lGL xl lef = Ds, i .e., the action of l lGL on pc is of type Ds, as

desired.

Case (ii): p e P \ {2}. We are going to show that Gr < f and the action of

tlGL oL pc is of type Dp", where 
"': 

(l: €pr). Let G/ denote the subgroup of G

consisting of all its elements of order prime to p. As G is Kneser, so is also G', and

hence (G,t , Gr) : (G : Gt) is a power of the prime number p. Consequently, its

2L
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divisor (G't , G'L nef ) is also a power of p. On the other hand, as e1-, the kernel

of the non-trivial action of I on A[p], is normal in f, we have G'l nrt < G'4. So,

the factor group gL 1gL n erf is identified with a subgroup of the cyclic group f/ef

of order r, with rlp - 1 and (r,p) : L. Therefore 5l't ( sra. Since G' I G, tt

follows from the minimality of G that G/ is Cogalois. Thus, K :: Gt ,n rit is also

Cogalois and Kr -- e[. Moreover, K is cyclic of order r since |.lKt =ZlrZ. In

particular, we have FK: $lr)V,lV, (,4. As KL < f, Corollaries2.I2 and 2'13 imply

that (r lr)z 14 < ,q,t and K = zt (t I ef ,, (1 lr)z lv,) .
Flom the minimality condition satisfied by G it follows that G : H @ K = ZlprZ

and p6 : $lpr)ZlZ. Since KL : ui '  < f and ((f t  HL),(f :  l fr)) :  (pt,r):  I ,

we deduce that | - HLKL and Gr : HL n KL < HL. So, to conclude that
G r < f  i t s u f f i c e s t o s h o w t h a t  G r  < K r .  F o r a n y  l € G r ,  u e K L , h e H  w e h a v e
h(D,u-L) :h(u)- (u\u-L)h(r ) :o  s ince h(z)  e( t l f iz ' lv , :  AK'  and u\u-r  e  KL.
Thus Gr ( l, the kernel of the canonical action of TIGL on lrc is ef/Gr, and
l l G L : € t l G L x H L l G L . L e t  o e  H L , r € e f , , u e  ( Z l p r Z ) *  b e s u c h t h a t  o G r  i s

a generator of. HLIGL e Zf rZ,rGr is a generator of ef IGL = Zf pZ, and. oJp-, :

"Gr. 
Clearly ,1;, : fli and the order of u mod p e (Zlph * is r. Moreover,

oro-r :  ra(modGr)  s ince G :  H @ K,  h(oro- t )  :  oh(r ) :  uh(r )  :  h( r " )  for  a l l
he  H  (as  h l , r  €Hom1e [ , ( t l dTz l z ) ) ,and  k (o ro - r ) : k ( r " ) : 0  fo r  a l l  ke  K .

Consequently, llGL o ZlpZxuZfrV.. Therefore, to conclude that the action of
llGL on pc is of type Dpr, it remains only to check that u mod / : l mod I i.e.,

It e ,lr for all I e,P,tlr. Assuming the contrary, let I € P(1,,4) be such that

l l r .  S ince I l r  e  le i ,we deduce that  Gr  < ef  < ef .  thus I  e  P( l ,A)oP6 and
G' < ef , and hence I 2 p, which is a contradiction.

(2) + (1): Assume that Gr < f and the action of llGL on [tG is of one of the
types D4, Ds, or Dp". Since G is canonically identified with a subgroup of Zt (f,pc),
we may assume without loss of generality that Ga : {1} and -4 : FG, i.e., (f ,,4)
is one of the actions described in Definition 2.L4. We have to show that every Kneser
group G < Z :: 21(1,.4) satisfying Gr : {1} and p,6: .4 is minimal non-Cogalois.
We distinguish the following three cases:

Case (a): (f,,4) is of type Da. Then, the morphism h + (h(o),h(r)) maps
isomorphically Z onto,4. x 2A= Zl4Zx %122. Thlts Z : (e' tl CI (p), where p * e+
is defined by V@) :0, V?) :112, Notice that G ,: (" 's + pl = Zl4Z is the unique
Kneser group of Z such that pr6 : A, in particular GL : {1}, and G is the unique
Kneser non-Cogalois subgroup of Z as well.

Case (b): (f ,A) is of type D6. Then, the morphism h r+ (h(o),h(r)) maps
isomorphically. Z onto,4 x A ry Zl4Z x V,|AV,. Consequently, Z : (e' +l e (a),
where the cocycle o is defined by a(a) :0, a(r) : 114. Observe that there exist
only two Kneser groups G of Z such that GL : {1}, i.e., lGl : lf | : 8, hence
F G : 4 :  $ l \ Z f Z , n a m e l y  G t :  ( 6 4 )  C I ( " )  a n d  G 2 :  ( € 4 )  O ( a + e ' a ) ,  b o t h
isomorphic to Zl2Z@V,l4V, and stable under the action of f. They are also the only
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Kneser (minimal) non-Cogalois groups of Z of. order 8. Notice that, on the other
hand, (e'a +2a) =Z,I V, is the unique Kneser non-Cogalois subgroup of order 4, the
corresponding action being of type Da.

Case (c): ( l ,A) isof type Dp", where p isanoddprimenumberand rlp-I,  r > 7.

Let u e (ZlprZ). be the unit defining the action. Since I/(o) : 
D"o:0 modpr,

the morphism h *+ (h(o),h(r)) maps isomorphic ally Zonto A r rig Z, lprZ x ZlpZ.
Consequently,'Z : Bo O (a) @ (P), where the cocycles a and B are defined by a(o) :

{ i , o ( r ) : 0 ,  g@) :0 ,  g ( r ) : {n .  As  P ( f ,  A ) :  {p } ,  t he  necessa ry  and  su f f i c i en t
condition for a subgroup G of. Z to be Kneser is, according to Theorem 1.13, that
G n Bo : g. Consequently, G is a maximal Kneser group of Z If and only if G is a

direct summand of Bo if and only if G is a Kneser group isomorphic to Zlpr%if and only
if G is a Kneser group with Gr : {1} if and only if G is a Kneser group with p,6 : 1.

The only subgroups of. Z satisfying the equivalent conditions above are the subgroups
Gi : (i,ep * a * fi = ZlprZ, i, e ZlpZ' Since P(f, A) : {p} and the unique subgroup
H { G*i e ZlpZ, for which pllHl and.[14 ( ef is the whole group Gi, it follows

by Theorem 2.5 that the G1's are also the only Kneser non-Cogalois subgroups of Z.

Notice that, in contrast with the actions of type D4 or Ds, the subgroups Gi,i eZlpZ
are not stable under the action of f. More precisely, f acts transitively on the set

{Gt, l i  e ZlpZ} with stabil izers (r ior- i) = Zf rZ,i  e ZlpZ. n

Corollary 2.L6. Any Kneser mini,mal non-Cogaloi,s group of Zr(l,A) is'isomorphic
either to zf 42, or to zf2z@zl4z, or to zfprz for an odd prime number p and a

d i ,u ' i so r  r t ' l  o f  p -L .

Proof. Let G be a Kneser minimal non-Cogalois group of Z1(1, A). By Lemma 2.15.,

GL < f and the action of tlGL on l-tc is of one of the types D4,Ds or Dpr. The
possible isomorphism types for the group G are now immediate from the proof of the

implication (2) ===+ (1) of Lemma 2.15. n

The next result provides an analogue of Theorem 1.13 for Cogalois groups.

Theorem 2.L7, The foltowing statements are equ'iualent for a Kneser subgroup G of
zr  ( t ,  A) .

(1) G is Cogalois.

(2) G contai,ns no H for whi,ch HL <l and,the acti'on of tlHL on ltn i's one of

the types D4, Ds, or Dpr.

Proof. The result follows at once from Lemma 2.I5 and from the following fact we

already mentioned just before Lemma 2.15: for any L € M(t,,4) there exists at least

one K e M(t,/)- i '  such that K g L. tr

As it follows from Lemma 2.15, the fact that all the p-primary components of

a subgroup G of ZL(|,A) are Cogalois does not imply that the whole group G is

Cogalois. The next result provides a supplementary lattice theoretic condition which
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ensures such an implication, obtaining in this way a local-global pri,nciple for Cogalois

groups.

Theorem 2.L8. Let G be a subgroup of ZL(|,A), and let

a : L(rlcr) ---+ l{ r(rlc(p)r), A *} 11,,1 u C1p;9;o.e.
p€F

Then, the following statements are equ'iualent.

(1) G i,s Cogalois.

(z) G(p) is Cogalois for atl prime numbers p, and the order-preseru'ing map 0 i,s a

lattice'is omorph'ism,.

(3) G is Kneser, G(2) is Cogalois, and L,: l  wheneuer L €n (f lGI) i ,s suchthat
0(A)  :91P; '

Proof. (1) + (2): Assuming that G is Cogalois, we only have to prove that d is a

lattice isomorphism. As G and the G(p)'s are Cogalois, the canonical order-reversing
maps 9 : [,(G) ---+ L(flCL), po : [,(G(p)) ---+ u(f lCb)a), H + HL are lattice
anti-isomorphisms. On the other hand, since the canonical map

{:n @) ---+ ll \.(G(p)), H r+ (H(p\r6e
p€P

is a lattice isomorphism, the composed map

(ll ro) o,! o s-L : L1r1cr; ---+ ll L1r1c61a), A '-) ((c n ar;1p)r)pee
p€F P€IF

is also a lattice isomorphism, so it remains only to check that ([o.n gil o ,! o 9-r : 0,

i.e., (G n Ar)b)r : (,\ u G(p)l for all p € P,A € [,(f lcr). Now, as rp is a lattice
anti-isomorphism, we deduce that

(G n Ar)(p) '  :  ( (G n A')  n G(p)) ':  ((G n Aa)a u cfu)r) :  (A u G(p)t),

as desired.

(2) ==+ (3) follows at once from Corollary 1.11'

(3) ===+ (1): Assuming that G is Kneser but not Cogalois, we have to show that
either G(2) is not Cogalois or there exists A € L(f lcr) such that A I f and d(A) :
9(f). Let ,F/ be a minimal non-Cogalois subgroup of G. According to Lemma 2.75, HL
is an open normal subgroup of f and the action of I IHL on l-tn is one of the actions
described in Definition2.t4. If the action above is of type D4 or of type Ds, then it
follows that .F/ < G(2), and hence G(2) is not Cogalois. So, it remains to consider
only the case when the action is of type Dpr, where p is an odd prime number and
r l p - 1 , r 2 2 .  N o t i c e t n a t  @ r u G ( p ) f  : H L G ( d L  a s H L  < f  ,  ( l : A r G @ ) a )  i s
a p o w e r o f p a s G e  K ( f , A ) , a n d  ( f  : H ( p ) r )  : l H ( p ) l  - p  a s  I / ( p )  <  G e  K ( l , A )
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and f/(p) =ZlpZ (since H =ZlprZ by Corollary 2.16 and (p,r) :1). On the other
hand, since I{r < HLG@)L < H(p)a ( f  and (f : ,F/r) :pr,r lp-1, i t  fol lows
that frrG(p)r :  H@)L. As f/r/a =zlpzxuzfrz for a suitable u € (zlprz).
by Definition 2.L4, there exists an open subgroup A of I lying over Ila such that
( r : A )  : p  a n d  L . # H ( p ) L . C o n s e q u e n t t y ,  ( A u G @ l { :  f A u I { t ) { : r ,  a n d ,
similarly, (A U G(q)r) : I for any prime number q t p since all open subgroups of
I lying over G(g)r have g-th power indices in f as G e K(f,,4). Thus, we found a
subgroup A of f with the desired properties, which finishes the proof. n

FinaIIy we consider the case when G is stable under the action of l. Then, the
local-global principle for Cogalois groups has the following simple formulation.

Proposition 2.L9, The followi,ng assert'ions are equi,ualent for a l-submodule G of
zL (t,  A) .

(1) G i,s Cogaloi,s.

(Z) G(p) i,s Cogalois for all prirne numbers p.

(3) G is Kneser, and G(2) i,s Cogaloi,s.

Proof. The implication (1) + (2) is trivial, while the implication (2) + (3) follows
at once from Corollary 1.11.

(3) + (1): Assuming that the l-module G is Kneser but not Cogalois, we have
only to show that G(2) is not Cogalois. Let -F/ be a minimal non-Cogalois subgroup of
G. According to Lemma 2.I5, HL ( f and the action of. llHr oL pn is the one
described in Definition 2.I4. If the action is of type Da or of type Ds, then H < G(2),
and hence G(2) is not Cogalois, as desired. Now assume that the action is of type Dpr.
Then, as in the proof of Theorem 2.18 we deduce that (l : HLG(p)L) : p. On the
other hand, G(p)L < f since G(p) is a f-submodule of G. Hence HtG(p)t < f , and
so, Zf pZ is a quotient of. t IHL - ZlpZ xuZf rZ, which is a contradiction. n
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