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Abstract

In this paper we construct a class of generalized Stefan models
able to account for discontinuous temperature field across a nonmate-
rial mouving interface. The resulting theory introduces a constitutive
scalar interfacial field, denoted I and called the equivaient temperature

of the interface. A classical procedure, based on the interfacial dissipa-

tion inequality, relates the interfacial energy release to the interfacial
mass flux and restrict the equivalent temperature of the interface. We
show that previously proposed theories are obtained as particular cases
when d:  (d)  or  0:  ( i l - t  or ,  more general ly ,  e :  (e ' ) \ ;=v)- l  for
0 ( r ( 1. We study in a particular constitutive framework the solid-
ification of an under-cooied liquid and the melting of a super-cooled
solid and we are able to obtain necessary and sufficient conditions for
a unique travelling wave solution. These conditions involve the super-

ficial field d, the given data and the material parameters, providing in

this way a method for the identification of the constitutive function d.
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1 Introduction

Classical sharp interface theory in thermoelastic materials [1], [2] concerns

structured or unstructured nonmaterial interfaces along which the displace-

ment and temperature fields are continuous. Several extensions of this

framework to include incoherent motions or discontinuous temperature fields

were proposed by [3], [4], [5]'
In a recent paper Fried and Shen [3] propose a generalization of the

Stefan model that allows for both velocity and temperature jumps' Such

situations, when temperature and velocity experience sharp changes may

appear for example in combustion theory [6]. Fbied and shen [3] discuss the

constitutive aspects of the resulting theory and as an illustration study the

solidification of a pure substance in the absence of the flow' in a specific

constitutive framework. Their result provides suffici'ent cond'it'ions for the

existence of a unique travelling wave solution'

The fundamental result in [3] is the interfacial dissipation inequality ob-

tained without using a priori neither the coherence of the motion nor the

continuity of the temperature field. Following a classical procedure of Cole-

man and Noll [7] the interfacial dissipation inequality is then used to render

constitutive relations compatible with the interfacial version of the imbal-

ance of entropy. The particular form of the interfacial dissipation inequaiity

used in in [3] introduces naturally a scalar interfacial field called the scaled

temperature jump. In order to account for discontinuous temperature field
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across nonmaterial interfaces, a different version of the interfacial dissipa-
tion inequality was presented [B] and a natural question concerns the relation

between the resulting theories.
We show in this paper that as long as the temperature field suffers a

discontinuity across a nonmaterial surface, the specific form of the interfacial
dissipation inequality is based on a constitutive choice of a interfacial scalar
field which we call equivalent temperature of the interface. To this
end, we shall review the arguments leading to the interfacial dissipation
inequality from two different points of view:

o A revisited form of the dissipation inequality proposed in [3];

o The use of (a slightly modified version of) the theory of structured
interfaces based on the balance of configurational forces as presented

in the recent book [1], followed by neglecting interfacial structure.

We show that both lines of thinking lead to the same interfacial dissipation
inequality based on the equivalent temperature of the interface which in
turn has to be regarded as prescribed by a constitutive function.

Our results show that the theory proposed by Fried and Shen [3] is ob-
tained as a special case of the general theory developed here, when the equiv-
alent temperature for the interface, denoted in the following d is prescribed

as D: (;)-t, where (a) denotes the mean value of a. Other constitutive

choices for d,  l ike 0: (0),  or 0:  t /0+0-,  or0: max(d-,0+) are possible,

leading to different models. As previously noted, the interfacial version of

the dissipation inequaiity is used to restrict constitutive relations. Following
this classical procedure we derive supplemental relations at the interface in

the general setting. In a motionless body they involve restrictions on the

interfacial energy release and on the equivalent temperature of the interface.
We recall that in classicai sharp interface theory when the temperature

field is continuous across the nonmaterial interface, the interfacial energy
release equals the jump across the interface of the free energy [1]. As a

consequence, the single source of dissipation at the nonmaterial interface

for thermoelastic materials is the motion of the interface, which in turn, is

related to the jump of the free energy (the driving force) by a supplemental
constitutive relation [?], [?], [11]. For discontinuous temperature fields this is

no longer valid, and the interfacial energy release contains also a contribution
of the entroov. The additional term is

[n@ -0)\
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and vanishes if the temperature is continuous, under the mild assumption d e

[min(d-, 0+),max(o- ,0+)].This weak constitutive restriction also reduces

the present theory to the classical one [1] when the temperature field is

continuous across the nonmaterial interface.

To focus on thermal implications of the model, following Fried and shen

[3], we treat as an application the solidification of a under-cooled liquid and

the solidification of a super-heated solid of a motionless body. In a classical

constitutive context our supplemental constitutive relations at the interface

lead to the unicity of a travelling wave solution of the free-boundary prob-

lem.

2 Interfacial versions of balance and imbalance laws

For completeness, following Fried and Shen [3], we recall in this section the

basic balance laws for thermoelastic materials under the general assumption

that both constitutive variables, the deformation gradient and the temper-

ature field may be discontinuous across a nonmaterial propagating surface'

We denote by D(t) the region occupied by the material body at time

f, and by s(t) the nonmaterial surface across which the velocity r.r and the

temperature 0 may experience finite jump discontinuities. we denote by

n(n,t)  the unit  normal to 5( l)  in rc € 5(t)  and byV(r,r)  the scalar normal

velocity of S(t) at n € S(t), respectively. If a is a fleld on 2(t), discontinuous

across ,S(l), for we denote by o* the limits

o+(*, t )  :  
116 

a(r  ! .  hn(t : , t ) , t ) ) .

We use flal and (a) for the jump and the mean value of a across 5(t), and

we recall the following algebraic identity

ffabl : [an(b) + (o)[an. Q)

Following Fried and Shen [3], we denote by a superposed dot the material

time differentiation and by an accent the spatial time differentiation, so that

for a smooth field c we have

a ( n , t )  -  a ' ( n , t )  +  a , 1 , ( n , t ) u p ( n , t ) ,  ( 3 )

where a,6 stands for the partial derivative of a with respect to rp.

( 1 )



2.L Mass balance and mass flux

We denote by p the mass density, and we assume the bulk field equation for

the mass balance in the form

P + Pdiva : 0, (4)

and the associated interface counterpart

[ p ( "  -  r . ' ) i ' n : 0 ,  ( 5 )

where z denotes the interface velocity. Following [3], we define the mass

flur across .9 through
^ :  ( p ( ,  -  o ) )  . n  ( 6 )

2.2 Momentum balance

If ? denotes the Cauchy stress tensor, in the absence of body forces, the

balance of momentum at regular points in the bulk is assumed to hold in

the form
pis : divT, (7)

while it's counterpart across 5 is

ffpo g (u - u)ln f [?ln : o, (B)

and taking into account (5) and (6) we obtain

mflol + [?ln:O. (e)

2.3 Energy balance

In the absence of supplies, if we denote by e the internal energy density
and q the heat flux, at regular points in the bulk the conservation of energy
reads 

d, r  p  ' r

frLo" * 6" 
' rl : dir'(rt') - divq, (10)

while across S, the associated jump condition is

1
Wp"  +  ;0 " '  " ) ( " -  

? r )n '  n  + f tTa l '  r ,  -  f qn '  n  :  0 .  (11 )

Using the mass conservation (5) and formula (2) we obtain

mflef + Qn) '["n - fiqn 'n' :0. (12)



The velocity jump can be decomposed into a normal part and a supel-

ficial part as

fo l  :  [o 'n ln + P[ul ,  (13)

where P : I - n &n denotes the interfacial projector. If s : P[on denotes

the interfacial velocity sftp and t: P(Tnl the interfacial friction, we obtain

the equivalent form of (12)

mfel  +  Fn)  ' fu  'n ln  + t 's  -  f lqn n ' :0 '  (14)

Finally, the sequence of identities:

(Tn .n) '  [ ,  '  .n  :  -m(Tn d [ )n :  _ -m[ !Tn 'nn  +  m[Tn ' 'n ( ; )  :

1 1-  m [  -  
; r -  

n  +  ; @  
. n  -  u  . n ) 2 1  ( 1 5 )

gives another version of the interfacial balance of energy (14)' in the form:

1  I ,
m f l e -  i r . . n +  r ( u  " n , - a ' n ) 2 n + t ' s -  [ q l ' n : 0 '  ( 1 6 )

2.4 Entropy inequalitY

At regular points in the bulk the entropy inequality is

pi > -di" (s) (17)

and the associated jump condition is

[p , r@-u)n 'n<t$ .1 .  (18)

Using (5) and (6) we obtain

mhTn < [I..n, (1e)

and introducing the bulk free energy 'h : 
" 

- 0q we rewrite the balance of

the energy across the interface (16) in the form

_  1  1 ,  \ , 1m[r !  -  
; r - .  n+  r (u .  

rL -  a .  n ) ' n+ t . s+  n [ ) r t \  : t qn '  n .  (20 )



3 Equivalent temperature of the interface

This section is devoted to a key ingredient for interfacial models allowing
discontinuities of the temperature field across a nonmaterial interface. The
first subsection recall the framework proposed in [3] based on the scaled
temperature jump field . The version of the interfacial dissipation inequality
obtained in [3] is then discussed and an alternative interpretation is proposed
in subsection 3.2. This point of view leads us to a general form of the
dissipation inequality based on the notion of equi.ualent temperature of the
i,nterface. The results of Fried and Shen [3] and Dascalu and Danescu [8] are
recovered as special cases when the equivalent temperature of the interface
is defined * (#)-t, and respectively, (d).

To underline the physical meaning of the equivalent temperature of the
interface we discuss in section 3.4 the structured interface theory based on
a balance of configurational forces as proposed by Gurtin in [1]. We slightly
extend this theory to take into account discontinuous temperature fields
and we show that in the absence of interfacial structure, the interfacial
dissipation inequality obtained from the balance of configurational forces is
identical to the one proposed in subsection 3.3. A crucial advantage of the
is the fact that it introduces the equivalent temperature of the interface in
relation to the entropy flow across the interface, identifying in this way the
physical meaning of the concept.

3.1 Scaled temperature jump

Strating from relation (20), Fried and Shen introduced in [3] the scaled
temperature ju-p defined through

(2r)

and using the identities

f f q ' n n : . n n + i k . n ) , (22)

(23)

rewrite (20) as

n [ l b  -  l n ' T n  +p

m[o,fl: 
fffrl 

+ jn(oq),

| f "  
. .  -  o  .  n ) t \ +  s '  t  + j  [ m ( d a )  -  k .  n l )  :

, flpn []nt :  ( o ) :  - H

r n Q

6ne



<t l-'fifi ' nl - m[qn)' (24)

The right hand side above is the product between two positive factors, i.e.,

(|)-1 and [8 .n\ - m[qn. Thus the the entropy imbalance (19) holds if and

only if

m [ , / l  -  L n  r n  + I r f " ' r r ,  -  a ' n ) 2 n + s ' t  +  i [ m ( h r t )  -  ( q ' r ) ]  >  0 .  ( 2 5 )

For Fried and Shen [3] the various terms in (25), represent:

o  6 :  [ rb  - i . .Tn* i@.n-a .n)2n- the  in te r fac ia l  energy  re lease,

o t - the interfacial friction and

. 6 : m@n) - (q'n) * the intetfacia) heating.

Rewriting (25) as
6 m * t s + j h > 0 . (26)

shows that 6, t and h are objects conjugate, in the sense of the energy

dissipation, to the interfacial mass flux m, the slip velocity s and the scaled

temperature jump j.

3.2 Alternative form of the dissipation inequality

We propose an alternative interpretation of formula (25) which seems to be

more relevant. The departure point is the term in(9n) which may be con-

sidered either as a part of the heating conjugated to the scaled temperature
j,r-p j (as already done in [3]) or as an interfacial energy conjugated to in-
terfacial mass flux m. As stated at the beginning of this section, this second

choice is more relevant and will lead us to a more general setting. To argue
this statement we present two arguments:

1. We show that our interpretation leading to relation (28) is a special
case of a larger class of theories based on an additional constitutive
concept we shall call here the equivalent temperature of the interface.
This is the subject of the next subsection.

2. A second argument is presented, for convenience, in the purely thermal
setting. We shall derive the same version of the dissipation inequality
(relation (28)) using the theory of structured interfaces based on a
balance of configurational forces following a line of thinking developed
by Gurtin in [1]. This will be the subject of the section 4.



Using in (25), the sequence of identities

i^(o,t):  ,H (o, i  :  m[n@- t] l - ' l l ,  eT)

we obtain an alternative form of the dissipation inequality:

1 1 ^ 1
rnt /  -  :n.  Tn + r(v 

.  rL -  a -  n) '  + q(0 -  ( ; ) - ' )n+

* s . t - j ( q . ' r ) )  2 0 . (28)

With respect to (25) the interfacial energy release e and the interfacial heat-

ing h are now respectively

o  e  :  [ r l '  -  l n . T n r  i @ .  n  -  a .  n ) 2  + q ( 0  - ( ] ) - t ) n ,

o  h :  _ ( q . n ) ,

but remain objects conjugate, in the sense of the energy dissipation, to the

interfacial mass fl.ux m and the scaled temperature jumpj. The interfacial

form of the dissipation inequality is formally the same as (26), i.e.,

e m * t s + j h > 0 . (2e)

The expression of the last term of e is the departure point for a mole general

approach of the dissipation inequality on a nonmaterial interface.

3.3 General dissipation inequality

using (27) in (2a) we obtain an equivalent form of the interfacial energy

balance

1 1 1 1
^ [ r !  -  l n . T n +  

, ( u . r L - u . n ) ' + n ( 0  
-  ( i ) - ' ) n  + r . t -  j ( q - n ) :

<'a>-'tt | 'nl_mfiqn)'
and using sing the identity

[s.n(r- ]r] l- ' l l  
: [q rzi(1 - rturr]r- ') - (q -)[;v (I0) : ik n), (31)

we get

m[, ] ,  -  ln  rn  + ] f " .  rL  -  a  .  n )2  +  n@ -  ( ; ) - t )n  +  r .  t -

(30)



-nLre- r l l - t t  .n l t  :  f  l l - t f  11l  .n l t  -  ml1ry1).  (32)
n A . -  , 0 ,  /  !  ' 0 '  ' " 0

By inspection in (32) we note that both terms containing the difference

0 - (il-, in the left hand side appear as a consequence of the particular

choice of Fried and shen [3] to write the right hand side in the form:

, L , - l  , n Q  r( ; )- ' ( [ ;  'n l  -  m[ ' rn)

It is interesting to note here that a result obtained in [B] is the interfacial

balance of energy in the form

r ,  1  1
m[rb -  \n.  Tn + 5@ 

. rL -  a '  n)2 + r t (O -  (?Dn+ s '  t -

-#fe -  (d))  .nn: (dX[g 'n!  -  mfiryn),
t q t  \  t /  

"  
\ J . " d

which is (formally) obtained using (d) instead or (*)-t in (32). This remark

leads to a more general result. A straightforward computation shows that

the balance of energy (16) is equivalent with the general identity

t ,  1  1
^ [ r l ,  -  \ n . T n  +  5 @  

. r L  -  u  . n ) 2  +  q ( 0  - q n  *  s ' t -

-f lrc -h n\ :Offq -n]n - mllryl l),  (33)n a .  /  !  ' " 0

which introduces a positive interfacial field D. We call 6 ttre equivalent

temperature of the interface and we regard this concept as to be pre-

scribed by a constitutive function. Using (33), (19) and the fact that d is

positive we obtain the general form of the interfacial dissipation inequality

when the temperature field is discontinuous in the form

m[!) * !  n. rn + 
r^(" .  rL - a .  n)2 + n@ -A)\+ s'  t  -  t* fe -E) '  nn > 0. (34)

o  2 '  * A '

It is now clear that (32) is a particular case of (33) when the constitutive

choice for d is

0  :  ( ; ) - ' -

Other choices are possible and we shall develop this issue Iater on. The next

section presents another derivation of (33) based on a slightly extension

of the theory of structured interfaces as developed in [1]. This approach is

based on a configurational force balance and highlights the physical meaning

ot  A .
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3.4 Physical meaning of d using the structured interface the-
ory and the balance of configurational forces

For a classical background concerning configurational forces and applica-
tions, including solidification with surface structure, we send the reader to
the recent reference [1]. According to the notations introduced in [1] we shall
use an overbar to denote superficial fields, and for convenience, as in previous
sections, we shall ignore supplies and external fields. In this subsection we
slightly extend the theory of Gurtin ([1j, chap. 24) in order to account for
situations where the temperature field is discontinuous across the
nonmaterial interface. While the previous sections use the spatial de-
scription and includes the motion, in the present subsection, following the
point of view of Gurtin, we use the material description. However, for sim-
plicity, we discuss here only a pure thermal problem so that the two points

of view are identical,
Following Gurtin [1], we consider a migrating control volume P that

contains a part of an interface .S. We denote by Q the subsurface 3 o P,
we use rn for the normal fleld to 0P, n for the normal field to Q, V for
the normal velocity of I and Vsg for the velocity of. 08 in the direction n,
normal to 08 in the tangent plane to Q. The basic laws for a migrating
control volume are the balance of energy and the imbalance of entropy are

assumed in the form

r t f  r  r  1  r  I  f  -
+ l l e d " u - r  l e a " l : -  I  q . r n d a +  |  Q U d a +  |  Q v 5 s d , s + w ( P ) ,
ut  lJp Jq I  Jap Jap raq 

(35)

d l r  r  , l -  f  q  ,  r  o  t A -  . .
; l l r T d u - r  l n a " l  > -  t  : . r n d a t  |  \ U a a +  |  \ v 6 s a s .  ( 3 6 )
d t L J p  J s  J -  J a p a  J a p u  J a s 9

We also assume the balance of configurational forces in the form

(37)

In (37), g is the internal bulk force and gs is the superficial bulk force while
C and C are the bulk stress and interfacial stress tensors, respectively. The
second terms in the right-hand side of (35) and (36) represent the flow of
heat and entropy into P associated with the transfer of material across 0P,
while the third terms in the right-hand side of (35) and (36) represent flow
of heat and entropy into I associated with the transfer of material across
OLt .

We note that when the temperature field is continuous the flow of entropy
across dQ is (as in [1], chap. 2q IacQleas since the temperature of the

t  c rnd '+  [  sa r+  [  Cnds*  [o tao :s .Jap Jp Jas Jg

1 1



interface is well-defined. When the temperature field is discontinuous across

9 we introduce a scalar superficial field, the equivalent temperature of the
interface in order to define the entropy flow and denote this field by d.

The form of the working W(P) in the right hand side of (35) is

W ( P ) : I C n . u 6 e + [ C n . u s 6 s ,  ( 3 8 )
JAP JAg

where u6p and uag are velocity fields for 0P and 0Q, respectively.
We recall briefly the main consequences of (35-38) as obtained in [1]:

1. Invariance of the working reduces C to a bulk tension, i.e., C:rI.

2. The interfacial stress has the form

C : o P * n g r ,  ( 3 9 )

where o is the surface tension and z the surface shear.

3. The interfacial force balance is

[C\n + gs + divsC : 0, (40)

and its normal component gives:

oK I divsz + [a.l + 9s : 0, (4I)

where K : -divn is the mean curvature.

4. The working (38) can be rewritten as

r .  f  f
W(P) : - 

| loKV t r . rf + (["n + sE)V]+ | oV6Eds* | rUda,
rg  Ja ,  JaP 

(42 \

where oo denotes the normal time derivative followine the motion of
s.

Using (42), a transport theorem and an invariance argument applied to
( 3 5 )  w e  g e t  

e :  e  +  n ,  v : e  +  o ,  ( 4 3 )

and a similar argument in (36) ieads to

n :  Q lo ,  n :Q l0 ( 44\

t 2



We define the bulk free energy ,lt : 
" 

- 0r7 and the superficial free energy

$ :e --fi, and conclude that

r: $, o : r lr ,  (45)

so that the normal component of the interfacial force balance becomes

0N + divsr + [/n + 9s : 0. (46)

Finally, the interfacial forms of the balance of energy and imbalance of

entropy are

[7r i lV :  f fq '  n l  +e" -04NV * r '  no + gsV,

ffqnv 3n" -nKV + fft -n
We remark that without additional constitutive assumptions, in the ab-

sence of the superficial structure (i.e. when e :4 :0) and without superfi-

cial shear, i.e., r : 0, using (46), relation (a7) reduces to the purely thermal

version of (20). Under the same assumptions (48) reduces to (19), so that

at this point the equivalent temperature of the interface plays no particular

role, as expected.
The next step is to deduce the interfacial form of the dissipation inequal-

ity from (aT) and, (aB). Multiplying ( B) by 0 and combining with (47) we

obtain
=

, 1 , "  +n0"  + r .no  +gsv+ [q ( r  -Z l  n ] l - [ r t@-A)nvs0 .  (49 )

When we compare this result with the standard derivation in [1], obtained

when the temperature field is continuous) we note two additional terms. In

order to obtain the physical significance of different terms we rearrange (49)

AS

,b" +n0" + r .no+ (gs - [q(0 _ q)v + [q(r - 
i l  ,rn < 0, (50)

and note that in the pureiy thermal setting without interface structure and

without interfacial shearl, i.e. when ,lt : i: 0 the normai component of

the configurational forces balance reduces to

(47)

(48)

-gs : ffrln, (51 )

lwith additional constitutive assumptions it follows from the work of Gurtin [1] that

the interfacial shear is the derivative of the surface free energy with respect to the orien-

tation so that using additional constitutive assumptions without interfacial structure the

interfacial shear vanishes.

13



which substituted in (50) gives

v[d, + n(o --r,\lt - [1@ -Q ' nn 2 o. (52)
I I Y  | ' r \ "  - l J J  

" 0

This is exactly the material form of the purely thermal version of (34),

where V is substituted2 bY PV.
This derivation shows clearly that the interfacial dissipation inequality,

which is obtained here combining (a7) and (48), makes use of the equivalent

temperature of the interface d, which is uniquely defined when the tempera-

ture is continuous, but has to be prescribed by a constitutive function when

the temperature field is discontinuous.

4 constitutive relations at the interfacel special

theories

In this section we shall discuss only the pure thermal setting in motionless

bodies, but our main results can be generalized straightforward following the

line of [3] to include both the motion and the interfacial slip and friction.

In the purely thermal setting the interfacial energy release and the entropy

imbalance are

u: [rb + n@ - qn, ^" - n9o1e - A; ,r1 > o, (53)

we now assume that the interfacial energy release and the equivalent

temperature of the interface are given by the following constitutive functions

6 :  o (o- ,0+) ,  e  :  6 (d- ,  d+ ,  t ) .

Compatibility with (53) imposes

e ( 0 - , 0 + , m )  :  a ( 0 - , d + ,  m ) m ,

with a positive and

(54)

(cc.)

(56)

(57)

r I  . t> jw . t
Moreover, we assume that the constitutive function d is such that

min(d-, 0*) < 6 < max(7-,0+).

This additional assumption has two important consequences:

2This is a consequence of the convention of Gurtin in [1] which use volume densities.

I4



1. It is sufficient to fix I : d when the temperature is continuous3, in
which case relation (55) gives the classical formula

[Vn :  ot '

so that (56) holds obviously. In fact (57) renders the present theory
consistent with classical Stefan model.

2. In a classical simplified constitutive context, which is the subject of
the next section, (57) is sufficient to insure (56).

Two special choices of the constitutive function d were already proposed
in the literature leading to different theories. They are discussed in the
following two paragraphs and generalized below.

Theory based onz 0: (;)-t This assumption has been made by Fried
and Shen [3] although the form of the interfacial energy release and interfa-
cial heating are those from subsection 3.1. In the pure thermal setting the
inequality (56) becomes

<* l - ' f *  . n l  >  [q .n ]1 ,  (58 )
O U

or equivalently
( q . n ) j  5  0 .  ( 5 e )

This is satisfied by a supplemental constitutive choice

(q .n)  :  - . y i  (60)

for some function 7 > 0.

Theory based orr, 0 : (0) This choice was used in [B] and (56) becomes

or equivaiently,

A)G nn > ffq'nn,

($) 'nfiel 3 o.
In this case a supplemental constitutive choice is usually

for some positive function 7.
3This is only a technical assumption and we found it useful for applications presented

in the last section. Of course. one mav use a weaker version like d+ : 0- + e : e+ : g- ,

(61 )

(62)

(63)
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\
Theory based on: D : (l')(er+)-t This class includes the two previous
examples for r :0 and r:7. I t  contains also for r: Ll2 the choice
0 : t76+6-. In this case (56) becomes successively

<e' l<f i1- ' [#n.n2ffqn.n+ (64)
:

(#,- '6#t " .hrq! ns (65)
,  r  , - r  I n e n  . /  1  ,  ,  , e ,  - _ r  L f f l  -  * f f * r l . n  e  ( 6 6 )\ t t - )  

LnA , ,  
n \0 t - , - )  +  \g " )  ' n l l r t - ,X ]  .  (nn0 ,o  , '

,#,-ffi.(#) -w
[r'n __ [#n
(0,) - 

(#),

<#t -fffi.ffi#] .'

Using the identity

we obtain finally

(67)

(68)

(6e)

(70)

which is satisfied by the choice

<#t.:-"lW.H+] ,
for some positive function 7.

we can conclude that the generalized stefan model in the pure thermal
setting consists in the conservation of energy in the bulk (equation (10)),
the interfacial condition (18), supplemented by two constitutive functions e
and0 compatible with (bb) and (56). supplemented by initial and boundary
conditions they form a free-boundary problem the temperature field.

we end this section with a comment: it is not a priori obvious that a
supplemental relation (see (70)) is necessary in order to satisfy (56). In
agreement with a classicai line of thinking (see [z]) we can regard (56) as
a restriction on the constitutive function 0. Tne next section shows that in
a particular constitutive context any choice of the constitutive function d
compatible with (57) also satisfies (56).
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5 Applications

The solidification of a pure substance in the absence of the mouvement was

studied in a particular constitutive framework in [3] and sufficient conditions

for the existence of a unique travelling wave solution were obtained.
To demonstrate the role of the equivalent temperature of the interface

and that of the supplemental relations on the interface we shall study both
the solidification of a under-cooled liquid and the melt of a super-heated

solid in the constitutive framework provided in section 4.
The assumptions on the free-energies of the liquid and solid phases are

classic so that we shall focus on travelling waves solutions of the free bound-

ary problem. Our main result of this section gives necessary and sufficient

conditions for the existence of travelling wave solutions.

5.1 Field equations and jump conditions

The mass density is supposed constant over the whole body and the motion

is neglected. In this case, the field equation is the balance of energy

pe:  -d ivq ,

and the associated interface balance is

U r . ,

pvffen: [sn, (72)

where V : u . n. In the general setting according to (55) and (56) the

supplemental constitutive relations for the interfacial energy release is

IV + rt(e - 0)n: opV, (73)

where a is a positive constant and 0 is a positive constitutive function com-
patible with

min(0+,  e)  SE < max(0+,0-) , ,n  > f fqn.n.  (74)

5.2 Constitutive assumptions

Following Fried and Shen [3] we use the subscripts I and s for the liquid and

respectively solid phases and we assume the free-energy density in the form:

oen* a '

,r,/n\ _ | c"0(l -ln(?10")) in the solid phase,
Y\v/ -  

\  c7d(1 - In(?101)) +I in the l iquid phase,
(75)

1 7



where cs, ct, 0", 07 and I are positive constants. As a consequence of the

imbalance of entropy in the bulk we obtain

rr(g) : -v'(0) : { :"':ll|!:) 
in the solid phase' (76)- \"'/ 

| clln(0101) in the liquid phase, \' -/

and 
e(0) :v(d) - 0q(0): { ::1, 

'n the solid onu::: 
07)- 't - ' ' \- / 

| q0 I I in the liquid phase. \' ./

We assume the heat flux q in the classical form

( -krgrad? in the solid phase,
q : 

t 
-kter"ag in the liquid phase,

A , _ r \  f  o -  i f  € < 0 ,0(* ' t ) :  
t  , " "  +(0+ -doo)exp ( -c f fp i lk1))  i f  €>0,  

(82)

(78)

for k" and k1 positive.
Following an assumption of Fried and Shen [3] we suppose moreover that

there exists a unique transition temperature h I 0* ( d" such that

W"(d*) : i l r(d*).

5.3 Tbavelling waves solutions

We investigate a special class of solutions in the whole space in the case

where the phase interface .S1 is a plane that propagates with an unknown
but constant scalar velocity V > 0. Thus we study the existence of solutions

o( r , t ) :  a (€ ) ,  (80)

where t : r .n - Vt, having a constant profile in a mouving frame.

Solidification of a under-cooled liquid: We shall assume that the solid
phase is located in the half-space € < 0 and the liquid phase in the half-
space { ) 0 and we look for solutions with V > 0. For the solidification of
a under-cooled liquid we shall assume that in the iiquid phase the far-field
temperature, denoted doo, is such that:

0* 1 0+ I  0- I  0*.  (81)

A straightforward computation shows that there is a temperature field
compatible with the bulk equations and the jump condition (72) in the form

(7s)

IB



0-
I

t-----+ y > 0
0

e

+

oo

n .  n ,

Figure L: tavelling wave profile for V > 0 in a fixed frame; the dashed line

is  thewave f ron t .  In ther igh t  par t  € :  n 'n -Vt  >  0  wh i leonthe  le f t

{ < 0 .

with
o _  _ e o * * t  ( 8 3 )

cs

It remains to verify when this solution is compatible with (73) and (74.2)

under the assumption (74.1). First, we prove that for any choice of F compat-

ible with (74.7), the general solution (82) satisfies (a.2). The computation
of  q .n  g ives

q ,: {o,,v(e* _ e".) i:: f I 3: (84)

We have (q'n)- :0 and (q'n)* > 0 so that relat ion (7a.2) is equivalent
to

6 > o+, (85)

which is implied by the constitutive assumption (74.I).
The last supplemental condition (73) can be rewritten as

["n - Ffryn - paVl (86)

and taking into account (76), (77) and (83) we obtain

"L(0* 
-  0*) -ul"h@+ t0i-  c" In (*#)):  , . ,  (BZ)
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We conclude that a unique travelling wave solution exists if and only if

the material coefficients (c1,cr,01,0r,1) and the given data (0+,0*) satisfy

cr(e+ - 0,-) >6lc1u.(e+ l0t) - 
""r 

(u1-u*') l  (8s)
L '  \  c " d "  / J

Ifd+ and 0* are considered as given data relation (88) has to be regarded

as a restriction on 9. Toward experimental evidence for F we note that a

measure of V, for a given material ("t,"r,01,0r,1) and given data (d+'0-)

provides using (77) a value of d.

Melting of a super-heated solid: We still consider the solid phase in

the half-space { < 0 and the liquid phase in the half space € > 0 but we

look for solutions with I/ < 0. The far-field in the super-heated solid equals

doo, and we suppose
0 *  1 0 +  1 0 -  1 0 * .  ( 8 9 )

A travelling wave solution is now in the form

o(r, t ) :  {  0* + (d+ -  d-)exp (c 'p{v lk ' ) )  t t  € 
l : '  (e0)

I  d *  i f  € < 0 ,  
\ - - l

with
^+ c"?oo - I (e1)

cI

In  th is  case (q .n )+  :0  and (q .n ) -  :  pc ,V(?oo-0- )  (  0  so  tha t  (  .2 )
follows from (74.1). A unique travelling wave solution exists if and only if

|  / . A  _ / \ l
c , ( 0 -  -  d - )  >  I l c " I n ( 7 - l 7 L ) - " t 1 ' ( : 1 #  ) l  ( e 2 )

L  \  q a t  / J

We underline here that a supplemental constitutive reiation similar to
(70) is not needed and necessary and sufficient conditions are obtained for
the existence of a unique travelling wave soiutions in terms of the material
parameters (r t ,"" , f i ,0",1) and given data (d+, 0*) i f  d is given. Otherwise,
a measure of V for fixed material parameters and given data gives d as in
(87) .

6 Conclusions

We propose in this paper a generalized Stefan model allowing for jumps

in the temperature field across a nonmaterial evolving interface. We show



that the general form of the interfacial dissipation inequality is based on
an additional superficial field, denoted herc9, and we regard it as to be
prescribed by a constitutive function. We argue in this direction using two
different points of view:

o We derive a general form of the interfacial balance of energy that com-

bined with the imbalance of entropy provides the interfacial dissipation
inequality (34).

o In section 4, we start with a slightly modified version of a theory based
on a balance of configurational forces for structured interfaces and
recover the interfacial dissipation inequality obtained following this
line of thinking. The use of a theory based on configurational force
balance on structured interfaces highlights the physical significance
of the equivalent temperature of the interface, as it introduces this
concept in relation to the flow of entropy. We recover, as particular

cases, two approaches proposed in the literature, when d: (f)-1, and
6 :  @ ) .

It is interesting to note here that for structured interfaces, the interfaciai
dissipation inequality (+9) involves I e,ren if the surface structure is absent.

On the other hand, in the absence of surface structure the balance of energy
(47) and the imbalance of entropy (48) do not involve the scalar field d. This

may explain previous particular choices presented in Fried and Shen [3] and

Dascalu and Danescu [B].
For simplicity, to discuss the constitutive relations we focus on a pure

thermal probiem and we use the interfacial dissipation inequality in order

to obtain restrictions on the interfacial energy reiease and the equivalent

temperature of the interface. We only assume that

min(d- ,  0- )  <0 < max(?- ,0+) (e3)

and render the theory consistent with the classical Stefan model (in which

case the temperature is continuous).
As an illustration of the model we study in a simpiified constitutive con-

text the existence of travelling waves solutions for two problems: the solidi-

fication of an under-cooled liquid and the melting of an super-heated solid.

Without constitutive specifications for d, using oniy (93) we are able to give

necessary and sufficient conditions for the existence of a unique travelling
wave solution (relations (BB) and (92)) involving only material parameters

and given data.
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